BIBLIOGRAPHY AND INDEX
OF OKLAHOMA GEOLOGY, 1980

Compiled by
Elizabeth A. Ham

Oklahoma Geological Survey
Charles J. Mankin, Director
The University of Oklahoma
Norman, Oklahoma
1982
Special Publication Series

The Oklahoma Geological Survey's Special Publication series is designed to bring new geologic information to the public in a manner efficient in both time and cost. The material undergoes a minimum of editing and is published for the most part as a final, author-prepared report.

Each publication is numbered according to the year in which it was published and the order of its publication within that year. Gaps in the series occur when a publication has gone out of print or when no applicable publications were issued in that year.
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY, 1980

Compiled by Elizabeth A. Ham

Bibliography

5. American Petroleum Institute, American Gas Association, see American Petroleum Institute, American Gas Association, and Canadian Petroleum Association

Armstrong, D. G., see Loring, A. K., and Armstrong, D. G.

Bakker, R. T., see Dodson, Peter, Behrensmeier, A. K., Bakker, R. J., and McIntosh, J. S.

Barrett, C. M., see Danbom, S. H., Barrett, C. M., and Santiago, D. J.

1 Includes some earlier listings.
2 Associate editor, Oklahoma Geological Survey.

Behrensmeier, A. K., see Dodson, Peter, Behrensmeier, A. K., Bakker, R. T., and McIntosh, J. S.

Berendsen, Pieter, see Ripley, E. M., Lambert, M. W., and Berendsen, Pieter

Bernard, B. B., see Silver, B. A., Bernard, B. B., and Dreixer, Timothy

Booth, D. R., see Avis, L. E., and Booth, D. R.

Brenner, R. L., see Moussavi-Harami, Reza, and Brenner, R. L.

Broadhead, T. W., see McComb, Ronald, and Broadhead, T. W.

Brown, L. D., see Brewer, J. A., Steiner, D., Brown, L. D., Oliver, J. E., and Kaufman, S.

Burtch, F. W., see Smith, R. V., and Burtch, F. W.

Campbell, K. S. W., see Chatterton, B. D. E., Johnson, B. D., and Campbell, K. S. W.

Canadian Petroleum Association, see American Petroleum Institute, American Gas Association, and Canadian Petroleum Association.

Cara, Michael, see Romanowicz, B. A., and Cara, Michael

Changery, M., see Kornasiewicz, R., Changery, M., and Maier, M.

Chaplin, Audrey, see Der, Zoltan, Smart, Eugene, and Chaplin, Audrey

Clark, R. H., see Hill, G. W., Jr., and Clark, R. H.

Coney, P. J., see Kluft, C. F., and Coney, P. J.

Cuffey, R. J., see Simonsen, A. H., and Cuffey, R. J.

64. Denison, R. E., 1978, Oil Creek Sandstone (Middle Ordovician) in quarry of Pennsylvania Glass Sand Corp., in Wickham, John, and Denison, Rodger, leaders, Structural style of the Arbuckle region: Geological Society of America Guidebook, p. 73–75. (Prepared for 12th annual meeting of South-Central Section of Geological Society of America, Tulsa, Oklahoma, March 1978.)

Denison, Rodger, see Wickham, John, and Denison, Rodger

69. Dotson, Peter, Behrensmeier, A. K., Bakker, R. T., and McIntosh, J. S., 1980, Taphonomy and paleoecology of the dinosaur beds of the Jurassic Morrison Formation: Paleobiology, v. 6, p. 208–232, 8 figs., 5 tables. (Includes Cimarron County locality.)

Donovan, R. N., see Al-Shaieb, Zuhair, Hanson, R. R., Donovan, R. N., and Shelton, J. W.

Drexler, Timothy, see Silver, B. A., Bernard, B. B., and Drexler, Timothy

Durrani, S. A., see Sears, D. W., and Durrani, S. A. Dutton, S. P., see Handford, C. R., and Dutton, S. P.

Fielder, A. G., see Bogard, V. A., Fielder, A. G., and Meinders, H. C.

Fischer, J. F., see Powell, B. N., Gilbert, M. C., and Fischer, J. F.

Forgey, R. L., see Donovan, T. J., Forgey, R. L., and Roberts, A. A.

90. Fries, J. W., see Ford, J. G., Scott, G. F., and Frie, J. W.

Friedman, S. A., see Fay, R. O., Friedman, S. A., Johnson, K. S., Roberts, J. F., Rose, W. D., and Sutherland, P. K.

Friedman, S. A., see also Rieke, H. H., Galliera, F. G., and Friedman, S. A.

92. Fritts, J. R., 1980, Fauna, stratigraphy, and paleoecology of the Foraker Limestone: Osage,

Galliers, F. G., see Rieke, H. H., Galliers, F. G., and Friedman, S. A.

Gilbert, M. C., see Myers, J. D., and Gilbert, M. C.

Gilbert, M. C., see also Powell, B. N., Gilbert, M. C., and Fischer, J. F.

Gilbert, M. C., see also Scofield, Nancy, and Gilbert, M. C.

Goldstein, R. H., see Burruss, R. C., Toth, D. J., and Goldstein, R. H.

Gorby, B. M., see Cammarota, V. A., Jr., Lucas, J. M., and Gorby, B. M.

Hansen, M. C., 1980, New occurrences of the petalodontiform chondrichthyan Megacanthopetalus in the Pennsylvanian of Oklahoma and Kansas: Oklahoma Geology Notes, v. 40, p. 185–189, 1 fig.

Hanson, R. E., see Al-Shaieb, Zuhair, Hanson, R. E., Donovan, R. N., and Shelton, J. W.

Harrison, W. E., see Feinstein, Shimon, Harrison, W. E., and Thompson, T. L.

Hinkle, M. E., see Reimer, G. M., Roberts, A. A., and Hinkle, M. E.

Hoge, H. P., see Vincent, J. W., and Hoge, H. P.

Hollis, P. R., see Bradford, R. A., Compton, J. D., and Hollis, P. R.

Hubiak, P., see Minsch, J. H., Stover, C. W., and Hubiak, P.

Hubiak, P., see also Stover, C. W., Hubiak, P., Minsch, J. H., and Person, W. J.

Huffman, G. G., 1980, Stratigraphy of the Woodbine
Formation (Upper Cretaceous), southern Oklahoma: Oklahoma Geology Notes, v. 40, p. 3–16, 3 figs.
Hunt, C. G., see Sharma, M. L., Gander, G. A., and Hunt, C. G.
Iannacchione, A. T., see Houseknecht, D. W., and Iannacchione, A. T.

130. Kornasiewicz, R., Changery, M., and Maier, M., 1980, An improved lightning hazard climatology for the United States [abstract]: American Geophysical Union Transactions, EOS, v. 61, no. 46, p. 975. (Based partly on Oklahoma analyses.)

133. Lamberti, M. W., see Ripple, E. M., Lamberti, M. W., and Berendsohn, F. V.

134. Larson, S. K., see Colbath, G. K., and Larson, S. K.

138. Lawson, J. E., Jr., see Luza, K. V., and Lawson, J. E., Jr.

140. Loring, A. K., and Armstrong, D. G., 1980, Cambrian–Ordovician syenites of New Mexico, part of a regional alkalic intrusive episode: Geology, v. 8, p. 344–348, 4 figs. (Includes southern Oklahoma evidence.)

Lucas, J. M., see Cammarata, V. A., Jr., Lucas, J. M., and Gorby, B. M.

143. McCaslin, J. C., 1980, Palo Duro interest may be on upswing again: Oil and Gas Journal, v. 78, no. 24, p. 131, 1 fig. (Includes Harmond County well.)

144. McCaslin, J. C., 1980, Southeast Oklahoma wildcats due close look: Oil and Gas Journal, v. 78, no. 20, p. 177, 1 fig.

150. McIntosh, J. S., see Dodson, Peter, Behrensmeier, A. K., Bakker, R. T., and McIntosh, J. S.

157. Meinders, H. C., see Bogard, V. A., Fielder, A. G., and Meinders, H. C.

161. Merrill, G. K., see von Bitter, P. H., and Merrill, G. K.

166. Mining Information Services, 1980, Directory of

181. Myers, J. D., see Gilbert, M. C., and Myers, J. D.

Oliver, J. E., see Brewer, J. A., Steiner, D., Brown, L. D., Oliver, J. E., and Kaufman, S.
Oliver, J. W., see Krothe, N. C., and Oliver, J. W.

Orville, R. E., see Mosher, F. R., Maier, M. W., Orville, R. E., and Rust, W. D.

Ostergard, Deborah, see Curtis, B. F.
Ozima, M., see Podosek, F. A., and Ozima, M.

Papesh, H., see Keller, G. R., Papesh, H., and Roy, R. F.
Patterson, H. L., Jr., see Tranatham, J. C., Threlkeld, C. B., and Patterson, H. L., Jr.
Peacor, D. R., see Blake, D. F., Peacor, D. R., and Wilkinson, B. H.

Person, W. J., see Minsch, J. H., Stover, C. W., Person, W. J., and Smith, P. K.

Person, W. J., see also Stover, C. W., Hubiak, P., Minsch, J. H., and Person, W. J.

Pittman, E. D., see Wilson, M. D., and Pittman, E. D.

Porter, K. G., see Robbins, E. J., and Porter, K. G.

208. Powell, B. N., 1979, Mineralogy and phase chemistry of hydrous gabbros [abstract]: Geological Society of America Abstracts with Programs, v. 11, p. 497. (Concerns Wichita Mountains igneous rocks.)

Presley, M. W., see Handford, C. R., Presley, M. W., and Dutton, S. P.

216. Preston, R. E., 1979, Late Pleistocene cold-blooded vertebrate faunas from the mid-continental United States. Reptilia; Testudines, Crocodilia: University of Michigan, Museum of Paleontology, Papers on Paleontology 19 (Claude W. Hibbard Memorial Volume 6), 53 p., 10 figs., 3 tables.

217. Radke, B. M., and Mathis, R. L., 1980, On the forma-
tion and occurrence of saddle dolomite: Journal of Sedimentary Petrology, v. 50, p. 1149–1168, 12 figs., 2 tables. (Includes Ottawa County samples.)
Reagor, B. G., see Stover, C. W., Minsch, J. H., and Reagor, B. G.
Reeckman, S. A., see Friedman, G. M., and Reeckman, S. A.
218. Reford, M. S., 1980, Magnetic method: Geophysics, v. 45, p. 1640–1658, 14 figs., 1 table. (History; includes Oklahoma City Field.)
Reisz, R. R., see Heaton, M. J., and Reisz, R. R.
Reynisson, J., see Visher, G. S., and Reynisson, J.
Rieke, H. H., III, see Fertl, W. H., and Rieke, H. H., III
Roberts, A. A., see Donovan, T. J., Forgye, R. L., and Roberts, A. A.
Roberts, A. A., see also Reimer, G. M., Roberts, A. A., and Hinkle, M. E.
Roberts, J. F., see Johnson, K. S., Luza, K. V., and Roberts, J. F.
Roberts, J. F., see also Fay, R. O., Friedman, S. A., Johnson, K. S., Roberts, J. F., Rose, W. D., and Sutherland, P. K.
Rodgers, D. A., see Groshong, R. H., Jr., and Rodgers, D. A.
Rose, W. D., see Fay, R. O., Friedman, S. A., Johnson, K. S., Roberts, J. F., Rose, W. D., and Sutherland, P. K.
Roy, R. F., see Keller, G. R., Papesh, H., and Roy, R. F.
Rust, W. D., see Mosher, F. R., Maier, M. W., Orville, R. E., and Rust, W. D.
Santiago, D. J., see Danbom, S. H., Barrett, C. M., and Santiago, D. J.
227. Saunders, W. B., see Manger, W. L., and Saunders, W. B.
Scott, E. R. D., see Clarke, R. S., and Scott, E. R. D.
Scott, G. F., see Ford, J. G., Scott, G. F., and Frie, J. W.
Sharpe, J. B., see Steele, K. F., Wagner, G. H., and Sharpe, J. B.

239. Shelton, J. W., see Al-Shaieb, Zuhair, Hanson, R. E., Donovan, R. N., and Shelton, J. W.

244. Simonsen, A. H., and Cuffey, R. J., 1980, Fenestrate, pinnate, and ctenostome bryozoans and associated barnacle borings in the Wreford Megacyathus (Lower Permian) of Kansas, Oklahoma, and Nebraska: University of Kansas Paleontological Contributions, Paper 101, 38 p., 11 figs., 11 tables.

247. Smart, Eugene, see Der, Zoltan, Smart, Eugene, and Chaplin, Audrey

248. Smith, D. J., see Takken, Suzanne, and Smith, D. J.

249. Smith, P. K., see Minsch, J. H., Stover, C. W., Person, W. J., and Smith, P. K.

260. Stover, C. W., see Minsch, J. H., Stover, C. W., and Hubiak, P.

261. Stover, C. W., see also Minsch, J. H., Stover, C. W., Person, W. J., and Smith, P. K.

265. Strimple, H. L., see Broadhead, T. W., and Strimple, H. L.

266. Strimple, H. L., see also Fretz, T. J., and Strimple, H. L.

267. Strimple, H. L., see also Fretz, T. J., Strimple, H. L., and Witzke, B. J.

268. Strimple, H. L., see also Pabian, R. K., and Strimple, H. L.

271. Swiatek, J., see Butz, T. R., Swiatek, J., Rutledge, D. A.,

260. Taylor, A. M., see Scott, R. W., and Taylor, A. M.

263. Thompson, T. L., see Feinstein, Shimon, Harrison, W. E., and Thompson, T. L.

265. Toth, D. J., see Burruss, R. C., Toth, D. J., and Goldstein, R. H.

285. von Bitter, P. H., and Merrill, G. K., 1980, Naked species of Gondotella (Conodonta): their distribution, taxonomy, and evolutionary significance: Royal Ontario Museum Life Sciences Conferences 125, 49 p., 13 figs., 4 tables. (Includes Oklahoma species.)

286. Wagner, G. H., see Steele, K. F., Wagner, G. H., and Sharp, J. B.

288. Weeks, J. B., see Guttenberg, E. D., and Weeks, J. B.

289. Weyer, von Dieter, 1980, Zur Kenntnis seltener Pet-
raidae (Anthozoa, Rugosa) aus dem amerikanischen Obersilur: Zeitschrift für Geologische Wissenschaften, v. 8, no 9, p. 1209–1216, 5 figs. (In German; includes Oklahoma corals.)

White, M. B., see Thomas, J. M., Garland, P. A., White, M. B., and Daniel, E. W.

287. Wickham, J. S., 1978, Arbuckle breccias, the Collings Ranch Conglomerate and the Washita Valley Fault Zone, in Wickham, John, and Denison, Rodger, leaders, Structural style of the Arbuckle region: Geological Society of America Guidebook, p. 100–102. (Prepared for 12th annual meeting of South-Central Section of Geological Society of America, Tulsa, Oklahoma, March 1978.)

290. Wickham, J. S., 1978, Oil Creek Formation, in Wickham, John, and Denison, Rodger, leaders, Structural style of the Arbuckle region: Geological Society of America Guidebook, p. 98–99, fig. 34. (Prepared for 12th annual meeting of South-Central Section of Geological Society of America, Tulsa, Oklahoma, March 1978.)

293. Wickham, John, 1978, The Southern Oklahoma Aquifer, in Wickham, John, and Denison, Rodger, leaders, Structural style of the Arbuckle region: Geological Society of America Guidebook, p. 8–41, 12 figs. (Guidebook prepared for 12th annual meeting of South-Central Section of Geological Society of America, Tulsa, Oklahoma, March 1978.)

295. Wickham, John, and Denison, Rodger, leaders, Structural style of the Arbuckle region: Geological Society of America Guidebook, 111 p., 34 figs., 2 pls., 4 map sheets. (Prepared for 12th annual meeting of South-Central Section of Geological Society of America, Tulsa, Oklahoma, March 1978.)

Wilkinson, B. H., see Blake, D. F., Peaco, D. R., and Wilkinson, B. H.

Witzke, B. J., see Prest, T. J., Strimple, H. L., and Witzke, B. J.

299. Woodruff, C. M., Jr., 1980, Regional tectonic features of inner Gulf Coast: Oil and Gas Journal, v. 78, no. 45, p. 264, 268, 270, 275, 3 figs. (Includes Ouachita and Arbuckle areas.)

Zeigler, R. K., see Garrett, R. G., Kane, V. E., and Zeigler, R. K.
Index

(Numbers refer to entries in bibliography)

age dating: 14C, Keyes Chondrite, 232; isotopic, Precambrian rocks, Arbuckle Mountains, 115; radiometric, Cambrian igneous rocks, Wichita Mountains, 104

Amarillo–Wichita Uplift, 284

ANADARKO BASIN:
- classification of basin type, 127
- hydrocarbon-bearing sandstones, 54
- hydrocarbon-generation overpressures, 159
- Marshand sands, 231
- Oswego Limestone, 160
- petroleum and natural gas, 54, 58, 87, 90, 108, 127, 141, 142, 159, 160, 206, 234, 262, 284, 300
- sedimentology, 14, 54, 90, 108, 160, 231
- structure and tectonics, 14, 15, 54, 101, 102, 108, 128, 231, 284, 283

annual reports: Oklahoma Department of Mines, 74; Oklahoma Geological Survey, 154; Oklahoma Water Resources Board, 189

ARBuckle MOUNTAINS:
- Arbuckle Anticline, 287, 289
- basement rocks, 61, 62, 63
- breccias, 287
- Cambro–Ordovician carbonates, 204
- Collings Ranch Conglomerate, 287
- Criner Arch, Criner Uplift, 284, 292
- Dougherty Dome, 281
- Hunton–Woodford contact, 289
- Oil Creek Formation, 290
- Pennsylvanian rocks, general, 77
- Reagan Fault, 288, 289, 290, 292, 294
- sedimentology, 204, 205
- sphalerite deposits, 205
- stratigraphy, 65, 77
- structure, 61, 97, 98, 137, 281, 284, 287, 288, 289, 290, 292, 293, 294, 295
- Ten Acre Rock, 63
- Tishomingo–Belton Anticlines, 61
- Tishomingo Granite, geomorphology, 119
- travertine, 62
- Washita Valley Fault, 15, 287, 288, 289, 290, 292, 293

ARDMORE BASIN:
- Pennsylvanian rocks, 77, 292
- sedimentology, 292
- Southern Rock Asphalt Quarry, 294
- structure and tectonics, 78, 284, 292, 293

ARKOMA BASIN:
- Choctaw Fault, 8
- classification of basin type, 127
- Hunton Arch, 8
- Hunton Group rocks, 8
- Kiowa Syncline, 221
- Pennsylvanian rocks, general, 77
- petroleum and natural gas, 8, 40, 127, 140, 144
- sedimentology, 8
- stratigraphy of Desmoinesian coals, 221
- structure, 8, 221
- waste disposal, potential sites, 120

bibliographies: drought in the Great Plains, 296; Oklahoma geology (1979), 100

Black Mesa State Park, 213

CAMBRIAN:
- Arbuckle Group, 113, 161, 204, 205, 273: Arbuckle aquifer, 113, 273; Butterfly Formation, 205; Fort Sill Formation, 161; Royer Dolomite, 205; Signal Mountain Limestone, 161
- Carlton Rhyolite Group, 44, 61, 104, 209, 284: Roosevelt gabbros, 209
- Cambro–Ordovician carbonates, 204
- Cold Springs Breccia, 209
- Glen Mountain Layered Series, 1
- Navajo Mountain Group, 208, 284
- Otter Creek Microdiorite, 209
- Raggedy Mountain Gabbro Group, 1, 284
- Tillman Metasedimentary Group, 284
- Wichita Granite Group, 44, 95, 104, 180, 209, 229, 284: Headquartes Granite, 180, 209; Luger Granite, 180, 209, 229; Mount Scott Granite, 95, 104, 180, 209; Quanah Granite, 95, 104, 180, 209, 229; Reformatory Granite, 95, 180, 209
- Wichita Mountains, 1, 42, 43, 44, 95, 104, 161, 180, 209, 284

Central Oklahoma Platform, 22, 181: petroleum and natural gas, 22, 181; structure, 22, 181

climatology: drought, 156, 296; lightning studies, 175; thunderstorm-frequency analysis, 130

COAL:
- analyses, 91, 279
- coal beds: Cavanal, 77, 91; Croweburg, 77, 91, 162; Dawson, 91; Hartshorne, 77, 91, 111, 162; Henryetta, 162; Iron Post, 77, 91; McAlester, 77, 91, 111; Mineral, 77, 91; Rowe, 77, 91; Secor, 77, 91; Sequoyah, 162; Stigler, 77, 91, 162; Woir–Pittsburg, 77, 91; Wittenwine, 91
- coal-cleaning plants, 163
- coking-coal seams, 162
- directory of mines, 163
- general, 77
- mined-lands reclamation, 118
- mineralogy: sphalerite in bituminous coals, 51
- mining problems associated with facies, 111
- natural gas from coal, 206
- Oklahoma Geological Survey programs, 154
- producers and operators, 74, 163, 164, 183
- recoverability of zinc and coal from mine refuse, 280
- reserves and resources, 74
- statistics, 77, 183
- stratigraphy of Desmoinesian coals, 221
- zinc and cadmium content, 279

cooper mineralization, 56, 73, 222

COUNTIES:
- all counties: mineral production, 74; petroleum and natural gas, 13, 201, 216; waste-disposal, potential sites, 120; water reports, 189, 190, 191, 192, 194
- all north-central Oklahoma counties, fault lineaments, 239
- Adair: Pitkin Formation, 50
- Alfalfa: Aline–Lambert Field, 72, 241; earthquakes, 135; Medford anomaly, 226
- Atoka: coal, 91; earthquakes, 134; petroleum and natural gas, 172; Wapanucks Formation, 96
- Beaver: earthquakes, 134; vertebrate fossils, 216
- Beckham: earthquakes, 135, 199; petroleum and natural gas, 141, 142, 234; soil survey, 83; water resources, 125
- Blaine: diabase intrusions, 59; earthquakes, 135; Kingfisher anomaly, 18; seismology, 17
- Bryan: basement rocks, 63; petroleum and natural gas, 172; Woodbine Formation, 112
- Caddo: Cement district, uranium, 2; earthquakes, 135; Lime- stone Hills, 16; petroleum and natural gas, 80, 165, 173; uranium, 2, 44; vertebrate fossils, 216; Woodford formation, 80
- Canadian: earthquakes, 134, 135; Kingfisher anomaly, 18; Kirkidium biofacies, 9
- Carter: ammonoids, 153; earthquakes, 134, 135
- Cherokee: blastoids, 150; Pitkin Limestone and Fayetteville Shale, 198
- Choctaw: La Harpe expedition, 76; Woodbine Formation, 112
- Cimarron: Black Mesa State Park, 213; dinosaurs, 69; hydrogeochemical study for uranium, 167
- Cleveland: earthquakes, 135; George M. Sutton Wilderness, pollution management, 246; seismicity, Hennessey Shale and Garber Formation, 267
Coal: coal, 91; earthquakes, 134, 135
Comanche: Limestone Hills, 16; Raggedy Mountain Gabbro Group, 1; uranium, 44
Cotton: uranium, 44
Craig: coal, 91; Quaternary geomorphology, 107
Creek: Misener Sandstone, 22, 23, 24, 25; petroleum and natural gas, 155; structure, 22, 23, 24, 25
Custer: Osage Limestone, 160; volcanic ash deposit, 30
Dewey: earthquakes, 134; Osage Limestone, 160
Ellis: earthquakes, 134; Ogallala ash deposit, 30
Garfield: diabase intrusions, 59; Kingfisher anomaly, 18, 226; Medford anomaly, 226; Wellington Formation, 73
Garvin: earthquakes, 135
Grady: earthquakes, 135; petroleum and natural gas, 141
Grant: Aline–Lambert Field, 72; copper deposit, 56; diabase intrusions, 59; Medford anomaly, 226
Harmon: oil well, 143
Harper: vertebrate fossils, 216
Hardy: coal, 91, 162; earthquakes, 134, 135; petroleum and natural gas, 144, 145
Hughes: earthquakes, 134, 135
Jackson: water resources, 125
Johnston: Blue River Gneiss, 62; earthquakes, 134; glass-sand quarry, 64; granite quarry, 63; Oil Creek Sandstone, 64; Ton Acre Rock, 63; Tishomingo Granite outcrop, 119
Kay: earthquakes, 134; Mervine Anticline, 94; Three Sands Field, 53
Kingfisher: diabase intrusions, 59; Kingfisher anomaly, 18; seismology, 11, 17, 267
Kiowa: gastropods, 264; Raggedy Mountain Gabbro Group, 1; uranium, 44; water resources, 125
Latimer: coal, 91; La Harpe expedition, 76; petroleum and natural gas, 144, 145, 172; Wapanucka Formation, 96
Le Flore: coal, 91, 162; earthquakes, 134; petroleum and natural gas, 144, 145
Lincoln: earthquakes, 135; Foraker Limestone, 92; Misener Sandstone, 22, 23, 24, 25; petroleum and natural gas, 155; structure, 22, 23, 24, 25
Logan: earthquakes, 134, 135; vertebrate fossils, 216; Wellington Formation, 73
Love: earthquakes, 134, 135
McCain: earthquakes, 134, 135, 138; McCain County Fault, 129, 139
McCurtain: Arkansas Novaculite, 177, 178, 179; earthquakes, 134, 135; La Harpe expedition, 76; Woodbine Formation, 112
McIntosh: La Harpe expedition, 76
Major: diabase intrusions, 59; Kingfisher anomaly, 18
Marshall: general geology and stratigraphy, 37; petroleum and natural gas, 172; soil survey, 39; Woodbine Formation, 112
Mayes: coal, 91; earthquakes, 134
Muskogee: Arkansas River, PCB concentration, 250; blastosoids, 150; coal, 91; La Harpe expedition, 76; Pittkin Limestone and Fayetteville Shale, 196
Noble: county report, 238; earthquakes, 135; petroleum and natural gas, 238; Three Sands Field, 53; Wellington Formation, 73
Nowata: coal, 91; Quaternary geomorphology, 107
Okfuskee: earthquakes, 134
Oklahoma: Oklahoma City Field, 218, 284
Okmulgee: coal, 91, 162
Osage: Foraker Limestone, 92; fossil fish, 103; North Burbank Unit, 33, 155, 265; North Stanley Field, 155, 246
Ottawa: saddle dolomite, 217
Pawnee: Foraker Limestone, 92
Payne: earthquakes, 135; Foraker Limestone, 92
Pittsburg: coal, 91, 162, 221; earthquakes, 134, 135; La Harpe expedition, 76; petroleum and natural gas, 172; Wapanucka Formation, 96
Pontotoc: corals, 285; fossil crustaceans, 227; Henryhouse bryozoan, 19
Pushmataha: La Harpe expedition, 76; petroleum and natural gas, 144, 145, 172
Roger Hill: petroleum exploration, 234
Rogers: coal, 91, 162; Quaternary geomorphology, 107
Sequoyah: coal, 91, 162; earthquakes, 135
Stephens: Loco Field, 155; Sho-Vel-Turn, 155
Texas: hydrogeochemical study for uranium, 167; Morrow Formation, 58, 197; Ogallala aquifer, 174
Tillman: earthquakes, 134; uranium, 44
Tulsa: coal, 91; earthquakes, 134; Glen Pool, 155
Wagoner: coal, 91; La Harpe expedition, 76; Pittkin Limestone and Fayetteville Shale, 196
Washington: coal, 91
Washita: earthquakes, 135; petroleum and natural gas, 141, 142, 234
Woods: natural-gas eruptions, 214, 215
Woodward: iodine plant, 67

CRETACEOUS:
Bryan County, 112
Chocktaw County, 112
Cimarron County, 213
Comanchean Series:
Dakota Group, Formation, 213, 230
Purgatoire Formation, 213; Cheyenne Sandstone Member, 213, 230; Kiowa Shale Member, 230
Trinity Group, 37; Antlers Sandstone, 37
Washita Group, 37, 120; Bennington Limestone, 37; Bokchito Formation, 37, 129; Caddo Formation, 37; Grayson Marls, 37
Gulfian Series:
Eagle Ford Formation, 120
Woodbine Formation, 37, 112; Dexter Member, 112; Lewisville Shale, 112; Red Branch Member, 112; Templeton Shale, 112
McCurtain County, 112
Marshall County, 37, 112
earthquakes, 133, 134, 135, 138, 165, 166, 199, 239, 251, 252, 253
ecology (see also Paleocology, etc.): correlation of vegetation with geologic formations, 220

DEVONIAN:
Arkansas Novaculite, 172, 173, 177, 178, 179
Devonian–Mississippian boundary, 58, 77, 177, 178, 179
Hunton Group, 8, 22, 23, 24, 25, 47, 146, 172, 289; Bois d’Arc Formation, 8, 289; Frisco Formation, 8; Haragan Formation, 8, 47, 146; Sallisaw Formation, 8
Hunton–Woodford contact, 289
Misener Sandstone, 8, 22, 23, 24, 25, 54
Silurian–Devonian boundary, 8, 146
Sylamore Formation, 8
Woodford Formation, 22, 24, 25, 80, 120, 139, 172, 173, 289

ENVIRONMENTAL GEOLOGY:
drought: bibliography, 296; effects of 1976–77 drought, 156
flooding: Beckham County, 85; flood-insurance program, 189; flood-prevention program, 190; Grady County, 36; Marshall County, 39
land use: Beckham County, 83; Grady County, 32; Marshall County, 39
lightning studies, 175
mined-lands reclamation, eastern Oklahoma, 118
natural-gas eruption, Woods County, 214, 215
Oklahoma Comprehensive Water Plan, 189, 190, 195
Oklahoma Geological Survey programs, 154
pollution management, Cleveland County wilderness area, 246
waste disposal, 120, 182, 189
water management: Beckham County, 83; general, 189, 190, 195; Grady County, 32; Marshall County, 39; Ogallala aquifer, 285; regulations, 189, 190, 191, 192, 193, 194; river basins, 191; rural water systems, 194
water quality: Arkansas River, 169, 250; Coal Creek Basin, 277; Comanche Lake, 152; effects of heated effluents, 152; effects of 1975–77 drought, 156; effects of oil and gas production on salinity, 113; Gaines Creek, 278; general, 189, 190, 191, 194; High Plains aquifers, 131, 132, 274; Illinois River, 168; Lawton Quadrangle, general, 27; mine ponds, eastern Oklahoma, 275; regulations, 189, 190, 191, 193, 194; temperature monitoring, 168, 169; Tenkiller Ferry Reservoir, 168; Tri-State aquifers, 147, 148; Wichita Mountains, 44
water usage, 192
subsurface waters: Ada aquifer, 27; alluvial aquifers: Beaver and Canadian Rivers, 276, North Fork of Red River, 125, Panhandle, 98; Arbuckle aquifer, 113, 273; Cedar Hills aquifer, 27; Dalhart Quadrangle, hydrogeology, 167; dune-sand waters, 98; Garber–Wellington aquifer, 113, 236; general, 189, 190, 193, 194, 196; groundwater temperatures, Osageh Mountains, 247; High Plains regional aquifers, 113, 274; hydrogeology of ground water, 44, 131, 132, 167, 185, 186, 269; Lawton Quadrangle, general, 27; Noble County, 238; Ogallala aquifer, 98, 113, 131, 132, 174, 268; Oklahoma City Quadrangle, hydrogeology, 269; Oscar (Wichita) aquifer, 113, Roubidoux aquifer, 147, 148; Rush Springs aquifer, 113; Simpson aquifer, 273; Tri-State aquifers, 148; Vamoosa aquifer, 27, 113; Wichita Uplift, uranium content, 44; surface waters: Arkansas River, 169, 238, 249, 250; Coal Creek Basin, 277; Comanche Lake, 152; Dalhart Quadrangle, uranium, 167; Gaines Creek, 278; general, 189, 190, 191, 198, 194, 195; hydrogeological studies, 44, 167, 185, 186, 269; Illinois River, 168; Lake Eufaula, 278; Lawton Quadrangle, general, 27; mine ponds, eastern Oklahoma, 275; Noble County, 238; Oklahoma City Quadrangle, hydrogeology, 269; Red River, 228; Tenkiller Ferry Reservoir, 168; Washita River Basin, 238; Wichita Uplift, uranium content, 44; water management: Beckham County, 83; general, 189, 190, 194, 195; Grady County, 32; ground water, general, 286; management basins, 191; Marshall County, 39; river basins, 191; rural water systems, 194; water quality: Arkansas River, 169, 250; Coal Creek Basin, 277; Comanche Lake, 152; Dalhart Quadrangle, uranium concentrations, 167; effects of heated effluents, 152; effects of 1976–77 drought, 156; effect of oil and gas production on salinity, 113; Gaines Creek, 278; general, 189, 190, 191, 194; High Plains aquifers, 131, 132, 274; Illinois River, 168; Lawton Quadrangle, general, 27; mine ponds, eastern Oklahoma, 273; Noble County, 238; regulations, 189, 190, 191, 193, 194; standards, 189, 191; temperature monitoring, 168, 169; Tenkiller Ferry Reservoir, 168; Tri-State aquifers, 147, 148; Wichita Mountains, 44; water usage, 192, 194; indexes: Oklahoma geology (1979), 100; Oklahoma Geology notes (1960), 188; Jurassic, Morrison Formation, 69; La Harpe expedition (1719), 76; Marietta Basin, structure and tectonics, 78, 284, 293; meteorites: Keyes Chondrite, age dating, 232; Lost City, new mineral, 49; MINERAL INDUSTRIES: brick manufacturing, 7; commodities: ammonia plant, 85; asphalt, 294; cement, 68; chat, 77; clay and shale, 7, 74, 77; coal, see Coal; copper, 56, 75, 74; crushed stone, 243; feldspar, 207; gallium, 200; germanium, 270; glass sand, 64; granite, 74, 243; gypsum, 74, 211; helium, 84, 263; iodine, 67, 77, 271; lead and zinc, 26, 45, 74, 77, 280; lime, 212; limestone, 77; nitrogen, 85; petroleum and natural gas, see Petroleum and Natural Gas; pumice (volcanic ash), 74, 157; salt, 74, 86, 115; sand and gravel, 74, 77; sodium, 234; sulfur, 235; thorium processing, 126; tripli, 21, 74, 77; uranium, see Uranium; vermiculite exfoliating plant, 158; English, Otis, new Chief Mine Inspector, 74; exploration, lead and zinc, 26; history: La Harpe expedition (1719), 76; salt mining, Great Salt Plains, 115; mine disasters, 74; Oklahoma Miner Training Institute, 74; producers, 21, 74, 85, 126, 270, 271; Southern Rock Asphalt Quarry, 294; statistics, 7, 55, 62; 84; 86, 207, 211, 212, 243; zinc plant, 45; MISSISSIPPIAN: Chesterian Series: Caney Shale, 80, 120, 227; Delaware Creek Member, 120; contrast with Morrowan rocks, Texas County, 58; Fayetteville Shale, 49, 192, 196.
Goddard Shale, 120, 268
Hindsville Formation, 38
Pitkin Formation, 50, 160, 196, 268
Springer Formation, 80, 87
Stanley Group, 172: Stanley sands, 172
Devonian–Mississipian boundary, 58, 77, 177, 178, 179
general, Mississipian System in Oklahoma, 77
Kinderhookian: Arkansas Novaculite, 172, 173, 177, 178, 179;
Woodford Shale, 80, 139, 172, 173
lead and zinc, 77
Mississipian–Pennsylvanian boundary, 58, 77
stratigraphy, general, 77
tripoli, 77
Mississipian–Pennsylvanian boundary, 58, 77
Muenster–Waurika Arch: radioactive anomalies, 171; structure, 170, 171, 284, 293; uraninite-bearing Permian sands, 170, 171
Nemaha Ridge, Nemaha Uplift: earthquakes, 194, 135, 138; seis-
micity, 138; structure, 15, 26, 94, 129, 194, 135, 138
Northern Oklahoma Shelf, Pennsylvanian rocks, 77
Oklahoma City Quadrangle, NURE study, 269
Oklahoma City Uplift, structure, 129, 138
Oklahoma Geological Survey: annual report, 154; coal programs, 154; energy programs, 154; environmental programs, 154; geothermal-resource programs, 154; hydrologic investigations, 154; mapping programs, 154; mineral investigations, 154; Oklahoma Geophysical Observatory, 132, 133, 134, 135, 138, 154; petroleum and natural-gas programs, 154; seismic investigations, 154
Oklahoma Geophysical Observatory, 133, 134, 135, 138, 154

Ordovician:
Arbuckle Group, 87, 124, 204, 264: Cool Creek Formation, 124; Kindblade Formation, 124, 264; McKenzie Hill Formation, 124; West Spring Creek Formation, 124
Bigfork Chert, 172
Cambro-Ordovician carbonates, Arbuckle Mountains, 204
Hunton Group, 8, 87: Chimney Hill Subgroup, 8; Keel Formation, Ideal Quarry Member, 8; Pettit Formation, 8
Ordovician–Silurian boundary, 8
Simpson Group, Simpson sand, 22, 25, 54, 60, 64, 87, 89, 124, 149, 210, 237, 244, 273, 290: Bromide Formation, 34, 54, 89, 244; Corbin Ranch Formation, 54; Joins Formation, 124, 149; McLish Formation, 54, 244; Oil Creek Formation, 54, 60, 64, 202, 290; Simpson aquifer, 273; Tulip Creek Formation, 244
Stringtown Shale, 81
Sylvan Shale, 8, 22, 23, 24, 117, 172
Viola Formation, 22, 25, 52, 54, 117, 239
Welling Formation, 8
Wichita Mountains, 42, 43
Womble Formation, 172

OUACHITA MOUNTAINS:
Arkansas Novaculite, 172
Benton–Broken Bow Uplift, 291
gearthermal resources, 299
ground-water temperatures, 247
Pennsylvanian rocks, 77
petroleum and natural gas, 144, 145, 172, 173, 206
relation to Appalachian Mountains, 54
relation to Gulf of Mexico, 46
sedimentation, 54, 96, 177, 178, 179, 291
source of Kansas Pennsylvanian sediments, 176
source of Muenster–Waurika Arch sediments, 171
stratigraphy, 77, 291
structure and tectonics, 10, 12, 46, 54, 128, 172, 177, 178, 179, 284, 291, 299

PALEOECOLOGY, PALEOVENIROMENTS, PALEOGEOGRAPHY:
basal Pennsylvanian, Kay County, 94
Chesterian, Cherokee, Muskogee, and Wagoner Counties, 196
Coffeyville formation, 282
Early Cretaceous, paleocommunities, 230
Forsaker Limestone, 92
Grayhorse Limestone, 48
Great Plains, general, 266
Lower Permian, 242
Middle Paleozoic, Anadarko and Arkoma Basins, 8
Morrison Formation, 69
Morrow sands, Anadarko Basin, 14
Phanerozoic, nautiloid evidence, 57
pre-Morrow surface, 54
pre-Viola surface, 54
Quaternary: northeastern Oklahoma 107; northeastern and southwestern Oklahoma, 99
Upper Pennsylvanian seas, 106

PALEOZOLOGY:
ammonoids, 153
barracules, 242
biodiversity, Honeyhouse bryozoans, 19
blastoids, 150
brachiopods, 9
bryozoans, 19, 28, 242
chitinozoans, 117
copepods, 223
corals, 225, 295
crinoids, 28, 34, 38, 75, 88, 89, 198
crustaceans, 227
cf. pellets, 223
Forsaker Limestone, general, 92
gastropods, 109, 264
graptozoites, 81, 117
nautiloids, 57
paleocommunities: Early Cretaceous, 230; Forsaker Lime-
stone, 92
trilobites, 47, 110
vertebrates, 69, 103, 105, 216: dinosaurs, 69; fish, 103; rep-
tiles, 105
worms, polychaetes, 52
palynology, application in determination of organic metamor-
phism, Southern Oklahoma Aulacogen, 78

Pennsylvaniaian:
Atokan Series:
Atoka Formation, 41, 120, 240
Lake Murray Formation, 292: Bostwick Conglomerate, 292
Sipo sand, 202, 298
Thirteen Fingers Limestone, 58
coals, 74, 77, 91, 107, 111, 162, 221
crinoids, 58, 75, 198

Desmoinesian Series:
Cabaniss Group, 72, 107, 120, 160, 223, 239, 241: Oswego Limestone, 72, 160, 239, 241; Senora Formation, 107, 120, 160: Croweburg coal, 107; Wetumka Formation, 120, 223: Excello Shale Member, 223
Cherokee Group, 54, 80, 297; Boosch Sandstone, 54; Red Fork Sandstone, 237
Deese Group, 28, 292: Buckhorn Asphalt, 28; Deese For-
mation, 292: Devil's Kitchen Member, 292
Krebs Group, 79, 91, 111, 221, 237: Bartlesville sand, 237;
Boggy Formation, 120, 221: coals, 79, 91, 111, 221;
Hartshorne Formation, Hartshorne coals, 79, 91, 111, 221; McAlexander Formation, 120; Savanna For-
mation, 120; Stuart Shale, 120
Marmaton Group, 27, 109, 120, 203, 223, 239: Big Lime, 239;
Hollandville Formation, 27, 120; Labette For-
mation, 120; Nowata Formation, 120; Oologah Forma-
tion, 120; Bandera Shale Member, 120; Wewoka For-
mation, 109, 200; Worm Creek Limestone, 120, 223;
Excello Shale Member, 223
eustatic sea-level changes, Upper Pennsylvaniaian, 106

Gearyan Series:
Cisco Group, 171: Megargle Limestone, 171
Council Grove Group, 92: Forsaker Limestone: Americus Limestone Member, 92; Hughes Creek Shale Mem-
er, 92; Long Creek Limestone Member, 92
Oscar Group, 4, 27, 44, 94, 103, 120, 170, 238, 242: Enter-
prise Shale, 238; Fort Riley Limestone, 238; Garrison Shale, 238; Herington Limestone, 238; Matfield Shale, 238; Post Oak Formation, 4, 44, 170; Red Eagle Limestone, 94, 103; Speiser Shale, 242; Win-
field Limestone, 94, 238; Wreford Megacyclothem, 242
Vanos Group, 27, 48, 94, 120, 248, 288: Brownville Limestone, 239; Grayhorse Limestone, 48; Red Eagle Limestone, 94, 103

general, Pennsylvanian System in Oklahoma, 77
helium, 263
igneous and metamorphic rocks, 77
iodine, 77
Mississippian–Pennsylvanian boundary, 58, 77

Missourian Series:
Hoxbar Group, 27, 160, 231, 237, 282: Checkerboard Limestone, 27, 160; Hogshooter Limestone, 27, 282; Layton Sandstone, 231, 237, 282; Lost City algal limestone, 282; Marchand sands, 231
Ochelata Group, 27, 120: Barnsdall Formation, 27, 120; Chanute Formation, 120; Hilltop Formation, 120; Wann Formation, 27
Skiatook Group, 27, 120, 231, 282: Checkerboard Limestone, 27, 160; Coffeyville Formation, 27, 120, 231, 282; Hogshooter Formation, 27, 282; Nellie Bly Formation, 27, 120; Seminole Formation, 120
Stanton Limestone, Kansas, 176

Morrowan Series:
Bloyd Formation, 150, 153: Brentwood Member, 150, 153
Dornick Hills Group, 292: Golf Course Formation, 292; Jolliff Member, 292
Hale Formation, 153, 268: Cane Hill Member, 153; Prairie Grove Member, 153
Jackfork Group, Jackfork Formation, 236
Johns Valley Shale, 54, 120
Morrow chert conglomerate, 234
Morrow Formation, 43, 54, 58, 197
Morrow sands, 14, 54, 58: Keyses sand, 14
Springer Group, Springer Formation, 80, 87, 139, 268, 292: Red Club Member, 268; Target Limestone, 268
Wapanucka Formation, 96: Chickachoc Chert Member, 96

Pennsylvanian–Permian boundary, 92, 297
petroleum and natural gas, 77
porosity–depth relationship of shales, 151
stratigraphy, general, 77
tectonics, 128
uranium-bearing sands, 170, 171, 272

Virgilian Series:
Ada Group, 27
Collings Ranch Conglomerate, 287, 292
Douglas Group, 283: Oread Limestone, 283; Heebner Shale Member, 283; Plattsmouth Limestone Member, 283
Hard–Hardeman Basin, Virginian–Leonardian rocks, 136
Vamosa Group, 27, 237: Vamosa Formation, 237

PERMIAN:

Cimarronian Series:
El Reno Group, 2, 11, 27, 29, 54, 120, 222: Bison Shale, 120; Blaine Formation, 29; Cedar Hills Sandstone, 27; Chickasha Formation, 2, 11, 17; Dog Creek Shale, 120; Duncan Sandstone, 2, 11, 17; Flowerpot Formation, 17, 54, 120, 222; Creta copper deposit, 222
Hennessey Group, 2, 27, 44, 120, 170, 185, 186, 267: Bison Formation, 27; Dosey Shale, 120; Fairmont Shale, 27, 120; Hennessey Shale, 2; Ringman Silstone, 27
Post Oak Formation, 4, 44, 170, 185
Sumner Group, 2, 17, 27, 56, 73, 105, 120, 170, 202, 238, 267, 297: Garber Formation, 2, 27, 105, 120, 238, 267; Wellington Formation, 27, 56, 73, 105, 120, 170, 222, 238, 297

Custerian Series:
Whitehorse Group, 2: Rush Springs Formation, 2
Geary Series, see Pennsylvanian
helium, 263
Pennsylvanian–Permian boundary, 92, 297
porosity–depth relationship of shales, 151

PETROLEUM AND NATURAL GAS:
abnormal pressures: produced by hydrocarbon generation, 159; upper Morrow, 294
Arkoma Basin, 8, 40, 127, 140, 144
basin-type classification, 127
Central Oklahoma Platform, 181
deep wells, 90, 105, 141, 142: Anadarko Basin, 108, 141, 142; diagenesis of carbonates in, 90
effect of oil and gas production on aquifer salinity, 113
enhanced recovery: CO2 miscible, 155; hydrocarbon miscible, 155; secondary oil from stripper wells, 114; steam, 155; surfactant/polymers: North Burbank Unit, 33, 155, 265
North Stanley Field, 155, 240; waterflooding, North Burbank Unit, 265
exploration and development: Anadarko Basin, 141, 142; application of helium analysis, 219: Arkoma Basin, 140, 144; general, 13, 121, 210; history of magnetic surveying, 218; history of reflection seismograph, 3; Misener Sandstone production, Creek county, 22, 25; Morrow chert conglomerates, 234; new-field discoveries, number of, 5; new reservoirs in oil field, number of, 5; Ouchita Mountains, 144, 145, 172, 173; Pennsylvanian sandstones, 237; Three Sands Field, 53
Fayetteville Formation hydrocarbons, 40
fields, trends, units: Aline–Lambert, 72, 241; all fields, 5, 6, 13, 71, 121, 201, 210; Big Pond, 22; Billings, 238; Binger, 231; Carterville, 144, 145; Cement, 2, 70, 219, 231; Cushing, 22; Davenport, 22; Depew, 22; East Apache, 300; East Binger, 153, 231; Elk City, 142; Garber, 155; Glen Pool, 156; Golden Trend, 5, 284; Hugoton–Panhandle, 284; Isom, 172; Keyes, 84; Kinta, 144, 145; Linereal, 22; Loco, 156; Lone Elm, 238; Lucien, 238; Milfax, 22; Milton, 144, 145; Moyers, 144, 145; new fields, general, 201; North Burbank, 33, 155, 265; North Carter, 142; North Stanley, 155, 245; Northeast Alden, 173; Northeast Purdy, 155; Northwest Chickasha, 231; Northwest Norge, 231; Oklahoma City, 218, 284; Olean, 22; Pleasant Mound, 22; Potato Hills, 144, 145; Putnam Trend, 160; Ravendale, 22; Red Bank, 156; Red Oak–Norris, 144, 145; Sibleyville, 22; Shum-Vel-Tum, 5, 155, 284; Sooner Trend, 5; South Ceres, 54, 238; South Hydro, 231; Stanley String- er, 155; Stroud, 22, 155; Three Sands, 53; Wilburton, 144
general, Mississippian and Pennsylvanian, 77
generation, source: Aline–Lambert Field, 241; effect on fluid pressures, 159; time–temperature relation, 108
giant oil fields, 5, 210, 284
helium, occurrence with natural gas, 84, 263
history: reflection seismograph, 3; Three Sands Field, 53; training in petroleum geology, 122
migration: Anadarko Basin, 87; Fayetteville Formation hydrocarbons, 40; mechanisms, 139; Southern Oklahoma Au lacogen, 79
natural-gas eruption, Woods County, 214, 215
natural gas from coal, 206
Noble County, 238
Palo Duro Basin, 143
Oklahoma Geological Survey programs, 164
Ouchita Mountains, 144, 145, 172, 203
producers, 203
Southern Oklahoma Au lacogen, 79, 284
statistics: depth of drilling, 210; drilling, 121, 210; economics, 71, 210; enhanced recovery, 71, 155; exploration and development, 5, 6, 13, 71, 121, 201, 206, 210; production, 5, 6, 71, 175, 201, 210; reserves and resources, 5, 6, 144, 206, 210; stripper wells, 144; waterflooding, 71
stripper wells, 114
technology; drilling techniques, East Apache Field, 300; gamma-ray evaluation of reservoir and source rocks, 80; study of gas flow following cementing, 262; surfactant–polymer operations, 33, 155, 245, 265

PRECAMBRIAN:
Blue River Gneiss, 61, 62
Glen Mountain Layered Series, 1, 209
Keweenawan diabase intrusions, northwestern Oklahoma, 59
Raggedy Mountain Gabbro Group, 1, 209, 284; Roosevelt gabbros, 209
Tilman Metasedimentary Group, 209, 284; Meers Quartzite, 209
Tishomingo Granite, 61, 63, 119
Troy Granite, 61

QUATERNARY:
climates, northeastern Oklahoma, 107
correlation of vegetation with geologic formations, 220
northeastern and southwestern Oklahoma, 99
northeastern Oklahoma, 107
Pleistocene vertebrate fossils, 216

REMOTE SENSING, 82, 116, 175, 239:
ear-infrared aerial photography, application for identifying gypsum outcrops, 82
satellite imagery, application for identifying gypsum outcrops, 82; fault-lineament detection, north-central Oklahoma, 239; lightning recordings, infrared imagery, 175; soil-erosion detection by color changes, 116

SEDIMENTOLOGY:
algil-mound complex, Anadarko Basin, 160
Anadarko Basin, 14, 54, 90, 108, 169, 231
Arkabutla Mountains, 204, 205
Arkoma Basin, 8
Blaine Formation, marine mudrocks, 29
bottom communities, effect on sedimentation rate, 50
boulders, Johns Valley Formation, 54
calcilithites, Muenster–Waurika Arch region, 171
Cambro–Ordovician carbonates, Arkabutla Mountains, 204
channel deposition: Coffeyville Formation, 282; Hartshorne Formation, 111; Permian sands, 171; Red River, 228
Coffeyville Formation, 282
cycloths: Coffeyville Formation, 282; Oswego Limestone, 72; upper Pennsylvanian, general, 106; Wreford Megacyclothem, 242
deltaic deposition: Coffeyville Formation, 282; Hartshorne Formation, 111; Morrow chert, 234; Morrow sands, 14, 54; Permian sands, 171
diagenesis: alteration of opaque minerals, Vanoss Group, 248; Arkansas Novaculite, silica replacement of carbonate pods, 177, 178, 179; Atoka Formation, 240; authigenic clays in sandstones, 236, 298; cementation of sandstones, 60, 244; copper mineralization, 56, 73; deep burial, carbonates, 90; Desmoinesian coals, paragenesis of minerals in, 51; effects on porosity, Grayhorse Limestone, 48; intraskeletal solution, Vanoss Group, 245; Marchand sands, 231; Morrow sands, 54; Permian red-bed copper, paragenesis, 22; Post Oak sandstones, 4; quartz overgrowths in sandstones, 202; saddle dolomite, sulfate reduction, 217; uranium-bearing Permian sandstones, 170, 171
evaporite deposition, Flowerpot Shale, 54
Fayetteville Shale, facies changes, 196
fluvial deposition: Arkansas River sand bar, 249; Ogallala Formation, 98; Red Fork sands, Morrow sands, 54; Red River, 228; upper Morrow chert, 234
Grayhorse Limestone, 48
Hollis–Hardeman Basin, Virgilian and Leonardian, 136
Hunton Group, 8
lagoonal deposition, Wapanucka Formation, 96
lead and zinc ores, deposition, 87
Misener Sandstone, 22, 25
Morrow sands, 14, 58
Oswego Limestone, 72, 160
Ouachita Mountains, 54, 96, 177, 178, 179, 291
Permian sands, Muenster–Waurika Arch region, 170, 171
Pitkin limestone, facies, 50, 196
porosity–depth relationships of shales, 151
Red River, 228
sphalerite mineralization, Butterfly Formation, 205
Southern Oklahoma Aulacogen, 78, 293
tidal deposition: Misener Sandstone, 22, 25; Morrow sands, 14; Permian sands, 171
trapping of noble gases in sedimentary rocks, 203
Wapanucka Limestone facies, 96
Wichita Mountains, 4

SILURIAN:
Hunten Group, 8, 9, 19, 20, 22, 23, 88, 110, 285;
Chimneyhill Subgroup, 8, 15, 20, 110; Blackgun Formation, 8; Clarita Formation, 8, 110; Fitzhugh Member, 8, Prices Falls Member, 8; Cochrane Formation, 8; Keel Formation, 8; Pettit Formation, 8; Quarry Mountain Formation, 8; Barber Member, 8, Marble City Member, 8, Tenkiller Formation, 8
Henryhouse Formation, 8, 9, 19, 20, 88, 285
Missouri Mountain Formation, 172
Ordovician–Silurian boundary, 8
Silurian–Devonian boundary, 8, 146

SOILS:
Beckham County, general, 83
Grady County, general, 32
Marshall County, general, 39
palaeosols, Quaternary, 99
wind-erosion detection by Landata, 116

SOUTHERN OKLAHOMA AULACOGEN:
geothermal history, 78
origin and evolution, 284
petroleum and natural gas, 79, 284
relation of magma to rifting, 104
relation to Delaware Basin, 123
sedimentology, 78, 293
stratigraphy, 284
structure and tectonics, 15, 16, 46, 78, 79, 101, 102, 104, 123, 137, 294, 295, 298
subidence, 75

STRATIGRAPHY:
Arkabutla Mountains, south flank, general, 65
biostratigraphy: ammonoid zonation, Hale Formation, 153; chitinozoan zonation, Ordovician, 117; conodont zonation: Hale Formation, 153, 268; Mississippian, 153, 268; Wapanucka Formation, 96; fusulinid zonation, Wapenucka Formation, 96; gastropod zonation: Desmoinesian, 109, Kindblade Formation, 264; Henryhouse Formation, Kirkaldium biofacies, 9; Hunton Group, Arkoma Basin, 8; Silurian–Devonian boundary, 8, 146
Cretaceous, Woodbine Formation, 112
Desmoinesian coals, 221
Foraker Limestone, 92
Hunton Group, Arkoma Basin, 8
lower Paleozoic, Ouachita Mountains, 172
Marchand sandstone, 231
Misener Sandstone, 22, 23, 24
Mississippian, general, 77
Mississippian–Pennsylvanian boundary, 58, 77
Morrow Formation, Texas County, 197
Noble County, general, 238
Ordovician–Silurian boundary, 8
Pennsylvanian, general, 77
Pennsylvanian–Permian boundary, 92, 297
Silurian–Devonian boundary, 8, 146
Southern Oklahoma Aulacogen, general, 284
Virgilian and Leonardian, Hollis–Hardeman Basin, 136

STRUCTURAL GEOLOGY (includes tectonics):
Amarillo–Wichita Uplift, 284
Anadarko Basin, 14, 15, 54, 101, 102, 108, 128, 231, 284, 293
Arkabutla Anticline, 287, 289, 292, 293
Arkabutla Mountains, 61, 98, 137, 281, 284, 287, 288, 289, 290, 292, 293, 294, 295
Ardmore Basin, 78, 284, 292, 293
Arkoma Basin, 8, 291
base of Pennsylvanian, 138
Benton–Broken Bow Uplift, 291
Blue Creek Canyon Horst and Fault, 16
breccias, Arbuckle Mountains, 287
Burch Fault, 35
Central Oklahoma Fault Zone, 8
Central Oklahoma Platform, 22, 181
Choctaw Fault, 8
Creek County, 22, 23, 24, 25
Criner Arch, Criner Uplift, 284, 292
Criner–Wichita Trend, 291
Cushing Ridge, 22
Dougherty Dome, 281
El Reno lineament, 339
Great Plains, general, 266
Greenleaf anomaly, 59
Hollis–Hardeman Basin, 136
Hunt Arch, 8
Hunt Group, Arkoma Basin, 8
Kingfisher anomaly, 18, 226
Kingston Syncline, 37
Kiowa Syncline, 221
Lawtonka "grab'en," 16
Limestone Hills, 16
Lincoln County, 22, 23, 24, 25
McClain County Fault, 129, 138
Marchand Sandstone, 221
Marietta Basin, 78, 284, 293
Marshall County, 37
Medford anomaly, 226
Meers Fault, 16, 43
Mervine Anticline, 94
Mid-Continent geophysical anomaly, 18, 59, 226
Mid-Continent Gravity High, 184
Morrowan, Texas County, 58
Muenster–Waurika Arch, 170, 171, 284, 293
Nemaha Ridge, Nemaha Uplift, 15, 26, 94, 129, 134, 135, 138
Noble County, general, 238
Oklahoma City Uplift and Fault, 129, 138
Oklahoma–Louisiana–Gulf Coast lineament, 239
Oswego–Weova–Wapanucka Formations, 138
Ouachita Mountains, 10, 12, 46, 54, 128, 172, 184, 284, 291, 299
Overbrook Anticline, 292
Pauls Valley Uplift, 15
Precambrian rift system, 59
Preston Anticline, 37
Reagan Fault, 288, 289, 290, 292, 294
Seminole–Cushing Ridge, 138
Southern Oklahoma Aulacogen, 15, 16, 46, 78, 79, 101, 102, 104, 123, 137, 284, 291, 293
Stony Point Fault Zone, 43
strain analysis, Winfield Limestone, 94
Sylvan Shale, Arkoma Basin, 8
Tishomingo–Belton Anticlines, 61
Trans-Oklahoma lineament, 239
Tri-State area, 26
Viola Formation, 138
Washita Valley Fault, 15, 287, 288, 299, 290, 292, 293
Wayne Fault, 15
Wichita Mountains, 15, 16, 35, 36, 42, 43, 101, 102, 104, 128, 137, 184, 284, 293
Wilhelma Fault, 22, 135, 138

Woodford Shale, Arkoma Basin, 8
Woods County, lineament swarm, 239

TERTIARY:
Pleistocene: Pearlette rhyolite, 31
Pliocene: Ogallala Formation, 30, 31, 98, 113, 131, 132, 274, 286

TRI-STATE AREA:
hydrology: radionuclides in ground water, 147; Roubidoux aquifer, 147, 148
lead and zinc, 26, 77, 137
mineral exploration, 26

URANIUM:
assessment report, 292
Carlton Rhyolite, 44
Cement district, 2, 44, 272
Clinton and Lawton Quadrangles, 93
Dalhart Quadrangle, 167
Hennessey Group, 44, 185, 186
Hollis–Hardeman Basin, 136
hydrogeochemical and stream-sediment studies, 44, 131, 167, 185, 186, 269
Lawton Quadrangle, 44
migration from volcanic-ash deposits, 31
mineralization, 31
Oklahoma City Quadrangle, 269
Pennsylvanian sandstones and shales, 2, 44, 170, 171, 272
Post Oak Conglomerate, 44, 185, 186
Red River region, 44
Wichita Granite Group, 44
Wichita Uplift, 44, 185, 186
volcanic ash, 31

WICHITA MOUNTAINS:
amphiboles in granites, 229
basement rocks, lithostratigraphy, 209
Blue Creek Canyon Fault and Horst, 16, 43
Burch Fault, 35
conodonts, Arbuckle Group, 161
gabroic rocks, 208
hydrogeochemical ground-water and stream-sediment studies, 44, 185, 186
igneous intrusive rocks, 137
Kindblade Formation, gastropods, 264
Limestone Hills, 16
Meers Fault, 16, 43
Raggedy Mountain Gabbro Group, 1
relation of magmatism to rifting, 104
Saddle Mountain, 16
sedimentology, 4
seismicity, 35, 36
source of Muenster–Waurika Arch sediments, 171
source of Palo Duro Basin sediments, 101
source of Pennsylvanian and Permian uranium deposits, 272
source of Post Oak sediments, 4
Stony Point Fault Zone, 43
structure and tectonics, 15, 16, 35, 36, 42, 43, 101, 102, 104, 128, 137, 284, 293
uranium content of waters, 44
Wichita granites: geochemistry, 180, 229
Wreford Megacyclethrum, 242