Combined Bibliographies
of Oklahoma Geology
Vol. 2: 1971-1979

Compiled by
Elizabeth A. Ham and Christine Gay
SPECIAL PUBLICATION SERIES

The Oklahoma Geological Survey's Special Publication series is designed to bring new geologic information to the public in a manner efficient in both time and cost. The material undergoes a minimum of editing and is published for the most part as a final author-prepared report.

Each publication is numbered according to the year in which it was published and the order of its publication within that year. Gaps in the series occur when a publication has gone out of print or when no applicable publications were issued in that year.

This publication is issued and printed by the Oklahoma Geological Survey as authorized by Title 70, Oklahoma Statutes, 1971, Section 3310, and Title 74, Oklahoma Statutes, 1971, Sections 231-238. 1,000 copies of this 2-volume set have been prepared for distribution at a cost to the taxpayers of the State of Oklahoma of $6,370.
Contents

Bibliography for 1971.............................. 211
 Index... 217
Bibliography for 1972.............................. 225
 Index... 236
Bibliography for 1973.............................. 245
 Index... 261
Bibliography for 1974.............................. 271
 Index... 283
Bibliography for 1975.............................. 293
 Index... 304
Bibliography for 1976.............................. 315
 Index... 331
Bibliography for 1977.............................. 345
 Index... 360
Bibliography for 1978.............................. 373
 Index... 385
Bibliography for 1979.............................. 395
 Index... 408
Appendix (Bibliography for 1954, from
 The Hopper, Vol. 15, No. 7, July
 1955)... 421
Introduction

Since 1955, a bibliography of references to Oklahoma geology has been published annually in the Oklahoma Geological Survey's periodical publication, Oklahoma Geology Notes, and in its predecessor, The Hopper. The listings, annotated since 1958, are compiled from material published for the most part during the year preceding the year of compilation. Included are journal articles, theses, abstracts, books, maps, open-file reports, and symposium articles. These represent both published and unpublished items. Some entries are marginal but are included as an aid to the reader seeking information on any phase of the discipline as it pertains to Oklahoma.

The present bibliography is a year-by-year compilation of these previously published lists. For the sake of making this information available without delay to the reader, no attempt has been made to integrate the entries or the indexes.

Beginning with the listings for 1980, the annual bibliography will be issued as a separate volume in the Survey's Special Publication series rather than being incorporated into Oklahoma Geology Notes, as was the case in the past.

A Word About Oklahoma Geology Notes and The Hopper

The Hopper was issued monthly from July 1941 through December 1955; publication was continued thereafter as Oklahoma Geology Notes, with volume numbers successive. From volume 16 through volume 27, Oklahoma Geology Notes was published monthly; since 1968, publication has been bimonthly. All issues of The Hopper are now out of print.

In addition to the annual bibliography of Oklahoma geology, these periodicals have contained short scientific and technical articles, mineral and petroleum statistics, the Director's annual reports, news items, and abstracts.
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY 1971

Prepared by John V. Hogan, Jr., and William D. Rose

Bibliography—pages 27-39
Index—pages 40-49

BIBLIOGRAPHY

Aud, B. W., see Louden, L. R., Matthews, W. R., McClendon, R. T., Rehm, W. A., and Aud, B. W.

Bickford, M. E., see Franks, P. C., Bickford, M. E., and Wagner, H. C.

Bingham, R. H., see Marcher, M. V., and Bingham, R. H.

11. Bleakley, W. B., 1971, Cities Service solves urban-area water-flood problems: Oil and Gas Jour., v. 69, no. 41 (Oct. 11), p. 72-74, 5 figs. (Oklahoma City area.)

Brett, G. W., see Weld, B. A., Griffin, M. S., and Brett, G. W.

Buchanan, R. S., see Lumsden, D. N., Pittman, E. D., and Buchanan, R. S.

Cannon, P. J., see Rowan, L. C., Offield, T. W., Watson, Kenneth, Cannon, P. J., and Watson, R. D.

Caplan, W. M., see Schramm, M. W., Jr., and Caplan, W. M.

Caudle, B. H., see Robertson, R. W., and Caudle, B. H.

29. Dzwenski, A., see Porath, H., and Dzwenski, A.
vey Prof. Paper 750-C, p. C39-C43, 3 figs., 1 table. (Includes Oklahoma specimens.)

Griffin, M. S., see Weld, B. A., Griffin, M. S., and Brett, G. W.

46. Hare, B. D., 1970 [1971], Petrology of the Thurman Sandstone (Desmoinesian), Hughes and Coal Counties, Oklahoma: Compass, v. 48, p. 45-55, 6 figs., 3 tables.

Heidel, S. G., see Durum, W. H., Hem, J. D., and Heidel, S. G.

Hendricks, T. A., see Haley, B. R., and Hendricks, T. A.

Hoskinson, A. J., see Cook, K. L., Hoskinson, A. J., and Shelton, C. R.

64. Kastner, Miriam, 1971, Authigenic feldspars in carbonate rocks: Am. Mineralogist, v. 56, p. 1403-1442, 9 figs., 9 tables. (Includes data on Arbuckle Formation.)

65. Kennedy, J. L., 1971, No. 1 Baden: 28,000 ft calls for planning, more planning: Oil and Gas Jour., v. 69, no. 1 (Jan. 4), p. 83-90, 9 figs., 2 tables. (Anadarko basin deep test.)

68. Lane, B. B., 1971, Determining a proper flood pattern from a three-well pilot in a channel sand: Jour. Petroleum Technology, v. 23, p. 195-201, 6 figs., 1 table. (Wells in southeastern Oklahoma.)

75. Loeblisch, A. R., Jr. and Tappan, Helen, 1971, New observations of the ultrastructure of Asketopalla, an Ordovician arichthys: Jour. Paleontology, v. 45, p. 899-901, 2 pls. (Ordovician specimens.)

76. Louden, L. R., Matthews, W. R., McClendon, R. T., Rehm, W. A., and Aud, B. W., 1971, Ultra-deep drilling guided by seismic data [part 1]: World Oil, v. 172, no. 6 (May), p. 67-70 (incl. ads), 3 figs., 1 map, 2 tables. (Anadarko basin.)

81. Mankin, C. J., see Bucke, D. P., and Mankin, C. J.

83. Matthews, W. R., see Louden, L. R., Matthews, W. R., McClendon, R. T., Rehm, W. A., and Aud, B. W.

85. McCaslin, J. C., 1971, Anadarko's Hunton play at decisive stage: Oil and Gas Jour., v. 69, no. 20 (May 17), p. 223, 1 map, 1 table.

84. McCaslin, J. C., 1971, Journal survey of active fields: Oil and Gas Jour., v. 69, no. 38 (Sept. 20), p. 144, 146, 148, 150, 152-154, 156 (incl. ads.) (Oklahoma fields.)

85. McCaslin, J. C., 1971, Superdeep tests growing in Anadarko basin: Oil and Gas Jour., v. 69, no. 15 (April 12), p. 95, 1 map.

McClendon, R. T., see Louden, L. R., Matthews, W. R., McClendon, R. T., Rehm, W. A., and Aud, B. W.

Melton, F. A., see Speer, J. H., and Melton, F. A.

Moore, R. C., see Strimple, H. L., and Moore, R. C.

Mose, D. G., see Bickford, M. E., Mose, D. G., Wetherill, G. W., and Franks, P. C.

Offield, T. W., see Rowan, L. C., Offield, T. W., Watson, Kenneth, Cannon, P. J., and Watson, R. D.

89. Oil and Gas Journal, 1971, Marchand play sparks Oklahoma action: Oil and Gas Jour., v. 69, no. 8 (Feb. 22), p. 43, 1 map.

90. Oil and Gas Journal, 1971, Oklahoma discoveries fire up Marchand sand oil search: Oil and Gas Jour., v. 69, no. 40 (Oct. 4), p. 136-137, 1 map, 1 photo.

Pert, D. M., see Zanier, A. M., and Pert, D. M.

Phares, R. S., see Fisher, G. S., Saitta B., Sandro, and Phares, R. S.

Pittman, E. D., see Lumsden, D. N., Pittman, E. D., and Buchanan, R. S.

Rehm, W. A., see Louden, L. R., Matthews, W. R., McClendon, R. T., Rehm, W. A., and Aud, B. W.

Geologists Bull., v. 55, p. 2008-2017, 4 figs., 1 table. (Relation with Osage oil field in Oklahoma.)
Saita B., Sandro, see Fisher, G. S., Saita B., Sandro, and Phares, R. S.
Shabad, Theodore, see Halbouty, M. T., Meyerhoff, A. A., King, R. E., Dott, R. H., Sr., Klemme, H. D., and Shabad, Theodore.
Sharp, S. P., see Fallin, Steve, Sharp, S. P., and Wolfe, J. L.
Shelton, G. R., see Cook, K. L., Hoskinson, A. J., and Shelton, G. R.
Spencer, J. D., see Linnville, Bill, and Spencer, J. D.
118. Strimple, H. L., 1971, Ethelocrinids from the vicinity of Bartlesville, Oklahoma: Oklahoma Geology Notes, v. 31, p. 80-81, 1 fig.
Tappan, Helen, see Loeblich, A. R., Jr., and Tappan, Helen.
Taylor, H. P., Jr., see Lawrence, J. R., and Taylor, H. P., Jr.
Timko, D. J., see Fertl, W. H., and Timko, D. J.
Urban, J. B., see Wilson, L. R., and Urban, J. B.

Wagner, H. C., see Franks, P. C., Bickford, M. E., and Wagner, H. C.

Watson, Kenneth, see Rowan, L. C., Offield, T. W., Watson, Kenneth, Cannon, P. J., and Watson, R. D.

Watson, R. D. see Rowan, L. C., Offield, T. W., Watson, Kenneth, Cannon, P. J., and Watson, R. D.

Wetherill, G. W., see Bickford, M. E., Mose, D. G., Wetherill, G. W., and Franks, P. C.

Wolfe, J. L., see Fallin, Steve, Sharp, S. P., and Wolfe, J. L.

Wright, W. B., see Cohee, G. V., Bates, R. G., and Wright, W. B.

Index

ANADARKO BASIN:
deep drilling, 24, 65, 76, 77, 85, 96
delta prospecting, 16
drilling boom, 7
drilling economics, 107
Endicott sandstone, 16
future petroleum reserves, 1, 2, 50
gas exploration, 83
geophysical investigations, 100
Hunton: gas, 82; stratigraphy, 57
incentives for gas exploration, 83
Marchand sandstone, 7, 41, 67, 89, 90
Marchand trend: fields, 67; production, 67
Morroan reservoir pressure, 13
palynology, 57
seismic data, guides to deep drilling, 76, 77
stratigraphy, 1
Tonkawa sandstone, 16
annual reports: Oklahoma Department of Mines, 95; Oklahoma Geological Survey, 80

ARBRUCKLE MOUNTAINS:
basement rocks, 45
brachiopods, Silurian, 3
bryozoa, Ordovician, 12
field-trip guidebooks, 62
remote-sensor studies, 105
structural evolution, 45
trilobites, 113, 114
unconformities, Cretaceous, 112
Ardmore area, field-trip guidebook, 62
Ardmore basin, Golf Course Formation, conodonts, 117
central geology: central eastern Oklahoma, 44, 91; east-central Oklahoma, 92; northeastern Oklahoma, 81, 93

ARKOMA BASIN:
Booch sandstone, 16
coals, palynological data, 134
delta prospecting, 16
Foster sandstone, 78
future petroleum reserves, 109
palynology, 134
Spiro sandstone, 78
Thurman Sandstone, 46
waterflooding, 68
atlas, hydrologic, 81
bathymetry, Ouachita geosyncline, 17
Beavers Bend illite, 53
bibliographies: North American geology, 126; Oklahoma geology, 103
boulders, Johns Valley, 49, 110, 111, 131
brines, iodine-rich, 23
CAMBRIAN:
Arbuckle Formation, authigenic feldspars, 64
basement rocks, 45
Carlton Rhyolite Group, 45
geologic history, 58, 59
Mount Scott Granite, 86
Navajoo Mountain Basalt-Splilitic Group, 45
Raggedy Mountain Gabro Group, 45, 54
Tillman Metasedimentary Group, 45
trilobites, 113, 114
Wichita Granite Group, 45

CLAY MINERALOGY:
Ada Formation, 55
Beavers Bend illite, 53
diagenesis, 15
Flowerpot Shale, 137
isotopic fractionation, 71

COUNTIES:
Alfalfa: “Cherokee” Group, 79
Beaver: future petroleum reserves, 50
Beckham: deep tests, 24, 65, 76, 77, 85, 96
Blaine: Flowerpot Shale, 137
Caddo: drilling boom, 7, 89; Huddleston sandstone, 67; Marchand sandstone, 7, 41, 67, 89, 90
Carter: Healdton field, 70
Cleveland: Permian amphibian, 94
Coal: Thurman Sandstone, 46
Grady: Chickasha NW field, statistics, 84; drilling boom, 7, 89; Dutton Townsite field, statistics, 84; Huddleston sandstone, 67; Marchand sandstone, 7, 41, 67, 89, 90; Norge NW field, statistics, 84
Hughes: Calvin Sandstone, 102; Citra NE field, 133; Thurman Sandstone, 46
Kay: bryozoans, 88
Kingfisher: Sooner Trend, Dover Hennessey field, statistics, 84
Latimer: Potato Hills, 99
Le Flore: areal geology, 44; Potato Hills, 99
Logan: flood-plain information, Guthrie area, 123
Major: “Cherokee” Group, 79; Flowerpot Shale, 137
Murray: Ordovician acritarchs, 75; trilobites, 114
Oklahoma: Oklahoma City field, 36
Osage: bryozoans, 88; ethelocrinids, 118; Westphalia Limestone, 9
Pawnee: bryozoans, 88
Pottawatomie: Ada Formation, 55; index fossil, ammonoid, 40; waterflooding, 68
Pushmataha: Potato Hills, 99
Roger Mills: deep tests, 85
Seminole: Ada Formation, 55
Sequoyah: areal geology, 44
Stephens: Velma E field, 30

Woods: Avard NW field, 130; “Cherokee” Group, 79; Hunton reservoir data, 130
Cretaceous: geologic history, 58, 59; upper Gulf basin, 112
Criner Hills: brachiopods, Silurian, 3
cross section of Oklahoma, 136
dating, Rb-Sr, 10
deltas, prospecting for, 16
Devonian: geologic history, 58, 59; polyomorph studies, 135
eastern Oklahoma, delta patterns, 129

ECONOMIC GEOLOGY:
bentonite, 58
cement, 58
central eastern Oklahoma, 91
clay, 58
coal, 58
coal-land reclamation, 60, 61
copper, 58
dolomite, 58
east-central Oklahoma, 92
energy-research program, 73
glass sand, 58
granite, 58
gypsum, 58
lead, 58
limestone, 58
metallic minerals, 58
mineral statistics, 6, 58, 95
northeastern Oklahoma, 93
petroleum, see Petroleum
salt, 58
sand and gravel, 58
silver, 58
triple, 58
volcanic ash, 58
zinc, 58

education, field-trip guidebook, 59
electron microscope, polyomorph studies, 135
engineering geology: field-trip guidebook, 62; foundation problems, 97; highway construction, 47; symposium proceedings, 104

ENVIRONMENTAL GEOLOGY:
chloride pollution, 27
erosion control, 128
foundation problems, 97
general, 116
highway construction, 47
landslides, 47
reclamation of mined land, 60, 61
symposium proceedings, 104
urban-area waterflooding, 11
water pollution, 27, 35
erosion control, 128
field-trip guidebooks, 59, 62
flood-plain information, Guthrie area, 123
genetic increment of strata, 16
genetic sequence of strata, 16
genetic units, 16
Geochemy:
 dissolution of clay, 53
 iodine, 23
 isotopic fractionation of clay minerals and hydroxides, 71
 surfacewaters, 28
 uranium, 23
geologic history, Oklahoma, 58, 59
geologic names, lexicon, 66
geomorphology, upper Gulf Cretaceous basin, 112
Geophysics:
 crustal electrical conductivity anomalies, 100
 gravity survey, northeastern Oklahoma, 25
 infrared studies, 125
 magnetic-variation anomalies, 100
 remote-sensor studies, 105, 125
 seismic data, guides to deep drilling, 76, 77
granitic rocks, Precambrian, 10, 33
greenish-gray spots and layers, Flowerpot Shale, 137
guidebooks, field-trip, 59, 62
highway construction, landslides, 47
highway geology, field-trip guidebook, 62
Hydrology:
 central eastern Oklahoma, 91
 Cottonwood Creek, flood-plain information, 123
 east-central Oklahoma, 92
 evaporation studies, 125
 flood-plain information, Guthrie area, 123
 ground water: investigations, 56; resources, 56, 81, 125; saline, 125
 Guthrie area, flood-plain information, 123
 hydrodynamics, Midcontinent, 69
 hydrologic atlas, Tulsa quadrangle, 81
 northeastern Oklahoma, 81, 93
 pollution: natural chloride, 27; surface-water, 35
 saline ground water, 125
 south-central Oklahoma, 125
 surface water: minor elements in, 28; quality, 127; resources, 81
 water quality, 81, 127
 water resources, Tulsa quadrangle, 81
index, Oklahoma geology, 103
iodine, 23
landslides, highway construction, 47
lexicon, geologic names, 66
maps, open-file, 132

McAlester Basin:
 Booch sandstone, 16
 delta prospecting, 16
 Foster sandstone, 78
 Spiro sandstone, 78
 waterflooding, 68
metamorphism of Precambrian granitic rocks, 33
mined-land reclamation, 60, 61
mineral industries: energy-research program, 73; land reclamation, 60,
 61; resources, 58; statistics, 6, 8, 38, 58, 84, 95, 101, 124
mineralogy: feldspar in carbonate rocks, 64; Precambrian granitic
 rocks, 33
mineral resources, 58
Mississippian:
 ammonoids, 40, 108
 flysch facies, Ouachita Mountains, 20
 geologic history, 58, 59
 Jackfork Group, 87
 Johns Valley Formation, 49, 110, 111, 131
 trace fossils, 17, 18
neutron-activation analysis, 23
nomenclature, stratigraphic, 22
oil-shale research projects, 72
Oklahoma, geologic history, 58, 59
Oklahoma Department of Mines, annual report, 95
Oklahoma Geological Survey, annual report, 80
Oklahoma geology, bibliography and index, 103
Ordovician:
 Arbuckle Formation, authigenic feldspars, 64
 brachiopods, 4
 Bromide Formation, acritarchs, 74, 75
 bryozoa, 12
 cephalopods, Whiterock Stage, 32
 clay-mineral diagenesis, 15
 geologic history, 58, 59
 trilobites, 113, 114
Ouachita geosyncline, bathymetry and paleoecology, 17
Ouachita Mountains:
 bathymetry and paleoecology, Ouachita geosyncline, 17
 coelenterates, 19
 flysch facies, 20
 future petroleum reserves, 109
 geophysical investigations, 100
 Jackfork Group, 87
 Johns Valley boulders, 49, 110, 111, 131
 Potato Hills, 99
 tectonic-belt extension, central Texas, 106
 trace fossils, 17, 18
unconformities, Cretaceous, 112
paleobotany, algae, 23
Paleozoology:

- ammonoids, 34, 40, 108
- amphibian, 94
- brachiopods, 3, 4
- bryozoans, 12, 88
- cephalopods, 32
- coelenterates, 19
- conodont evolution, 117
- corals, 21
- crinoids, 118, 119, 120, 121, 122
- Diphiurinidae, 122
- ethelocrinids, 118
- Hydriocrinus, 119
- Kirkidium zone, 5
- Lysorophus tricarinatus, 94
- mammals, 51
- Paramphricrinus oklahomaensis, 120
- trace fossils, 17, 18
- trilobites, 113, 114
- Triplesia alata, 3
- Ulocrirus convexus, 120

Palynology:

- acritarchs: Aremoricanium, 74; Askotopalla, 75
- Anadarko basin, 57
- Arkoma basin, 104
- Hunton Group, 57
- Pleistocene pollen analysis, 63
- Quisquilites, 135
- techniques in deep-basin stratigraphy, 134

Pennsylvanian:

- Absaroka sequence, 129
- Ada Formation, clay petrology, 55
- ammonoids, 108
- Atoka Formation: coelenterates, 19; crinoids, 122
- Bluejacket-Bartlesville sandstone, 129
- Booch sandstone, 16
- "Cherokee" Group, 79
- conodont evolution, 117
- corals, 21
- crinoids, 118, 119, 120, 121, 122
- Deese Formation, crinoids, 122
- delta patterns, 129
- Desmoinesian, clay-mineral diagenesis, 15
- Dovely Limestone, crinoids, 122
- "Eason" zone, 7
- Endicott sandstone, 16
- flysch facies, Ouachita Mountains, 20
- Foster sandstone, 78
- Francis Shale, crinoids, 121
- Frenson Limestone, crinoids, 122

Geologic history, 58, 59
Golf Course Formation, conodont evolution, 117
Huddleston sandstone, 67
Jackfork Group, 87
Johns Valley Formation, 49, 110, 111, 131
Lester Formation, crinoids, 122
Marchand sandstone, 7, 41, 67, 89, 90
Missourian corals, 21
Morrowan: reservoir pressure, 13; well stimulation, 29
Pine sandstone, waterproofing, 11
Red Fork Sandstone, 16
Spiro sandstone, 78
Thurman Sandstone, 46
Tonkawa sandstone, 16
trace fossils, 17, 18
"Verden" sandstone, 7
Wann Formation, crinoids, 118, 119, 120
Westphalia Limestone, 9
Wewoka Formation, crinoids, 122

Permian:

- ammonoids, 34, 108
- bryozoans, 88
- clay-mineral diagenesis, 15
- Flowerpot Shale, clay mineralogy, 137
- geologic history, 58, 59
- Hennessey Formation, amphibian, 94
- Wolfcampian production, 98

Petroleum:

- Absaroka sequence, 129
- Anadarko basin: deep drilling, 24, 65, 76, 77, 85, 96; delta prospecting, 16; "Eason" zone, 7; future reserves, 1, 2, 50; gas exploration, 83; Hunton gas, 82; incentives for gas exploration, 83; Marchand sandstone, 7, 89, 90; "Verden" sandstone, 7
- Arkoma basin, 16, 68, 78, 109
- Avard NW field, 130
- basin classification, giant oil fields, 43
- Booch sandstone, 16
- central eastern Oklahoma, 91
- central Oklahoma, future reserves, 1
- Ceres S field, 16
- Chickasha NW field, 41, 67, 84, 89, 90
- Citra NE field, 133
- cross section of Oklahoma, 136
- Custer City field, 5
depth drilling, Anadarko basin, 24, 65, 76, 77, 85
depth-well stimulation, 29
delta patterns, 129
delta prospecting, 16
drilling economics, 107
drilling technology, 24, 65, 96
- Dutton Townsite field, 7, 41, 67, 84, 89, 90
east-central Oklahoma, 92
economics, drilling, 107
Edmond W field, 5
Endicott sandstone, 16
ergy-research program, 73
exploration, 8, 14, 16
Foster sandstone, 78
future prospects, 37
future provinces, 26
future reserves: Anadarko basin, 1, 2, 50; northeastern Oklah-
oma, 39; Panhandle, 50; southern Oklahoma, 52
giant fields, 42, 43
Hawkins field, 16
history, 37
Hunton reservoirs, 5, 82, 130
hydrodynamics, Midcontinent, 69
Kinta field, 78
Lacey SW field, 5
Marchand sandstone, 7, 41, 89, 90
McAlester basin, 16, 68, 78
Midcontinent, hydrodynamics, 69
Morrowan reservoir pressure, 13
Morrow trend fields, 138
Mt. Everett field, 5
Norge NW field, 41, 67, 84, 90
northeastern Oklahoma, 93
oil-shale research projects, 72
Oklahoma City field, 36
Ouachita Mountains, future reserves, 109
Ozark region, 109
Panhandle-Hugoton field, 98
permeability continuity, 102
potential, 26
pressure maintenance, 130
production, 38, 42
Prue sandstone, waterflooding, 11
Red Fork Sandstone, 16
Red Oak field, 78
research projects, 72
reserves, Verden NE-Dutton Townsite area, 7
salinity log, 138
salinity plots, 31
sandstone permeability, increased by thermal-chemical alteration,
48
seismic data, guides to deep drilling, 76, 77
Sooner Trend, Dover Hennessey field, statistics, 84
Spiro sandstone, 78
statistics, 2, 6, 8, 14, 26, 38, 42, 58, 84, 91, 92, 93, 101, 107, 124
technology, defoaming crudes, 30
Tonkawa sandstone, 16
urban waterflooding, 11

Velma E field, 30
Verden NE field, 7, 41, 67, 89, 90
waterflooding, 11, 68
well-log evaluation, 31, 138
well stimulation, 29, 48
Wilburton field, 78

PETROLOGY:
Ada Formation, 55
basement rocks, 45
Foster sandstone, 78
Mount Scott Granite, 86
Precambrian granitic rocks, 33
Raggedy Mountain Gabbro Group, 54
Spiro sandstone, 78
Thurman Sandstone, 46

Pleistocene: mammalian faunal sequence, 51; pollen analysis, 63
pollution, natural chlorine, 27

PRECAMBRIAN:
basement rocks, 45
geologic history, 58, 59
granitic rocks, 10, 33
Rb-Sr isotopic studies, 10
Tillman Metasedimentary Group, 45
provenance, Johns Valley boulders, 49, 110, 111, 131
Quaternary: clay mineralogy, 71; geologic history, 58, 59
Rb-Sr isotopic studies, 10
reclamation, mined lands, 60, 61
regional geology, Midcontinent, 2
remote-sensor studies, Arbuckle Mountains, 105
reports, open-file, 132
sandstone, permeability increased, 48
sedimentary rocks: algae, 22; iodine, 23; uranium, 23

SEDIMENTOLOGY:
deltaic deposition, 16, 129
flysch facies, Ouachita Mountains, 20
Foster sandstone, 78
Jackfork Group, 87
Johns Valley Formation, 49, 110, 111, 131
sandstone microstrata, permeability, 102
Spiro sandstone, 78
Thurman Sandstone, 46
Westphalia Limestone, 9

Silurian: Blackgum Formation, brachiopods, 3; brachiopods, 3, 4;
Cochrane Formation, brachiopods, 3; geologic history, 58, 59
Silurian-Devonian, Hunton Group: palynology, 57; reservoirs, 5, 82,
130; stratigraphy, 57; well stimulation, 29
soil, erosion control, 128
stratigraphic nomenclature, 22
Stratigraphy:
Anadarko basin, 1, 57
Arkoma basin, 109
"Cherokee" Group, 79
cross section of Oklahoma, 136
deltaic sequences, 16, 129
Healdton field, 70
Hunton Group, 57
Jackfork Group, 87
Johns Valley Formation, 49, 110, 111, 131
Midcontinent, 2
nomenclature, 22
northeastern Oklahoma, 39
Oklahoma City field, 36
Ouachita Mountains, 109
palynological techniques, 134
Panhandle, 50, 98
southern Oklahoma, 52
Thurman Sandstone, 46
Upper Pennsylvanian, northeastern Oklahoma, 21

Structural Geology:
Anadarko basin, 1
Arkoma basin, 109
evolution, southern Oklahoma, 45
Gulf Cretaceous basin, 112
Healdton field, 70
Midcontinent, 2
northeastern Oklahoma, 39
Oklahoma City field, 36
Ouachita Mountains, 109
Ouachita tectonic belt, 106
Panhandle, 50, 98
Potato Hills, 99
southern Oklahoma, 52
Southern Oklahoma geosyncline, 45
symposium proceedings, 104
Tertiary, geologic history, 58, 59
trace fossils, 17, 18
unconformities, upper Gulf Cretaceous basin, 112
uranium, 23
Wichita Mountains:
basement rocks, 45, 54, 86
general, 115
Mount Scott Granite, 86
Raggedy Mountain Gabbro Group, 54
structural evolution, 45
xenoliths, granitic, 33

[49]
Vol. 33, no. 2, April 1973

Theses, geochemistry, reservoir performance, land

Bois d'Arc, producing wells, TETONIC

Edward C., oil, surface, shale

Gas, coal, surface, Strachanopod Uplift

Till Creek, geochronology, Ordovician, ARKOMA BASIN

Muskogee, Wagoner, WELLS

Hills, Ordovician, ARKOMA BASIN

Tulsa, Eocene, Limestone, ARKOMA BASIN

ROCKY MOUNTAIN, SPRINGS, OIL

Deep-Basin, PROVINCE

Studo Cloud, Chert, and ANADARKO

Lands, Medicine Springs, PROVINCE

Kokomo, map, Limestone, ARKOMA BASIN

TARKOMA BASIN, DeeBasin

Prohibitive geology, Paleontology

PALEONTOLOGY, TARKOMA BASIN

Boskos, Basine, Survey, PROVINCE

Jour, Paleontology, Publication, Publication

Tarkoma Province, Paleontology, Publication

Overlaps and unconformities
Bibliography and Index of Oklahoma Geology
1972

Prepared by Elizabeth A. Ham and William D. Rose

Bibliography—pages 31-54
Index—pages 54-65

BIBLIOGRAPHY

Adams, J. A. S., see Schwarzer, T. F., and Adams, J. A. S.
Allen, P. B., see Goss, D. W., Ross, A. R., Allen, P. B., and
Naney, J. W.

1. Altenbaumer, Perry, 1972, The Viola and Simpson Formations,
in Paleozoic geology of the Arbuckle Mountains, Oklahoma:
Commerce, Texas, East Texas State University, Earth Science
Department, p. 17-20, illus.

2. American Gas Association, 1972, Gas facts, a statistical record
of the gas utility industry in 1971: American Gas Association,
Department of Statistics, 204 p.

3. American Gas Association, 1972, Reserves of crude oil, natural
gas liquids, and natural gas in the United States and Can-
ada and United States productive capacity as of December 31, 1971:
American Gas Association, American Petroleum Institute, Canadian Petroleum Association,
v. 26 (May 1972), 248 p.

4. American Petroleum Institute, 1971, Petroleum facts and figures

5. Amsden, T. W., and Klapper, Gilbert, 1972, Misener Sandstone
(Middle-Upper Devonian), north-central Oklahoma: American

6. Apostol, Fontaine, 1972, A view of Alexander: Oklahoma Under-
ground, Central Oklahoma Grotto, v. 5, no. 1, p. 15-19, illus.

7. Armstrong, F. E., and Heemstra, R. J., 1972, Radiometrics pro-
posed for exploration (part 2): Oil and Gas Journal, v. 70,
no. 24 (June 12), p. 152-161 (incl. ads), 2 figs. (Ceres
pool, Noble County, cited.)

Atkins, R. L., see Glover, H. A., Atkins, R. L., Reece, B. B.,
Yee, B. Q., Grove, R. E., McUsic, J. M., and Cope, R. F.

8. Babitzke, H. R., 1972, Germanium, in Metals, minerals, and
fuels, v. 1 of Minerals yearbook 1970: U.S. Bureau of
Mines, p. 1217-1218, 1 table.

9. Baker, D. R., 1972, Organic geochemistry and geological inter-

Baker, D. R., see James, G. W., and Baker, D. R.

bridge abutments and approach fills, eastern Oklahoma, in
Keller, Rosemary, and Rose, W. D. (editors), Proceedings
of the 22nd Annual Highway Geology Symposium: Okla-
ahoma Highway Department, Oklahoma Geological Survey,
p. 53-67, 11 figs., 1 table.

Beck, K. C., see Weaver, C. E., and Beck, K. C.

and uranium in sedimentary rocks: Chemical Geology, v. 9,
no. 2, p. 133-136, 2 tables. (Refers to Anadarko basin and
Kingfisher County.)

Bedwell, J. L., see Norden, J. A. E., Bedwell, J. L., Blair, A.
J., II, Kaupp, C. B., III, Marchetti, J. W., Jr., and Markas,
J. M.

12. Begemann, F., 1972, Argon 37/argon 39 activity ratios in me-
teorites and the spatial constancy of the cosmic radiation:
Journal of Geophysical Research, v. 77, p. 3650-3659, 4
figs., 3 tables. (Includes Lost City, Oklahoma, meteorite.)

Bekure, S., see Eidman, V., and Bekure, S.

Geology Notes, v. 32, p. 157-168, 10 figs.

14. Bellis, W. H., 1972, Clay and shale products in Oklahoma [ab-
stract]: Oklahoma Geology Notes, v. 32, p. 97-98.

Bennett, J. H., see Becker, V. J., Bennett, J. H., and Manuel,
O. K.

Bennett, J. H., see also Collins, A. G., Bennett, J. H., and
Manuel, O. K.

15. Benton, J. W., 1972, Subsurface stratigraphic analysis, Morrow
(Pennsylvaniaian), north central Texas County, Oklahoma

16. Benton, J. W., 1972, Subsurface stratigraphic analysis, Morrow
(Pennsylvaniaian), north central Texas County, Oklahoma

17. Benton, J. W., 1972, Subsurface stratigraphic analysis, Morrow
(Pennsylvaniaian), north central Texas County, Oklahoma
[abstract]: Oklahoma Geology Notes, v. 32, p. 22.

18. Berry, W. B. N., 1972, Early Ordovician bathyurid province
lithofacies, biofacies, and correlations—their relationship to a proto-Atlantic Ocean: Lethaia, v. 5, p. 69-85, 3 figs.
(Includes Arbuckle Mountains.)

Berrill, H. L., Jr., see Dickinson, K. A., Berryhill, H. L., Jr.,
and Holmes, C. W.

aquifer problems: Ground Water, v. 10, no 2, p. 44-54,
2 figs. (Includes Oklahoma aquifers.)

Blair, A. J., II, see Norden, J. A. E., Bedwell, J. L., Blair,
A. J., II, Kaupp, C. B., III, Marchetti, J. W., Jr., and Markas,
J. M.

1Includes some earlier listings.
2Oklahoma Geological Survey.
20. Bleakley, W. B., 1972, Engineers hear about developments in improved oil-recovery techniques: Oil and Gas Journal, v. 70, no. 17 (April 24), p. 65-72, 9 figs., 1 table. (Bartlesville Sandstone, Nowata County.)

21. Bobick, T. G., see Irani, M. C., Thimons, E. D., Bobick, T. G., Deul, Maurice, and Zabetais, M. G.

22. Bogard, D. D., see Wright, R. J., Reynolds, M. A., and Bogard, D. D.

29. Chase, E. B., see Rima, D. R., Chase, E. B., and Myers, B. M.

37. Coleman, H. J., see see Schroeder, H. J., and Cole, J. W.

38. Coleman, H. J., see see Rall, H. T., Thompson, C. J., Coleman, H. J., and Hopkins, R. L.

39. Colliver, P. J., 1971, Catalog of type specimens of invertebrate fossils: Conodonts: Smithsonian Contributions to Paleobiology, no. 8, 256 p., 1 fig.

44. Covington, M. D., 1972, Oil fields in the Criner Hills area, south central Oklahoma, in Paleozoic geology of the Arbuckle Mountains, Oklahoma [guidebook]: Commerce, Texas, East Texas State University, Earth Science Department, p. 61-63, sketch map.

50. Daly, Eleanor, see Olson, E. C., and Daly, Eleanor.

52. Dation, Emen, 1972, Devil's Kitchen controversy, in Paleozoic geology of the Arbuckle Mountains, Oklahoma [guidebook]:
Commerce, Texas, East Texas State University, Earth Science Department, p. 94.

45. Deas, Dorothy, and Sturdivant, Virginia, 1972, Petroleum aspects of southern Oklahoma, in Paleozoic geology of the Arbuckle Mountains, Oklahoma [guidebook]: Commerce, Texas, East Texas State University, Earth Science Department, p. 89-93, sketch map.

Delevaux, M. H., see Doe, B. R., and Delevaux, M. H.

Deul, Maurice, see Irani, M. C., Thimons, E. D., Bobick, T. G., Deul, Maurice, and Zabetakis, M. G.

50. Doe, B. R., and Delevaux, M. H., 1972, Source of lead in southeast Missouri galena ores: Economic Geology, v. 67, no. 4, p. 409-425, 8 figs., 6 tables. (Refers to Tri-State lead and zinc district.)

DuBois, R. L., see Lawson, Jim, and DuBois, R. L.

Ebens, R. J., see Connor, J. J., and Ebens, R. J.

57. Ehmann, W. D., see Santoliquido, P. M., and Ehmann, W. D.

58. Eldred, V., and Bekure, S., 1972, Irrigation development in the central valley basin of the Ogallala Formation—the past and the future: Oklahoma Current Farm Economics, v. 45, no. 1, p. 3-13, 1 fig., 7 tables.

Ethington, R. L., see Sweet, W. C., Ethington, R. L., and Barnes, C. R.

62. Fanelli, L. L., see Harper, W. B., and Fanelli, L. L.

68. Frodesen, E. W., 1971, Petrology and correlation of the Chickasaw Creek Formation (Mississippian), Ouachita Mountains, Oklahoma: University of Wisconsin M.S. thesis.
 Gamble, J. C., see Deere, D. U., and Gamble, J. C.
73. Golden, Julia, and Nitecki, M. H., 1972, Catalogue of type and referred specimens of fossil Crinoidea (Eocrinidae, Paracrinoidea and Crinoidea) in Field Museum of Natural History: Fieldiana Geology, v. 27, 266 p.
 Goodwin, P. W., see Ravindra, S. T., and Goodwin, P. W.
75. Green, Grace, 1972, The Hunton Group, in Paleozoic geology of the Arbuckle Mountains, Oklahoma [guidebook]: Commerce, Texas, East Texas State University, Earth Science Department, p. 21-26, illus.
76. Griesemer, A. D., 1972, Fossil assemblages and their distribution in the Ervine Creek Limestone (Late Pennsylvanian) of the Midcontinent [abstract]: Geological Society of America Abstracts with Programs, v. 4, p. 280. (Reprinted in Oklahoma Geology Notes, v. 32, p. 128.)
 Griffin, J. B., see Crane, H. R., and Griffin, J. B.
78. Griffith, C. E., 1972, Geologic history of the Criner Hills, southern Oklahoma, in Paleozoic geology of the Arbuckle Mountains, Oklahoma [guidebook]: Commerce, Texas, East Texas State University, Earth Science Department, p. 54-60, illus.
 Ham, W. E., see Johnson, K. S., and Ham, W. E.
82. Ham, W. E., see also Johnson, K. S., Branson, C. C., Curtis, N. M., Jr., Ham, W. E., Marcher, M. V., and Roberts, J. F. Ham, W. E., see also McMahan, A. B., and Ham, W. E.

Heemstra, R. J., see Armstrong, F. E., and Heemstra, R. J.

Hopkins, R. L., see Rall, H. T., Thompson, C. J., Coleman, H. J., and Hopkins, R. L.

Hottman, S. D., see Crow, F. R., and Hottman, S. D.

Hunahashi, Mitsuo, see Kim, C. W., and Hunahashi, Mitsuo.

Johnson, K. S., see Southard, L. G., Johnson, K. S., and Roberts, J. F.
Karvelot, M. D., see Shelton, J. W., Terrell, D. W., Karvelot, M. D., and Oklahoma State University Sedimentologic Study Group.

112. Kennedy, J. L., 1972, Record-shattering well went according to plan: Oil and Gas Journal, v. 70, no. 12 (March 20), p. 59-67, illus. (incl. ads). (Lone Star Producing Co. 1 Baden Unit, Beckham County, Oklahoma.)

Klapper, Gilbert, see Amsden, T. W., and Klapper, Gilbert.

Kumar, S., see Laguros, J. G., and Kumar, S.

Laguros, J. G., see Harp, J. F., and Laguros, J. G.

Lane, H. R., see Derby, J. R., Lane, H. R., and Norford, B. S.

121. Lanier, Robert, 1972, Timbered Hills Group, Colbert rhyolite porphyry, in Paleozoic geology of the Arbuckle Mountains, Oklahoma [guidebook]: Commerce, Texas, East Texas State University, Earth Science Department, p. 6-9, illus.

125. Levings, G. W., 1972, A groundwater reconnaissance study of the upper Sugar Creek watershed, Caddo County, Oklahoma [abstract]: Oklahoma Geology Notes, v. 32, p. 20.

Lintville, Bill, see Spencer, J. D., and Lintville, Bill.

Loeblich, A. R., Jr., see Tappan, Helen.

132. Lyon, G. M., 1971, Subsurface stratigraphic analysis, lower "Cherokee" Group (Pennsylvanian), portions of Alfalfa,

McAfee, Robert, Jr., see Gary, Margaret, McAfee, Robert, Jr., and Wolf, C. L.

Mankin, C. J., see Johnson, K. S., and Mankin, C. J.

Manuel, O. K., see Becker, V. J., Bennett, J. H., and Manuel, O. K.

Marcher, M. V., see Johnson, K. S., Branson, C. C., Curtis, N. M., Jr., Ham, W. E., Marcher, M. V., and Roberts, J. F.

Marchetti, J. W., Jr., see Norden, J. A. E., Bedwell, J. L., Blair, A. J., II, Kaupp, C. B., III, Marchetti, J. W., Jr., and Markas, J. M.

Merrill, G. K., see Lane, H. R., Merrill, G. K., Straka, J. J., II, and Webster, G. D.

Meyers, T. L., see Zanier, A. M., Timko, D. J., and Meyers, T. L.

Moore, B. M., see Kirby, J. G., and Moore, B. M.

Myers, B. M., see Rima, D. R., Chase, E. B., and Myers, B. M.

Naney, J. W., see Goss, D. W., Ross, A. R., Allen, P. B., and Naney, J. W.

Nicoll, R. S., see Rexroad, C. B., and Nicoll, R. S.

154. Niem, A. R., 1972, Patterns of flysch deposition of lower Stan-

156. Nitecki, M. H., see Golden, Julia, and Nitecki, M. H.

157. Noltimier, H. C., see spall, Henry, and Noltimier, H. C.

159. Norford, B. S., see Derby, J. R., Lane, H. R., and Norford, B. S.

161. Offield, T. W., see Watson, Kenneth, Rowan, L. C., and Offield, T. W.

162. Oil and Gas Journal, 1972, Historic Oklahoma test bets 30,000 ft: Oil and Gas Journal, v. 70, no. 10 (March 6), p. 68-69, 1 photo. (Lone Star Producing Co. 1 Baden Unit, Beckham County, Oklahoma.)

164. Oklahoma State University Sedimentologic Study Group, see Shelton, J. W., Terrell, D. W., Karvelot, M. D., and Oklahoma State University Sedimentologic Study Group.

170. Olson, E. C., and Daly, Eleanor, 1972, Notes on Gnathorhiza (Osteichthyes, Dipnoi): Journal of Paleontology, v. 46, p. 371-376, 3 figs., 1 pl. (Includes specimens from the Hennessey Formation.)

171. Owens, W. W., see Murphy, R. P., and Owens, W. W.

175. Pashuck, R. J., 1972, Geologic history of the Arbuckle, in Paleozoic geology of the Arbuckle Mountains, Oklahoma [guidebook]: Commerce, Texas, East Texas State University, Earth Sciences Department, p. 3-5.

176. Pashuck, R. J., 1972, Regional setting and history of the Pennsylvanian System in the Ardmore basin, in Paleozoic geology of the Arbuckle Mountains, Oklahoma [guidebook]: Commerce, Texas, East Texas State University, Earth Sciences Department, p. 80-88, sketch map.

179. Pearce, R. W., see West, R. R., Jeppesen, J. A., Pearce, R. W., and Twiss, P. C.

181. Pittman, E. D., 1972, Diagenesis of quartz in sandstones as revealed by scanning electron microscopy: Journal of Sedimentary Petrology, v. 42, p. 507-519, 8 figs. (Specimens from Oklahoma.)

Reed, L. W., see Kidder, Gerald, and Reed, L. W.

Reeves, E. B., see Murray, C. R., and Reeves, E. B.

Rexroad, C. B., see Collinson, Charles, Rexroad, C. B., and Thompson, T. L.

Reynolds, M. A., see Wright, R. J., Reynolds, M. A., and Boyd, D. D.

180. Ridge, J. D., 1972, Annotated bibliographies of mineral deposits in the Western Hemisphere: Geological Society of America Memoir 131, 681 p. (Includes references on Tri-State area.)

Roberts, A. E., see Mullens, M. C., and Roberts, A. E.

Roberts, J. F., see Johnson, K. S., Branson, C. C., Curtis, N. M., Jr., Ham, W. E., Marcher, M. V., and Roberts, J. F.

Roberts, J. F., see also Southard, L. G., Johnson, K. S., and Roberts, J. F.

183. Rock Products, 1972, Cement: shipments from mills may set new record: Rock Products, v. 75, no. 12, p. 54-57. (Includes data on Oklahoma Cement Co. at Pryor.)

Rose, W. D., see Hogan, J. V., Jr., and Rose, W. D.

Rose, W. D., see also Kellner, Rosemary, and Rose, W. D.

Ross, A. R., see Goss, D. W., Ross, A. R., Allen, P. B., and Naney, J. W.

Rowan, L. C., see Watson, Kenneth, Rowan, L. C., and Offield, T. W.

Rowan, L. C., see also Watson, R. D., and Rowan, L. C.

Rowland, T. L., 1972, Chemical and physical properties of selected Oklahoma crushed-stone products: Oklahoma Geology Notes, v. 32, p. 151-155, 1 fig., 1 table.

Rowland, T. L., see Ham, W. E., and Rowland, T. L.

186. Russell, J. L., 1972, Distribution of several lithologies in late Paleozoic sedimentary rocks of the northern Midcontinent [abstract]: Geological Society of America Abstracts with Programs, v. 4, p. 239-244. (Reprinted in Oklahoma Geology Notes, v. 32, p. 130-131.)

Santoliquido, P. M., and Ehmann, W. D., 1972, Bismuth in stony meteorites and standard rocks: Geochimica et Cosmochimica Acta, v. 36, p. 897-902, 3 tables. (Data on Lost City meteorite.)

Schott, R. W., 1972, Molluscan diversity gradients and biomes in late Albian (Cretaceous) Gulf Coast province [abstract]: Geological Society of America Abstracts with Programs, v. 4, p. 295. (Reprinted in Oklahoma Geology Notes, v. 32, p. 131.)

212. Strighoto, H. L., 1972, The genus Purazophocrinus from the Henryhouse Formation (Silurian), Pontotoc County, Oklahoma Geology Notes, v. 32, p. 119-121, 1 fig.

216. Sturdivant, Virginia, see Deas, Dorothy, and Sturdivant, Virginia.

216. Sturdivant, V. L., 1972, Pennsylvanian conglomerates of the Arbuckle Mountains, Oklahoma, in Paleozoic geology of the Arbuckle Mountains, Oklahoma [guidebook]: Commerce, Texas, East Texas State University, Earth Sciences Department, p. 31-36, illus.

219. Tappan, Helen, see Loeblich, A. R., Jr., and Tappan, Helen.

220. Terrell, D. W., see Shelton, J. W., Terrell, D. W., Karvelot, M. D., and Oklahoma State University Sedimentologic Study Group.

221. Thomas, W. A., 1972, Regional Paleozoic stratigraphy in Mississippi between Ouachita and Appalachian Mountains:
Thompson, C. J., see Rall, H. T., Thompson, C. J., Coleman, H. J., and Hopkins, R. L.
Thomson, F. J., see Vincent, R. K., and Thomson, F. J.
Toomey, D. F., see Riding, Robert, and Toomey, D. F.
228. U.S. Board on Geographic Names, 1972, Decisions on geographic names in the United States, April through June 1972, Decision List no. 7202: U.S. Department of the Interior, 32 p. (Names and defines Cunneen Tubby Creek, Latimer County, and Gilbert Creek, Harper County.)
235. Vincent, R. K., and Thomson, Fred, 1972, Recognition of exposed quartz sand and sandstone by two-channel infrared imagery: Journal of Geophysical Research, v. 77, p. 2473-2477, 3 figs. (Results of flight of infrared detector over a sand quarry near Mill Creek, Oklahoma.)
239. Watson, R. D., 1972, Spectral reflectance and photometric properties of selected rocks: Remote Sensing of Environment, v. 2, no. 2, p. 95-100, 13 figs. (USGS Mill Creek, Oklahoma, remote-sensing test site.)
Michigan, Willow Run Laboratory, Proceedings, v. 3, p. 2043-2052, illus. (Mill Creek, Oklahoma.)

Webster, G. D., see Lane, H. R., Merrill, G. K., Straka, J. J., Jr., and Webster, G. D.

248. Wilson, L. R., 1972, Geomorphology of Tecesquite Creek valley, Cimarron County, Oklahoma: Oklahoma Geology Notes, v. 32, p. 195-208, 11 figs.

Wolf, C. L., see Gary, Margaret, McCaee, Robert, Jr., and Wolf, C. L.

Wolfman, Daniel, see DuBois, R. L., and Wolfman, Daniel.

252. Wright, A. D., 1972, The relevance of zoological variation studies to the generic identification of fossil brachiopods: Lethaia, v. 5, no. 1, p. 1-13, 5 figs., 1 table. (Includes specimens from Oklahoma.)

Wright, W. B., see Cohee, G. V., and Wright, W. B.

Zabetakis, M. G., see Irani, M. C., Thimons, E. D., Bobick, T. G., Deul, Maurice, and Zabetakis, M. G.

[53]

INDEX

ANADARKO BASIN:
Cambrian deposition, 127
deposition, 175
faulted fold belts, 83
iodine-rich brines, 11, 33
magneto-telluric data, 238
Morrow- Springer trend, 42, 43
natural gas, 92
relation to Boktukola syncline, 59
Springer Shale, diagenesis, 242
Star-Lacey field, 249
subsurface Morrow, 15, 16, 17
annual reports: Oklahoma Department of Mines, 166; Oklahoma Geological Survey, 139; Oklahoma Water Resources Board, 162
Arbuckle Group: injection of liquid wastes, 178; stratigraphy, 56
ARBUCKLE MOUNTAINS:
Arbuckle Group, 56
Buckhorn asphalitic limestone, paleontology, 208
Caney Shale, 82

[54]
cosmic radiation, Lost City meteorite, 12

COUNTIES:
Alfalfa: Cherokee Group, subsurface, 132; field-trip sites, 105
Beckham: deep well, 112, 116, 158; exploration, 254; Morrow-Springer trend, 42, 43
Blaine: Chickasha Formation, amphibians, 163, 164; field-trip sites, 105; Morrow sands, well-log salinity, 256; Star-Lacey field, 249
Caddo: ground water, 125; Hoxbar Group, subsurface strata, 193; Springer Shale, diagenesis, 242
Canadian: earthquake-recording site, 49; Morrow sands, well-log salinity, 256
Carter: Hewitt Unit floodplain, 37; miospores, 236; Pontotoc Formation, cementation and lithification, 40
Cimarron, geomorphology, 248
Cleveland: dipnoan, 165; magnetic map, 156
Craig: coal, 28; Excello Shale, geochemistry, 102
Dewey: Camargo bentonite, 114; field-trip sites, 105; Morrow sands, well-log salinity, 256
Ellis: field-trip sites, 105; volcanic-glass alteration zones, 171
Garvin: Fauls Valley field, petroleum, 58
Grady: exploration, 254; Hoxbar Group, subsurface stratigraphy, 193; Morrow-Springer trend, 42
Harmon: recordings of earth potentials, 64
Harper: field-trip sites, 105
Haskell: coal, 28
Hughes: paleoecology, Wewoka Formation, 245
Johnston: manganese vein, 94
Kingfisher: iodine-rich brines, 11, 33
Kiowa: algae, 181
McClain: magnetic map, 156
McCurtain: Boktukola syncline, 59; Gulfian Cretaceous, 209; oil exploration, 254
Major: Cherokee Group, subsurface, 132; field-trip sites, 105; West Campbell field, 89
Marshall: Misener Sandstone, 5
Mayes: Spavinaw Granite, geomagnetism, 206
Nowata: Bartlesville sand, petroleum, 98; oil recovery, 20
Osage: Crouse Limestone, 246; foraminifers, 226; Excello Shale, geochemistry, 102
Payne: petroleum, 185; remote sensing, soil discrimination, 195; stratigraphy, 185
Pittsburg: highway construction, 10
Pontotoc: paleontology, 212
Roger Mills: exploration, 254
Sequoyah: lime plant, 186
Texas: Glorieta Formation, hydrology, 157; Postle area, petroleum, 16, 17, 101; subsurface Morrow sands, 15, 16, 17
Tulsa: geophysical recordings, 69
Wagoner: paleontology, 213

[55]
Woods: Cherokee Group, subsurface, 132; field-trip sites, 105
Woodward: field-trip sites, 105
Cretaceous: biomes, Gulf Coast province, 196; Gulfian, East Texas embayment, 209; northwest Oklahoma, 105; Washita, McCurtain County, shales, 46

Devonian:
Boktukola syncline, 59
Hunton Group, 75
miospores, Carter County, 236
Misener Sandstone, 5
Woodford Shale, palynomorphs, 237
directories: earth sciences, 70; geoscience departments and faculties, 93
earth-science education: field-trip guidebook, 105; guidebook preparation, 106
earth sciences, bibliography, 70

Economic Geology:
carbonate minerals, 187
carbon black, 202
cement, 23, 184
clays and shale, 13, 14, 80
coal, 65, 66, 67, 229, 247
coke and coal chemicals, 201
copper, 108, 194
crushed stone, 188
feldspar, 243
fluorspar, 250
gallium, 27
gas, see Petroleum and Natural Gas
general, 107, 133, 134, 161, 166, 204, 205
germanium, 8
gypsum and salt, 44, 103, 104
helium, 223
lead and zinc, 50, 95, 146
lime, 177, 187
magnesium, 26
metallic minerals, 50, 95, 146
mineral statistics, see Mineral Industries and Petroleum and Natural Gas
petroleum, see Petroleum and Natural Gas
sand and gravel, 53
stone, 54
tripoli, 29
electron microscopy studies, 173
energy resources, U.S. Bureau of Mines energy program, 207
engineering geology: highway construction, 10, 46, 90, 111, 119; symposium proceedings, 111

Environmental Geology:
methane emission from coal mines, 100
petroleum pollution, 142, 198

salt-water disposal, 157
subsurface waste disposal, 178, 182
water-pollution control, 159
Eocambrian, Wichita-Red River uplift, 127
Geochemistry: Excello Shale, organic-geochemical studies, 9, 102; Pennsylvanian shales, geochemical variation, 35
goecies, 113
geographic names, decisions, 227, 228

Geomagnetism:
Anadarko basin, magneto-telluric data in exploration, 238
archaeomagnetic dating, 55
map, Cleveland and McClain Counties, 156
Spavinaw Granite, paleomagnetism, 206
Wichita Mountains, Precambrian paleomagnetic measurements, 203

Geomorphology: northwest Oklahoma, 105; Oklahoma, general, 107, 109; Tesesquite Creek valley, 248; Washita River basin, 74

Geophysics:
He, Ne, Ar measurements in cosmic-ray studies, Keyes, 253
isoseismal studies, earthquakes, Midcontinent, 49
seismic data: Anchitka blast, 123; earth structure, 69; recordings of earth potentials, 64
tectonophysics, formation of Ouachita Mountain system, 110
guidebooks: Arbuckle Mountains, Paleozoic geology, 79; nontechnical guidebook for field trips in Oklahoma, 105; preparation of nontechnical guidebooks, 106
Hunton arch, 127

Hydrology:
Altus Reservoir, sediment survey, 122
annual report, Oklahoma Water Resources Board, 162
aquifer problems: salt-water disposal, 15; survey, 19
Caddo County, ground-water investigations, 125
geochemistry, Lower Verdigris River valley, 218
Glorietta Formation, salt-water disposal, 157
ground-water investigations: Caddo County, 125; effect of salt-water disposal, 15; levels, 144; Ogallala Formation, 57; recharge, 84, 85
ground-water resources: Caddo County, 125; north-central Oklahoma, 161; south-central states, 230
irrigation development, Ogallala Formation, 57
lake evaporation, Lake Hefner studies, 39
Lower Verdigris River valley, 218
Payne County, 185
precipitation studies, Washita River watershed, 152
salt-water disposal into aquifers, 157
sediment survey, Altus Reservoir, 122
surface water: evaporation, Lake Hefner, 39; farm ponds, 225; north-central Oklahoma, 161; quality, 232
temperature-profile stations, 39
Verdigris River valley, 218
water-pollution control, 159
water quality, 232
water resources: Caddo County, ground water, 125; general, 107; ground-water levels, 144; ground-water recharge, 84, 85; Lake Hefner, 39; north-central Oklahoma, 161; Ogallala Formation, 57; south-central states, ground water, 230; Washita River watershed, 152
water-use estimate, 149
index, Oklahoma geology, 97
iodine and uranium in sedimentary rocks, 11, 33
lead and zinc: bibliography, 180; mineralogy, 95; statistics, 50, 95, 146
maps: magnetic map, McClain and Cleveland Counties, 156; state maps, geologic, geomorphic, mineral, oil and gas, topographic, water sources, 107
metallic minerals: copper, 108; lead and zinc, 50, 95, 180; manganite and hausmannite, 94
meteorites, Lost City, 12, 190
Mill Creek, remote sensing, 233, 234, 235, 239, 240, 241
Mineral Industries:
history: coal industry, 66; Tri-State district, 153
resources: bibliography, 180; carbonate minerals, 187; clay and shale, 13, 14; coal, 65, 66; copper, 108; general, 107, 138; gypsum and salt, 103, 104; lead and zinc, 95; lime, 186; metallic minerals, 197; north-central Oklahoma, 161; petroleum, 185
statistics: carbonate minerals, 187; carbon black, 202; cement, 23, 184; clays and shale, 13, 14, 80; coal, 229, 247; coke and coal chemicals, 201; copper, 194; crushed stone, 188; feldspar, 243; fluor spar, 250; gallium, 27; general, 133, 134, 138, 166, 204, 205; germanium, 8; gy peum, 44, 103, 104; helium, 233; lead and zinc, 50, 95, 146; lime, 177, 187; magnesium, 26; natural gas, 86; natural-gas liquids, 87; petroleum and natural gas, 2, 3, 4, 71, 99, 118, 183; sand and gravel, 53; stone, 54; trisopoll, 29
Mineralogy:
bismuth in meteorites, 190
clay mineralogy: Camargo bentonite, 114; Havensville Shale, 124
manganite and hausmannite, 94
Precambrian formations, 51
Mississippian:
Caney Shale, 59, 88, 220
Chester, 15
Chesterian, ammonoids, 191
Chickasaw Creek Formation, 68, 150
conodonts, 34, 211
epeirogeny, 175
Goddard Formation, 59, 211
Meramec, 15
Pittkin Formation, paleontology, 220
Springer Formation: conodonts, 211; diagenesis, 242
Stanley Group, 59, 154
mudrock, quartz size distribution, 62
Ogallala Formation, irrigation development, 57
Oklahoma Department of Mines, annual report, 166
Oklahoma Geological Survey, annual report, 139
Oklahoma geology, bibliography and index, 97
Oklahoma Water Resources Board, annual report, 162
Ordovician:
ascitarchs, 129, 219
Arbuckle Group, 56
bathyurid facies, 18
Boktukola syncline, 59
conodonts, 60, 141, 176, 217
faunal succession, 47
Kindblade Limestone, algae, sponges, 181
Oil Creek Formation, diagenesis, 173
oil reservoir, 58
West Spring Creek Formation, carbonate environments, 24
Ouachita Mountains:
Boktukola syncline, 59
Chickasaw Creek Formation, 68, 150
exploratory oil well, 254
origin of Ouachita system, 110
Paleozoic stratigraphy, 140, 221, 222
Springer Shale, clay diagenesis, 242
Stanley Group: flysch deposition, 154; tuffs, 155
Stanley-Jackfork, flysch facies, 145
paleobotany: algae, Kindblade Limestone, 181; algal oolites, Woodford Shale, 33; general, Wewoka Formation, 245
Paleoecology:
Buckhorn Limestone, 208
Ervine Creek Limestone, 76, 77
Francis Formation, biofacies, 128
West Spring Creek Formation, 24
Wewoka Formation, 245
Woodford Shale, palynomorphs, 237
Paleozoic: Arbuckle Mountains, 78, 79, 168; lithology, 189; Permian basin, 96; Woodford Shale, iodine-rich brines, 33
Paleozoology:
ammonoids, 191, 220
amphibian, 163, 164
bathyurid province, 18
brachiopods, 72, 245, 252
bryozoans, 151
conodonts, 5, 32, 34, 47, 60, 73, 120, 141, 176, 179, 211, 212, 217, 224
crinoids, 212, 213, 214, 215
cystids, 167
Diplocaurus parvus (amphibian), 164
dipnoan, 165
Dissorophoidea, 163
ecoevaluation, Francis Formation, 128
Epiphyton, 181
Fayella chickashaensis, 163
fish, 258
foraminifers, 226, 245
fusulinids, 61
general: Buckhorn Limestone, 208; Ervine Creek Limestone, 76, 77; Gulfian Cretaceous, 209; Hale Formation, 137; Hunton Group, 75; Viola and Sylvan Formations, 1
Gnatophyllum, 165
Issolegeticrinus strimpelei, 215
lithistid sponges, 181
molluscs, 196, 245
oysters, 143
Parazophocrinus, 212
Renalis, 181
trilobites, 47
Tundracrinus, 214
vertebrates: amphibians, 163, 164; bibliography, 25; fish, 258
palynology: acritarchs, Ordovician-Silurian, 129, 219; Caney Shale, 88; miospores, Devonian-Mississippian, 236; palynomorphs, Woodford Shale, 237
Pennsylvanian:
Ardmore basin, stratigraphy, 169
Atokan, subsurface stratigraphy, 15
Bartlesville Sandstone, correlation by logs, 199
biostratigraphy, conodonts, 120
Boktukula syncline, 59
Buckhorn-Bartlesville sandstones, genesis, 200
Buckhorn Limestone, paleontology, 208
Cherokee Group, subsurface, 132
conglomerates, stratigraphy, 216
Deese Formation, 41
deposition and orogeny, 157
Desmoinesian: coal, 66; geochemistry, 102
Devils Kitchen Member, Deese Formation, stratigraphy, 41
Dewey Limestone, crinoid, 215
Elgin Sandstone, genesis, 200
Ervine Creek Limestone, paleontology, 76, 77
Exelco Shale, organic geochemistry, 9
Francis Formation, biofacies, 128
geochemical variation in shales, 35
Hale Formation, stratigraphy, 137
Holdenville Formation, crinoid, 214
Hughes Creek Shale, fusulinids, 61
Kessler Limestone, name change, 31
Keyes sand, subsurface stratigraphy, 15, 16
Leavenworth Limestone, biota, 226
Morrowan, subsurface stratigraphy, 15
Morrow sands: pressure relationships, 21; subsurface stratigraphy, 15, 16, 17; well-log salinity, 256
Morrow-Springer trend, 42, 43
Saukana Formation, crinoids, 213
sedimentation, marine environments, 91, 175
Spriro sand, diagenesis, 173
Springer Formation, conodont dating, 211
Springer-Goddard, highway geology, 46
stratigraphic analysis, subsurface, 132
Vamooza, highway geology, 46
Wapanucka Limestone, cementation, 81
Warner Sandstone, genesis, 200
Wewoka Formation, paleoecology, 245
Permian:
Chickasha Formation, amphibians, 163, 164
copper-shale deposits, 108
correlation with Permian basin of Texas, 96
Crouse Limestone, stratigraphy, 246
Glorieta Formation, hydrology, 19, 157
Havensville Shale, clay mineralogy, 124
Hennessey Formation, dippnian, 165
northwest Oklahoma, guidebook, 106
Pontotoc Formation, petrology, 40
Verden Sandstone, sedimentation, 48
Weford megacyclothem, 151
Petroleum and Natural Gas:
Anadarko basin: exploration, 238, 254; faulted fold belts, 83; magneto-telluric exploration, 238; Morrow-Springer trend, 42, 43; natural gas in deep basin, 92; Postle field, 15, 16, 17, 101; record-depth well, 112, 116, 158; relation to Boktukula syncline, 59; Star-Lacey field, 249; subsurface Morrow, 15, 16, 17; well-log evaluation, 172; West Campbell (northeast Caddo) gas field, 89
Bartlesville sand, water and propane flooding, 98
Boktukula syncline, 59
Bromide sand, log analysis, 148
Cement field, surface evidence, 52
classification, 117
computer control, 101
Criner Hills, 36
drilling technology, 112, 116, 188, 257
dutton-Verden-Norge trend, 192, 193
denergy program, 207
exploration and development, 7, 99, 117, 254
Hewitt Unit waterflood, 37
history, Star-Lacey and West Campbell fields, 117
map, Oklahoma oil and gas, 107
Misener Sandstone, 5
Morrow sands, pressure relationship, 21
Morrow-Springer trend, 42, 43
north-central Oklahoma, 161
organic geochemistry, Cherokee Group, 9
Pauls Valley field, Oil Creek sand, 58
pollution: abatement, 158; effects, 161
Postle field, 15, 16, 17, 101
propane flooding, 98
radiometrics for exploration, 7
record-depth well, 112, 116, 158
reservoir engineering, 37
southern Oklahoma, 45
Star-Lacey field, 117, 248
statistics, 2, 3, 4, 71, 86, 87, 99, 118, 205, 254
sulfur compounds, 174
technology, oil-recovery, 20
unitization, Postle area, 101
Velma field, sulfur, 174
waterflooding, 37, 98, 101
well logs: evaluation, 148, 172, 255, 256, 257; use in correlation, 199
West Campbell field, 89, 117
West Cement field, infrared-imagery exploration, 126
Wilburton field, 257

Petrology:
cementation and lithification of sandstone, 40
Chickasaw Creek Formation, 68
diagenesis of quartz, 173
genesis and geometry of sandstone, 200
tuffs, Stanley Group, 155
Precambrian: granite basement, 127; paleomagnetic measurements, 203;
stratigraphy, origin, age, 51
proto-Atlantic Ocean, relationship with Oklahoma Ordovician, 18
Quaternary, northwest Oklahoma, 105
radiocarbon dating, Spiro site, 38

Remote-Sensor Studies:
discrimination of silicate rocks, Mill Creek, 233
geologic mapping on reflections, Mill Creek, 241
interpretation of infrared images, Mill Creek, 240
petroleum exploration, West Cement field, 126
quartz sand, infrared imagery, Mill Creek, 235
rock and soil discrimination, Payne County, 195
silicate rocks, Mill Creek, 234
spectral reflections, Mill Creek, 239
sandstone: cementation and lithification, 40; determination of trends from sections and log maps, 199; diagenesis of quartz in sandstones, 173; genesis and geometry, 200

Sedimentology:
ancient sedimentary environments: barrier coastlines, Verden Sandstone, 48; shallow-marine deposition, Oklahoma Pennsylvanian, 91
bathurid facies, Ordovician, 18
carbonate deposition, Arbuckle Group, 24
cyclothems, Cherokee Group, 9
diagenesis, Springer Shale, 242
flysch deposition: lower Stanley Group, 154; Stanley-Jackfork, 145
genesis and geometry of sandstones, 200
Misener Sandstone, 5
Morrowan: Postle field, 16; Texas County, 15
mounds, Ordovician Kindblade, 181
orogeny and deposition, Wichita Mountains, 175
Paleozoic, Midcontinent, 189
Permian basin, Paleozoic sedimentation, 96
sand-bar deposition, Arkansas River, 210
volcanics and graywackes, Cambrian, 127
shale behavior, highway geology, 119
Silurian: acritarchs, 219; conodont biostratigraphy, 179; Henryhouse Formation, crinoid, 212; Hunton Group, 75
Spiro archeological site, radiocarbon dating, 38
stratigraphic names, changes, 31

Stratigraphy:
Arbuckle Group: Arbuckle Mountains, 56; carbonates, 24
biostratigraphy: Buckhorn Limestone, 208; Caney Shale, 224;
Goddard Shale, 224; Ordovician bathurid province facies, 18; Upper Cambrian, lower Ordovician, 141; Wreford megacyclothem, 151
Caney Shale, 82
Cherokee Group, 132
Criner Hills, 78
Devils Kitchen Member, Deese Formation, 41
general, Oklahoma, 109
Gulfian Cretaceous, 209
Hale Formation, 137
Hoxbar Group, subsurface, 193
Hunton Group, 75
Misener Sandstone, 5
Morrow, Texas County, 15, 16
northwest Oklahoma, 105
oil and gas fields, 117
Paleozoic: Arbuckle Mountains, 79, 168; Midcontinent, 189;
Ouachita Mountains, 140, 221, 222
Payne County, 185
Pennsylvanian: Ardmore basin, 169; Arbuckle Mountains, 216
Precambrian, 51
Simpson Group, 30
Stanley Group: Chickasaw Creek, 68, 150; tuffs and stratigraphy, 155
Star-Lacey field, 249
Sycamore Limestone, 82
Sylvan Formation, 1
Timbered Hills Group, 121
Viola Formation, 1

Structural Geology:
Anadarko basin, faulted fold belts, 83
Arbuckle Mountains, Criner Hills, 78
fault-zone lineaments, 95
Oklahoma: cross sections, 107; general, 109
Pennsylvanian, Postle field, subsurface Morrow, 15, 16
Tertiary: northwest Oklahoma, 105; Ogallala Formation, volcanic ash, 170, 171
Tishomingo Granite, chronology, 45
topographic map, Oklahoma, 107
Tri-State district: bibliography, 180; history, 153; source of lead in
galena ores, 50
Verdigris River valley, geohydrology, 218
volcanic ash, alteration, Ogallala Formation, 170, 171
Washita River basin, geomorphology, 74
Washita River watershed, water resources, 152
West Cement field, petroleum exploration, remote sensing, 126
Wichita Mountains: Kindblade reefs, algae, 181; paleomagnetism,
Precambrian rocks, 203; relation to Boktukola syncline, 59; source
of materials in Anadarko basin, 83
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY
1973

Prepared by ELIZABETH A. HAM,2 ROSEMARY L. CROY,2
AND WILLIAM D. ROSE 2

Bibliography—pages 47-79
Index—pages 79-93

BIBLIOGRAPHY

Adams, J. A. S., see Schwarzer, T. F., and Adams, J. A. S.
mineralogy of the rare earths and scandium to 1971; U.S. Geological
Survey Bulletin 1365, 195 p. (Includes reference to Pennsylvania
uranium in Oklahoma.)

Addington, J. W., see Woods, R. D., and Addington, J. W.
2. Adkison, W. L., 1972, Stratigraphy and structure of Middle and Upper
Ordovician rocks in the Sedgwick basin and adjacent areas,
702, 33 p., 7 figs., 5 pls., 2 tables. (Refers to Oklahoma Paleozoic.)

Albano, M. A., 1973, Subsurface stratigraphic analysis, "Cherokee"
Group (Pennsylvania), northeast Cleveland County, Oklahoma
173-174.

Alverstadt, L. P., 1973, Articulate brachiopods of the Viola Formation
(Ordovician) in the Arbuckle Mountains, Oklahoma: Oklahoma
(Abstract in Petroleum Abstracts, v. 13, p. 300.)

Allison, R. C., see Silvey, J. K. G., Sharp, H. B., Dickson, K. L.,
Allison, R. C., and Stiles, J. C.
5. American Gas Association, American Petroleum Institute, and Cana-
dian Petroleum Association, 1973, Reserves of crude oil, natural
gas liquids, and natural gas in the United States and Canada and
United States productive capacity as of December 31, 1972: v. 27
(May 1973), 251 p., numerous tables, 5 charts, 5 maps.
American Petroleum Institute, see American Gas Association,
American Petroleum Institute, and Canadian Petroleum Asso-
ciation.

Ampian, S. G., 1973, Clays, in Metals, minerals, and fuels, u. 1 of

Amsden, T. W., 1973, Late Ordovician, Silurian, and Early Devonian
strata, in Ham, W. E., Regional geology of the Arbuckle Moun-
tains, Oklahoma: Oklahoma Geological Survey, Guidebook for
GSA Field Trip No. 5 (1973 Annual Meeting), p. 39-43, 3 figs.
rocks of Anadarko basin, Oklahoma [abstract]: American Associa-
tion of Petroleum Geologists Bulletin, v. 57, p. 766-767. (Re-
printed in Oklahoma Geology Notes, v. 33, p. 169-170.)

rocks of Hunton Group, Anadarko basin, Oklahoma [abstract]:
1821. (Reprinted in Oklahoma Geology Notes, v. 33, p. 231.)

10. Amsden, T. W., 1973, The pseudodeltidium in Triplasia and Placotrip-
lesia: Lethaia, v. 6, p. 253-274, 15 figs. (Includes Oklahoma
specimens.)

[exploration], in Production, pt. 2 of International oil and gas
286-297. (Discoveries and exploratory well records in Oklahoma
by counties.)

Augustyniak, R. M., see Windle, P. N., Augustyniak, R. M., and
Nitecki, N. H.
United States Mineral Resources: U.S. Geological Survey Profes-
sional Paper 820, p. 133-142, 3 figs., 3 tables.

13. Averitt, Paul, and Lopez, Lorreda, 1972, Bibliography and index of
U.S. Geological Survey publications relating to coal, 1882-1970:

v. 71, no. 14, p. 22. (Elk City blowout.)

Baharliou, A., see Dickey, P. A., and Baharliou, A.

Bakhtiar, Daryoush, see Gray, Fenton, and Bakhtiar, Daryoush

Barnes, B. B., see Kent, D. C., Naney, J. W., and Barnes, B. B.

foundation, in Bennison, A. P., and others (editors), Tulsa's physi-
268-288, 8 figs., 2 tables.

Beall, Robert, 1973, The origin of the Gulf Coast Basin, in Hare, M. G.
(editor), and Morrow, E. H. (assistant editor), A study of Paleozoic
rocks in Arbuckle and western Ouachita Mountains of southern
Oklahoma: Shreveport Geological Society Field-Trip Guidebook,
p. 52-55, map.

Beck, K. C., see Weaver, C. E., and Beck, K. C.

Creek subbasin, no. 5, Washington County, Oklahoma: U.S.

Bennison, A. P., 1972 [1973], Checkerboard Limestone, in Bennison,
A. P., and others (editors), Tulsa's physical environment: Tulsa
Geological Society Digest, v. 37, p. 49-50, 2 photos.

Bennison, A. P., 1973 [1973], Fort Scott Limestone, in Bennison, A. P.,
and others (editors), Tulsa's physical environment: Tulsa Geologi-
cal Society Digest, v. 37, p. 27-30, 4 photos.

20. Bennison, A. P., 1972 [1973], Holdenville Shale, in Bennison, A. P.,
and others (editors), Tulsa's physical environment: Tulsa Geologi-
cal Society Digest, v. 37, p. 42-45, 2 photos.

1Includes some earlier listings.
2Oklahoma Geological Survey.
Bennison, A. P., see Stone, J. E., Bennison, A. P., and Kent, D. C.
Bergström, S. M. see Sweet, W. C., and Bergström, S. M.
Bergström, S. M., see also Sweet, W. C., Bergström, S. M., and Carnes, J. B.
Boerngen, J. G., see Shacklette, H. T., Boerngen, J. G., Cahill, J. P., and Rahill, R. L.
Briggs, T. C., see Merwin, R. W., and Briggs, T. C.
Brockie, D. C., see Johnson, K. S., and Brockie, D. C.
Brown, L. F., Jr., see Galloway, W. E., and Brown, L. F., Jr.

52. Cahill, J. P., see Shacklette, H. T., Boerngen, J. G., Cahill, J. P., and Rahill, R. L.

54. Canadian Petroleum Association, see American Gas Association, American Petroleum Institute, and Canadian Petroleum Association.

58. Cebull, S. E., see Keller, G. R., and Cebull, S. E.

63. Cleveland, J. G., 1972 [1973], The air resources of Tulsa County, in Bennison, A. P., and others (editors), Tulsa's physical environment: Tulsa Geological Society Digest, v. 37, p. 392-413, 8 illus. (including tables).

65. Cline, L. M., see Picha, František, and Cline, L. M.

68. Cooke, J. M., see Strimple, H. L., and Cooke, J. M.

71. Cooper, Margaret, see Kley, Harry, Marsh, S. P., and Cooper, Margaret.

72. Cooper, R. A., see Bergstrom, S. M., and Cooper, R. A.

73. Cope, R. F., see Vance Rowe Reports, Cope, R. F., and McClusky, J. M. Corley, R. K., see Thomas, W. O., Jr., and Corley, R. K.

75. Crow, F. R., see Mitchell, A. L., Jr., and Crow, F. R.

96. Dolcater, D. L., see Bartolina, D. G., and Dolcater, D. L.

100. Dott, R. H., see Bennison, A. P., Creath, W. B., Dott, R. H., Hayes, C. L., and Knight, W. V.

101. Dott, R. H., see also Bennison, A. P., Knight, W. V., Creath, W. B., Dott, R. H., and Hayes, C. L.

105. Dyni, J. R., see Smith, G. I., Jones, C. L., Culbertson, W. C., Ericksen, G. E., and Dyni, J. R.

111. Ethington, R. L., see Repetski, J. E., and Ethington, R. L.

113. Fanelli, L. L., see Harper, W. B., and Fanelli, L. L.

114. Fanelli, L. L., see also Wood, S. O., Jr., and Fanelli, L. L.

124. Feenstra, R. E., see Wickham, J. S., and Feenstra, R. E.

126. Ferris, Craig, 1972 (1973), Bouguer gravity map of Tulsa County,
Oklahoma, in Bennison, A. P., and others (editors), Tulsa's physical environment: Tulsa Geological Society Digest, v. 37, p. 113-124, 5 figs., map.

Ferris, Craig, see Bennison, A. P., Chenoweth, P. A., Desjardins, Louis, and Ferris, Craig.

Friedman, S. A., 1973, Oklahoma, in State-by-state reports on coal west of the Mississippi, including Canada: Coal Age, v. 78, no. 5, p. 142-145, 148-149.

Gartner, Stefan, and Gentile, Richard, 1972, Problematic Pennsylvanian coccoliths from Missouri: Micropaleontology, v. 18, p. 401-404, 1 pl. (Refers to coccoliths from Oklahoma.)

Ham, W. E., see Denison, R. E., and Ham, W. E.
Ham, W. E., see also Johnson, K. S., and Ham, W. E.
Ham, W. E., see also Rowland, T. L., Ham, W. E., and Squires, R. L.
Harlow, F. H., see Sutherland, P. K., and Harlow, F. H.
Harp, J. F., see Laguros, J. G., and Harp, J. F.
Hatfield, L. E., see Forgetson, J. M., and Hatfield, L. E.
Hayes, C. L., see Bennison, A. P., Creath, W. B., Dott, R. H., Hayes, C. L., and Knight, W. V.
Hayes, C. L., see also Bennison, A. P., Knight, W. V., Creath, W. B., Dott, R. H., and Hayes, C. L.
Haynes, L. D., see Cocke, J. M. and Haynes, L. D.
146. Helberger, D. V., see Wiggins, R. A., and Helberger, D. V.
Helberger, D. V., see also York, J. E., and Helberger, D. V.
Henderson, B. C., 1973, Student enrollment 1972-73: Geotimes, v. 18, no. 10, p. 31-33 (Includes Oklahoma.)
Heyl, A. V., see Morris, H. T., Heyl, A. V., and Hall, R. B.
Heyl, A. V., see also Wedow, Helmut, Jr., Kilgsgaard, T. H., Heyl, A. V., and Hall, R. B.
Hoffman, D. S., see Crow, F. R., and Hottman, S. D.
Hoyt, D. A., see Scholle, P. A., and Hoyt, D. E.
Hubbard, D. G., 1973, A new geological tool—the data: Earth Science Reviews, p. 159-196. (Refers to GIPSY on p. 181.)
Huff, W. D., 1972, Morphological effects on illite as a result of potassium depletion: Clays and Clay Minerals, v. 20, p. 295-301, 7 figs. (Includes tests on Beavers Bend illite.)
Hyne, N. J., see Pita, F. W., and Hyne, N. J.
Iberall, E. R., see Adams, J. W., and Iberall, E. R.
Isom, J. W., 1972, Subsurface stratigraphic analysis, Late Ordovician

168. Johnson, K. S., 1973, Gypsum and salt resources in the Oklahoma portion of the Permian basin [abstract]: Economic Geology, v. 68, p. 188.

173. Johnson, K. S., see Melton, F. A., and Johnson, K. S.

174. Johnson, K. S., see also Southard, L. G., Johnson, K. S., and Roberts, J. F.

175. Jones, C. L., see Smith, G. I., Jones, C. L., Culbertson, W. C., Ericksen, G. E., and Dyni, J. R.

176. Jones, M., see Petzet, G. A., and Jones, M.

181. Kays, Olaf, see Calkins, J. A., Kays, Olaf, and Keefer, E. K.

189. Kent, D. C., Naney, J. W., and Barnes, B. B., 1973, An approach to hydrogeologic investigations of river alluvium by the use of computerized data processing techniques: Ground Water, v. 11, no. 4, p. 30-41, 7 figs., 3 tables. (Study conducted in Washita River
valley; abstract in Petroleum Abstracts, v. 13, p. 1281.)
Kent, D. C., see Stone, J. E., Bennison, A. P., and Kent, D. C.
187. Kiilsgaard, T. H., see Wedow, Helmuth, Jr., Kiilsgaard, T. H., Heyle, J. V., and Hall, R. B.
203. Lees, W. R., see Harris, R. L., Lees, W. R., and Howe, D. A.
207. Lopez, Lorreda, see Averitt, Paul, and Lopez, Lorreda.

Macurda, D. B., Jr., see Breimer, Albert, and Macurda, D. B., Jr.

McUsic, J. M., see Vance Rowe Reports, Cooke, R. F., and McUsic, J. M.

214. Maerz, R. H., 1972, Paleoecology of the Poolville Member, Bromide Formation (Middle Ordovician), Criner Hills, Oklahoma: Texas Christian University unpublished M.S. thesis.

Mankin, C. J., see Patrick, D. M., and Mankin, C. J.

Marsh, S. P., see Klemic, Harry, Marsh, S. P., and Cooper, Margaret.

Masroua, L., see Dickie, P. A., and Masroua, L.

Maxwell, Bruce, see McMkillion, L. G., Sr., and Maxwell, Bruce.

Molinary, John, see Cocke, J. M., and Molinary, John

Moore, D. W., see Erdtmann, Bernd-Dietrich, and Moor, D. W.

Moore, B. M., see Kirby, J. G., and Moore, B. M.

224. Moore, R. C., and Strimple, H. L., 1973, Lower Pennsylvanian (Morrowan) crinoids from Arkansas, Oklahoma, and Texas: University of Kansas Paleontological Contributions, article 60 (Echinodermata 12), 84 p., 7 figs., 23 pls.

225. Moore, R. C., see Strimple, H. L., and Moore, R. C.

229. Morrow, E. H., see Hare, M. G., and Morrow, E. H.

Naney, J. W., see Kent, D. C., Naney, J. W., and Barnes, B. B. National Stripper Well Association, see Interstate Oil Compact Commission and National Stripper Well Association

Nitecki, N. H., see Windle, P. N., Augustyniek, R. M., and Nitecki, N. H.

Noble, R. L., see Shelton, J. W., Noble, R. L., and Burman, H. R., Jr.

Office of Community Affairs and Planning, see Oklahoma Conservation Commission, Office of Community Affairs and Planning, Oklahoma Conservation District, and Soil Conservation Service

Oklahoma Conservation District, see Oklahoma Conservation Commission, Office of Community Affairs and Planning, Oklahoma Conservation District, and Soil Conservation Service

247. Pate, J. D., Jr., 1972, A geological engineering study of the Sooner trend, middle Layton sand unit (Pennsylvanian), Kingfisher County, Oklahoma: University of Oklahoma unpublished M.S. thesis, 86 p.

252. Pierce, A., see Ward, D. E., and Pierce, A. P.

255. Pratt, W. F., see Brobst, D. A., and Pratt, W. P.

257. Rahill, R. L., see Shucklette, H. T., Boerngen, J. G., Cahill, J. P., and Rahill, R. L.

258. Ramsey, R. H., see Cleveland, J. G., Ramsey, R. H., and Walters, P. R.

Reynolds, M. A., see Wright, R. J., Simms, L. A., Reynolds, M. A., and Bogard, D. D.

Rowett, C. L., see Walper, J. L., and Rowett, C. L.

Sadler, P. M., see Matthews, S. C., Sadler, P. M., and Selwood, E. B.

Schmidt, R. G., see Cox, D. P., Schmidt, R. G., Vine, J. D., Kirkemo, Harold, Tourtelot, E. B., and Fleischer, Michael

280. Scofield, N. L., see Denison, R. E., and Scofield, N. L.

284. Selwood, E. B., see Matthews, S. C., Sadler, P. M., and Selwood, E. B.

285. Sever, J. R., see Haug, Pat, and Sever, J. R.

289. Sheehan, P. M., 1973, The relation of Late Ordovician glaciation to the Ordovician-Silurian changeover in North American brachiopod faunas: Lethaia, v. 6, p. 147-154. (Refers to brachiopod fauna from Keel Formation.)

300. Sloot, B., see McCartney, J. A., and Sloot, B.

308. Squires, R. L., see Rowland, T. L., Ham, W. E., and Squires, R. L.

Stone, C. G., see Gordon, Mackenzie, Jr., and Stone, C. G.
Stone, C. G., see also Haley, B. R., and Stone, C. G.
Stone, G. T., see Scofield, Nancy, and Stone, G. T.

324. Thacker, J. L., see Kurtz, V. E., Thacker, J. L., Anderson, K. H., and Gerdemann, P. E.

328. Thompson, T. L., see Satterfield, I. R., and Thompson, T. L.

329. Tulsa Geological Society, 1972 [1973], General construction conditions at a glance, Tulsa County, Oklahoma, and environs [map], in Bennison, A. P., and others (editors), Tulsa's physical environment: Tulsa Geological Society Digest, v. 37, map 3, scale 1 inch = 1 mile. (Cartography by Oklahoma Geological Survey.)
330. Tulsa Geological Society, 1972 [1973], Oil and gas fields, Tulsa County, Oklahoma [map], in Bennison, A. P., and others (editors), Tulsa's physical environment: Tulsa Geological Society Digest, v. 37, map 4, scale 1 inch = 1 mile. (Cartography by Oklahoma Geological Survey.)
Twiss, P. C., see Jeppesen, J. A., Twiss, P. C., and West, R. R.
336. U.S. Board on Geographic Names, 1973, Decisions on geographic names in the United States, January through March 1973, Decision List no. 7301: U.S. Department of the Interior, 20 p. (Names and defines Elm Creek, Little Saline Creek, Saline Creek, Wickliffe Creek, and Wolf, Oklahoma; reported in Oklahoma Geology Notes, v. 33, p. 203.)
341. U.S. Department of Agriculture, Soil Conservation Service: Tulsa, Oklahoma, 1972 [1973], General soil map of Tulsa County, Oklahoma, and environs, in Bennison, A. P., and others (editors), Tulsa's physical environment: Tulsa Geological Society Digest, v. 37, map 2, scale 1 inch = 1 mile. (Cartography by Oklahoma Geological Survey.)
350. Valerius, C. N., 1973, List of wells in north Louisiana, Arkansas and east Texas, most, if not all of which, reached pre-Paleozoic formations and which have above average significance in exploration for oil and gas in such formations, in Hare, M. G. (editor), and Morrow, E. H. (assistant editor), A study of Paleozoic rocks in Arkbluke and western Ouachita Mountains of southern Oklahoma: Shreveport Geological Society Field-Trip Guidebook, p. 56-59.
351. Valerius, C. N., 1973, Selected bibliographies of published papers regarding pre-Smackover formations in Arkansas, Louisiana,

353. Varga, L. P., see Falls, C. P., and Varga, L. P.

354. Varga, L. P., see Falls, C. P., and Varga, L. P.

355. Varga, L. P., see Falls, C. P., and Varga, L. P.

361. Wilson, L. R., 1972 [1973], Fossil plants of the Seminole Formation (Pennsylvanian) in Tulsa County, Oklahoma, in Bennison, A. P., and others (editors), Tulsa's physical environment: Tulsa Geological Society Digest, v. 37, p. 151-161, 1 fig., 5 pls.

INDEX

Anadarko Basin:
- clay-water studies, 359
- deep drilling and production, 163, 181, 377, 378, 379
- deep-drilling technology, 280
- development wells, 283
- drilling statistics, 99
- evaluation of source rocks, 254
- exploration and production, 43, 163, 261, 363, 377, 378, 379
- geologic history, 48, 379
- Hunton oil and gas fields, analysis, 320
- Morrow reservoir sandstones, 185, 166, 289
- Morrow sandstones, subsurface stratigraphy, 217
- paleotemperatures, 254
- petroleum and natural gas, statistics and reserves, 43, 99, 163, 181, 363, 377, 378, 379
- plate tectonics, 48
- Silurian carbonate rocks, 8, 9
- subsurface geology, 377, 378, 379

subsurface paleoenvironments, Cleveland County, 3
subsurface-pressure data, 78
Washita Creek field, 331
waterflooding, 99, 331, 363
well-log evaluation, 118, 249
well-log listing, 118
annual reports: Oklahoma Department of Mines, 245; Oklahoma Geological Survey, 216

Arbuckle Dam, 162

Arbuckle Mountains:
- Arbuckle anticline
- asphalitic sands
- basement rocks, 79, 80, 137, 138
- biomere, 302
- biostratigraphy, 7, 85, 137, 302, 317, 318
- Blue River gneiss, 80
- brachiopods, 4
- Bromide Formation, 112
- Canyon Group sediments, source, 103
- Collings Ranch Conglomerate, 136
- Deese Group, 267
- gastropods, Early Ordovician, 381
- Lower Arbuckle Group, 302
- Oil Creek Sandstone, 83, 135
- Ordovician biostratigraphy, 85
- Ordovician, Silurian, Devonian, biostratigraphy, 7
- Paleozoic rocks, 139
- regional geology, 137, 138
- structure, 140, 190
- tectonics, 140
- Timbered Hills Group, biostratigraphy, 302
- Tishomingo Granite, Ten Acre Rock, 82, 239
- Viola Formation, brachiopods, 4
- archeology, Tulsa County, 358
- Ardmore basin, 140

Areal Geology:
- Barnsdall Formation, Tulsa area, 88
- central-northwest Oklahoma, 110, 240
- Chanute Formation, Tulsa area, 89
- Cimarron County, 269
- Dewey Limestone, Tulsa area, 90
- Fort Scott Limestone, Tulsa area, 19
- Holdenville Shale, Tulsa area, 20
- Labette Shale, Tulsa area, 21
- loess deposits, Tulsa County, 324
- map, Tulsa area, 30
- Nowata Shale, Tulsa area, 22
- Oklahoma Panhandle, 111, 241
- Oologah Formation, 23
- Quaternary, Tulsa County, 304
- Seminole Formation, Tulsa area, 25
- Senora Formation, Tulsa area, 26
- Wann Formation, Tulsa area, 92
- Wewoka Formation, Tulsa area, 29

Arkoma Basin:
- Bluejacket (Bartlesville) Sandstone, 286
- clastic wedges, 114
coal, 120, 174
Desmoinesian sandstones, 174
Marmaton source changes, 195
Morrow sandstone reservoirs, 289
origin, 16
stress folds, 55
structural geology, 180
subsurface, paleoenvironments, 3
asphalt-bearing rocks: Buckhorn asphaltic limestone, 231, 267, 299, 300; Oil Creek sands, 135
Atkinson, William H., 176
bibliographies: coal, 13; Oklahoma geology, 134; pre-Smackover formations, 351; rare earths and scandium, 1
biomere, Pygchapid, Arbuckle Mountains, 302
biometry, Climacocaris typicalis, 102
BIOSTRATIGRAPHY:
Arbuckle Mountains: Cambrian, 302; general, 137; Ordovician, 7, 85, 317, 318; Ordovician, Silurian, Devonian, 7
Buckhorn asphaltic limestone, 299, 300
Clarita Formation, Price Falls Member, 270
diachronism, Oklahoma and Alberta, 86
Francis Formation, 202
Join Formation, transatlantic correlation, 35
Pennsylvaniaian, New Mexico, correlation with Oklahoma, 316
Wreford megacyclothem, 126
Boktukola fault, 40
Branson, Carl C., 97
Cambrian:
Arbuckle Mountains, 79, 137, 138, 302
Lower Arbuckle Group, 302
Raggedy Mountain Gabbro Group, 155, 171, 278
Reagan Sandstone, 197
Timbered Hills Group, 302
traverse, Delaware County, 197
trilobites, 284
Wichita Mountains, igneous rocks, 171
carbonate rocks: Anadarko basin, 8, 9; facies, northwest Oklahoma, 229; Paleozoic algal banks, 122
Carboniferous: corals, 315; Ouachita geosyncline, 129
catalogs: fossil corals, 369
Cherokee basin, 34
Chimney Rock, 232, 233
Choctaw fault, 40
Cimarron River, 49, 236, 287
clay minerals, 187
Coal:
analyses, 119
Arkoma basin, 120
beds, 119
bibliography, 13
bituminous and lignite, statistics, 364
chemicals, statistics, 288
gasification, 141
gasification-plant site, 121
history, 120
production, 120, 298
resources, 25, 26, 107, 119, 120, 174, 175, 192, 196, 245, 294
statistics, 12, 141, 175, 245, 288, 294, 291, 298, 364
Stigler coal, 174, 175
strip-mined lands, 72, 169
technology, 175, 192
Tulsa area, 192
Computerized Resources Information Bank (CRIB), 52
copper shales, 170, 171, 172, 203
COUNTIES:
Beaver: hydrology, 228, 269
Beckham: Elk City blowout, 14, 108, 109, 215; record-breaking wells, 263
Blaine: Morrow sand reservoirs, 94
Bryan: palynology, 370
Carter: Ordovician gastropods, 381; soils surveys, 131; Viola brachiopods, 4
Cherokee: Ordovician stratigraphy, 312, 313
Cimarron: areal geology, hydrology, 269
Cleveland: Cherokee Group, subsurface stratigraphy, 3; magnetic studies, 73
Coal: Viola brachiopods, 4
Creek: cross section, 192
Delaware: Cambrian traverse, 197
Grady: soils surveys, 131; Washita River alluvium, 183
Harper: subsurface stratigraphy, 217
Haskell: Stigler coal, 174, 175
Hughes: paleontology, 380; Wewoka Formation, 164, 165
Johnston: Ordovician gastropods, 381; soils surveys, 131; Viola brachiopods, 4
Kingfisher: magnetic studies, 73; Sooner trend, 247
McCurtain: conodonts, 260
McIntosh: Stigler coal, 174, 175
Major: subsurface stratigraphy, 159, 160, 161
Marshall: palynology, 370
Murray: Arbuckle Dam, 162; biostratigraphy, 7; gastropods, 381; petroleum-impregnated rocks, 54; soils surveys, 131; Viola brachiopods, 4
Muskegee: Stigler coal, 174, 175
Oklahoma: soils, 238
Okmulgee: Checkboard Limestone, type locality, 18; Senora Formation, type locality, 26
Payne: geology, general, 125; remote sensing, rock and soil discrimination, 276, 277
Pontotoc: soils surveys, 131; Viola brachiopods, 4
Rogers: land use, 63
Stephens: new oil discoveries, 263; Sho-Val-Tum field, 250
Tillman: fossil fish, 292; fossil vertebrates, 76
Tulsa: air quality, 58; anthropology and archeology, 358; areal geology, 30, 32; Bouguer gravity, 30, 115; cement, 51; Chanute Formation, 89; Checkboard Limestone, 18; coal, 199; construction conditions, 65, 329; corrosive ground water, 272; Dewey Limestone, 90; flooding and flood control, 22, 242, 328, 329, 332; Fort Scott Limestone, 19; fossil plants, 367; fossil vertebrates, 383; geologic history, 28; ground-water pollution, 273; Holdenville Shale, 20; Iola Formation, 91; Labate Shale, 21; land use, 59, 70, 71, 329; Nowata Shale, 22; Oologah Formation, 23; paleontology, 234, 291, 307, 367, 383; palynology, 291; petroleum and natural gas, 31, 330; physical environment, 32; Precambrian basement rocks, 81; Quaternary geology, 304, 324; sand and limestone, 326; Seminole Formation, 25, 196, 367; Senora Formation, 26; soil conditions, landscaping, 282; soils, 15, 65, 282, 329, 341; soils map, 341; storm-water pollution, 59; structural geology, 27; underground excavation, 207; vegetation, 204; Wann Formation, 92; waste disposal, 69, 258, 258; water resources, 130, 156, 177, 182; weather, 58, 226, 292; Wewoka Formation, 29
[81] 262
water pollution: brine in aquifers, 132; Ogallala aquifer, 213; pesticides, 75
water quality, 189, 228, 252, 269, 272, 273

ENVIRONMENTAL GEOLOGY (Tulsa area):
air pollution, 58, 69
aerial-photo studies, 191
brine migration into aquifers, 132
clay and shale pits, 237
coal mining, effects, 192
conservation, 130
construction, 22, 23, 25, 68, 329
drainage, 67, 253, 259
erosion, 328
flooding and flood control, 22, 242, 328, 329, 332
flood-plain development, 65, 242
general, 24, 26, 32
ground-water pollution, 132, 273
homesites, 193
land pollution, 69
land use, 59, 70, 71, 193, 242
landscaping, 282
mined-land recovery, 72
petroleum pollution, 31
recoverable waste, 259
resource development, 66
soils, 15, 18, 20, 23, 252, 282, 329
soils map, 341
stream control, 221, 328
underground excavation, 207
vegetation, 204
waste disposal, 69, 258, 259
water pollution, 59, 69, 334
water quality and control, 59, 69, 130, 156, 177, 182, 193, 273, 334

General Information Processing System (GIPSY), 52, 149

GEOCHEMISTRY:
acid formation, Excello Shale, 145
clay-mineral analysis, Kiowa Shale, 187
gypsum alteration over hydrocarbons, 96
igneous rocks, Wichita Mountains, 279
lead-zinc mineralization, 200
Mangum and Cretaceous deposits, 203
pore water, Paleozoic shales, 93
potassium-depletion tests, 152
Ragged Mountain Gabbro Group, 275, 278
skeletal carbonates, Buckhorn asphalitic limestone, 299
volcanic-ash alteration, 248

geographic names decisions, 336

GEOLOGIC HISTORY:
Arbuckle Mountains, 137
central-northwest Oklahoma, 110, 240
Oklahoma Panhandle, 111, 241
 Ouachita Mountains, 227, 265
Tulsa area, general, 24
Tulsa area, Pennsylvanian, 28
geological education, enrollment figures, 146

GEOMORPHOLOGY:
Arbuckle Mountain area, 162
central-northwest Oklahoma, 110, 240
Mill Creek drainage basin, 53

MINERAL INDUSTRIES:

history: bentonite, 323; cement in Tulsa area, 51
resources: aggregate, 21, 22; bentonite, 106, 323; brick materials, 25; building stone, 107, 125, 199; cement, 25; central-northwest Oklahoma, 106, 240; clay, 106, 125, 237; coal, see Coal; copper, 64, 170, 171, 245, 275; crushed stone, 19, 100; dolomite, 100, 106, 160; gallium, 338; general, 42; germanium, 339; granite, 82, 171, 238; gyspum, 106, 168, 171, 245, 256, 295; helium, 107, 194, 256; lead, 226, 245; lime, 257; limestone, 26, 51, 100, 107, 150, 245, 326; Oklahoma Panhandle, 107, 241; natural gas, see Petroleum and Natural Gas; Payne County, 125; petroleum, see Petroleum and Natural Gas; petroleum-impregnated rocks, 54; planning for development, Tulsa area, 66; pumice, 50; salt, 168, 171, 295; sand and gravel, 106, 107, 125, 171, 246, 304, 326; silica sand, 83; titanium, 190; tripoli, 245; uranium, 19; vanadium, 19; zinc, 211, 245, 298, 360; statistics: asphalt, 185; carbon black, 298, 299; cement, 44, 51, 298; clays, 6, 297, 298; coal, see Coal; coke and coal chemicals, 289; copper, 245, 275, 298; crushed stone, 100; development costs, Tulsa area, 66; dolomite, 100; feldspar, 262; fluorspar, 371; gallium, 298, 338; general, 297, 298, 337; germanium, 298, 339; gyspum, 245, 256, 297, 298; helium, 194, 297, 298; lead, 245, 268, 298; lime, 257, 298; limestone, 150, 245, 326; natural gas, see Petroleum and Natural Gas; nitrogen, 41; petroleum, see Petroleum and Natural Gas; pumice, 298; salt, 212, 298; sand and gravel, 246, 297, 298, 326; silver, 361; stone, 100, 297, 298; sulfur, 220, 298; thorium processing, 373; tripoli, 245, 298; uranium conversion, 374; zinc, 211, 245, 298

technology: cement manufacture, 51; clay and shale products; 6; thorium processing, 373; uranium conversion, 374; vermiculite processing, 123

MISSISSIPPIAN:
blastosids, 39
Fayetteville Shale, bryozoan, 37; crinoids, 46
Jackfork Group, 206
Kinderhookian, subsurface, 160
Putkin Limestone, crinoid, 47
Stanley Group: Lynn Mountain syncline, 40; Ouachita Mountains, 251
Sycamore Formation, oil production, 250
Upper Mississippian, ammonoids, 271, 321
Moore, Carl A., 153, 154
Nemaha ridge, Marmaton Group, 34
Oakdale-Campbell trend, 159, 160, 161
Octavia fault and syncline, 40
Oklahoma Geological Survey, annual report, 216
Oklahoma geology, bibliography and index, 134
Oklahoma platform, Stigler coal, 174

ORDOVICIAN:
Arbuckle Group, 105
Arbuckle Mountains: general, 137, 138; biostratigraphy, 7, 85, 317, 318
Bromide Formation, 112, 214
Burgen Formation: paleoenvironments, 49; stratigraphy, 312, 313
correlation with Arkansas, 87
graptoles, 35, 102
Joule Formation: correlation, 35; graptolites, 35
Keel Formation, brachiopods, 285
Kindblade Formation, gastropods, 381
Oil Creek Sandstone, 83, 135
Sedgwick basin, Kansas, subsurface, 2
OUACHITA MOUNTAINS:
Arkansas Novaculite, 116
Benton-Broken Bow uplift, 365
Blaylock Formation, fold structures, 113
conodonts, 260
flysch sandstones, radiography, 251
fold belts, 144
geologic history, 227
geosyncline, 116, 129, 210
Jackfork Group, 255, 260
Lynn Mountain syncline, 40
magnetic anomalies, 179
Morrow sandstone reservoirs, 289
orogeny and mineralization, 200
Paleozoic rocks, general, 138
Paleozoic stratigraphy, 133
source of Eastern Shelf sediments, 124
source of Marmaton sediments, 195
source of Permian basin sediments, 143
Stanley Group, 251
stress folds, 55, 173
structure, 16, 55, 113, 140, 144, 173, 180, 219, 265, 365
tectonics, 16, 113, 114, 140, 144, 178, 179, 219, 227, 265, 355, 365
Ti Valley-Chocotaw fault, 40
turbidites, Jackfork Group, 255
Wapanucka Formation, deposition, 266
Ozark Mountains: orogeny and mineralization, 200; stress folds, 55
palaeobotany: algae, Carboniferous, 315; algal banks, Midcontinent, 122; general, Tulsa area, 32; Seminole Formation, Tulsa County, 267

PALEOECOLOGY:
blastoid phylogeny, 39
Bromide Formation, 214
Buckhorn asphalthic limestone, 299, 300
Checkerboard Limestone, Tulsa area, 18
environmental analysis, Missourian strata, 291
Francis Formation, 202
general, Tulsa area, 28, 32
Lower Cretaceous communities, 281
Lower Ordovician glaciation, effect on brachiopods, 285
Oologah Formation, Tulsa area, 23
Wewoka Formation, 165
Wreford megacyclothem, 126

PALEOENVIRONMENTS:
Burgan Formation, 49
Cherokee sands, Cleveland County, 3
Cimarron River study, 49
Missourian, Tulsa County, 291
Ordovician glaciation, effect on brachiopods, 285
paleotemperatures, Anadarko basin, 254
Paleozoic, Ouachita Mountains, 133
Pennsylvania delta system, 101
pre-Pennsylvania, northwest Oklahoma, 185, 186
Stanley Group, paleocurrents, 251
Tulsa area, 32
Vamosa Formation, 49
Wewoka Formation, 165
Wichita Mountains, 171

PALEOZOIC:
algal banks, 122
Arbuckle Mountains, 138
Arkoma basin, clastic wedges, 114
Ouachita Mountains, 135, 138, 260, 365
pore water, 93

PALEOZOLOGY:
ammonoids, 271, 321
blastoids, 39
brachiopods, 4, 10, 126, 167, 285, 316
bryozoans, 37, 126, 387
cephalopods, 231
chitina, 349
conodonts, 218, 260, 270, 314, 317, 354
corals, 60, 310, 315, 369
crinoids, 46, 47, 224, 243, 244, 305
echinoderms, 310
fish, 292, 384, 385, 386
Foraminifera, 209, 267
gastropods, 381
general: Arbuckle Mountains, Cambrian, 302; Ordovician, 85, 87, 318; Bromide Formation, 214; Buckhorn asphalthic limestone, 267, 299, 300; Cretaceous, Early, 281; data retrieval, invertebrates, 319; Francis Formation, 202; Labette Shale, 21; Tulsa area, 32, 38, 234
graptolites, 35, 102
ostracodes, 209
trilobites, 86, 264, 303
vertebrates, 76, 292, 383, 384, 385, 386

PALEONTOLOGY:
acritarchs, 98
coccoliths, 126
Denton Shale, 370
Eekridge Shale, 368
Flowerpot Formation, 56
Glabroclaytrum, 380
Missourian, 291
Seminole Formation, 196

PENNOSYLVANIAN:
Barnsdall Formation, Tulsa area, 88
blastoids, 39
Bluejacket (Bartlesville) Sandstone, 286
Brownville Limestone, crinoid, 244
Buckhorn asphalthic limestone, 231, 267, 299, 300
Canyon Group, Texas, 103
Chanute Formation, Tulsa area, 89
Checkerboard Limestone: delta system, 101; Tulsa area, 18
Cherokee Group: Cleveland County, 3; north-central Oklahoma, 62
Coffeyville Formation, delta system, 101
Collings Ranch Conglomerate, 136
crinoids, 224, 306, 311
Deese Group, 267
deltaic facies, northeast Oklahoma, 229
Dewey Limestone; crinoid, 309; Tulsa area, 90
Eskridge Shale, assignment to Pennsylvanian, 368
Excelsior Shale, acid formation, 145
Fort Scott Limestone, Tulsa area, 19
fossil fish, 384
geologic history, Tulsa area, 24
Hale Formation, Arkansas, crinoid, 306
Hogshooter Formation, paleozoology, 310
Hogshooter Limestone, delta system, 101
Holdenville Shale, Tulsa area, 20
Iola Formation, Tulsa area, 91
Jackfork Group, 40, 205, 206
Layette Shale, Tulsa area, 21
Layton sand, 247
Lost City Limestone, corals, 60
Marmaton Group, 34, 195
Missourian: crinoids, 309; palynology, 291
Missourian and Virgillian sandstones, 353
Morrow sands, 94, 185, 217
New Mexico, correlation with Oklahoma, 316
Nowata Shale, Tulsa area, 22
Oologah Formation, 23
Seminole Formation, Tulsa area, 25, 196, 367
Senora Formation, Tulsa area, 26
Shawnee Group, conodonts, 354
Vamosa Formation, paleoenvironments, 49
Wann Formation: corals, 60; crinoid, 305; Tulsa area, 92, 243
Wapanucka Formation, facies, 266
Wewoka Formation: paleontology, 380; petrology, 164
Wichita Mountains, 171
PERMIAN:
Cement field, gypsum alteration, 96
Cimarron Series, Beckham County, 109
Cloud Chief Formation, gypsum and salt, 168
Custerian Series, Beckham County, 109
Dovey Shale, blowout, 14, 108, 109, 215
Eskridge Shale, assignment to Pennsylvanian, 368
Flowerpot Formation: Chimney Rock, 232, 233; copper shales, 203; palynology, 56
fossil fish, 292, 384
Havensville Shale, 126
Hennessy Formation, vertebrates, 76
Lower Permian, correlation with Texas, 283
Prewitt copper shale, 170
Purcell Sandstone, fossil fish, 292
southwest Oklahoma, economic geology, 171
Wellington Formation, Payne County, 125
Wichita Mountains, 171
Wreford megacyclothem, 126, 387
Permian basin: deposition, 143; gypsum and salt, 168; natural-gas statistics, 141
PETROGRAPHY:
Blue River gneiss, Arbuckle Mountains, 80
Oil Creek Sandstone, Arbuckle Mountains, 83
Raggedy Mountain Gabbro Group, 278
Simpson Group, 284
Tishomingo Granite, Arbuckle Mountains, 82
zircon crystals in granites, 142
PETROLEUM AND NATURAL GAS:
algae-bank reservoirs, 122
alternatives, 294
Anadarko basin; see ANADARKO BASIN; see also PETROLEUM AND NATURAL GAS:
statistics
Cement field, surface evidence, 96
central-northwest Oklahoma, 240, 261
drilling economics, Arkansas, Louisiana, Texas, 36
drilling technology, 181, 280
Elk City blowout, 14, 108, 109, 215
giant oil fields of Oklahoma, 263
helium, 194
history, 31, 43, 157, 294, 331, 377, 379
Hugoton field, 282
Marathon area, Texas, 221
Marmaton production, 195
Morrow reservoir sands, 185, 186, 217
Norge-Chickasha-Verden area, 377
North Burbank field, 151
northeast Texas wells, 117
north Louisiana, Arkansas, east Texas wells, list, 350
northern Gulf basin, 375
Oakdale-Campbell trend, 159, 160, 161
oil-field brines, chemical composition, 93
Oklahoma Panhandle, 107, 241, 282
paleotemperature gradients, 254
Payne County, 125
pre-Smackover formations, bibliography, 351
reservoir-pressure data, 94
Sho-Vel-Tum field, 250
Sooner Trend, 247
subsurface storage of LPG: Elk City field, 14, 108, 109, 215; Tulsa area, 207
Tulsa area, 23, 25, 26, 31, 32, 207, 330
Washita Creek field, 331
waterflooding, 31, 90, 151, 206, 331, 363
well-log evaluation, 118
PETROLOGY:
Arbuckle Group, 105
Boiling Springs artesian sands, 255
Bromide Formation, 112
Buckhorn asphaltic limestone, 267, 299
clays, Anadarko basin, 359
Hunt Group, 8, 9, 159, 160
lithologic variations, magnetic studies, 73
Mangum and Creta red-bed copper, 203
Precambrian, Tulsa County, 81
Raggedy Mountain Gabbro Group, 155, 279
Stanley sandstones, Ouachita Mountains, 251
surface textures of quartz grains, 274
Viola Limestone, 4
volcanic ash, western Oklahoma, 248
Wapanucka Formation, Ouachita Mountains, 266
Wewoka Formation, 164, 165
photogrammetry, aerial-photo interpretation, 191
plate tectonics, 16, 48, 144, 178, 179, 265, 355
Precambrian: Arbuckle Mountains, 79, 80, 82, 137, 138, 239; Tulsa County, 81; zircon crystals in granites, 142
Quaternary, Tulsa County, 304, 324
rare earths, and scandium bibliography, 1
remote sensing; aerial-photo interpretation, 191; Payne County, 276, 277
SANDBODIES:
Cherokee Group, analysis, 62
Desmoinesian, Arkoma basin, 174
genesis and trends, methodology of study, 286
geometry of reservoir bodies, 201
Jackfork Group, sedimentary structures, 206
Keystone Reservoir area, 353
Marraton Group, sand-body types, 34
Morrow reservoir sandstones, 185
Morrow sands, pressure data, 94
sand-deposition study, Cimarron River, 49
Simpson Group, petrography, 284
Sedimentology:
Arbuckle Mountains, general, 137, 138
artesian-spring sand deposits, 255
Barnadall Formation, Tulsa area, 88
Buckhorn asphalitic limestone, 299
central-northwest Oklahoma, 110, 240
Chanute Formation, Tulsa area, 89
Cherokee sands: Cleveland County, 3; north-central Oklahoma, 62
Checkerboard Limestone, 18
deltaic facies, Pennsylvanian, 229
deltaic sandstone deposits, 201
depositional facies, Wapanucka Formation, 269
Dewey Limestone, Tulsa area, 90
diachronism, Oklahoma and Alberta, 86
flysch sandstones, Ouachita Mountains, 251
Fort Scott Limestone, Tulsa area, 19
Holdenville Shale, Tulsa area, 20
Iola Formation, Tulsa area, 91
Labette Shale, Tulsa area, 21
loess, Tulsa County, 324
Marraton Group, subsurface, 34
Marraton sediments, 195
Morrow reservoir sandstones, 185, 186
Nowata Shale, Tulsa area, 22
Oil Creek Sandstone, Arbuckle Mountains, 83
Oklahoma Panhandle, 111, 241
Oologah Formation, Tulsa area, 23
Ouachita facies, Lynn Mountain syncline, 40
Ouachita geosyncline, 116, 129, 210
Ouachita Mountains: source of Eastern Shelf sediments, 124; source of Marraton sediments, 195; source of Permian basin sediments, 143
Ouachita system, 179, 219, 227
Paleozoic algal banks, 122
Paleozoic, Ouachita Mountains, 133
Pennsylvanian delta system, 101
Pennsylvanian, Tulsa area, 24
Quaternary deposits, Tulsa County, 34
sand deposition: Cimarron River, 236, 287; general, 286; Keystone Reservoir area, 353
sandstone thinning orientation, trends, 49
sedimentary structures, Jackfork Group, 206
Seminole Formation, Tulsa area, 25
Senora Formation, Tulsa area, 26
South Canadian River channel deposits, 184
Tulsa area, 18, 20, 21, 22, 23, 24, 25, 26, 32, 34, 38, 88, 89, 90, 91, 92, 304, 324
turbidites, Jackfork Group, 205
Viola Limestone, 4
Wann Formation, Tulsa area, 92
Washtenaw River alluvial sands, 183
Wewoka Formation, 29, 165
Silurian:
Anadarko basin, carbonates rocks, 8, 9
Arbuckle Mountains, biostratigraphy, 7
Beavers Bend illite, depletion tests, 152
biostoids, 39
Blaylock Formation, folds, 113
Clarita Formation, Price Falls Member, conodonts, 270
Hunt Group, 7, 8, 9, 159, 160, 331
Stratigraphy:
Arbuckle facies, 180
Arbuckle Group, 105, 302
Arbuckle Mountains, Cambrian, 302; general, 137, 138, 162; Ordovician, Silurian, Devonian, 7, 19
Arkoma basin, Desmoinesian, 174
Bromide Formation, 112, 318
Buckhorn asphalitic limestone, 299, 300
Burgan Formation, 312, 313
central-northwest Oklahoma, 110, 240
Cherokee Group: Cleveland County, subsurface, 3; north-central Oklahoma, 62
Clarita Formation, Price Falls Member, biostratigraphy, 270
Coffeyville Formation, delta system, 101
Desmoinesian, Marraton Group, 34
Elk City region, 109
Fort Scott Shale, Tulsa area, 19
Holdenville Shale, Tulsa area, 20
Lower Permian, correlation with Texas, 293
Lynn Mountain syncline, 40
Marathon platform, Texas, 221
Morrow sands, 217
Nowata Shale, Tulsa area, 22
Oakdale-Campbell trend, subsurface, 159, 160, 161
Oklahoma Panhandle, 111, 241
Oklahoma platform, 174
Oologah Formation, Tulsa area, 23
Ordovician, Kansas, 2
Paleozoic, Ouachita Mountains, 133
Pennsylvanian: New Mexico, correlation with Oklahoma, 316; northwest Oklahoma, 185, 186
Seminole Formation, Tulsa area, 25, 367
Senora Formation, Tulsa area, 26
Tulip Creek, biostratigraphy, 318
Tulsa area, 19, 20, 22, 23, 25, 26, 32, 367
Tyner Formation, 312, 313
Viola Limestone, 4
Wreford megacyclothem, 126

Structural Geology:
 Anadarko basin, 48, 217
 Arbuckle anticline, 105
 Arbuckle facies, 180
 Arbuckle Mountains: Bromide Formation, 112; Collings Ranch Conglomerate, 136; general, 137, 138, 140, 162
 Arkoma basin, 55, 114
 Cambrian, Delaware County, 197
 central-northwest Oklahoma, 110, 240
 fold structures, Blaylock Formation, 113
 Gulf Coast basin, 16
 Lynn Mountain syncline, 40
 Marathon tectonic belt, 221
 Nemaha ridge, 34
 northwest Oklahoma, 185
 Oakdale-Campbell trend, 159, 160
 Oklahoma Panhandle, 111, 241
 Ouachita Mountains, 16, 55, 113, 114, 144, 173, 178, 180, 219, 265, 355, 365
 Ozark dome, 55
 Ozark Mountains, stress folds, 55
 Payne County, 125
tectonics, see Tectonics
Ti Valley-Choctaw fault block, 40
Tulsa County, 27, 115
Wichita Mountains, 171
Windingstair fault, 40

Tectonics:
 Arbuckle Mountains, 137, 138, 139, 140
 Ardmore basin, 140
 Criner uplift, 140
 Marathon tectonic belt, 221
 Ouachita Mountains, 16, 113, 114, 140, 144, 173, 178, 179, 200, 219, 221, 227, 265, 365
 Ozark Mountains, 200
 Wichita Mountains, 171

Ten Acre Rock, 82, 239
Tertiary: artesian-spring sands, Boiling Springs, 255; Ogallala Formation, 213, 240, 241, 248, 347

Tulsa's Physical Environment [book], 32, review, 148
volcanic ash, alteration, 249
Ware, John M., 128
water, see Hydrology

Wichita Mountains:
general, 171
igneous geology, 171
Raggedy Mountain Gabbro Group, 155, 278, 279
Signal Mountain-McKenzie Hill trilobites, 303
source of Canyon Group sediments, 103
source of Eastern Shelf sediments, 124
troctolite and anorthosite, 84
Windingstair fault, 40
Wreford megacyclothem, 126

[93]
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY
1974

Compiled by Elizabeth A. Ham and William D. Rose

Bibliography—pages 83-107
Index—pages 107-121

BIBLIOGRAPHY

Al-Shaieb, Zuhair, see Kent, D.C., Al-Shaieb, Zuhair, and Silka, Lyle

American Petroleum Institute, see American Gas Association, American Petroleum Institute, and Canadian Petroleum Association

Annalalai, M., see Laguros, J. G., Kumar, Subodh, and Annalalai, M.

5. Asquith, G. B., 1974, Transverse braided bars in the Triassic sandstones of the Texas Panhandle [abstract]: Geological Society of America Abstracts with Programs, v. 6, p. 94-95. (Concerns Ouachita Mountains as source of sediments; reprinted in Oklahoma Geology Notes, v. 34, p. 112.)

Bacsikai, J. A., see Gregory, J. T., Bacsikai, J. A., Braunikov, B., and Munthe, K.

Bergman, D. L., see Bingham, R. H., Bergman, D. L., and Thomas, W. O.

Bergstrom, S. M., see Sweet, W. C., and Bergstrom, S. M.

Bickford, M. E., see Lewis, R. D., and Bickford, M. E.

Boerngen, J. G., see Shacklette, H. T., Boerngen, J. G., and Keith, J. R.

Bower, R. R., see Kidwell, A. L., and Bower, R. R.

Brainikov, R., see Gregory, J. T., Baekskai, J. A., Brainikov, B., and Munthe, K.

Brobst, D. A., see Pratt, W. P., and Brobst, D. A.

Burman, H. R., see Shelton, J. W., and Burman, H. R.

Burman, H. R., see also Shelton, J. W., Burman, H. R., and Noble, R. L.

Busch, D. A., see Mannhard, G. W., and Busch, D. A.

Canadian Petroleum Association, see American Gas Association, American Petroleum Institute, and Canadian Petroleum Association.

40. Cannon, P. J., 1974, Dougherty anticline, Arbuckle Mountains: Oklahoma Geology Notes, v. 34, p. 45-46. (Cover photo and description.)

Carleton, D. A., see Kirby, J. G., Carleton, D. A., and Moore, B. M.

Christ, C. L., see Siebert, R. M., Hostetler, P. B., and Christ, C. L.

49. Church, S. B., 1974, Lower Ordovician patch reefs in western Utah: Brigham Young University Geology Studies, v. 21, pt. 3, p. 41-62, 8 figs., 3 pls. (Refers to Ordovician mounds in Oklahoma.)
Clark, D. L., see Miller, J. F., Robison, R. A., and Clark, D. L.

52. Coal Age, 1974, 1973 shipments of mining equipment, production and productivity from various methods of mining: Coal Age, v. 79, no. 2, p. 84-86, 7 tables. (Includes data on Oklahoma.)

53. Coxe, J. M., 1974, Disseminated corals of the Upper Pennsylvanian Missourian rocks in the American Midcontinent [abstract]: Geological Society of America Abstracts with Programs, v. 6, p. 100. (Reprinted in Oklahoma Geology Notes, v. 34, p. 113.)

Collinson, Charles, see Brenkle, Paul, Lane, H. R., and Collinson, Charles.

Corley, R. K., see Thomas, W. O., Jr., and Corley, R. K.

57. Cramer, F. H., and Diez, Maria del Carmen R., 1974, Early Paleozoic palynomorph provinces and palaeoclimate, in Ross, C. A., (editor), Paleogeoecopic provinces and provinciality: Society of Economic Paleontologists and Mineralogists Special Publication No. 21, p. 177-188, 4 figs. (Includes Oklahoma Devonian and Silurian zones.)

Croy, R. L., see Ham, E. A., Croy, R. L., and Rose, W. D.

Cuffey, R. J., see Bifano, F. V., Guber, A. L., and Cuffey, R. J.

Deiter, L. E., see Calkins, J. A., and Deiter, L. E.

Diez, Maria del Carmen R., see Cramer, F. H., and Diez, Maria del Carmen R.

Donaldson, E. C., see Lorenz, P. B., Donaldson, E. C., and Thomas, R. D.

76. Ekehbone, S. E., 1973, Stratigraphic analysis of the interval from the Hogshooter Limestone to the Checkerbloom Limestone, a subsurface study in north-central Oklahoma: University of Tulsa unpublished M.S. thesis. (Abstract printed in Oklahoma Geology Notes, v. 35, p. 34.)

Panelli, L. L., see Harper, W. B., and Panelli, L. L.
Panelli, L. L., see also Wood, S. O., Jr., and Panelli, L. L.

Fay, R. O., 1974, Origin of petroleum II, a summary review: Oklahoma Geology Notes, v. 34, p. 149-152.

81. Feenstra, R. E., 1974, Minor fold in the Blaylock Sandstone (Silurian), Ouachita Mountains, Oklahoma: Oklahoma Geology Notes, v. 34, p. 97-98. (Cover photo and description.)
Friedman, Irving, see Donovan, T. J., Friedman, Irving, and Gleason, J. D.

82. Friedman, S. A., 1974, Coal resources of eastern Oklahoma [abstract]: American Chemical Society Meeting, Oklahoma Section Paper, March 1974. (Reprinted in Oklahoma Geology Notes, v. 34, p. 129.)

87. Gentile, R. J., 1974, A new species of Dentalium from the Pennsylvania to the Pennsylvanian of eastern Kansas: Journal of Paleontology, v. 48, p. 1213-1216, 1 fig. (Refer to species from Wewoka Formation.)
Gleason, J. D., see Donovan, T. J., Friedman, Irving, and Gleason, J. D.

88. Gonzales, Serge, 1974, Relationship between petroleum accumulations and stratiform ore deposits within Paleozoic carbonate se-

Guber, A. L., see Bifano, F. V., Guber, A. L., and Cuffey, R. J.
Hagni, R. D., see Gann, D. E., and Hagni, R. D.

Ham, W. E., see Waddell, D. E., Sanderson, G. A., and Ham, W. E.
H ancor, J. S., see Baria, L. R., and Hanor, J. S.

102. Heckel, P. H., 1974, Carbonate buildups in the geologic record: a review, in Laporte, L. F. (editor), Reefs in time and space, selected examples from the recent and ancient: Society of Economic Paleontologists and Mineralogists Special Publication No. 18, p. 80-154, 9 figs. (Includes Oklahoma Ordovician reefs.)

Heine, R. E., see Al-Shaieb, Zuhair, and Heine, R. R.

108. Hoover, W. B., 1974, New tectonic theory has origin in convection cells: World Oil, v. 178, no. 6, p. 104, 105-106, 2 figs. (Includes Arbuckle area and Ouachita front.)

110. Hostetler, P. B., see Siebert, R. M., Hostetler, P. B., and Christ, C. L.

111. Howell, B. F., Jr., 1974, Seismic regionalization in North America based on average regional seismic hazard index: Seismological Society of America Bulletin, v. 64, p. 1509-1528, 6 figs., 3 tables. (Includes data on plains states and figure on Guthrie earthquake of 1952.)

115. Ireland, J. L. 1973, Geology for land-use planning of western Rogers County and southern Washington County, Oklahoma: Oklahoma State University, unpublished B.S. thesis. (Abstract printed in Oklahoma Geology Notes, v. 35, p. 27.)

Jackson, K. C., see Lines, W. B., and Jackson, K. C.

117. Johnson, K. S., 1974, Maps and description of disturbed and reclaimed surface-mined coal lands in eastern Oklahoma: Oklahoma Geological Survey Map GM-17, 3 maps, scale 1:125,000; text to accompany maps, 12 p., 9 figs., 2 tables. (Prepared in cooperation with Oklahoma Department of Mines.)

Johnson, K. S., see Southard, L. G., Johnson, K. S., and Roberts, J. F. Jones, R. M., see Stoever, E. C., Jr., and Jones, R. M.

Keller, G. R., see also Cebull, S. E., Keller, G. R., Shubert, D. H., and Russell, L. R.

Kent, D. C., see DeVries, R. N., and Kent, D. C. Kent, D. C., see also Naney, J. W., and Kent, D. C.

Kumar, Subodh, see Laguros, J. G., Kumar, Subodh, and Annamalai, M.

147. Lewis, R. D., and Bickford, M. E., 1974, U-Pb ages of the Spavinaw and Tishomingo Granites [abstract]: Geological Society of America Abstracts with Programs, v. 6, p. 844-845. (Reprinted in Oklahoma Geology Notes, v. 34, p. 216.)

156. Lutz-Garhaim, A. B., The brachiopod genus Composita from the Verford Megacyclothem (Lower Permian) in Nebraska, Kansas, and Oklahoma [abstract]: Geological Society of America Abstracts with Programs, v. 6, p. 527. (Reprinted in Oklahoma Geology Notes, v. 34, p. 126-127.)

160. McCallin, J. C., 1974, Oklahoma’s Springer sand trend surges: Oil and Gas Journal, v. 72, no. 28, p. 99, 1 fig.

161. McCrane, F. P., see Collins, R. J., McCrane, F. P., Stonis, L. P., and Petzel, G.

167. McNabb, Dan, 1974, Gas prices stir risky new Oklahoma play: Oil and Gas Journal, v. 72, no. 9, p. 24-25, 1 fig.

Meyer, R., see McFarland, W., and Meyer, R.

Moore, B. M., see Kirby, J. G., Carleton, D. A., and Moore, B. M.

Moore, C. B., see Lange, D. E., Moore, C. B., and Rhonan, Kendall

Morrissey, N. S., see Rummersfield, B. F., and Morrissey, N. S.

Munthe, K., see Gregory, J. T., Bacsak, J. A., Brajnikov, B., and Munthe, K.

Mutis-Duplat, Emilio, see Kehle, R. O., Mutis-Duplat, Emilio, and Schonfeldt, H. A.

Naney, J. W., see Yost, Coyd, J., and Naney, J. W.

Nassichuk, W. W., see Strimple, H. L., and Nassichuk, W. W.

National Stripper Well Association, see Interstate Oil Compact Commission and National Stripper Well Association

Niem, A. R., see Picha, Frantisek, and Niem, A. R.

Noble, R. L., see Shelton, J. W., Burman, H. R., and Noble, R. L.

Noble, R. L., see also Shelton, J. W., and Noble, R. L.

Nordorf, J. L., see Davis, H. G., and Nordorf, J. L.

186. Oklahoma Baptist University Speleology Class, 1974, Caves of Seminole County, Oklahoma: Oklahoma Underground, v. 6, p. 53-64, 7 figs.

203. Petersen, L. E., see Lundin, R. F., and Petersen, L. E. Peterson, R. J., see Shockey, P. N., Renfro, A. R., and Peterson, R. J.

207. Pirson, S. J., 1974, Unified magneto-electroradiometric exploration method, part 2: Oil and Gas Journal, v. 72, no. 12, p. 142, 144, 146, 148, figs. 3-8, 1 table.

210. Pohl, R. E., see Browne, R. G., and Pohl, E. R.

213. Pray, L. C., see Choquette, P. W., and Pray, L. C. Quinn, J. H., see Manger, W. L., Saunders, W. B., and Quinn, J. H. Ramananandando, R., see Manghi, M. H., and Ramananando, R.

218. Renfro, A. R., see Shockey, P. N., Renfro, A. R., and Peterson, R. J.

219. Rhoon, Kendall, see Lange, D. E., Moore, C. B., and Rhoon, Kendall

220. [99] 279 [100]

220. Rose, W. D., see Ham, E. A., Croy, R. L., and Rose, W. D.

223. Runnegar, Bruce, 1974, Evolutionary history of the bivalve subclass Anomalodesmata: Journal of Paleontology, v. 48, p. 904-939, 10 figs., 5 pls. (Includes Oklahoma specimens.)

227. Ryland, S. L., see Sears, D. J., and Ryland, S. L.

249. Siever, Raymond, see Pettijohn, F. J., Potter, P. E., and Siever, Raymond

Silka, Lyle, see Kent, D. C., Al-Shaieb, Zuhair, and Silka, Lyle

Simmons, R. W., see Work, P. L., Stevens, O. D., and Simmons, R. W.

250. Simpson, H. M., 1974, Polybiology and the vertical profile of sedimentation of lower Missourian strata, Tulsa County, Oklahoma [abstract]: Geological Society of America Abstracts with Programs, v. 6, p. 122. (Reprinted in Oklahoma Geology Notes, v. 34, p. 120.)

Simpson, H. M., see Meyers, W. C., and Simpson, H. M.

Smith, S. G., see Shaver, R. H., and Smith, S. G.

257. Spinoso, Claude, see Saunders, W. B., and Spinoso, Claude

Stevens, O. D., see Work, P. L., Stevens, O. D., and Simmons, R. W.

260. Stonis, L. P., see Collins, R. J., McCowan, F. P., Stonis, L. P., and Petzel, G.

261. Straka, J. J., II, see Lane, H. R., and Straka, J. J., II.

263. Strimpe, H. L., and Naschik, W. W., 1974, Pennsylvanian crinoids from Ellismer Island, Arctic Canada: Journal of Paleontology, v. 48, p. 1149-1155, 1 fig., 1 pl. (Refers to Oklahoma species.)

264. Strimpe, H. L., see Fabian, R. K., and Strimpe, H. L.

266. Sutherland, P. K., 1974, Significance of the stratigraphic distribution of colonial rugose corals in the Pennsylvanian System of North America [abstract]: Geological Society of America Abstracts with Programs, v. 6, p. 124. (Reprinted in Oklahoma Geology Notes, v. 34, p. 120.)

270. Tanner, W. F., 1974, Bed-load transport in a chain of river segments:

Taylor, M. E., see Yochelson, E. L., and Taylor, M. E.

Thomas, R. D., see Lorenz, P. B., Donaldson, E. C., and Thomas, R. D.

Thompson, J. C., see Barrett, N. D., and Thompson, J. C.

Veinus, Julia, see Brower, J. C., and Veinus, Julia.

Walters, J., see Lago, O. K., and Walters, J.

286. West, Jim, 1974, Explorers flock back to the Palo Duro: Oil and Gas Journal, v. 72, no. 43, p. 38-39, 1 fig.

288. Westphal, K. W., 1974, New fossils from the Middle Ordovician Platteville Formation of southwest Wisconsin: Journal of Paleontology, v. 48, p. 78-83, 4 figs., 1 pl. (Refers to Oklahoma cystoid.)

289. Willis, D. G., see Hubbell, M. K., and Willis, D. G.

290. Wilson, L. R., 1974, Observations on the morphology and stratigraphic distribution of Hamiapolitenes [abstract]: Geological Society of America Abstracts with Programs, v. 6, p. 130. (Reprinted in Oklahoma Geology Notes, v. 34, p. 121.)

291. Wood, S. O., Jr., and Fanelli, L. L., 1974, Natural gas liquids, in
296. Yost, Coyd, Jr., and Nancy, J. W., 1974, Water quality effects of seepage from earthen dams: Journal of Hydrology, v. 21, p. 15-26, 3 figs., 2 tables. (Concerns dams on Washita River tributaries.)
Zartman, R. E., see Heyl, A. V., Landis, G. P., and Zartman, R. E.

INDEX

ANADARKO BASIN:
abnormal subsurface pressure zones, 9
computerized exploration model, 112
concrete waters, 222
crude oil studies, 26
deep wells, 73, 126, 157, 161, 219, 220, 221, 273
Endicott sand, 35, 36
ERTS-1 imagery exploration, 54
exploration, general, 134, 157, 219, 255
gas-bearing deltaic sandstones, 36
genic formation strata, 35
Hunton oil and gas fields, analysis, 266
Morrowan reservoirs, 36, 222
Morrow-Springer gas trend, 63, 64
Mountain View fault zone, 220
Mustang field, 129
North Dibble field, 144
Paleozoic orogeny, 28
Red Fork sand, 35
seismic studies, 9
Springer gas discoveries, 167
statistics, production, exploration, and reserves, 255
well stimulation, 14
annual reports: Oklahoma Department of Mines, 200; Oklahoma Geological Survey, 176; Oklahoma Water Resources Research Institute, 195
ARBUCULE MOUNTAINS:
Arbuckle Group, dolomite studies, 229
Buckhorn Limestone, 282
caves, 20, 187
Criner Hills, 58
Dougherty anticline, 40
Elgin Sandstone, source of 267, 268
Ordovician conodont, 163
Overbrook anticline, 58
radar imagery, 42
Simpson Group, Bryozoan, 78
Spavneay and Tahomingo Granites, dating, 147
stratigraphy, 45, 58
tectonics and structure, 28, 40, 58, 108
Vanoss Formation, petrology, 269
Ardmore basin: biostatigraphy, 237; Dornick Hills Group, 58; exploration, 134; Paleozoic orogeny, 28
ARKOMA BASIN:
Atoka Shale, 36
Booch deltaic sandstone, 35, 36, 204, 209
coal beds, 62, 84, 85, 117, 139
colalification, 62
exploration, 133, 158, 293
genic sequence, 35
geochemical gradient values, 242
isocarb, 139
McAlester Formation, 35, 36, 204, 209
stratigraphy, 45
asphaltic deposits, 282
Bibliographies:
crinoids, 284
fossil vertebrates, 93
fusulinids, 228
Oklahoma geology, 1974, 96
theses, in geology, 1967-1970, 283
biometrics, Ordovician-Silurian brachiopods, 4
BIOSTRATIGRAPHY:
Atokan Series, ostracodes, 237
Chester Series, ammonoids, 232
Cochrane Formation, 4
Keel-Edgewood strata, 4
Morrowan; algal facies, 135; brachiopod zones, 104, 105; ostracodes, 131, 237
Pennsylvanian: coral zones, 53, 261; palynomorph marker, 176
Permian index palynomorph, 289
Picerson Formation, conodonts, 140
Sylvan Shale, 4
Tremadocian, conodont and trilobite faunas, 177
Upper Cambrian Matthevia faunule, 295
Cambrian: Arbuckle Group, 212; Lamotte-Reagan Sandstones, 212; Upper Cambrian Matthevia faunule, 295
Canadian River, 229, 265
carbonates: classification, 47; Ordovician reefs, 49, 102; Pennsylvanian deposition, 244; Permian deposition, 51
Caves:
Arbuckle Mountains, 187
Cold Springs Cave, 186
Cromwell Cave, 186
Dinosaur’s Bathtub, 186
Gar Creek Cave, 186
Horseshoe Cave, 185
Little Crystal Cave, 187
Murray County, 187
Oklahoma Underground, index for 1968-1974, 20
Outlaw Cave, 187
Seminole County, 186
Wagon Wheel Cave, 187
Whiskey Cave, 186
Woodward County, 185
Cimarron River, 241, 243
Coal:
Arkoma basin, 62, 84, 85, 117, 139
coalification, 62
coke, 84, 245
eometamorphism, 139
gasification, 84
general, 84, 85, 178, 189, 277, 287
Hartshorne beds, 148
history, 84
land reclamation, 84, 117, 170, 188
producers, 178, 190, 200, 255
quality, 83, 84, 85, 190
regulations, 84, 117, 188, 255
resources, 84, 85, 87, 117, 170, 255, 287
statistics: consumption, 88, 84, 188, 192; economics, 84, 178, 188; exports, 83, 84; production, 84, 85, 117, 178, 188, 190, 200, 254, 255; projections, 84; resources, 83, 84, 85, 187, 189, 190, 287; technology, 52, 287
surface-mined lands, 84, 117, 188
technology, 52, 84, 117, 178, 200, 287
terminology, 84
computer data systems, 37, 175
copper shales, 1, 68, 87, 118, 119, 125, 136, 150, 214, 251
Countries:
all counties: mineral industries, 200, 255; oil and gas exploration, 6, 7, 255; oil and gas production, 8, 255; well data, 8
Atoka: coal, 84, 117; ostracodes, 237
Beaver: "Haskell" limestone, 36; subsurface waters, 67; Tonkawa sand, 35, 36
Beckham: deep wells, 73, 157, 219, 221; exploration, 134, 157, 219, 221; karst topography, 179
Blaine: exploration and development, 293; Morrow-Springer trend, 63; pressure data, 172
Caddo: exploration, 160, 167, 293
Canadian: Morrow-Springer trend, 63; Mustang field, 129, 151
Carter: Berwyn Conglomerate, 79; biostratigraphy, 232; exploration, 134; Springer-Goddard shales, 138
Cimarron: Soneca Creek, name decision, 276; subsurface waters, 67
Coal: coal, 84, 117; crinoid, 258; ostracodes, 237
Comanche: fossil amphibian, 23
Craig: coal, 84, 117, 287; soil survey, 184
Creek: coal, 84, Elgin Sandstone, 267; environmental geology, 122, 162
Dewey: exploration and development, 293; Oswego Limestone, 217
Ellis: Ivahoe Creek, name decision, 275; Pennsylvanian sandstones, 36
Garfield: Enid flood, 19, 279
Garvin: exploration, 134
Grady: exploration and development, 134, 160, 167, 206, 293
Greer: copper shales, 119; grooved granites, 98
Harmon: karst topography, 179
Harper: Endicott sandstone, 35; exploration, 286; stratigraphic traps, 171
Haskell: coal, 84, 85, 117, 287
Hughes: Hawkins pool, 35
Jackson: Creta copper deposit, 68, 119; exploration, 286
Latimer: coal, 84, 117; Potato Hills structure, 208
Le Flore: coal, 84, 85, 117, 287; Stanley Shale, 138
McClain: exploration and development, 293; North Dibble field, 144
McCurtain: Blaylock Formation, folding, 81, 82
McIntosh: coal, 84, 117; Senora Shale, 138
Mayes: Chattanooga Shale, 138; coal, 84, 117
Murray: caves, 187
Muskegee: coal, 84, 117, 287; Morrowan bioherms, 25
Noble: copper mineralization, 1; Oswego Limestone, 35; Red Fork Sandstone, 35; South Ceres pool, 35
Nowata: coal, 84, 117, 287
Okfuskee: coal, 84
Oklahoma: Mustang field, 151
Okmulgee: coal, 84, 117; Oologah Limestone, flysch, 17
Osage: Cherokee Group, petroleum source rocks, 12; Elgin Sandstone, 267; land-use planning, 162
Payne: copper mineralization, 1
Pittsburg: coal, 84, 117, 287
Pontotoc: biostratigraphy, 232
Pushmataha: Potato Hills structure, 208
Roger Mills: exploration, 134, 157
Rogers: coal, 84, 117, 287; land-use planning, 115; Oologah Limestone, 15
Seminole: caves, 186; "Wilcox" sand, 217
Sequoyah: coal, 84, 85, 117
 Stephens: Claypool Shale, 138; exploration and development, 293; Sholom Alechem field, 215
Texas: connate waters, 222; subsurface waters, 67
Tulsa: coal, 84, 117; land-use planning, 162; Oologah Limestone, 15, 17, 218, 271; palingyology, 249
Washington: coal, 84, 117
Washita: deep wells, 73, 220, 293; exploration, 134, 157, 220
Woods: stratigraphic traps, 171
Woodward: caves, 185; Pennsylvanian sandstones, 36; pressure data, 172
Cretaceous: Purgatoire Formation, benthic communities, 235; Washita shales, 138
Criner Hills: source of Dornick Hills Group sediments, 58
Delaware basin, well stimulation, 14
Devonian:
Arkansas Novaculite, 208
Bois d’Arc Formation, 151
brachiopods, 4
Haragan Formation: brachiopods, 4; crinoids, 258; petrology, 4; stratigraphy, 4
Henryhouse Formation, correlation with Rockhouse Formation, Tennessee, 155
Hunton Group: data, 159; exploration and development, 293; Mustang field, 129, 151; North Dibble field, 144
dictionary, exploration geophysics, 246
gravity profiles, Permian basin, 109
magneto-electric exploration, 206
neutron-activation analysis, Permian rare-earths, 60
reflection seismograph, 120
seismic studies: Anadarko basin, 9; computerized data, 223; earthquake data, 202; Guthrie earthquake, 110; Midcontinent region, 146, 213; Rayleigh waves, 116
tectonophysics: Permian basin, 109; stress gradients, 121
wave velocities, 169
gypsum and anhydrite: Blaine and Dog Creek Formations, 51; statistics, 200, 211, 255

Hydrogeology, hydrology:
Ardmore-Sherman quadrangles, 100
resources, 170, 190, 196
subsurface waters: alluvial ground water, Washita River, 123; Anadarko basin, water chemistry, 67; Ardmore-Sherman quadrangles, 100; brine pollution, 92; Elgin Sandstone wells, 268; Ogallala aquifer, 48, 66, 195; Panhandle, 181; Permian basin, salt solution, 264; Rogers and Washington Counties, 115; Washita River basin, 123, 183, 296
surface waters: Ardmore-Sherman quadrangles, 100; Arkansas River, bed-load transport, 265; brine-storage reservoirs, 59, 194; Canadian River, bed-load transport, 265; floods, 19, 195, 230, 231, 270, 279; Keystone Lake, Keystone Reservoir, 19, 91, 122; Lake Thunderbird, water quality, 107; mineral pollution, 207; Permian basin, salt discharge, 264; Rogers County, 115; South Canadian River deposits, 124, 238; south-central Oklahoma, stream evolution, 41; Washington County, 115; Washita River: bank stability, 90; dam seepage, 296
water quality: Ardmore-Sherman quadrangles, 100; Arkansas River, 59; brine-storage reservoirs, 194; control, 199, 190; effects of dam seepage, 296; Elgin sands, 268; general, 195; Keystone Lake, 91, 122; Lake Thunderbird, 107; Red River, 59; Washita River alluvial ground water, 155; Washita River basin, 296

Index:
crinoids, 284
Oklahoma geology 1973, 96
Oklahoma Geology Notes, 193
Oklahoma Underground 1968-1974, 20
theses in geology 1967-1970, 283

Keyes, meteorite, 142
Keystone Lake, Keystone Reservoir, 19, 91, 122
Lake Chickasha, flood-dam seepage, 296
Lake Thunderbird, water quality, 107
McAlester basin: Cherokee petroleum source rocks, 12; sandstone, 204
maps: Ardmore-Sherman quadrangles, 100; Panhandle, 181; surface-mined coal lands, 117; topographic maps, survey of Oklahoma coverage, 95
memorials: Willard L. Miller, 61; Bing Yee, 166
meteorites, Keyes meteorite, 142

Mineral Industries:
mined-land reclamation, 84, 117, 200
producers, 200, 255
resources: barite-lead-zinc, Tri-State, 143; cement, 33; copper, 1, 68, 87, 118, 119, 125, 136; copper-silver, 247; general, see Statistics; lead-zinc, relation of ores to petroleum deposits, 89; salt, 165
statistics: bentonite, 200; carbon black, 297; cement, 33; clay, 3, 200; coke, 245; columbium and tantalum processing, 252; copper, 200; crushed stone, 74; general, 180, 200, 210, 254, 255, 277, 278; germanium, 16; granite, 74, 5; hematite, 74, 90; gypsum, 200, 211; helium production, 132; lead, 226; limestone and dol-
mite, 74, 200; nitrogen, 31; producers, 200, 255; pumice, 173; salt, 165; sand and gravel, 200, 201; shale, 3,200; silver, 285; sulfur, 174; thorium processing, 253; tripoli, 50, 200; uranium processing, 291; vermiculite processing, 86; volcanic ash, 200

technology: ammonia plant, Enid, 31; coke, 245; columbium and tantalum processing, 262; germanium processing, 16; mining, 180; thorium processing, 253; uranium processing, 291

Mineralogy:

aragonite from dolomite, 248
Cherokee Group underlays, 272
clay minerals, 138, 294
copper mineralization, 1, 65, 87, 118, 119, 125, 136, 150, 214, 251
Flowerpot Shale sulfides, 125
Tri-State area, barite-lead-zinc mineralization, 143
Vanoss Formation, dispersal patterns, 269

Mississippian:

Arkansas Navacsulfite, 208
Caney Shale, 45, 151, 215, 232
Chattanooga Shale, 138
Chester Series: ammonoids, 232; exploration, 160, 171
condonits, 30, 141
Fayetteville Formation, crinoids and foraminifers, 34
Jackfork Group, 45, 208
Johns Valley Shale, 45
"Mayes" lime, 151
Meramecian Series, 171
"Meramec-Osage" fracture traps, 99
Morrow Field, condonits, 30
Morro sand, gas production, 65
palaeontography, northwest Oklahoma, 36
Pierson Formation, biostratigraphy, 140
Stanley Group, 45, 138, 205, 208
Sycamore Formation, 215

Northeastern Oklahoma shelf, coal beds, 84, 85
nuclear energy, 189, 190

Oklahoma Energy Advisory Council 170, 188, 189, 190, 192 224

Oklahoma Geological Survey: annual report, 170; publications, 170

Osbionian:

Arbuckle Group, 212, 229, 263
Big Fork Chert: condonits, 29; structure, 208
brachiopods, 4
Bromide sand, 144
Burgo Sandstone, grain study, 340
carbonate reefs, 49, 102
Cochrane Formation, 4
cystoid, 287
Gasconade Formation, 27
Hart sand, 144
Joins Formation, condonits, 163
Keel Formation, 4
McLish Formation, pore filling, 47
Mazzar-Womble shales, 208
Oil Creek Sandstone, 103, 144
Osborne sand, 144
Polk Creek Shale, 208
Simpson Group: Bryozoan, 78; correlation with Everton Formation, Arkansas, 289; trilobites, 238

Simpson sands, chemical composition, 204
Sylvan Shale, 151
Tremadocian condonits and trilobites, 177
West Spring Creek Formation, condonits, 163
"Wilcox" sandstone, 217

Ouachita Mountains, Ouachita Fold-Belt, Ouachita Geosynclinal:

Albion anticline, 208
Appalachian, junction with, 65
Barite deposits, 13
carboniferous trace fossils, DSDP cores, 46
Black Knob Ridge, condonits, 29
Cedar Creek fault, 208
Chocataw fault, 45
Council House syncline, 208
Elgin sands, source of, 267, 268
flysch sequences, 45, 153, 205
geologic history, 101
gravity tectonics, 65
Hartshorne Sandstone, deposition, 148
Jackfork Group, dish and pillar structure, 153
Jackfork Mountain fault, 208
Lynn Mountain syncline, 208
Octavia fault, 45
paleocology, 45
Paleozoic orogeny, 28
Potato Hills, 208
source of Elgin sands, 267, 268
stratigraphy, 45, 237
tectonics and structure, 28, 43, 44, 45, 65, 81, 82, 94, 101, 108, 109, 115, 182, 208
Ti Valley fault, 45
Triassic sediments, Texas, source of, 5
Tuskahoma syncline, 208
Windingstair fault, 45, 208

Ozark Mountains, Ozark Dome, Ozark Uplift:

Burrum Sandstone deposition, 240
coal, 84, 85
calcareification, 62
Hartshorne Sandstone deposition, 148
Morrocan biostratigraphy, 104, 105
paleobotany: algae, 25, 49, 51, 135; biomeres, 75; East Manitou site, 250

Paleontology:

benthic communities, Cretaceous, 235
Early Paleozoic, 4, 57
East Manitou site, 250
morphologic changes, 57
Morrocan algal facies, 134
Morrocan bioherms, 25
Ouachita geosyncline, Mississippian-Pennsylvanian, 45
Permian, 51, 198
provincial differentiation, 75
Simpson Group, 288
Upper Cambrian, 295
Worfo megacyclothem, 18, 156

Paleoenvironments:

Atoka Formation, 281
biomeration, 75
Blaine Formation, 51
Boggy Formation, 281
Burgen Sandstone, 240
Dog Creek Formation, 51
Dornick Hills Group, 58
Gasconade Formation, 27
Hartshorne Sandstone, 148
Mississippian, 45
northeast Oklahoma, 244
Ordovician, 238, 240
Ouachita geosyncline, 45
Paleozoic, Early, 4, 57
Pennsylvanian, 45, 244
Permain, 51
sandstones, general, 204, 209
Vamosa Formation, 267, 268
PALEOGEOGRAPHY (including paleoclimates and paleotopography):
Paleozoic, Early, 5
Pennsylvanian, 244
Permian, Middle, 51
Precambrian, 212
Vamosa Formation, 268
PALEOZOIC:
cephalopods, 233
connate waters, 11
crinoids, bibliography, 284
environments, Early Paleozoic, 4, 57
Midcontinent shales, 225
ore deposits, relation to petroleum accumulation, 89
orogeny, Late Paleozoic, 28
sandstones and shales, interstitial waters, 11
PALEOZOLOGY:
ammonoids, 51, 168, 232
benthonic trace fossils, DSDP cores, 46
bioherms, 26
bivalves, 224
brachiopods, 4, 104, 105, 156
bryozoans, 25, 78
cephalopods, 233
coelephant, 102
condonoids, 29, 30, 140, 141, 163, 168, 177, 263
corals, 25, 53, 55, 261
crinoids, 32, 34, 196, 197, 198, 199, 258, 284
cystoid, 288
data assemblages, Cretaceous, 235
foraminifers, 34, 228, 274
fossil assemblages, Ouachita geosyncline, 45
fusulinids, bibliography, 228
insect biotic provinces, 75
mollusks, 295
nautiloids, 51
ostracods, 18, 131, 155, 237
palecypods, 51
scaphopods, 88
sponges, Ordovician reefs, 49, 102
trilobites, 177, 238, 295
vertebrates, 23, 24, 93, 150
PALYNOLOGY:
East Manitou site, 250
Missourian, Lower, Tulsa County, 249
Paleozoic provinces, 57
Pennsylvanian, Upper, marker, 176
Permian index palynomorph, 289
Pennsylvanian:
Altamont Formation, 15, 17
Atoka Formation, Atoka Series, 26, 45, 148, 153, 224, 237, 244, 261
Bandera Shale, 15, 17
"Bartlesville" sand, 151, 217
Berwyn Conglomerate, 79
biomer, 75
Boggy Formation, 26, 171, 244, 281
Booche deltaic sandstone, 35, 36, 204, 209
Buckhorn Limestone, 282
Cabannis Formation, 171, 272
Checkerboard Limestone, 76
Cherokee Group, organic geochemistry, 12
coil beds, 84, 85
corialification, 62
Coffeyville Formation, 76
connate waters, 222
condonoids, 141
crinoids, 196, 197, 199, 259
Deese Formation, 204, 215
Dewey Formation, corals, 53
Dornick Hills Group, 58, 131, 199
Elgin Sandstone, 267, 268
Endicott sandstone reservoirs, 35, 36
Gilcrease sand, crude oil studies, 227
Golf Course Formation, 168
Hartshorne Sandstone, deposition, 148, 244
Hoegshoeter Formation: corals, 53; stratigraphy, 76
Holdenville Formation, crinoids, 199
Hoxbar Group, palynomorph marker, 176
Inola Limestone, 144, 151, 171
Jackfork Group, dish structures, 153
Johns Valley Shale, 45, 72, 131, 244
Krebs Formation, clay, 272
Labette Shale, 15
Layton sandstone zone, 76
"Lost City" limestone, crinoids, 199
McAlester Formation, 26, 35, 36, 148, 204, 209, 244
Missourian, corals, 83
Morrowan: ammonoids, 168, bioherms, 25; brachiopod zones, 104, 105; corals, 261; crude oil studies, 26; high-wax crude, 103; sandstones, 35, 36
Morrow Formation, algal facies, 135
"Morrow" sands, 63, 64, 171, 172, 222
Nowata Shale, 15
Oologah Limestone, 15, 16, 17, 218, 271
Oread Limestone, 36
Oseego Limestone, 151, 217
Pawhuska Formation, 244
Pawnee Formation, 15, 17
Pink lime, 151, 171
Savanna Formation, 244
Seminole Formation, palynomorph marker, 176
Senora sandstones, 138
Skinner sand, 151, 280
Spiro sandstone, 45
subsurface water, Anadarko basin, 67
"Thirteen Finger lime," 171
Tonkawa sandstone, 36
Vamoosa Formation, 244, 267, 268
Vamos Formation, 269
Verdigris Limestone, 151, 171
Wann Formation, crinoids, 196, 199
Wapanucka Limestone, 45, 131, 244
Wewoka Formation, scaphopod, 88

Permian:
- amphibians, 23, 24
- biomeres, 75
- Blaine Formation, deposition, 51, 251
- Claypool shales, 138
- connate waters, 222
copper mineralization, Permian basin, 136; Doyle Shale, 1; Garrison Shale, 1; Matfield Shale, 1
- crinoids, 198
- Dog Creek Formation, deposition, 51
- Doyle Shale, copper mineralization, 1
- Duncan Sandstone, 251
- Eskridge Shale: origin of mudrocks, 225; rare-earth elements, 60
- Flowerpot Formation, 68, 87, 118, 119, 125, 150, 250, 251, 259, 294
- fossil fish, 250
- Garber Formation, 250
- Garrison Shale, copper mineralization, 1
- Havensville Shale, rare-earth elements, 60
- Hennessey Group, 250
- karst topography, 179
- Konawa Formation, 71
- Leonard Series, copper shales, 214
- Matfield Shale, copper mineralization, 1
- Oscar Formation, 250
- red-bed alteration over hydrocarbons, 69, 70, 71
- reptiles, 23, 24
- Rush Springs Sandstone, 71
- salt, 165
- subsurface water, Anadarko basin, 67
- Vamos Formation, 269
- Wellington Formation, 247, 250
- Wolfcampian, corals, 261
- Wreford megacyclothem, 18, 156

Permian Basin:
copper mineralization, 136
- rare-earth elements, 60; hydrocarbon province, 109
- salt solution, 264
- structure, 136
tectonics, 109, 136

Petrography:
basin rocks, northeast Oklahoma, 212
- Cretaceous, 87
eclisites and granulites, 169
- Elgin Sandstone, 267, 268
- Gasconade Formation, 27
- northeastern Oklahoma, 212
- Osage Limestone, 15, 218, 271
- Skinner sand zone, 280

Petroleum and Natural Gas:
- Anadarko basin: see Anadarko Basin; see also Petroleum and Natural Gas:
 - statistics
 - Apache field, 223
 - Britt trend, 167
 - Burbank field, 12, 111
 - Camrick field, 103
 - Cement field, 70, 71, 273
 - conservation, 188, 189, 190
crude oils, geochemistry, 26, 80
- Cumberland field, 223
- Cunningham trend, 167
- Davenport field, 71
- Delaware-Childers field, 149
- exploration and development: Arbuckle traps, 212; Ardmore basin, 134; Arkoma basin, 135, 158, 293; computer data, 112, 223; delta prospecting, 95; digitized logs, 262; ERTS imagery, 84; fluvial and eolian sand, 124; general, 188, 189, 190, 293; Huntion fields, 159, 293; magneto-electroiluric exploration, 206; Morrow-Springer trend, 63, 127, 160, 292, 293; Mustang field, 129, 151; new discoveries, 6; North Dibble field, 144; Osage Nation, 134; Palo Duro basin, 285; reflection seismograph, 120; seismic studies, 9, 223; Sholom Alechem field, 215; Sho-Vel-Tum area, 127, 293; Springer sand, 160, 167; stratigraphic traps, 36; surface evidence, 69, 70, 71; Tertiary oil, 149
fracture traps, 99
- Glen pool, 273
- Harper Ranch field, 171
- Hawkins pool, 36
- Healdton field, 273
- Hewett field, 273
- high-wax crudes, 103
- Hunton fields analysis, 266
- Lovedale field, 171
- Marietta SE field, 103
- methane, Gilcrease sand, 227
- Morrow-Springer trend, 63, 64, 127, 160
- Mustang field, 129, 151
- Newman field, 103
- North Buffalo field, 171
- North Dibble field, 144
- Oklahoma City field, 273
- Oklahoma Energy Advisory Council, 170, 188, 189, 190, 191, 192, 234
- Osage Nation, 134
- Permian-basin hydrocarbon province, 109
- pollution, Lake Keystone, 91
- Ponca City field, 103
- pressure zones, 9, 172
- producers, 234
- producing formations, 8
- Putnam field, 293
- regulations, 234
- relation of accumulations to ore deposits, 89
- reservoir rocks: connate waters, 222; metamorphism, thermal gradients, 139; pressure patterns, 172, 217
- Seminole area: crude oils, 26; McAlester sand, 36
- Sholom Alechem field, 215
- Sho-Vel-Tum area, 127, 293
- Sooner Trend, 99
statistics: deep wells, 73, 157, 158, 219, 220, 293; demand, 128, 189, 192; drilling and leasing, 137, 203; economics, 73, 97, 113, 114, 127, 188, 189, 191, 203, 234, 290; exploration and development, 6, 7, 73, 97, 113, 128, 129, 134, 144, 157, 190, 215, 216, 252, 255, 273, 293; general, 203, 277; natural gas liquids, 290; petroleum products, 128; production, 2, 8, 73, 77, 97, 113, 114, 128, 144, 188, 190, 191, 203, 216, 254, 255, 290; projections, 2, 97, 127, 185, 189, 190; recovery projects, 21, 114, 152; reserves, 2, 63, 97, 113, 114, 127, 128, 188, 190, 191, 216, 255, 273, 290; storage, 97; stripper wells, 114; transportation, 128; well data, 9
stratigraphic traps, 36, 171
Sycamore pool, 293
technology: COFCAW process, 56; digitized logs, 292; drilling, 149, 215, 219, 220, 221; drilling fluids, 161; exploration, 36, 63, 120, 206; hydraulic fracturing, 111; recovery methods, 21, 56; waterflooding, 111, 132
well-stimulation treatments, 14
Wewoka Lake pool, 36

Petrology:
Cherokee Group underclays, 272
Desmoinesian rocks, northeast Oklahoma, 12
Elgin Sandstone, 267, 268
Flowerpot Formation, 150
Hartshorne Sandstone, 148
McLish Formation, carbonate porosity, 47
Oswego Limestone, 217
Pleistocene deposits, central plains, 22
Vanoss Formation, 269
"Wilcox" sand, 217
plate tectonics, Ouachita Mountains, 43, 94, 213
Pleistocene, central plains deposits, 22
Potato Hills, 208
Precambrian:
Ouachita geosyncline, 154
paleotopography, northeast Oklahoma, 212
rift system, 213
Spavinaw Granite, 130, 147
Tishomingo Granite, 147
Proterozoic, Ouachita geosyncline, 154
Remote Sensing:
Anadarko basin, ERTS-1 imagery, 54
Dougherty anticline, aerial photography, 40
Mill Creek area, radar and infrared imagery, 39
south-central Oklahoma, radar and infrared imagery, 38
Wichita and Arbuckle Mountains, radar imagery, 42
reviews: Origin of Petroleum II, 80
Sandstones:
Booche delta sands, 35, 36, 204, 209
Burgen sands, grain orientation, 240
concentrated waters, 222
Deese Formation, petrography, 204
Elgin Sandstone, 267, 268
general, 204, 209
Hartshorne Sandstone, deposition, 148
interstitial waters in Paleozoic sands, 11
Layton sand, delta deposits, 76
Morwan sand: deposition, 35, 36; pressure patterns, 172
Pennsylvanian, northeast Oklahoma, 244
reservoir bodies, 145, 222
Simpson sand, chemical composition, 204
Skinner sandstone zone, 280
South Canadian River, 124
terminology, 204, 209
Sediments:
Anadarko basin, 35, 36
Ardmore basin, 58
Arkansas River, bed-load transport, 265
Arkoma basin, 35, 36
Atoka Formation, depositional sequences, 281
bedded barite deposits, Ouachita Mountains, 13
Blaine Formation, deposition, 51
Boggy Formation, depositional sequences, 281
Burgen Sandstone, grain orientation, 240
Canadian River sediments, 239
Cimarron River, 241
Copper-silver solution fronts, 247
delta deposits, 35, 36, 76, 145, 204, 209, 280
diagenesis: Arbuckle Group, 229; Flowerpot Formation, 118, 119, 294; Gasconade Formation, 27; Valenso Formation, 269
dish structures, Jackfork Group, 153
Dog Creek Formation, deposition, 81
Elgin Sandstone, 267, 268
Eskridge Shale, origin of mudrocks, 225
flysch deposits: Oologah Limestone banks, 17; Ouachita geosyncline, 45, 153, 205
gravity deposition, Johns Valley Shale, 72
Hartshorne Sandstone deposition, 148, 244
Keel-Edgewood biofacies, 4
Lower Missourian, vertical profile, 249
McAlester Formation, 35, 36, 204, 209
Morrowan bioherms, 25
Morrowan sand deposition, 35, 36
Oologah Limestone banks, 15, 16, 17, 218, 271
Ordovician carbonate reefs, 49, 102
Ouachita geosyncline, 13, 45, 153, 154, 205
Pennsylvanian sandstones and carbonates, 244
Permian, East Manitou site, 250
Purgatoire Formation, lithofacies, 235
river deposits: Cimarron River, 241, 243; South Canadian River system, 124
sabkha process, copper-shale deposits, 214, 251
sandstone deposition, general, 204, 209
Silurian, Siluro-Devonian:
Blaylock Formation, folds, 81, 82
brachiopods, 4
Wichita and Arbuckle Mountains, 4
Henryhouse Formation, 4
Huntsburg Group, 151
palynomorph provinces, 57
Sylvan Shale, 4, 151
soils: Craig County, 184; mineral concentrations, 236
South Canadian River, 124, 239
Stratigraphy:
Ardmore-Sherman quadrangles, 100
Arkoma basin, 45
Buckhorn Limestone, 282
Chester Series, 232
coral beds, 222
Coffeyville Formation, 76
Desmoinesian, northeast Oklahoma, 12
Dornick Hills Group, 58
Flowerpot Formation, 118, 119
Hogshooter Formation, 76
Keel-Edgewood strata, 4
Mississippian, northwest Oklahoma, 171
Mustang pool area, 151
Oologah Limestone banks, 15, 16
Ordovician, Middle, 238, 260
Panhandle, Permian to Tertiary, 181
Pennsylvanian: northeast Oklahoma, 244; northwest Oklahoma, 171
Pleistocene deposits, central plains, 22
Sholom Alechem area, 215
Simpson Group, 78, 260
Vamosa Formation, 267, 268

Structural Geology:
Anadarko basin, 28, 35, 36, 219, 220
Arbuckle Mountains, 28, 40, 58, 108
Ardmore basin, metamorphism, 28, 139
Arkoma basin, 35, 36, 62, 84, 117
Cimarron uplift, 242
coal fields, eastern Oklahoma, 84, 117

differential compaction structures, 171
Mississippian, northwest Oklahoma, 36
Morrowan sandstones, 36

Mustang field, 129, 151
Ouachita Mountains, Ouachita fold-belt, Ouachita geosyncline, 43, 44, 45, 65, 81, 82, 94, 101, 108, 109, 153, 154, 182, 208

Oxark dome, 62
Paleozoic faulting, 28
Panhandle, 181
Permian basin, 109, 136
Potato Hills, 208
Sholom Alechem area, 215
Sooner trend, fractures, 99
Spavinaw arch, 130

Tectonics:
Anadarko basin, 28
Arbuckle Mountains, 28, 58, 108, 229
Ardmore basin, 28

convection cells, 108
eometamorphism, effect on hydrocarbons, 139

Ouachita Mountains, 28, 43, 44, 45, 65, 81, 82, 94, 101, 108, 109, 154, 182, 208

Paleozoic orogeny, 28
Permian basin, 109, 136

plate tectonics, 43, 94, 213
Precambrian rift system, 213

relation to stress fields, 121

Sholom Alechem anticline, 215

Tertiary: Ogallala Formation, aquifer, 48, 66; petroleum, 149
topographic mapping, survey of Oklahoma coverage, 95

Tri-State area: barite-lead-zinc deposits, mineralization, 143; origin of ores, 106;

relation of ore deposits to petroleum accumulations, 89

uranium-lead age dating, 147

Washta River: alluvial water geochemistry, 123; bank stability, 90; dam seepage, 296; permeability studies, 183

Wichita Mountains: grooved granites, 98; radar imagery, 42; source of Permian sediments, 250

Wreford megacyclothem, 18, 156
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY
1975

Compiled by ELIZABETH A. HAM and WILLIAM D. ROSE

Bibliography—pages 79-101
Index—pages 101-116

Alberstadt, L. P., see Walker, K. R., and Alberstadt, L. P.
Alfonsi, P. P., see Huffman, G. G.; Alfonsi, P. P.; Dalton, R. C.; Duarte-Vivas, Andres; and Jeffries, E. L.
Al-Shaieb, Zuhair, see Oimsted, R. H., and Al-Shaieb, Zuhair
American Petroleum Institute, see American Gas Association, American Petroleum Institute, and Canadian Petroleum Association
Anderson, K. H., see Kurtz, V. E.; Thacker, J. L., Anderson, K. H., and Gerdemann, P. E.
Arnold, Bill, see Cullers, R. L.; Chaudhuri, Sambhudas; Arnold, Bill; Lee, Moon; and Wolf, C. W., Jr.
Babitzke, H. R., see McMahon, A. D., Hague, J. M., and Babitzke, H. R.
Baesemann, J. F., see Heckel, P. H., and Baesemann, J. F.
20. Biederman, E. W., Jr., 1975, Time of hydrocarbon expulsion, paradox for geologists and geochemists: discussion: American As-

Boiles, Kathryn, see Olson, E. C., and Boiles, Kathryn

Bray, D. E., see Reiter, L., and Bray, D. E.

Burke, Kevin, see Hoffman, Paul, Dewey, J. F., and Burke, Kevin.

Canadian Petroleum Association, see American Gas Association, American Petroleum Institute, and Canadian Petroleum Association.

28. Canyon, P. J., 1975, Skylab view of Arbuckle Mountains: Oklahoma Geology Notes, v. 35, p. 165-166. (Cover photo and description.)

Chaudhuri, Sambhudas, see Cullers, R. L.; Chaudhuri, Sambhudas; Arnold, Bill; Lee, Moon; and Wolf, C. W., Jr.

Coleman, M. S., see Newton, C. D., Shepard, W. W., and Coleman, M. S.

Coleman, M. S., see also Pigg, Jimmie, Coleman, M. S., and Roach, Bill.

Cramer, S. L., see Asquith, G. B., and Cramer, S. L.

44. Cullers, R. L.; Chaudhuri, Sambhudas; Arnold, Bill; Lee, Moon; and Wolf, C. W., Jr., 1975, Rare earth distributions in clay minerals and in the clay-sized fraction of the Lower Permian Hensville and Eskridge shales of Kansas and Oklahoma: Geochimica et Cosmochimica Acta, v. 39, p. 1691-1703, 9 figs., 5 tables.

Dalton, R. C.; see Huffman, G. G.; Alfonso, P. P.; Dalton, R. C.; Duarte-Vivas, Andres; and Jeffries, E. L.

DeMar, Robert, see Bolt, J. R., and DeMar, Robert

50. Dewey, J. F., see Hoffman, Paul, Dewey, J. F., and Burke, Kevin

Donahue, Jack, see Rollins, H. B., and Donahue, Jack

Duarte-Vivas, Andres, see Huffman, G. G.; Alfonso, P. P.; Dalton, R. C.; Duarte-Vivas, Andres; and Jeffries, E. L.

58. Ebens, R. J., see Boerngen, J. G., Van Trump, George, Jr., and Ebens, R. J.

60. Ehrlich, Robert, see Davis, M. W., and Ehrlich, Robert

61. Ekekebe, S. B., see Visser, G. S., Ekekebe, S. B., and Rennison, R.

Ethington, R. L., see Subm, R. W., and Ethington, R. L.

69. Fader, S. W., and Morton, R. B., 1975, Groundwater in the Middle

67. Fano, L. L., see Carleton, D. A., and Fanelly, L. L.

68. Fanelly, L. L., see also Harper, W. B., Jaske, R. J., and Fanelly, L. L.

74. Flower, R. H., 1975, American Lituitidae (Cephalopoda), in Pojeta, John, Jr., and Pope, J. K. (editors), Studies in paleontology and stratigraphy: Bulletins of American Paleontology, v. 67, no. 287, p. 139-173, 6 pls. (Includes Oklahoma cephalopods.)

76. Friedman, S. A., 1975, New coal preparation plant opens in Le Flore County: Oklahoma Geology Notes, v. 35, p. 133-134. (Cover photo and description.)

82. Golden, J. H., see Davies-Jones, R. P., and Golden, J. H.

86. Grant, Douglas, see Baker, R. B., and Grant, Douglas

87. Gutjahr, C. C. M., see Hooi, A., Gutjahr, C. C. M., and Heacock, R. L.

88. Gutschick, R. C., see Nitecki, M. H., Gutschick, R. C., and Repetski, J. E.

89. Hague, J. M., see McMahon, A. D., Hague, J. M., and Babitzke, H. R.

Harper, W. B., see Carleton, D. A., Harper, W. B., Michalski, Berndette, and Moore, B. H.

98. Hu, C. H., 1975, Ontogeny of three Late Cambrian trilobites from the Deadwood Formation, northern Black Hills, South Dakota, in Pogo, John, Jr., and Pope, J. K. (editors), Studies in paleontology and stratigraphy: Bulletins of the American Paleontology, v. 67, no. 287, p. 251-272, 3 figs., 3 pls. (Refers to Oklahoma trilobite.)

Ingersoll, R. V., see Graham, S. A., Dickinson, W. R., and Ingersoll, R. V.

Jaske, R. J., see Harper, W. B., Jaske, R. J., and Fanelli, L. L. Jeffries, E. L., see Huffman, G. G.; Alfonsi, P. P.; Dalton, R. C.; Duarte-Vivas, Andres; and Jeffries, E. L.

103. Johnson, K. S., 1975, Gypsum-capped mesa in southwestern Oklahoma: Oklahoma Geological Notes, v. 35, p. 41-42. (Cover photo and description.)

104. Johnson, K. S., see Medicine Bluffs, Wichita Mountains: Oklahoma Geological Notes, v. 35, p. 2. (Cover photo description.)

104. Johnson, K. S., 1975, Tombstone topography in Arbuckle Group, Wichita Mountains: Oklahoma Geological Notes, v. 35, p. 82. (Cover photo description.)

Keyes, W. F., see Merwin, R. W., and Keyes, W. F.

111. Klingle, C. L., 1975, Salt, in Metals, minerals, and fuels, v. 1 of

123. Kurtz, V. E., 1975, Franconian (Upper Cambrian) trilobite faunas from the Elvins Group of southeast Missouri: Journal of Paleontology, v. 49, p. 1009-1043, 4 pls., 7 figs. (Refers to Oklahoma species.)

126. Lane, H. R., see Ormiston, A. R., and Lane, H. R.

128. Laufeld, Sven, see Carter, Claire, and Laufeld, Sven.

132. Lee, Moon, see Cullers, R. L.; Chaudhuri, Sambhudas; Arnold, Bill; Lee, Moon, and Wolf, C. W., Jr.

138. Lugardon, B., see Doyle, J. A., Van Campo, M., and Lugardon, B.

139. Luke, R. F., 1975, The structure of the eastern part of the Mill
Lundin, R. F., see Petersen, L. E., and Lundin, R. F.
136. McCaslin, J. C., 1975, Deep tests continue to dot Anadarko basin: Oil and Gas Journal, v. 73, no. 39, p. 163, 1 fig.
137. McCaslin, J. C., 1975, New Oklahoma gas area growing fast: Oil and Gas Journal, v. 73, no. 34, p. 133.
McGinnis, L. D., see Ervin, C. P., and McGinnis, L. D.
Matson, T. K., see Hamilton, P. A., White, D. H., Jr., and Matson, T. K.
Matten, L. C., see Lee, M. R., Gastaldo, R. A., and Matten, L. C.
Merlivat, L., see Jouzel, J., Merlivat, L., and Roth, E.
Michalski, Bernadette, see Carleton, D. A., Harper, W. B., Michalski, Bernadette, and Moore, B. H.
Mintz, L. W., see Parsley, R. L., and Mintz, L. W.
Moore, B. H., see Carleton, D. A., Harper, W. B., Michalski, Bernadette, and Moore, B. H.
Moore, R. L., see Bingham, R. H., and Moore, R. L.
Morton, R. B., see Fader, S. W., and Morton, R. B.
Naney, J. W., see Yost, C., Jr., and Naney, J. W.
Nelson, R. C., see Leach, D. L., Nelson, R. C., and Williams, D.
158. Newton, C. D., Shepard, W. W., and Coleman, M. S., 1974, Street runoff as a source of lead pollution: Water Pollution Control Federation Journal, v. 46, p. 999-1000. (Study of pollution in North Canadian River.)

Nitecki, M. H., see Rigby, J. K., and Nitecki, M. H.
Nitecki, M. H., see also Thein, M. L., and Nitecki, M. H.

161. Noran, David, 1975, ERDA's enhanced-recovery program gathers momentum: Oil and Gas Journal, v. 73, no. 44, p. 77-81, 3 figs., 2 tables. (Includes North Burbank and North Stanley pools.)
Northrop, S. A., see Kelley, V. C., and Northrop, S. A.

163. Oil and Gas Journal, 1975, Busy drillers link four Oklahoma gas fields: Oil and Gas Journal, v. 73, no. 41, p. 26, 27, 1 fig.

164. Oil and Gas Journal, 1975, Deep holes flourish in hot Anadarko basin rig work, in Action areas dot North America from the North Slope to Reforma: Oil and Gas Journal, v. 73, no. 1, p. 45-46, map.

165. Oil and Gas Journal, 1975, Downhole rocks, fluids to govern deep drilling: Oil and Gas Journal, v. 73, no. 26, p. 60. (Abstract in Petroleum Abstracts, v. 15, p. 1350; includes Anadarko basin.)

166. Oil and Gas Journal, 1975, Pennsylvania zones lure southern Oklahoma wildcats, in Action areas dot North America from the North Slope to Reforma: Oil and Gas Journal, v. 73, no. 1, p. 46-47, map, 1 photo.

Oklahoma Agricultural Experiment Station, see U.S. Department of Agriculture, Soil Conservation Service, and Oklahoma Agricultural Experiment Station

174. Olson, E. C., and Bolles, Kathryn, 1975, Permo-Carboniferous fresh water burrows: Fieldiana Geology, v. 33, p. 271-290, 6 figs., 2 pls. (Includes Oklahoma examples from the Hennessey Group.)

Petzel, Gerald, see Everett, J. R., and Petzel, Gerald.

Rashid, M. A., see Wilson, L. R., and Rashid, M. A.

Reid, T. B., see Clampitt, R. L., and Reid, T. B.

Rennison, R., see Visher, G. S., Ekebafte, S. B., and Rennison, R.

Repetski, J. E., see Nitecki, M. H., Gutichick, R. C., and Repetski, J. E.

Rice, R. W., see Manger, W. L., and Rice, R. W.

Richards, R. H., see Faust, Josef, and Richards, R. H.

Roach, Bill, see Pigg, Jimmie, Coleman, M.S., and Roach, Bill

Rose, W. D., see Ham, E. A., and Rose, W. D.

Roth, E., see Jouzel, J., Merlivat, L., and Roth, E.

Rowell, A. J., see Ashton, J. H., and Rowell, A. J.

Rozendal, R. A., see Nicholas, R. L., and Rozendal, R. A.

Sabattini, N., see Riccardi, A. C., and Sabattini, N.

Satterfield, I. R., see Sweet, W. C., Thompson, T. L., and Satterfield, I. R.

Sauer, V. B., see Moench, A. F., Sauer, V. B., and Jennings, M. E.

Schiel, J. B., Jr., see Jameson, W. C., and Schiel, J. B., Jr.

207. Sheehan, P. M., 1975, Upper Ordovician and Silurian brachiopods from the Solis Limestone, Chihuahua, Mexico: Journal of Paleontology, v. 49, p. 200-211, 1 fig., 2 pls. (Refers to Oklahoma species.)

Shepard, W. W., see Newton, C. D., Shepard, W. W., and Coleman, M. S.

Shurbet, D. H., see Keller, G. R., and Shurbet, D. H.

Smith, M. V., see Johnson, K. S., Wolfe, W. D., and Smith, M. V.

216. Strimple, H. L., 1975, Middle Pennsylvanian (Atokan) crinoids from Oklahoma and Missouri: University of Kansas Paleontological Contributions, Paper 76, 30 p., 17 figs.

218. Strimple, H. L., 1975, New Chesterian (Upper Mississippian) crinoids from Illinois: University of Kansas Paleontological Contributions, Paper 79, 9 p., 3 pls. (Refers to Oklahoma species.)

Strimple, H. L., see Cocke, J. M., and Strimple, H. L.

221. Sullivan, C. D., see McCulloch, C. M., Jeran, P. W., and Sullivan, C. D.

Sullivan, M. W., see Finch, W. I., Wright, J. C., and Sullivan, M. W.

Sutherland, P. K., see Gordon, M. Jr., and Sutherland, P. K.

Thacker, J. L., see Kurtz, V. E., Thacker, J. L., Anderson, K. H., and Gerdemann, P. E.

Thompson, T. L., see Satterfield, I. R., and Thompson, T. L.

Thompson, T. L., see also Sweet, W. C., Thompson, T. L., and Satterfield, I. R.

236. Von Hake, C. A., see Coffman, J. L., and von Hake, C. A.

243. Waters, K. H., see Fowler, J. C., and Waters, K. H.

246. Whipple, A. P., see Galloway, W. E., Yancey, M. S., and Whipple, A. P.

249. Williams, D., see Leach, D. L., Nelson, R. C., and Williams, D.

251. Wilson, H. M., 1975, Pacific Lighting's exploration program strengthens its domestic gas resources: Oil and Gas Journal, v. 73, no. 16, p. 162-163, 1 fig. (Includes Anadarko basin.)

255. Wolf, C. W., Jr., see Culmers, R. L.; Chaudhuri, Sambhudas; Arnold, Bill; Lee, Moon; and Wolf, C. W., Jr.

256. Wolfe, W. D., see Johnson, K. S., Wolfe, W. D., and Smith, M. V.

258. Work, P. L., 1975, Digitized well logs can help boost success in exploring shale intervals: Oil and Gas Journal, v. 73, no. 7, p. 84, 85, 86, 4 figs. (Woodford Shale analyses.)

259. Wright, J. C., see Finch, W. J., Wright, J. C., and Sullivan, M. W.

261. Yancey, M. S., see Galloway, W. E., Yancey, M. S., and Whipple, A. P.

INDEX

age dating: isotopic, Ouachita area, 82; Rb-Sr and K-Ar, Benton uplift, 72; Rb-Sr and K-Ar, Ouachita foldbelt, 159
algal banks, algal reefs, 24, 25, 36, 79, 252
Anadarko Basin:
Anadarko-Ardmore aulacogen, 84
cratonic platform margin, 80
deep wells, 136, 164, 198, 251
EROS data, petroleum exploration, 63
origin, 240
petroleum exploration, 3, 116, 165, 184, 186, 245, 250, 251
petroleum generation chart, 97
source of Arkansas zinc ore fluids, 128
structure, 1, 40, 84, 90, 187, 198
subidence, 3
well log pressure data, 38
well stimulation, 49
Woodford Shale, digitized well log analyses, 250
annual reports: Oklahoma Department of Mines, 177; Oklahoma Geological Survey, 145; Oklahoma Water Resources Board, 169
Arbuckle Mountains:
brachiopods, 7
condominats, 175, 220
copper mineralization, 69
Lower Paleozoic, correlation with Ouachita section, 159
magnetic survey, 200
Mill Creek syncline, structure, 135
phosphate microfossils, 160
radar imagery, 27
radiolarians, 175
Simpson Group, conodonts, 220
Skylab photo, 28
source of Texas Strawn sediments, 35
source of Vanoss sediments, 224
structure, 28, 40, 84, 135, 187, 200, 240
tectonics, 84, 187, 200, 240
tombstone topography, 104
tribolites, 98
Ardmore basin: Anadarko-Ardmore aulacogen, 84; Dornick Hills Group, 40, 41, 42; exploration, 251; structure, 40, 84, 187; tectonics, 40, 84, 187
Arkansas River basin, ground water, 65
Arkoma Basin:
Carboniferous deposition, 26, 84, 155
Hartshorne coal, 138
paleoenvironments, 26, 139
Paleozoic foredeep, 110
Pennsylvanian fluvial deposits, 254
source of Arkansas zinc ore fluids, 128
South Pine Hollow area, hydrocarbons, 139
structure, 1, 26, 84, 155, 159
subidence, 1, 26
Bibliographies: environmental geology, 86; Oklahoma geology, 1974, 87; USGS coal publications, 237; uranium occurrences, 73
bioherms: Missourian, 36; Morrowan, 24, 25
Cambrian:
Arbuckle "lime," 19
bioclines, 10
Butterly Dolomite, copper mineralization, 69
Carlton Rhylite, 103, 204
Derby-Doerun Dolomite, 124
Eminence Dolomite, 124
Navajo Mountain basalt, 204
Potosi Dolomite, 124
Raggedy Mountain Gabbro, 204
Reagan Sandstone, 124
rifting, 240
Tillman metasedimentary group, 204
tribolites, 10, 98, 123
Wichita Granite, 204
Carboniferous:
Arkoma basin, 26, 155
brachiopods, 32
cephalopods, 192
Ouachita basin, 26, 84, 155, 156, 226
Perm-Carboniferous vertebrates, 173
Stanley-Jackfork facies, 226
Central Oklahoma Platform, 1
Cimarron River, terrace aquifer pollution, 171
Coal:
analyses, 77, 88
bibliography, 237
Cavanal coal, 77
coal bed, 16, 76, 77, 88, 146
comparison with Wyoming coals, 78
Croweburg coal, 77
Dawson coal, 77
directory of mines and producers, 151
energy directory, 60
Hartshorne beds, 16, 76, 77, 138
Howe mine, 138
Iron Post coal, 77
Lower Witteville coal, 77
McAlester coal, 77
Mineral coal, 77
Oklahoma Geological Survey programs, 145
quality: general, 78, 146; Hartshorne, 76; sulfur content, 88
Rowe coal, 77
Secor coal, 77
Seminole coals, palynology, 180
statistics: bituminous and lignite, 243; coke, 208; general, 16, 77, 214, 230
Stigler coal, 77
technology: mining, 138; processing, 76
Wear-Pittsburg bed (Cherokee), 16, 77
Copper mineralization: facies control, 213; geochemistry, 94; origin, 69
Counties:
all counties: mineral industries, 177; petroleum exploration, 14; petroleum statistics, 53, 195; soils, 170; water, 170; well data, 15
Alfalfa: Sooner trend, 90
Beaver: silicified wood, 129
Beckham: Helmerich and Payne 1 Cupp, 251; petroleum, 97, 116, 165, 251;
Shell Rumberger 5, 97
Blaine: collapsed sinks, 101; gas exploration, 163; gypsum mining, 101;
Sooner trend, 90
Bryan: palynology, 248
Caddo: exploration, 165, 251; gas wells, 137; Morrow-Springer trend, 251;
Washita River alluvium, 211
Canadian: exploration, 163, 165; hydrology, 21; Mustang pool, 131, 132, 133
Carter: crinoids, 216; Dornick Hills Group, 40, 41, 42; exploration, 166;
magnetic survey, 200; Sholom Alchemist field, 194; Signal City of Ardmore, 251
Cherokee: Moravian biornerms, 24
Choctaw: county report, 99; paleontology, 70; palynology, 248
Cleveland: "Cherokee" Group, subsurface, 1, 2, 3; Cleveland sand reservoir, 117; hydrology, 21
Coal: Centacoma field, 8; coal, 77, crinoids, 216
Craig: coal, 77, 78
Creek: hydrology, 21; Missourian rocks, 36; Osage-Layton format, 125
Delaware: Cambrian traverse, 124; geochemistry, Mississippian shales and sandstones, 22
Dewey: exploration, 163, 165
Elk: exploration, 165, 245
Garfield: "Cherokee" sands, 255; Sooner trend, 90
Garvin: exploration, 166
Grady: exploration, 165; gas wells, 137; hydrology, 21; Morrow-Springer trend, 251; Washita River alluvium, 211
Greer: gypsum-capped mesa, 102
Haskell: coal, 77
Hughes: hydrology, 21
Jackson: Creta copper mine, 9
Jefferson: soils, 231
Johnston: crinoids, 216
Kay: Osage-Layton format, 125
Kingfisher: "Cherokee" sands, 255; hydrology, 21; Sooner trend, 90
Latimer: coal, 77
Le Flore: coal, 76, 77, 138; coal plant, 76; structure map, 147
Logan: Guthrie North quadrangle, 149; hydrology, 21; Osage-Layton format, 125
Love: crinoids, 216; Dornick Hills Group, 40, 41, 42; palynology, 248
McCain: hydrology, 21
McClain: Broken Bow uplift, 72; mammal fossils, 118, 119; well core study, 82
Major: Sooner trend, 90
Marshall: palynology, 248
Mayes: Mississippian carbonates, 22
Murray: cephalopods, 74; fossil fish, 256; magnetic survey, 200
Muskogee: coal, 77, 78
Noble: Osage-Layton format, 125; red-bed copper, 94
Nowata: coal, 77; Missourian rocks, 36; Pennsylvanian carbonates, 22
Okfuskee: copper mineralization, 69; hydrology, 21
Oklahoma: hydrology, 21; Osage-Layton format, 125
Oklmulgee: coal, 77, hydrology, 21
Osage: crinoids, 219; Mississippian carbonates, 22; Missourian rocks, 36
North Burbank pool, 161; North Stanley pool, 161; Osage-Layton format, 125
Pawnee: Osage-Layton format, 125; rare-earth study, 44; red-bed copper, 94
Payne: "Cherokee" sandstones, 13, 209; hydrology, 21; Osage-Layton format, 125; red-bed copper, 94
Pittsburg: coal, 77; fossil fish, 256; hydrology, 21
Pontotoc: brachiopods, 7; crinoids, 216; soils, 232
Pottawatomie: hydrology, 21
Pushmataha: structure map, 147
Roger Mills: exploration, 165; Morrow-Springer trend, 251
Rogers: coal, 77, 78; Missourian rocks, 36
Seminole: hydrology, 21
Sequoyah: coal, 77; Mississippian carbonates, 22; Morrowan bioherms, 24
Stephens: exploration, 166; Sholom Alchemist field, 194
 Tillman: fossil fish, 212, 256; soils, 239
Tulsa: coal, 77, 180; hydrology, 21; Missourian rocks, 36; Osage-Layton format, 125; Pennsylvanian carbonates, 22; Seminole coals, 180
Wagoner: bioherms, 24; crinoids, 216; Pennsylvanian shales and sandstones, geochemistry, 22
Washington: Missourian rocks, 36; Pennsylvanian carbonates, 22; Pennsylvanian deformation, 188
Washita: Lone Star 1 Bertha Rogers, 164, 251; McCulloch 1 Easley, 251
Woodward: gas wells, 245
Criner Hills: brachiopods, 7; tectonics, 187
Cretaceous:
angiosperm pollen, 55
Antlers Formation, 41, 99
Bokchito Formation, 99
Caddo Formation, 99
Choctaw County, 99
Comanchean mollusks, 205
Comanchean Series, 99, 205, 248
Denton Shale, palynology, 248
Fredericksburg Group, 99
Goodland Limestone, 99
Gulfian Series, 99
Kiamichi Formation, 99
Lower Cretaceous, mollusks, 70
Ozan Formation, nanofossils, 118, 119
rift, Ouchita area, 85
Trinity Group, 41, 82, 99
Washita Group, 99, 248
Woodbine Formation, 99
Cretaceous copper mine, 9

DEVONIAN:
Arkansas Novaculite, 72, 159
Bois d’Arc Formation, 130, 131, 206, 207, 238, 256
Chimneyhill Formation, 131
Frisco Formation, 131, 206
Haragan Formation, 131, 182, 206, 207, 238
Hunten Group, 19, 90, 131, 159, 238
Missouri Mountain Shale, 72, 159
Woodford Shale, 19, 90, 131, 250
directories: coal producers and mines, 151; energy directory, 60
ERSTs-1 and Skylab imagery, 17, 28, 63

EARTHQUAKES:
Anadarko basin model, 80
data, 37, 181, 191
detection, 127
Mississippi embayment, 65
southern Oklahoma aulacogen, 187
engineering geology, stress data, 122

ENVIRONMENTAL GEOLOGY:
bibliography, 86
brine pollution, Cimarron terrace aquifer, 171; Washita River basin, 253
desalination plant, 157
earth dam seepage, 253
flood prevention, 169, 170
Guthrie North quadrangle, 149
landscape modification by gypsum mining, 101
lead pollution, Deep Fork River, 183
Oklahoma Geological Survey programs, 145
water quality, 18, 21, 52, 157, 158, 169, 170, 183, 210
Foss Reservoir, desalination plant, 157

GEOCHEMISTRY:
analytical data: clay minerals, Havenville and Eskridge Shales, 44; Mississippian units, 23; Pennsylvanian units, 22; rare-earth elements, 44
carbonate inversion, Lecompton Member, 152
copper mineralization, 69, 94, 213
hydrocarbons, 19, 20, 97, 185
Keyes chondrite, 39
light-mineral fractions, Vanoss Formation, 224
polymer flooding, 23, 161
red-bed uranium, 172
silica in mudrocks, 203
sulfide mineralization, Ouchita area, 85
thermochronology, clay study, 161
Washita River alluvium, 211
Wichita Mountain intrusives, 204
zinc ores, fluid inclusions, 128
gеographic names decisions, 227, 228, 229
gеomorphology: Choctaw County, 99; gypsum-capped mesa, 102; karst topography, Blaine County, 101

GEOPHYSICS:
aeromagnetic map, Wichita Mountains, 234
Cleveland sand reservoir study, 117
crural reflection recordings, northeastern Oklahoma, 75
electric and radioactive logs, McCurtain County well, 82
electrical activity, tornadoes, 45, 46, 47
energy values, clay minerals, 162
gavity, Ouchita Mountains, 159, 187
isotopic study of hail, 106
Keyes chondrite, cosmic ray exposure, 39
magnetic survey, Arbuckle Mountains, 200
magnetoellipsometric exploration, Anadarko basin, 184
resonant orbit, Lost City meteorite, 244
seismology: Anadarko basin model, 80; earthquake data, 37, 181, 191; earthquake detection, 127; Mississippi embayment, 85; southern Oklahoma aulacogen, 187

Grand (Neosho) River basin, ground water, 64
Guthrie North quadrangle, areal geology, 149

HYDROGEOLOGY, HYDROLOGY:
interstate compacts, 169
Oklahoma City quadrangle, 21
Oklahoma Geological Survey programs, 145
resources: general, 169, 170; Oklahoma City quadrangle, 21; Vamosa aquifer, 52
state water plan, 170
subsurface waters: Antlers Sandstone aquifer, 99; Canadian River basin, 17; central Oklahoma aquifers, 21, 153; Choctaw County, 99; Cimarron-terrace aquifers, brine pollution, 171; general, 169, 170; Grand (Neosho) River basin, 64; ground-water basins, 170; Middle Arkansas River basin, 65; Ogallala aquifer, 18; Oklahoma City quadrangle, 21; soil moisture, Chickasha model, 59; Vamosa aquifer, 52; Verdigris River basin, 66; Washita River basin, water table, 253
surface waters: Boswell Dam and Reservoir, 99; Choctaw County, 99; Deep Fork River, lead content, 183; Foss Reservoir, desalination plant, 157; general, 169, 170; Hugo Dam and Lake, 99; Jefferson County, 231; Lake Carl Blackwell, mineral concentrations, 210; Lake Hefner, evaporation control, 43; Lake Raymond Gary, 99; Lake Rosebuck, 99; North Canadian River, lead pollution, 158; North Canadian River, streamflow modification, 158; Oklahoma City quadrangle, 21; Pine Creek Dam and Reservoir, 99; Washita River alluvium, 211; Washita River basin, earth-dam seepage, 253
water quality:
Canadian River, 18, 158; Cimarron terrace, brine pollution, 171; Deep Fork River, lead pollution, 183; Foss Reservoir, 157; general, 169, 170; Lake Carl Blackwell, mineral concentrations, 210; North Canadian River, lead pollution, 158; Ogallala aquifer, 18; Oklahoma City quadrangle, 21; salinity, 157, 171, 174, 253; Vamosa aquifer, 52; Washita River basin, brine pollution, 253
indexes: Oklahoma geology, 1974, 87; Oklahoma Geology Notes, 167
Lake Hefner, evaporation control, 43
Lost City meteorite, orbit, 244
McAlester basin (see also Arkoma basin): structure, 1; subsidence, 3
McClain County fault zone, 1
MAPS:
Oklahoma City quadrangle, areal geology, 21
Oklahoma City quadrangle, hydrology, 21
Oklahoma oil and gas fields, 168
Ouachita Mountains, structure, 147
Wichita Mountains, aeromagnetic, 234
Marietta basin, tectonics, 40, 187
memorials: Robert M. Becker, 142; Ted G. Becker, 120; Carl Colton Branson, 246; R. W. Brauchli, 88
meteorites: Keyschondrite, 39; Lost City, 244
meteorology: hailstones, isotopic study, 106; tornadoes, relation of electrical activity, 45, 46, 47

MINERAL INDUSTRIES:
coal, see Coal
gypsum mining, Southard, 101
mining companies, 177
Oklahoma Geological Survey programs, 145
petroleum, see Petroleum and Natural Gas
resources: Choctaw County, 99; coal, see Coal; copper, 9; general, 170; limestone, 56; petroleum, see Petroleum and Natural Gas; Pontotoc County, 232; uranium, 113; see also Mineral Industries: statistics
statistics: carbon black, 4; cement, 58; clays, 6, 177, 214, 230; coal, see Coal; coke, 208; general, 154, 177, 214, 230; gypsum, 177, 189, 214, 230; helium, 114, 214, 230; lead and zinc, 141, 198, 230; lime, 190; metals, 214; petroleum, see Petroleum and Natural Gas; potash, 109; pumice, 214; salt, 111, 214, 230; sand and gravel, 177, 176, 214, 230; silver, 242; stone, 56, 177, 230; sulfur, 148; tripoli, 34, 177; uranium processing, 249; uranium purchasing, 113
technology: Creta open-pit copper mine; gypsum mining, 101

MISSISSIPPIAN:
Arkansas Novaculite, 155, 156, 226
Caney Formation, 26
carbonates, geochemical data, 22
cephalopods, 192
Chesterian, gastropods, 223
corals, 201
Delaware Creek Formation, 256
Fayetteville Formation, 26, 218
Goddard Formation, 26
Jackfork Group, 26, 84, 99, 155, 156
Johns Valley Formation, 26, 84, 99, 155, 156
Mayes Formation, 26, 99
"Meramec-Osage," Sooner trend, 90
Osage serica, 188
Pitkin Formation, 26, 143, 218
St. Joe Formation, conodonts, 140
Stanley Group, 26, 84, 99, 155, 156, 226
Sycamore Limestone, 175, 194
Tennmile Creek Formation, 99
Woodford Shale, 19, 131
Nemaha ridge (Oklahoma City uplift), 1, 3, 74, 90
North Canadian River, lead pollution, 158; streamflow modification, 153
Ogalalla aquifer, 18
Oklahoma City quadrangle: areal geology, 21; hydrology, 21
Oklahoma City uplift, see Nemaha ridge
Oklahoma Geological Survey, annual report, 145
Oklahoma platform: paleogeography, 121; slope reversal, 121; structure, 1,125; tectonics, 125

ORDOVICIAN:
Arbuckle Group, 75, 159, 188
Arbuckle "lime," 19, 185
Bigfork Chert, 72, 82, 159
Blakely Sandstone, 82
Bromide Formation, 67, 115
Burgen sand, 185
Chimneyhill Subgroup, brachiopods, 7
Collier Formation, 82, 159
Crystal Mountain Limestone, 82, 159
Fernvale Limestone, 85, 222
Ideal Quarry Member, 7
Joins Formation, 220
Keel Formation, 7
Kindblade Formation, 252
Lukfata Sandstone, 82
McKenzie Hill Formation, tombstone topography, 104
McLish Formation, 8, 67, 74, 220
Mazarn Formation, 82, 159
Oil Creek Formation, 8, 67, 74, 220
paracrinoids, 179
Polk Creek Shale, 72, 82, 159
Simpson Group, 19, 67, 74, 159, 160, 185, 220
Sylvan Shale, 131, 159
Tulip Creek Formation, 67, 220
Tyner sand, 185
Viola Limestone, 8, 31, 159, 176, 185, 221
Wilcox sand, 19, 185
Womble Shale, 72, 82, 159

Ouachita Mountains (includes Ouachita foldbelt, Ouachita front, Ouachita geosynclines, Ouachita trend):
ammonoids, 83
Black Knob Ridge, 72
Boktukola fault, 72
Broken Bow-Benton uplift, 72, 82, 147
Carboniferous deposition, 26, 84, 155, 156
Chocwat fault, 26, 72
cratonic facies, 159
exploratory well, 82
facies deposition, 26, 72, 84, 155, 156, 159, 241
flysch deposition, 26, 72, 84, 155, 156, 241
limit of Mississippi emplacement, 61
Octavia fault, 72
orogenic belt, 107, 110, 240
Ouachita-Marathon tectonic belt, 159, 240
paleoenvironments, 26, 72, 110, 155
Potato Hills, 72, 147
relation to Appalachians, 225
relation to Black Warrior basin, Alabama, 48
relation to Mississippi emplacement, 61
silica sedimentation, 134
source of Arkansas zinc ore fluids, 128
source of Texas Canyon Group sediments, 62
source of Texas Cisco sediments, 239
source of Texas Strawn sediments, 35
source of Texas Triassic sandstones, 11, 12
southern Oklahoma aulaeogen, 95, 187
Stanley-Jackfork-Atoka sequence, 226
structure and tectonics, 26, 48, 61, 72, 82, 84, 85, 107, 110, 134, 147, 155, 156, 159, 187, 196, 225, 240, 241
sulfide mineralization, 85
TJ Valley fault, 26
Winding Stair fault, 26, 72
Ozark Mountains, tectonics, 84, 85
paleobiology, see also paleobotany, paleoecology, paleozoology, palynology:
Morrowan bioherms, biota, 24, 25; nannofossils, Ozan Formation, 118, 119
Paleobotany:
algae: Hogshooter Formation, 91; Missourian reefs, 36; Morrowan bioherms, 24, 25; Ordovician mounds, 262; Winterset algal-bank complex, 79
angiosperms, 55
microphytoplankton, Bois d’Arc Formation, 130
nannofossils, Ozan Formation, 118, 119
silicified wood, Ogallala Formation, 129
Paleoecology:
Ceratopogon environment, Lower Ordovician, 252
Dornick Hills Group, 42
Haragan-Bois d’Arc sequence, 238
Keel Formation, 7
Late Cambrian biocerites, 10
Morrowan bioherms, 24, 25
Ozan Formation, 118, 119
Wewoka Formation, biotic communities, 197
Paleogeography (includes paleocurrents, paleotopography):
Cambridge, Delaware County, 124
Carboniferous: Arkoma basin, 26; Ouachita Mountains, 26
"Cherokee" sandstones, 13, 209, 255
Coffeyville Formation, 235
Marmaton Group, Oklahoma platform, 121
Missourian detrital shoreline, 93
Ouachita Mountains, 72, 110, 134, 155
Pennsylvanian: Arkoma basin, 139; northeastern Oklahoma, 125; seaway, 121; slope reversal, 121
pre-Paleozoic, 110
pre-Pennsylvanian, 1
Paleozoology:
ammonoids, 88
biotic communities, Wewoka Formation, 197
blastooids, 143
brachiopods, 7, 24, 25, 32, 206, 207, 238
bryozoans, 24, 25, 67
cephalopods, 74, 144, 192
canthocones, 31
conodons, 93, 140, 175, 202, 220, 221
corals, 24, 25, 36, 126, 201
crinoids, 115, 215, 216, 217, 218, 219
crustaceans, 222
diversity gradients, molluscan, 205
Dornick Hills Group, 42
gastropods, 223, 252
lungfish and amphibian burrows, 174
mollusks, 70, 205
nannofossils, Ozan Formation, 118, 119
ostracoderms, 160
ostracods, 112, 182
paracrinoids, 179
pelecypods, 24
protozoans, Bois d’Arc Formation, 130
radiolarians, 175
sponge, 193
trilobites, 10, 98, 123
vertebrates, 23, 160, 173, 174, 176, 212, 256, 257
Paleynology:
angiosperm pollen, Cretaceous, 55
Bois d’Arc Formation, 130
Denton Shale, 248
Gearyan Series, 247
Ozan Formation, 118, 119
Seminole coals, 180
Pennsylvanian:
algal reefs, 36
Altamont megacyclothem, Kansas, 93
Atoka Formation, 19, 26, 84, 155, 156
Atoka Group, 226
Atokan Series, 40, 41, 42, 216, 241
Avant Formation, 125
Barnsdall Formation, 79, 188, 219
Bartlesville sand, 1, 2, 13, 122, 131, 209
bioherms, 24, 25
Birch Creek Limestone, 188
Bloyd Formation, 26, 83, 217
Boggy Formation, Secor coal, fossil fish, 256
Booc sandstone, Centrachoma field, 8
Calvin Sandstone, silica content, 203
carbonates, geochemical data, 22
Chautauqua Formation, 36, 79, 188
Checkerboard Formation, 36, 180
"Cherokee" Group, 1, 2, 13, 19, 20, 131, 188, 209, 255
Cherokee Shale, 19
Chickasaw Creek Formation, 99
Cisco Group, Texas, 239
Cleveland Formation: channel sands, 121; petroleum reservoir, 117
Coffeyville Formation, 36, 79, 180, 235
copper mineralization, 69
corals, 201
crinoids, 216, 217, 219
Cromwell sandstone, Centrachoma field, 8
De Noy Limestone, 36
Desmoinesian-Missourian boundary, 180
Desmoinesian Series, 1, 2, 13, 19, 20, 21, 131, 132, 180, 186, 209, 255
Dewey Formation, 36, 79, 188
Dornick Hills Group, 40, 41, 42
fluvial deposits, 254
Gearyan Series: age determinations, 247; correlation with Texas Wichita Group, 257; Oklahoma City quadrangle, 21
Golf Course Formation, 40, 41, 42
Hale Formation, 26, 144
Hartshorne Formation, Hartshorne coal, 8, 16, 76, 77, 138, 139
Hogshooter Formation, 36, 79, 91, 125, 180, 188
Holdenville Formation, 180
Hoxbar Group, 80
Inola Limestone, 1, 2, 131
Iola Formation, 36, 79, 188
Jackfork Group, 99, 155, 156, 226
Lake Murray Formation, 40, 41, 42
Lecompton Member, Pawhuska Formation, 152
McCully Formation, 24
Marmaton Group, 1, 2, 19, 121, 131, 132, 188
Mississippian Series, 21, 36, 62, 79, 91, 93, 95, 125, 180, 188, 235
molasse, Atokan, 241
Morrow sands, 19, 49
Morrow-Atokan boundary, 83
Morrowan Series, 8, 19, 24, 25, 49
Nellie Bly Formation, 36, 79, 125, 180, 188
Nowata Shale, 180
Okeesa Sandstone, 188
Oklahoma City quadrangle, 21
Osage-Laytoy format, 125
ostracodes, 112
Oswego Limestone, 1, 2, 19, 131
Pawhuska Formation, 152
Pink lime, 1, 2, 131
Pontotoc Group, 41, 79, 224
Prairie Hollow Shale, 99
Prue sand, 1, 2, 13, 131, 209
Red Fork sand, 1, 2, 13, 209
Sandia Mountains, relation to Oklahoma Pennsylvanian, 108
Sausbee Formation, 24
Seminoe coals, 180
Seminoe Formation, 36, 180
shales, compaction, 50
Skiatook Group, 79, 180, 185
Skinner sands, 1, 2, 13, 131, 209
Sonora Formation, silica content, 203
Springer Formation, 26
Strawn Group, Texas, 35, 62
Tallant Formation, 79
Torpedo Sandstone, 188
Vanoss Formation, 41, 79, 224
Verdigris Limestone, 1, 2, 131
Wann Formation, 36, 79, 92, 126, 188
Wapanucka Formation, 26, 93
Wewoka Formation, 180
Wildhorse Mountain Formation, 99
Havensville Shale, rare earths, 44
Haystack gypsum, 102
Hennessey Group: fossil fishes, 212, 256; Oklahoma City quadrangle, 21; radioactivity, 172
Kingfisher Creek gypsum, 101
Magpie dolomite, 101
Nesatunga gypsum, 101
red-bed deposition, 96, 105, 213
Rush Springs Formation, radioactivity, 172
San Angelo Formation, red-bed evaporites, 96
Shimer gypsum, 101
Sumner Group, 21
Vanoss Formation, 41, 79, 224
Wellington Formation, 222
Whitehorse Group, 21
Wreford Limestone, rare earths, 44

PETROLEUM AND NATURAL GAS:
Anadarko basin: see Anadarko Basin; see also Petroleum and Natural Gas: exploration and development
Ardmore basin, 251
Arkoma basin, 139
BETHANY POOL, 132
Centrhomia field, 8
"Cherokee" sands, 1, 2, 3, 255
Chickasha field, 137
Cleveland sand reservoir, 117
energy directory, 60
enhanced recovery, 33, 49, 53, 57, 81, 132, 133, 161
exploration and development: Anadarko basin, 63, 116, 136, 164, 165, 184, 186, 188, 245, 250; Arbuckle exploration and production, 116, 251; Ardmore basin, 251; Centrhomia field, 8; deep wells, 136, 164, 198, 251; ERTS evaluation, Anadarko basin, 63; general, 14, 53, 165, 195; Healdton district, 166; Lone Star 1 Baden Unit, 198; Lone Star 1 Rogers, 164, 251; McCurtain County well, 82; magnetolectric exploration, Anadarko basin, 184; Morrow-Springer trend, 251; Mustang pool, 132, 133; Northwest Butterfly field, 166; Pennsylvaniaian, 186; producing formations, general, 115; Reynold field, 251; Sholom Alechem field, 194; Sho-Vel-Tum fields, 166; South Pine Hollow area, 139; Southwest Cogar field, 163; Southwest Minco field, 163; Southwest Pocasset field, 163; southwestern Oklahoma gas fields, 137; Sycamore development, 194; Velma fields, 168; Watonga trend, 183; Wichita Mountains, 251
grand oil fields, 19, 195
historical records, 5
hydrocarbon accumulation and expulsion, 20, 139, 186
Little Axe field, 3
LONE STAR BADEN UNIT, 198
Lone Star 1 Bertha Rogers, 164, 251
Lucien field, 19, 185
Meramec-Osage pools, 90
Mustang pool, 131, 132, 133
North Burbank unit, 35, 161
North Norman field, 3
North Stanley pool, 161
Northwest Rocky Point pool, 3
oil and gas pools map, 168
oil migration, 50
Oklahoma City field, 19, 185
Oklahoma Geological Survey programs, 145
origin of petroleum, 19, 20, 97, 185, 186
reservoir rocks, Sooner trend, 90
Shell Rumberger 5, 97
Short Junction pool, 132
Sooner trend field, 90
South Norman field, 3
Southeast Clay City field, 3
Southeast Denver pool, 3
Southeast Little Axe field, 3
Southeast Moore field, 3
South Rocky Point pool, 3
Southwest Clearbrook pool, 3
Southwest Minco field, 137
Southwest Pocasset field, 137
statistics: consumption, 89; digitized well-log analyses, 250; enhanced recovery projects, 53, 54, 81; exploration and development, 14, 30, 53, 54, 89, 236, 251; general, 71, 89, 195, 214; log-pressure analyses, 38; natural-gas liquids, 29; petroleum products, 30; pipeline movements, 89; production, 5, 8, 15, 30, 51, 53, 89, 100, 230; reserves, 5, 30, 89, 100, 150, 195; storage, 89; well data, general, 14, 15
technology: drilling, 8, 164, 198; enhanced recovery, 33, 49, 53, 57, 81, 132, 133, 161; fracture stimulation, 49, magnetoelectric exploration, 184; polymer flooding, 161; recovery methods, Sooner trend, 90; water treatment, 81, 161
trapping mechanisms: "Cherokee" Group, 3, 255; Sooner trend, 90
Viersen and Cochran 21-5 Weyerhaeuser, core study and log interpretation, 92
West Avant field, 57
West Moore field, 3
Phiocene, Ogallala Formation, 18, 129
Precambrian: rifting, 240; subsurface, Delaware County, 124; Wichita Mountains, 204
Quaternary: Choctaw County, 99; Oklahoma City quadrangle, 21
Red River basin, woodland areas, ERTS imagery, 17
REMOTE SENSING:
aerial-photo studies: Mill Creek syncline, 135; Ouachita Mountains, 147; southwestern Oklahoma, gypsum-capped mesa, 102
aeromagnetic map, Wichita Mountains, 234
ERTS-1 and Skylab imagery: Anadarko basin, petroleum exploration, 63;
Arbuckle Mountains, 28; Ardmore basin, 28; Red River basin, 17
magnetoelectric exploration, Anadarko basin, 184
radar imagery: Arbuckle Mountains, 27; Wichita Mountains, 27
rock-type discrimination: Arbuckle Mountains, 27, 28; Ardmore basin, 28;
Permian gypsum and shale, 102; Wichita Mountains, 27
SEDIMENTOLOGY:
algae reefs, 24, 25, 36, 79, 252
Alamont megacyclothem, 93
Arbuckle facies, 26
Arkoma basin, 26, 139, 155
bioherms: Missourian, 96; Morrowan, 24, 25
braid bars, Trujillo Sandstone, Texas, 11
Cambrian, Delaware County, 124
carbonate deposition, Wichita aulacogen, 241
Carboniferous: Arkoma basin, 155; Ouachita Mountains, 26, 84, 155, 156;
Stanley-Jackfork facies, 226
"Cherokee" sands, 13, 209, 255
Coffeyville Formation, 255
deltaic deposition: Arkoma basin, 139; Canyon Group, Texas, 62; "Cherokee" sands, 13, 209; Osage-Layton formation, 125; Strawn Group, Texas, 35
diagenesis: Lecompton Member, 152; Vanoss Formation, 224
Dornick Hills Group, depositional environments, 42
fluvial transport and deposition, Pennsylvanian, 254
flysch facies, Ouachita Mountains, 26, 72, 84, 155, 156, 241
geosynclinal sequence, Wichita trough, 110
Marmaton source reversal, channel sands, 121
melasse sequence, Atokan Series, 241
Ouachita elastic wedge, 226
Ouachita Mountains, 26, 72, 84, 134, 155, 156, 199, 241
Permian red-bed evaporite deposition, 96, 105, 213
shelf deposition, Arkoma basin, 26
Stanley-Jackfork-Atoka sequence, 226
terrigenous clastics, Cisco Group, Texas, 239
turbidites, Ouachita Mountains, 72, 84, 155
Wichita Mountains, 110, 241
SILURIAN:
Beavers Bend lilithe, 162
Blaylock Sandstone, 72, 159, 162
Cochrane Formation, brachiopods, 7
conodonts, 202
corals, 126
crinoids, 215
Haragan Formation, 131
Henryhouse Formation, 131, 207, 215
Hunt end Group, 131, 159
Missouri Mountain Shale, 72
Prices Falls Shale, conodonts, 202
Woodford Group, 159
SOILS:
general, 170
Jefferson County, 231
Pontotoc County, 232
soil moisture, Chickasha model study, 59
Tillman County, 233
STRATIGRAPHY:
Cambrian, Delaware County, 124
Carboniferous: Arkoma basin, 26; Ouachita Mountains, 155, 156, 226; Permian-Carboniferous red beds, 173; Stanley-Jackfork-Atoka sequence, 226; vertebrates, 172
central Ouachita Mountains, 147
Choctaw County, 99
correlation of Arbuckle and Ouachita Paleozoic sections, 159
Cretaceous: Choctaw County, 99; southeastern Oklahoma, 248
Devonian: Arbuckle Mountains, 159; Bois d'Arc Formation, 130; Sooner trend, 90
Mississippian: Choctaw County, 99; St. Joe Formation, 140; Sooner trend, 90; Stanley-Jackfork-Atoka sequence, 226
Oklahoma City quadrangle, 21
Ordovician: Keel Formation, 7; Simpson Group, correlation with west Texas, 220; Viola-Fernvale sequence, 221
Pennsylvanian: "Cherokee" Group, 1, 2; correlation with New Mexico Pennsylvanian beds, 108; Dornick Hills Group, 40, 41, 42; Gearyan Series, 247; Hale Formation, 144; Hoxbar Group, 80; Missourian-De mosinesian boundary, 150; Missourian series, correlation with Kansas strata, 92; Morrowan-Atokan boundary, 83; Morrowan bioherms, 24, 25; north-
eastern Oklahoma Pennsylvanian 79, 125; Pawhuska Formation, 152; Stanley-Jackfork-Atoka sequence, 226
Permain: El Reno Group, correlation with Texas beds, 213; Fairmont Shale, burrows, 174; Gearyan Series, 247; Hennessey Group, 174; Perm-Carboniferous red beds, 173; Wellington Formation, 222
Silurian: Clarita Formation, Prices Falls Shale Member, 202; Cochrane Formation, 7

Structural Geology:
- Anadarko-Ardmore aulacogen, 84, 187
- Anadarko basin, 1, 40, 84, 90, 187, 195
- Arbuckle Mountains, 28, 40, 84, 155, 187, 200, 240
- Ardmore basin, 40, 84, 187
- Arkoma basin, 1, 26, 84, 155, 159
- Atokan hinge line, 26
- Backius anticline, 188
- Bartlesville anticline, 188
- Big Cedar fault, 147
- Black Knob Ridge, 72
- Boktukoaia fault, 72, 147
- Broken Bow-Benton uplift, 72, 82, 147
- Caddo anticline, 251
- Central basin platform, 240
- Choctaw fault, 26, 72
- Criner Hills, 187
- Delaware aulacogen, 240
- Dewey faulted flexure, 188
- Dougherty anticline, 28
- ensialic belt, Ouachitas, 196
- Hamilton lineament, 147
- McAlester basin, 1
- McClain County fault zone, 1
- Marietta basin, 40, 187
- Medicine Bluffs, Wichita Mountains, 103
- Mena lineament, 147
- metamorphism, Ouachita area, 82
- Mill Creek syncline, 135
- Mustang pool area, 131, 132
- Nemaha ridge, 1, 3, 74, 90
- Octavia fault, 72, 147
- Ouachita Mountains, 26, 48, 61, 72, 82, 84, 95, 107, 110, 147, 155, 156, 159, 187, 196, 225, 240, 241
- Overbrook anticline, 40
- Ozark Mountains, 84
- Paleozoic cratonic margin, 159
- Pennsylvanian deformation, 188
- Potato Hills, 72, 147
- Reagan fault, 135
- Rich Mountain, 147
- Sooner trend, 90
- southern Oklahoma aulacogen, 84, 95, 187
- Sulphur fault, 135
- Tishomingo anticline, 28
- Ti Valley fault, 26
- Washita Valley fault zone, 28
- Wichita anticlinorium, 40
- Wichita aulacogen, 240, 241
- Wichita complex, 204

Wichita Mountains, 40, 103, 110, 204, 240, 241
Wichita orogenic belt, 110
Winding Stair fault, Winding Stair Mountain, 26, 72, 147

Tectonics:
- Anadarko-Ardmore aulacogen, 84, 187
- Arbuckle Mountains, 135, 187, 200, 240
- Broken Bow-Benton uplift, 72, 82, 147
- Criner Hils, 187
- Marietta basin, 187
- Nemaha ridge, 1, 3, 74, 90
- Oklahoma platform, 125
- Ouachita-Marathon orogenic belt, 159, 240
- Ouachita Mountains, 26, 48, 61, 72, 82, 84, 85, 107, 110, 134, 147, 156, 159, 187, 196, 240, 241
- Paleozoic doming and faulting, 24
- Precambrian and Cambrian rifting, 240
- preconsolidation deformation, Pennsylvanian, 188
- southern Oklahoma aulacogen, 95, 187
- Wichita aulacogen, 240
- Wichita orogenic belt, 110
- Triassic, Dockum Formation, silica content, 203
- Tri-State area: copper mineralization, 69; fluid inclusions in zinc ores, 128

Uranium:
- bibliography, 73
- inventories, 113
- Permain red beds, 172
- processing statistics, 249
- projection of needs, 113
- purchasing statistics, 113
- reactors, 113

Verdigris River basin, ground water, 66

Wichita Mountains:
- aeromagnetic map, 234
- copper mineralization, 69
- geosynclinal sequence, Wichita trough, 110
- layered intrusives, 204
- orogenic belt, 110, 240
- petroleum exploration, 251
- radar imagery, 27
- tombstone topography, Medicine Bluffs, 103
- Wichita anticlinorium, 40
- Wichita aulacogen, 240, 241
- Wichita complex, 204
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY, 1976

Compiled by Elizabeth A. Ham

Bibliography—pages 91-124
Index—pages 124-143

BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Source</th>
<th>Year</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams, G. F., see Fairbridge, R. W., and Adams, G. F.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adams, S. R., see Al-Shaieb, F. Z., Hanson, R. E., and Adams, S. R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ade-Hall, J. M., see Vincenz, S. A., Yaskawa, K., and Ade-Hall, J. M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agatson, R. S., see Rouse, J. T., Agatson, R. S., Bright, Jerlene, and Proctor, R. M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Shaieb, Zuhair, see Olmsted, R. W., and Al-Shaieb, Zuhair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al-Shaieb, Zuhair, see also Shelton, J. W., and Al-Shaieb, Zuhair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Petroleum Institute, see American Gas Association, American Petroleum Institute, and Canadian Petroleum Association</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angino, E. E., see Long, D. T., and Angino, E. E.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angino, E., see also Zeller, E. J., Dreschoff, G., Angino, E., Holdaway, K., Hakes, W., Hayaparakash, G., Crisler, K., and Saunders, D. F.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antelo, Belarmino, see Isaacson, P. E., Antelo, Belarmino, and Boucot, A. J.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babitzke, H. R., see Cammarota, V. A., Jr., and Babitzke, H. R.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrick, J. E., and Klapper, Gilbert, 1976, Multielement Silurian (late Llandovery-Wenlockian) conodonts of the Clarita Formation, Arbuckle Mountains, Oklahoma, and phylogeny of Kockeella: Geologica et Palaeontologica, no. 10, p. 59-100, 5 figs., 4 pls., 4 tables.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barringer, A. R., see Donovan, T. J., Barringer, A. R., Foote, R. S., and Watson, R. D.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beales, F. W., 1976, Precipitation mechanisms for Mississippi Valley-type ore deposits—a reply: Economic Geology, v. 71, p. 1062-1064. (Reply to discussion by E. L. Ohle, q.v.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beikman, H. M., see King, P. B., and Beikman, H. M.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellis, W. H., and Rowland, T. L., 1976, Shale and carbonate-rock re-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
sources of Osage County, Oklahoma: Oklahoma Geological Survey Circular 76, 50 p., 18 figs., 1 panel, 4 tables.

Bergman, D. L., see Carr, J. E., and Bergman, D. L. Bergman, D. L., see also Havens, J. S., and Bergman, D. L.

Bergström, S. M., see Boger, J. L., and Bergström, S. M.

Black, Bernard, see Decker, R. E., and Black, Bernard

Bock, W. D., see Otvos, E. G., Jr., and Bock, W. D. Bogard, D. D., see Cressy, P. J., Jr., and Bogard, D. D.

28. Boger, J. L., and Bergström, S. M., 1976, Conodont biostratigraphy of the upper Beekmantown Group and the St. Paul Group (Early and Middle Ordovician of Maryland and West Virginia) [abstract]: Geological Society of America Abstracts with Programs, v. 8, p. 465. (Refers to Lower-Middle Ordovician boundary in Oklahoma.)

Boucot, A. J., see Isaacson, P. E., Antelo, Belarmino, and Boucot, A. J. Bower, R. R., see Kidwell, A. L., and Bower, R. R. Bowles, L. G., see Zweiacker, P. L., and Bowles, L. G. Briggs, Garrett, see Wickham, John, Roeder, Dietrich, and Briggs, Garrett

Bright, Jerlene, see Rouse, J. T., Agatson, R. S., Bright, Jerlene, and Proctor, R. M.

Browning, J. M., see Walper, J. L., and Browning, J. M.

Burtch, F. W., see Walker, C. J., Burtch, F. W., Thomas, R. D., and Lorenz, P. B.

Canadian Petroleum Association, see American Gas Association, American Petroleum Institute, and Canadian Petroleum Association.

45. Cannon, P. J., 1976, Generation of explicit parameters for a quantitative geomorphic study of the Mill Creek drainage basin: Oklahoma Geology Notes, v. 36, p. 3-17, 3 figs., 4 tables.

Case, G. R., see Zangerl, Rainer, and Case, G. R.

Cebull, S. E., see Shurbet, D. H., and Cebull, S. E.

Century, J. R., see Bright, J. A., and Century, J. R.

Chaudhuri, S., see Lee, M. J., and Chaudhuri, S.

Chillingarian, G. V., see Bissel, H. J., and Chillingarian, G. V.

(editors), Oklahoma reservoir resources: Oklahoma Academy of Science Annals, no. 5, p. 57-61, 1 table.
60. Cooper, Paul, 1976, The cyanophyte Wetheredella in Ordovician reeds and off-reef sediments: Lethaia, v. 9, p. 273-281, 3 figs. (Refers to an Oklahoma algal species.)
Crissler, K., see Zeller, E. J., Dreschhoff, G., Angino, E., Holdoway, K., Hake, W., Jayaprakash, G., Crissler, K., and Saunders, D. F.
Crosby, E. J., see McKee, E. D., and Crosby, E. J.
Croy, R. L., see Johnson, K. S., and Croy, R. L.
Cuffey, R. J., see Fry, H. C., and Cuffey, R. J.
Cuffey, R. J., see also Lutz-Garisan, A. B., and Cuffey, R. J.
Cunningham, J. W., see Johnson, J. P., Cunningham, J. W., and DuBois, B. M.
Derby, J. A., see Simon, D. E., and Derby, J. A.
Derby, J. R., see Stitt, J. H., Miller, J. F., and Derby, J. R.
Dickinson, W. R., see Graham, S. A., Ingersoll, R. V., and Dickinson, W. R.
Dixon, G. H., see frezno, S. E., and Dixon, G. H.
Dobrin, Milton, see oliver, 0., dobkin, Milton, Kaufman, Sidney, meyer, Robert, and Phinney, Robert.
78. Donovan, T. J., 1976, Landsat study of alteration aureoles in surface rocks overlying petroleum deposits: Government Reports Announcements, v. 76, no. 8, p. 104. (Flights over Cement and Davenport oil fields, Oklahoma; abstract in Petroleum Abstracts, v. 16, p. 1158.)
79. Donovan, T. J., Barringer, R. A., Foote, R. S., and Watson, R. D., 1976, Low-altitude remote sensing experiments at Cement and Davenport oil
87. Epstein, Samuel, see Knauth, L. P., and Epstein, Samuel.
92. Fanelli, L. L., see Koelling, G. W., and Fanelli, L. L.
93. Fanelli, L. L., see also Prehoda, Ronald, and Fanelli, L. L.
96. Feenstra, Roger, and Wickham, J. S., 1976, Computer models of simple shear deformation superposed on symmetric folds applied to deformat-
97. tion in the Ouachita Mountains [abstract]: Geological Society of America Abstracts with Programs, v. 8, p. 20. (Reprinted in Oklahoma Geology Notes, v. 36, p. 68.)
98. Felix, C. J., see Burbridge, P. F., and Felix, C. J.
100. Fischer, A. G., see Roggenthen, William, Fischer, A. G., Napoleon, Giovanni, and Fischer, J. F.
102. Fischer, J. F., see also Powell, B. N., and Fischer, J. F.
103. Fischer, J. F., see also Roggenthen, William, Fischer, A. G., Napoleon, Giovanni, and Fischer, J. F.
105. Foote, R. S., see Donovan, T. J., Barringer, A. R., Foote, R. S., and Watson, R. D.
107. Forney, C. G., and Nitecki, M. H., 1976, Type fossil Mollusca (Hyolitha, Polyplacophora, Scaphopoda, Monoplacophora, and Gastropoda) in Field Museum: Fieldiana Geology, v. 36 [misnumbered on publication as v. 35].
108. French, R. B., see Van der Voo, R., French, R. B., and Williams, D. W.
111. Friedman, S. A., 1976, Oklahoma, in Nielsen, G. F. (editor), 1976 Key-
112. Friz, T. O., see Imhoff, E. A., Friz, T. O., and LaFever, J. R.
113. Fry, H. C., and Cuffey, R. J., 1976, Filiramopora kretaphilia—a new
genus and species of bifoliate tubulobryozonean (Ectoprocta) from the Lower Permian Wrford Megacyclothem of Kansas: University of Kansas Paleontological Contributions, Paper 84, 9 p., 3 figs., 2 pls.

103. Gann, D. E., see Hagni, R. D., and Gann, D. E.

110. Goodwin, R. H., see Brocoum, S. J., and Goodwin, R. H.

113. Grayson, R. C., Jr., see Sutherland, P. K., and Grayson, R. C., Jr.

114. Gregory, C. W., see Giddens, J. D., III, Gregory, C. W., Smith, C. K. B., and Fischer, J. F.

116. Gutschick, R. C., see Rigby, J. K., and Gutschick, R. C.

119. Haldane, J. M., see Ryan, J. P., and Hague, J. M.

123. Halseth, M. A., see Ossian, C. R., and Halseth, M. A.

125. Hanson, R. E., see Al-Shaieb, F. Z., Hanson, R. E., and Adams, S. R.

128. Harris, R. J., see Westerstrom, L. W., and Harris, R. E.

130. Ingersoll, R. V., see Graham, S. A., Ingersoll, R. V., and Dickinson, W. R.

Irwin, J. H., see Cameron, A. N., Irwin, J. H., Snoeckx, R. T., and Yost, J. D.

133. Isaacson, P. E., Antelo, Belarmino, and Boucot, A. J., 1976, Implications of a Landovery (Early Silurian) brachiopod fauna from Solta Province, Argentina: Journal of Paleontology, v. 50, p. 1103-1112, 4 figs., 1 pl., 1 table. (Refers to Oklahoma species.)

140. Johnson, K. S., 1976, Ridges and valleys of the Ouachita Mountains: Oklahoma Geology Notes, v. 36, p. 46. (Cover photo description.)

145. Jones, L. L., see Lacewell, R. D., Jones, L. L., and Osborne, J.

4 figs., 4 tables. (Report on McClain County disposal site.)

Kaufman, Sidney, see Oliver, Jack, Dobrin, Milton, Kaufman, Sidney, Meyer, Robert, and Phinney, Robert
Keller, G. R., see Cebull, S. E., and Keller, G. R.

(Reprinted in Oklahoma Geology Notes, v. 36, p. 31-32.)

144. Kennedy, J. R., 1976, A look at dry-hole contributions: Oil and Gas Journal, v. 74, p. 88-91, 3 figs., 2 tables. (Includes Morrow-Spriniger example.)
Kent, D. C., see Naney, J. W., Kent, D. C., and Seely, E. H.

(Includes Anadarko basin marine sand bed; reprinted in Oklahoma Geology Notes, v. 36, p. 246.)

Keyes, W. F., see Merwin, R. W., and Keyes, W. F.

Kisvarsanyi, E. B., see Kisvarsanyi, G., and Kisvarsanyi, E. B.

Klapper, Gilbert, see Barrick, J. E., and Klapper, Gilbert

159. Koinm, D. N., see Kesseler, L. G., II, Koinm, D. N., and Lundy, W. L.

163. Lacewell, R. D., Jones, L. L., and Osborn, J., 1976, Adjustments due to a declining groundwater supply: high plains of northern Texas and western Oklahoma: Texas A and M University, College Station, Water Resources Institute, 42 p., 1 fig., 10 tables. (Available as National Technical Information Service PB-255 792; abstract in Selected Water Resources Abstracts, v. 9, no. 20, p. 25.)

LaFevens, J. R., see Imhoff, E. A., Friz, T. O., and LaFevens, J. R.
LaFountain, L. J., see Jacobs, A. M., and LaFountain, L. J.

164. Landing, Ed, 1976, Early Ordovician (Arenigian) conodont and graptolite biostratigraphy of the Taconic allochthon, eastern New York: Journal
of Paleontology, v. 50, p. 614-646, 5 figs., 4 pls. (Includes Oklahoma species.)

Lane, H. R., see Ormiston, A. R., and Lane, H. R.

LeBlanc, R. J., see Thompson, Alan, and LeBlanc, R. J.

168. Linville, Bill (editor), 1976, Contracts and grants for cooperative research on enhancement of recovery of oil and gas: Energy Research and Development Administration Technical Information Center Progress Review 7, 82 p., illus. (Includes Oklahoma grant projects.)

175. Ludvigsen, R., see Chatterton, B. D. E., and Ludvigsen, R.

177. Lundy, W. L., see Kessler, L. G., II, Koinm, D. N., and Lundy, W. L.

178. Lutz-Garahan, A. B., 1976, Composita subtilba (Brachiopoda) in the Wreford Megacyclothem (Lower Permian) in Nebraska, Kansas, and Oklahoma: University of Kansas Paleontological Contributions, Paper 81, 19 p., 2 pls., 9 tables, 8 text-figs.

181. McCaslin, J. C., 1976, Drilling programs link Oklahoma gas fields: Oil and Gas Journal, v. 74, no. 8, p. 151, 1 fig.

183. MacDonald, K. G., see Bright, J. A., and MacDonald, K. G.

McKinney, F. K., see Boardman, R. S., and McKinney, F. K.

Meyer, Robert, see Oliver, Jack, Dobrin, Milton, Kaufman, Sidney, Meyer, Robert, and Phinney, Robert

County; abstract in Selected Water Resources Abstracts, v. 10, no. 2, p. 5.)
Napoleone, Giovanni, see Roggenthen, William, Fischer, A. G., Napoleone, Giovanni, and Fischer, J. F.
Nicksic, C. P., see Bostick, N. H., and Nicksic, C. P.
Nitecki, M. H., see Forney, G. G., and Nitecki, M. H.
210. Noran, Dave, 1976, Reservoir data base expands content: Oil and Gas Journal, v. 74, no. 34, p. 137, 1 photo, 1 table.
211. Ohle, E. L., 1976, Precipitation mechanisms for Mississippi Valley-type ore deposits [discussion]: Economic Geology, v. 71, p. 1060-1061. (Refers to Tri-State district, Anadarko basin, Ouachita basin.)
Osborn, J., see Lacewell, R. D., Jones, L. L., and Osborn, J.
Overby, W. K., Jr., see Shumaker, R. C., Pierce, C. I., and Overby, W. K., Jr.
Paine, M. D., see Crow, F. R., Paine, M. D., and Ghermaiz, J.
Bulletin v. 8, no. 6, p. 31-33. (Lists Oklahoma earthquakes.)

Phares, R. S., see Visher, G. S., Saitta B., Sandro, and Phares, R. S.

Phinney, Robert, see Oliver, Jack, Dobrin, Milton, Kaufman, Sidney, Meyer, Robert, and Phinney, Robert

Pierce, C. I., see Shumaker, R. C., Pierce, C. I., and Overby, W. K., Jr.

236. Pirson, S. J., 1976, Track record in ME exploration: Oil and Gas Journal, v. 74, no. 38, p. 241-244, 246, 249, 3 figs., 3 tables. (Caddo County survey.)

237. Potter, C. W., 1975, Lower Ordovician conodonts of the upper West Spring Creek Formation, Arbuckle Mountains, Oklahoma: University of Missouri at Columbia unpublished M.S. thesis.

239. Powell, B. N., and Fischer, J. F., 1976, Plutonic igneous geology of the Wichita magmatic province, Oklahoma: Geological Society of America South-Central Section, Guidebook for Field Trip no. 2, February 28-29, 1976, 35 p., 52 figs., 7 tables. (Published by Oklahoma Geological Survey.)

Proctor, R. M., see Rouse, J. T., Agatson, R. S., Bright, Jerlene, and Proctor, R. M.

Pruatt, Martin, see Wickham, John, Pruatt, Martin, and Reiter, Leon

Pulliah, G., see Irving, E., and Pulliah, G.

246. Rankin, D. W., 1976, Appalachian salients and recesses: Late Precambrian continental break-up and the opening of the Iapetus Ocean: Journal of Geophysical Research, v. 81, p. 5605-5619, 5 figs., 2 tables. (Refers to Anadarko basin and Ouachita orogenic belt.)

Reed, P. R., see Claypool, G. E., and Reed, P. R.

Reiter, Leon, see Pruatt, M. A., and Reiter, Leon

Reiter, Leon, see also Wickham, John, Pruatt, Martin, and Reiter, Leon

Rhoades, E. D., see Coleman, G., Gander, G. A., and Rhoades, E. D.

252. Roberts, John, 1976, Carboniferous chonetian and produktacean brachiopods from eastern Australia: Palaeontology, v. 19, p. 17-77, 18 figs., pls. 3-13. (Refers to Oklahoma species.)

Roberts, J. F., see Southard, L. G., Johnson, K. S., and Roberts, J. F.

Roeder, Dietrich, see Wickham, John, Roeder, Dietrich, and Briggs, Garrett

256. Roles, J. S., 1976, Ground water resources of the Rush Springs Sandstone
of southwestern Oklahoma: Oklahoma Water Resources Board Publication 72, 3 sheets.

258. Rowe, W. D., see Ham, E. A., and Rose, W. D.

260. Rowland, T. L., see Bellis, W. H., and Rowland, T. L.

264. Saitta, B., Sandro, see Visher, G. S., Saitta, B., Sandro, and Phares, R. S.

272. Seely, E. H., see Naney, J. W., Kent, D. C., and Seely, E. H.

274. Sheehan, P. M., 1976, Late Silurian brachiopods from northwestern Utah: Journal of Paleontology, v. 50, p. 710-733, 1 fig., 5 pls., 1 table. (Refers to Oklahoma species.)

281. Simpson, L. C., 1976, Paleontology of the Garber Formation (Lower Permian), Tillman County, Oklahoma: University of Oklahoma un-
published M.S. thesis, 29 figs., 7 charts, 7 tables. (Abstract in Oklahoma Geology Notes, v. 36, p. 131.)

Smith, C. K. B., see Giddens, J. D., III, Gregory, C. W., Smith, C. K. B., and Fischer, J. F.

Snigocki, R. T., see Cameron, A. N., Irwin, J. H., Snigocki, R. T., and Yost, I. D.

Speed, R. C., see Sloss, L. L., and Speed, R. C.

Sprinkle, James, see Longman, M. W., and Sprinkle, James

Taylor, Constance, see Taylor, R. J., and Taylor, Constance

290. Taylor, M. E., 1976, Indigenous and redeposited trilobites from Late Cambrian basinal environments of central Nevada: Journal of Paleontology, v. 50, p. 668-700, 9 figs., 3 pls. (Refers to Oklahoma genera.)

Thomas, R. D., see Walker, C. J., Burch, F. W., Thomas, R. D., and Lorenz, P. B.

313. Van der Voo, R., French, R. B., and Williams, D. W., 1976, Paleomagnetism of the Willerns Formation (Tertiary) and the Late Cambrian paleomagnetic field for North America: Journal of Geophysical Research, v. 81, p. 5633-5638, 3 figs., 2 tables. (Includes comparison with Wichita Mountain granites.)

319. Viele, G. W., see Keller, W. D., Viele, G. W., and Johnson, C. H. Vine, J. D., see Tourtelot, E. B., and Vine, J. D.

Watson, R. D., see Donovan, T. J., Barringer, A. R., Foote, R. S., and Watson, R. D.

Wicander, E. R., see Loeblich, A. R., Jr., and Wicander, E. R.

Wickham, J. S., see Feenstra, Roger, and Wickham, J. S.

Wilhm, Jerry, see Nanninga, H. E., and Wilhm, Jerry

Williams, D. W., see Van der Voo, R., French, R. B., and Williams, D. W. Williamson, E. A., see Davies, D. K., and Williamson, E. A.

Wise, F. A., see Doscher, T. M., and Wise, F. A.

Yaskawa, K., see Vicenz, S. A., Yaskawa, K., and Adee-Hall, J. M.

Yost, I. D., see Cameron, A. N., Irwin, J. H., Sniegocki, R. T., and Yost, I. D.

351. Zidek, Jiri, 1976, Kansas Hamilton Quarry (Upper Pennsylvanian) Acanthodes, with remarks on the previously reported North American occurrences of the genus: University of Kansas Paleontological Contributions, Paper 83, 41 p., 15 figs., 7 pls., 2 tables. (Refers to Oklahoma Permian species.)

INDEX

Age Dating:
- cosmic-ray-exposure age in meteorites, helium, neon, argon, keyes chondrite, 62
- paleomagnetism, 239, 255
- potassium/argon, 239
- rubidium/strontium, 24, 239
- uranium/lead, ages of zircons, 24
- Wichta Mountain rocks, geochronology, 24, 239, 255

algae, see Paleobotany

Anadarko Basin:
- abnormal pressures, 49, 241
- carbonate deposition, 68
- channel-fan complex, 145
- deep wells, 1, 8, 10, 25, 82, 179, 181, 241
- deltaic deposition, 39
- diapiric study, 44
- geothermal gradients, 241, 328
- history of petroleum exploration, 179
- Hunton Group, general, 8
- LANDSAT study, 115
- Morrow sands, 26
- origin, 246
- petroleum exploration, 8, 25, 26, 39, 44, 49, 82, 154, 179, 236, 343
- petroleum-recovery tests, 275
- porosity and permeability data, 8
- red-bed and evaporite deposition, 68
- sedimentology, 25, 39, 68, 145, 182, 247, 248
- seismicity, 33
- stratigraphy, 8, 244
- structure and tectonics, 8, 33, 68, 72, 96, 115, 182, 239, 246, 273, 282, 328, 342, 344

Arbuckle Mountains:
- Arbuckle anticline, 259
- Arbuckle Formation, Arbuckle Group, 8, 127, 146, 159, 262, 328
- Beltine anticline, 259
- carbonate deposition, 25
- cherts, Arbuckle and Viola limestones, 159
- conodonts, 15, 237
- dolomites, dolomitization, 8
- electric-log mapping, 190
- Hunton anticline, 8, 52, 259
- Hunton Group, correlation with Anadarko basin, 8
infrared and aerial photograph study, 263
Lawrence uplift, 8
magnetic anomaly, 259
Mesozoic rocks, 153
Middle Ordovician rocks, correlation with Canadian strata, 51
Mill Creek fault, 8
Ordovician vertebrates, 222
palaeoenvironments, 8
Paleozoic rocks, 66, 173
palynology, 37, 66
petroleum exploration, 66, 117, 179
Precambrian rocks, 69
Reagan fault, 75, 76, 117
relation to Anadarko basin, 8
relation to Ouachita Mountains, 151
sedimentology, 8, 52, 66, 127, 145, 172
Silurian-Devonian relationship, 8
source of Kansas Missourian deposits, 282
source of Texas Pennsylvanian clastics, 56
sponge, 251
Spring Creek Formation, conodonts, 237
stratigraphy, 8, 51, 221
structure and tectonics, 8, 52, 66, 68, 69, 70, 75, 76, 96, 104, 117, 172, 239, 254, 259, 277, 282, 342
Sulphur fault, 117
Sycamore Limestone, biostratigraphy, radiolarians, 221
Timbered Hills fault block, 117
Tishomingo anticline, Tishomingo horst, 117, 259
trilobites, 51, 285
vertical-intensity profiles, 259
Washita Valley fault, 75, 76, 117, 259
Armadillo basin: coal, 327; deposition, 96, 104, 182, 261; petroleum exploration, 117, 205; structure and tectonics, 8, 70, 72, 75, 76, 96, 104, 117, 182, 186, 261, 336
Arkoma Basin: Atokan and Morrowan sands, 186
Cherokee reservoir sands, 315
Choctaw fault, 84, 96, 151, 186
coal-bearing strata, 97, 327
deltaic deposition, 39
growth faults, 151, 186
Kinta fault, 186
relation to Ouachita Mountains, 204
San Bos fault, 186
sedimentology, 39, 186, 315
structure and tectonics, 51, 70, 75, 76, 84, 96, 151, 186, 315, 327, 342
Bibliographies:
coil and dispersed organic matter, 30
coil, U.S. Geological Survey publications, 324
North American oil and gas fields, 296
Oklahoma geology, 1975, 116
pre-Smackover formations, northern Gulf Coastal Plain, 312
selenium geology, 103
Cambrian:
Appalachian-Ouachita facies, 292
Arbuckle Limestone, 127, 159
Cambrian-Ordovician boundary, 286, 290
Carlton Rhyolite, 3, 127, 317
Cold Springs Granite, 239
Fort Sill Limestone, 285
Honey Creek Limestone, 127
Mount Scott Granite, 106, 239, 255
Mount Sheridan Gabro, 106, 238, 239, 255, 295, 300
Navajo Mountain basalts, 219
paleomagnetism, 239, 255, 313, 317
Proconodontus conodont zone, 197
Ptychoparioid brachiopods, 284
Raggedy Mountain Gabro, 3, 106, 219, 235, 239, 255, 317
Reagan Sandstone, 127
Saukia-Mississippian Zone, 286, 290
Signal Mountain Formation, 290
structural evolution, 283
Tillman metasediments, 219
Wichita Granite, 3, 219, 239, 317
Wichita Mountain granites, 3, 106, 219, 238, 239, 255, 313, 317
Carboniferous: brachiopods, 252; orogeny, 123, 151; Ouachita Mountains, 110, 123, 265, 294
catalog, mollusks, Field Museum, 95
Central Oklahoma platform, 96, 310
central stable region: glacial rebound, 132; seismicity, 33, 332; tectonic provinces, 33
Clinton quadrangle: hydrology, general, 47; surface geology, 47
Coal:
Armadillo basin, 327
Arkoma basin, 97, 327
bibliographies, 30, 324
coal balls, Craig County Desmoinesian, 229
coal beds, 97, 98, 99, 198, 229, 282, 310, 311, 327, 342
coking coals, 59, 198
carbon consumption, 333
deposition, 327
gasification, 280
mined-land reclamation, 114, 128, 226
Mined Lands Reclamation Act, 226
mines, 98, 199
Oklahoma Geological Survey programs, 188
Ouachita Mountains, 327
producers, 98, 199, 226, 280
projections, 61
reserves and reserves, 97, 98, 99, 280
shipments, 333
source of electric power, 61, 280
statistics, 9, 98, 226, 280, 333
sulfur content, 98
technology, 97, 98, 99, 280, 333
transportation, 333
Wichita Mountains, 327
Counties:
all counties: mineral industries, 226, 280; petroleum and natural-gas statistics, 10, 11, 280; water resources, 308, 309
Adair: Atoka Formation, 299; fossil bear, 244; ground water, 120
Alfalfa: Hunton Group, 8
Atoka: coal, 99; fossil fish, 352; ground water, 121; palynology, 339
Beaver: fossil spares, 37; "Haskell" limestone, 39; hydrology, 40, 119, 307; petroleum, 270; Tonkawa Formation, 39; Virginian deposits, 247
Beckham: deep wells, 8, 82, 154, 179, 181; ground water, 40, 47, 307; Hunton Group, 8; hydrology, 40, 47; petroleum exploration, 8, 154, 179, 181, 343; surficial structure, 344; uranium, 43
Blaine: Hunton Group, 8; hydrology, 47; petroleum, 8, 180
Bryan: ground water, 121; hydrocarbon accumulation, 127; nannofossils, 126; stratigraphy, 127
Caddo: ground-water data, 40, 47, 207, 216, 218, 307; Hunton Group, 8; hydrology, 47; general, 47; magnetoelectric exploration, 236; petroleum, 180, 343; uranium, 43
Canadian: earthquake, 164; Hunton Group, 8; hydrology, 47; petroleum, 180, 289
Carter: Caddo anticline, 75, 76, 104, 105; deep wells, 82; Devil's Kitchen sandstones, 261; earthquakes, 164, 231; fossil fish, 352; fossil sponge, 251; Hunton Group, 8
Cherokee: Atoka Formation, 299; fossil fish, 352; ground water, 120
Choctaw: ground water, 121
Cimarron: Black Mesa, altitude, 316; earthquake, 164; hydrology, 40, 119, 307
Cleveland: earthquake, 164; ground water, 40, 307; Hunton Group, 8
Coal: coal, 99; Devonian microplankton, 170; ground water, 121; Hunton Group, 8; petroleum, 205
Comanche: Hunton Group, 8; hydrology, 218; petroleum, 205; uranium, 43; Wichita magmatic province, 239
Cotton: uranium, 43
Craig: Atoka Formation, 299; coal, 98, 99, 229, 333; coal balls, 229; fossil fish, 352; ground water, 120
Creek: coal, 99; ground water, 120; Skinner sandstone zone, 310, 311
Custer: Hunton Group, 8; hydrology, 47, 216, 218; surficial structure, 344; uranium, 43
Delaware: ground water, 120
Dewey: deep wells, 82; Hunton Group, 8; hydrology, 47
Ellis: Hunton Group, 8; hydrology, 47; Morrow sandstone, 26; petroleum exploration, 26
Garfield: Skeleton Creek, pollution, 206
Garvin: copper deposits, 298; earthquake, 164; Haragan-Bois d'Arc Formations, 8
Grady: ground water, 40, 47, 218, 307; Hunton Group, 8; hydrology, general, 47; petroleum, 180, 289
Grant: Hunton Group, 8
Greer: copper, 74, 135, 169; ground water, 40, 47, 307; hydrology, general, 47; Plainview syncline, 137
Harmon: ground water, 40, 307
Harper: Endicott sandstone, 39; Hunton Group, 8; Virginian deposits, 247
Haskell: Bluejacket-Bartlesville Sandstone, 319; coal, 98, 99, 333; ground water, 121
Hughes: Bunch sands, 39; ground water, 121; Hawkins pool, 39; Hunton Group, 8; Skinner sandstone zone, 310, 311
Jackson: copper, 9, 74, 112, 113, 135, 169, 298; ground water, 40, 307; Hunton Group, 8; Jefferson: uranium, 43
Jefferson: Devil's Kitchen sandstones, 261; fossil fish, 352; fossil spores, 37; ground water, 121; Hunton Group, 8; radiolarians, 221; Sycamore Limestone type section, 221
Kay: brachiopod, 176; ground water, 40, 120, 307
Kingfisher: Cherokee Group, 346, 347, 348; Hunton Group, 8; hydrology, 4; water pollution, 206
Kiowa: gold prospecting, 99; Hunton Group, 8; hydrology, 47, 218; intrusion breccia, 214; Wichita magmatic province, 239
Latimer: coal, 99; ground water, 121
Le Flore: coal, 98, 99, 333; ground water, 121
Lincoln: ground water, 120; Skinner sandstone zone, 310, 311
Logan: Garber-Wellington aquifer, 48; Hunton Group, 8; Skeleton Creek, pollution, 206
Love: Devil's Kitchen sandstones, 261
McClain: Hunton Group, 8; petroleum, 289; waste-disposal site, 141
McCurtain: Arkansas Novaculite, 143; Ozan Formation, nannofossils, 160; Red River, altitude, 316
McIntosh: coal, 99; earthquake, 164; ground water, 120; Skinner sandstone zone, 310, 311
Major: ground water, 40, 307; Hunton Group, 8; Pleistocene pond fauna, 268
Marshall: deep wells, 82; exploration, 205; hydrology, 218
Mayes: Atoka Formation, 299; coal, 98, 99; fossil fish, 352; ground water, 120
Murray: Hunton Group, 8; petroleum exploration, 205; radiolarians, 221
Muskogee: Atoka Formation, 299; coal, 98, 99, 333; ground water, 120; Skinner sandstone zone, 310, 311
Noble: brachiopod, 176; Ceres field, 348; copper deposits, 4; ground water, 120; Hunton Group, 8; Oswego Limestone, 39; palynology, 201; Red Fork Sandstone, 39; South Ceres pool, 39
Nowata: coal, 98, 99; enhanced-recovery project, 320; ground water, 120
Okfuskee: coal, 99; ground water, 120; Skinner sandstone zone, 310, 311
Oklahoma: Garber-Wellington aquifer, 48; Hunton Group, 8; Oklahoma City field, 208, 328
Okmulgee: coal, 98, 99; ground water, 120; Skinner sandstone zone, 310, 311
Osage: brachiopod, 176; carbonate-rock resources, 18; Cherokee Group, thermal analysis, 55; ground water, 120; North Stanley field, 133; trilobites, 225
Ottawa: ground water, 120; mine-water evaluation, 178; zinc mining, 9, 178
Pawnee: brachiopod, 176; clay minerals, 165; copper deposits, 4; fossil fish, 352; ground water, 120
Payne: copper deposits, 4; fossil fish, 352; ground water, 40, 120, 307; Skinner sandstone zone, 310, 311; uranium, 43
Pittsburg: coal, 98, 99, 333; ground water, 121
Pontotoc: fossil fish, 352; ground water, 121; Hunton Group, 8
Pottawatomie: Cherokee Group, 245; ground water, 121; Hunton Group, 8; Skinner sandstone zone, 310, 311
Pushmataha: ground water, 121
Rogier Mills: deep wells, 82, 179; earthquake, 164; Hunton Group, 8; hydrology, 4; petroleum exploration, 179, 180, 343; surficial structure, 344; uranium, 43
Rogers: coal, 98, 99, 333; ground water, 120; shark egg capsule, 350
Seminole: ground water, 121; Hunton Group, 8; Skinner sandstone zone, 310, 311
Sequoyah: coal, 99; ground water, 120; Hunton Group, 8
Stephens: deep wells, 82; exploration, 205; hydrology, 218
Texas brine disposal, 101; ground water, 40, 307; hydrology, general, 119
Tillman: fossil fish, 352; ground water, 40, 217, 307; paleontology, 276, 352; uranium, 43
Tulsa: ammonoid locality, 189; coal, 99; epizoan, 330; ground water, 120; Skinner sandstone zone, 310, 311
Wagoner: Atoka Formation, 299; coal, 99; ground water, 120; Skinner sandstone zone, 310, 311
Washington: bryozoans, 27; coal, 99; erinoid, 287; fossil fish, 352; ground water, 120
Washita: deep wells, 82, 179, 181; Hunton Group, 8; hydrology, 47, 216, 218; petroleum exploration, 179, 181; surficial structure, 344; uranium, 43
Woods: Hunton Group, 8; underground gas storage, 86
Woodward: ground water, 40, 307; Hunton Group, 8

CRETECEOUS:
Colorado Group, 119
Comanchean Series, Trinity Group, mapping, 94
Dakota Sandstone, 119
Guilian Series, Ozan Formation, nannofossil, 160
Kiowa Formation, foraminifers, 191
Lower Cretaceous, nannofossils, 125
Purgatoire Formation, 119
reworked foraminifers, 223
Upper Cretaceous unconformities, 193
Devonian
Anadarko basin, 8
Arkansas Nacovulite, 8, 84, 143, 151, 173, 174, 204
Bois d'Arc Formation: general, 8; microplankton, 170
Cravatt Member, Bois d'Arc Formation, 8
Fittstown Member, Bois d'Arc Formation, 8
Frisco Formation, 8
Haragan Formation: general, 8; microplankton, 170
Hunton Group, general, 8
Hunton lime, oil traps, 167
Mierer Sandstone, 8
petroleum, 8, 167
Sillissaw Formation, 8
Silurian-Devonian boundary, 8
Sylamore Sandstone, 8
Turkey Creek Limestone, 8
Woodford Shale, 8

Directories: coal producers, 199; licensed water-well drillers, 215

Earthquakes:
Boke City, 1976, 232
Carter County, 1975, 231
El Reno earthquakes, 33, 111, 321
general, 321
records of felt earthquakes, 164
south-central Oklahoma, 1975, 164
unidentified 1976 earthquake, 234
west-central Oklahoma, 1976, 233

Encyclopedia, regional geology, 88

Engineering geology, see Environmental Geology; Hydrogeology, Hydrology, technology; Mineral Industries, technology; Petroleum and Natural Gas technology

Environmental Geology:
biodegradation of oil in soil by fertilizers, 249
dam safety, 215
declining ground-water supply, effect in western Oklahoma, 162
floods: control, 291; insurance programs, 215; streams, 293
hazardous-waste disposal, 141
hazardous water pollution control, 291
irrigation districts, 215
land use: effect of changes on watersheds, 63; effect of Keystone Reservoir construction on land use, 314
mine disasters, mine safety, 226
mined-land reclamation, 114, 128, 226
Oklahoma Geological Survey programs, 188
stream-water administration, 215
underground gas storage, 86
waste-discharge monitoring, 215
water quality: brine pollution, 77, 101, 119; effect of steam-electric generating plants on reservoirs, 353; Garber-Wellington aquifer, 48; general, 215; heavy-metal pollution, 38, 206; Lake Thunderbird, pollution, 46; oil-field brine disposal, regulations, 101; oil-field brine disposal, technology, 101; Oklahoma Panhandle aquifers, 119; reservoirs, 124, 291, 297, 353; Rush Springs aquifer, 216, 218, 256; Sugar Creek watershed, movement of ground-water pollutants and nutrients, 207; trace elements, 58; zinc-mine water study, 178

Weather modification, 215

General Information Processing System (GIPSY), 31, 258

Geochemistry:
airborne geochemical studies, 79
Carlton Rhyolite, 3
clay-mineral study, Havensville Shale, 165
copper mineralization, 3, 4, 74, 112, 113, 135, 138, 169, 171
cosmogenic He, Ne, and Ar in meteorites, 62
geochemical maps, copper distribution, 4
geochemical anomalies: Anadarko basin, 241, 328; Oklahoma City field, 328
Hunton Group, core analyses, 8
hydrogen and oxygen isotope ratios in cherts, 159
hydrogeochemical anomaly study, uranium mineralization, 220
iron sulfides, 150
isotope study, Arbuckle Group, 262
lead and zinc mineralization, 16, 211
paragenesis, copper mineralization, 278
petrogenesis, Mount Sheridan igneous rocks, 295, 300
Raggedy Mountain Gabbrro, 3, 235
sulfur-isotope analyses, Creta copper deposit, 169
thermal analysis, Cherokee Group, 55
trace-element analyses, Arbuckle Group, 262
uranium mineralization, 3, 220
water content of cherts, 159
Wichita Granite, 3
Wichita Mountain igneous rocks, relation to copper and uranium, 3
graphic-names decisions, 301, 302
graphology: land and water area, 316; state boundaries, 316
geomorphology: Mill Creek drainage basin, 45; Oklahoma Panhandle, 175

Geophysics:
aeromagnetic profiles, Cement and Davenport fields, 79
dipmeter study, Morrowan sandstones, 44
electrical conductivity in shales, 228
electric well logs, 2, 8, 190, 228, 271
gamma-ray logs, 8
geomagnetism: Arbuckle Mountains, 259; Garber Formation, 130; Wichita Mountain rocks, 239, 255, 313, 317
geochemical anomalies: Arbuckle Mountains, 259; southern Oklahoma aulacogens, 242, 243; Wichita Mountains, 239
geothermal gradients: Anadarko basin, 24, 328; Oklahoma City field, 328
gravity anomalies, Wichita Mountains, 239
magnetic interpretation, early study of Oklahoma City field, 208
magnetotelluric exploration, Anadarko basin, 236
radioactivity surveys for uranium, 166, 306
reflection profiling, Wichita Mountain basement, 219
resistivity mapping, Cement and Davenport fields, 79
seismicity: Anadarko basin, 33; central stable region, 33, 132; earthquakes, see Earthquakes; glacial rebound, central stable region, 132; Nemaha ridge, 33; Osage Mountains, 89; Ozark uplift, 33; southern Oklahoma aulacogens, 336; Wichita Mountain basement rocks, 219
spontaneous-potential logs, 8
statistics, activity, 1975, 87
vertical-intensity study, Arbuckle Mountains, 259
X-ray diffraction patterns, copper sulfides, 150
Hollis basin, 134, 135, 138
HYDROLOGY: Clinton quadrangle, 47 general, 215, 308, 309 Oklahoma Geological Survey programs, 188 resources: Clinton quadrangle, 47; Garber-Wellington aquifer, 48; general, 215, 308, 309; ground water, general, 40; ground water, northeastern Oklahoma, 120; ground water, southeastern Oklahoma, 121; ground water, western Oklahoma, 162; Oklahoma Panhandle, 119; reservoir resources, 124; Rush Springs aquifer, 216, 218, 256; Tillman County alluvial aquifer, 217
subsurface waters: Clinton quadrangle, 47; east-central Oklahoma, 77; Garber-Wellington aquifer, 48; general, 215, 307, 309; Glorieta Formation, 101; ground-water levels, 307; northeastern Oklahoma, 120; Ogallala aquifer, 101; Oklahoma Panhandle aquifers, 119; Rush Springs aquifer, 216, 218, 256; southeastern Oklahoma, 121; statistics, 40, 47, 119, 120, 121, 216, 217; Sugar Creek watershed, 207; Tillman County aquifers, 217; western Oklahoma, 162; zinc mine water, 178 surface waters: Arkansas River, 38; Arkansas River Navigation System, 291; Broken Bow Reservoir, 291; Cardinal Creek, 45; Clinton quadrangle, 47; Deep Fork River, 38; east-central Oklahoma, 77; Foss Reservoir, 291; general, 215, 308, 309; Glover River, 291; Illinois River, 291; Kerr Reservoir, 291; Keystone Reservoir, 314; Kiamichi River, 38; Lake Eufaula, 291; Lake Texoma, 291; Lake Thunderbird, 46; Mill Creek drainage pattern, 45; North Canadian River, 38; Oklahoma Panhandle, 119; Oologah Reservoir, 291; reservoirs, effect of steam generating plants on, 355; reservoirs, general, 124; reservoirs, mineral cycling, 297; reservoirs, uses, 291; Skeleton Creek, pollution, 206; soil-moisture variability, 57; Stereo Creek, 45; Sugar Creek watershed, 207; trace elements, 58; watershed runoff model, 63 technology: flood-depth estimating techniques, 293; hydraulic-conductivity tests, 207 water migration during compaction of clastics, 187 water quality: brine disposal, brine pollution, 221; east-central Oklahoma, 77; Garber-Wellington aquifer, 48; general, 215; Glorieta Formation, 101; heavy-metal pollution, 38; Lake Thunderbird, 46; Ogallala aquifer, 101, 119; Oklahoma Panhandle aquifers, 119; reservoirs, 124, 291, 297, 355; Rush Springs aquifer, 216, 218, 256; Sugar Creek watershed pollution, 207; trace elements, 58; zinc-mine water, 178 indexes: coal and dispersed organic matter, 30; coal, USGS publications, 324; Oklahoma geology, 1975, 116; Oklahoma Geology Notes, v. 36, 213 Jurassic: Exeter Sandstone, 119; Morrison Formation, 119 McAlester basin, 174 mapping: electric-log mapping, 190, 271; quantitative mapping techniques, 94 maps: central Ouachita Mountains, structure, 194; coal mines, eastern Oklahoma, 98; Hunton Group, 8 Marietta basin, 8, 70, 96, 239, 336 Mesozoic, general, 153 meteorites: Keyschondrite, 62; Lost City meteorite, 267 Mill Creek drainage basin, geomorphic study, 45 MINERAL INDUSTRIES: commodities: ammonia, 149; asphaltite, 91; bentonite, 226; cadmium, 67; carbon black, 1, 280; cement, 34, 280; clays and shales, 6, 9, 18, 165, 226, 280; coal, 280; coke, 59, 198; copper, 3, 4, 9, 74, 112, 113, 135, 138, 150, 169, 171, 226, 257, 280, 298;feldspars, 332; gallium, 53; general, 9, 203, 208, 280; germanium, 303; gold prospecting, 90; grafahitem, 91; granite, 226; gypsum, 9, 135, 175, 226, 250, 280; helium, 9, 12, 200, 280; impondero, 91; iodine production, 304; lead and zinc, 9, 16, 211, 226, 260; lime, 280; petroleum and natural gas, 305; Petroleum and Natural Gas; salt, 157, 226, 280; sand and gravel, 9, 226, 227, 280; selenium, bibliography, 103; silver, 280; stone, 9, 18, 83, 226, 280; sulfur, 195; thorium processing, 279; triphosphate, 54, 226, 280; uranium, 3, 43, 61, 166, 220, 341, 349; vanadium, 91; vermiculite, exfoliating plant, 102; volcanic ash, 226 Interstate Mining Compact Commission, 226 mine disasters, 226 Oklahoma Geological Survey programs, 188 producers, 98, 199, 226, 280 reclamation, surface-mined land, 114, 128, 226 regulations, 9, 226 smelters, 280 statistics, 9, 12, 34, 41, 59, 83, 149, 157, 195, 198, 200, 203, 208, 226, 227, 250, 260, 280, 303, 394, 305, 332 technology: mining methods, 97, 98, 99, 203, 280, 333; petroleum and natural gas, see Petroleum and Natural Gas; thorium processing, 279; vermiculite exfoliating plant, 102 MISSISSIPPIAN: Arkansas Novaculite, 8, 84, 143, 151, 173, 174, 209 Beavers Bend tuff, 209 conodont zones, 85 fossil fish, 132 Goddard Formation, 37 Hatton tuff, 209 Jackfork Formation, 294 Johns Valley Shale, 294 "Mississippi lime," 167, 347 Mud Creek tuffs, 209 Noble Ranch Group, 75, 76, 104 Osage-Meramec Series, 347 Springer Formation, 104, 140 Stanley Group, Stanley Shale, 84, 110, 151, 209, 294 Sycamore Limestone, 294 Tewen Creek Formation, 209 Woodford Shale, 8, 167 NEMAH ANTICLINE, NEMAH RIDGE, NEMAH UPLIFT: Oklahoma Geological Survey project, 188 relation to Anadarko basin, 8, 33, 96, 182, 273, 328, 342 relation to Kansas Precambrian volcanics, 25 seismicity, 33, 188 structure and tectonics, 8, 23, 33, 96, 182, 273, 282, 310, 327, 328, 342 Oklahoma Department of Mines, annual report, 1975, 226 Oklahoma Geological Survey: annual report, July 1, 1975–June 30, 1976, 188; history of involvement in petroleum exploration, 224 Oklahoma Panhandle, 47, 49, 80, 101, 119, 165, 175, 247, 270, 307, 316 Oklahoma Water Resources Board, annual report, 1974, 215 ORDOVICIAN: Anadarko basin, Hunton Group, 8 Appalachian-Ouachita clastic wedges, 292 Arbuckle Formation, Arbuckle Group, 8, 127, 146, 262, 328 bentonic fauna, 20 Bigfork Chert, 84, 143, 204 Blakely Formation, 65, 84, 151, 204 Blaylock Sandstone, 8, 151 Bromide Formation, 51, 172, 251 Chimneyhill Subgroup, 8 Collier Shale, 84, 151, 204 Crystal Mountain Formation, 65, 84, 151, 204 Early-Middle Ordovician boundary, 20 Joints Formation, 19, 163 Keel Formation, 8
Lower-Middle Ordovician boundary, 28
McLish Formation, 51
Mazara Shale, 84, 151, 204
Missouri Mountain Shale, Missouri Mountain Slate, 8, 151
Oil Creek Formation, 19, 51, 328
Ordovician-Cambrian boundary, 286, 290
Ordovician-Silurian boundary, 8
petroleum reservoirs, Oklahoma City field, 328
Polk Creek Shale, 204
reef-building algae, 60
Sandia-Mississippian Zone, 286, 290
Simpson Group, Simpson sand, 127, 172, 192
Spring Creek Formation, 237
Sylvan Shale, 8
trilobites, 51, 172, 286, 290
Tulip Creek Formation, 51
Viola Limestone, 8, 159, 222
Wilcox sand, 328
Womble Formation, 84, 151, 204

Ouachita Mountains (includes Ouachita basin, Ouachita foldbelt, Ouachita front, Ouachita geosyncline, Ouachita trend):
 asphaltite deposits, 91
 basinward facies changes, Wapanucks Limestone, 288
 Benton-Broken Bow uplift, 50, 84, 92, 151, 174, 204, 254, 335
 Black Knob Ridge, 117, 174
 Boktukola fault, 84, 151
 Caddo Gap, Arkansas Novaculite, 173
 Carboniferous rocks, 110, 123, 265, 294
 Choctaw antclinorium, 84
 Choctaw fault, 96, 151, 204
 coal, 327
 craton, 14, 89, 151
 deep-sea fans, 209, 294
 flysch facies, 25, 123, 127, 151, 196, 204, 209
 genetic rock sequences, 292
 Limon Creek synclinorium, 84
 Mesozoic rocks, general, 153
 nonglacial varves, Arkansas Novaculite, 173, 174
 Octavia fault, 84, 151
 paleogeography, 17, 65, 123, 151, 152
 Paleozoic rocks, general, 66, 153, 296
 palynology, 339, 340
 Pennsylvanian, general, 96, 182
 petroleum exploration, 66, 91, 117
 Potato Hills, 143, 335
 relation to Appalachians, 123, 151, 292
 relation to Arbuckle Mountains, 151, 204
 relation to Arkoma basin, 204
 relation to Gulf of Mexico, 274
 relation to Marathon region, 151
 relation to Ozark Mountains, 204
 rock types, 14
 sedimentology, 25, 52, 65, 66, 110, 123, 127, 151, 182, 196, 204, 209, 288, 292, 294
 shelf deposition, 52, 65
 source of Anadarko basin Virgilian clastics, 247, 248
 source of Kansas Missourian deposits, 282

source of Texas Pennsylvanian and Permian deposits, 35, 56
source of Vamoosa Formation sediments, 202
source of Viburnum-contour lines, 16, 211
stratigraphy: general, 151, 196, 204; Morrowan and Atokan, 340
structure and tectonics, 14, 17, 25, 35, 50, 52, 65, 66, 72, 84, 89, 91, 92, 96, 110, 117, 123, 136, 143, 151, 152, 175, 182, 183, 185, 194, 196, 204, 209, 242, 243, 246, 254, 274, 282, 282, 292, 318, 327, 334, 335, 336, 337, 342
Ti Valley fault, 117, 151, 204
turbidites and graywackes, 110, 123, 151, 204, 294
unconformity analysis, 52
Windingstar fault, 84, 151

Ozark Mountains, Okie Uplift:
correlation with Ouachita Mountains, 204
seismicity, 33
source of Kansas Missourian deposits, 282
stratigraphy, 204
structure and tectonics, 23, 33, 96, 182, 183, 184, 273, 282, 310

Paleobotany:
 algae: Bromide Formation, algal mats, 172; Morrowan bioherms, 29; Ordovician reefs, 60; Pennsylvanian, 13, 29
 angiosperm pollen, Walnut Clay, 64
 general: Desmoinesian coal balls, 229; Garber Formation, 276
 microplankton, Devonian, 170
 nannofossils, Lower Cretaceous, 125, 126

Paleoecology, Paleoenvironments:
 Bromide Formation, 172
 Hunton Group, 8
 Morrowan bioherms, 29
 Pennsylvanian: climate, 264; eastern Oklahoma, 320
 Psycaspian Biome, Cambrian, 284
 Walnut Formation, 93
 Wreford Megacyclothem, 100, 165, 176, 177

Paleozoic:
 Arbuckle Mountains, 66, 153
 compaction of Paleozoic shales, 187
 evolution of southern continental margin, 123
 general, 153
 Oklahoma Panhandle, 175
 Ouachita Mountains, 66, 153, 196
 paleoecography, 123, 151, 152, 153, 264
 pre-Smackover formations, 312

Paleozoology:
 adaptive radiation, trilobites, 284
 ammonoids, 29, 109, 189
 blastoids, 142
 brachiopods, 7, 8, 29, 131, 172, 176, 252, 269, 286
 bryozoans, 7, 8, 27, 29, 100, 172
 conodonts, 8, 15, 28, 85, 163, 197, 221, 237, 286, 288
 corals: Hunton Group, 8; Morrowan bioherms, 29
 crinoid evolution, 287
 crinooids, 8, 287, 330
 cystoids, 172
 epizoans, 330
 foraminifers, 93, 96, 191, 223
 fossil communities: Bromide Formation, 172; Morrowan bioherms, 29
 gastropods, 29, 281
general: Desmoinesian coal balls, 229; Fitzhugh Member of Clarita Formation, 7; Garber Formation, 276; Hunton Group, 8; Morrowan bioherms, 29
graptolites, Hunton Group, 8
mollusks: Field Museum, 95; Hunton Group, 8
nannofossils, Lower Cretaceous, 125, 126
Ordovician benthic fauna, 20
ostracodes, 7, 8, 19, 93, 172
pelecypods, 8, 93
Pleistocene pond fauna, 268
radiolarians, 221
sponges, 251
trace fossils (ichnofossils), 299
trilobites, 7, 8, 51, 172, 177, 225, 284, 285, 286, 290
vertebrates, 21, 22, 222, 244, 276, 345, 350, 351, 352

PALYNOLOGY:
Atoka Formation: evidence for origin, 339; Ouachita Mountains, 340
Atokan Series, 339, 340
Flowertop Formation, Prewitt shale, spore replacement in copper ores, 113
Goddard Formation, spores, 37
Haragan-Bois d'Arc Formations, microplankton, 170
Lower Cretaceous, 125, 126
Morrowan Series, 340
Morrow Formation, spores, 37
Ozan Formation, nannofossil, 160
Springer Formation, 37, 140
Tonkawa Formation, spores, 37
Upper Cretaceous, 160
Upper Permian, microflora, 140
Waller Clay, angiosperm pollen, 64
Wellington Formation, Hemispollenites, 201

PENNNSYLVANIAN:
algæ, 13, 29
ammonoids, 109
Atokan Series: Atoka Formation, Atoka Group, 96, 110, 151, 167, 204, 294, 299, 319, 340; Atokan-Morrowan boundary, 85, 299; coal, 327; condont zones, 85; Cresswell sands, 186; Dornick Hills Group, 75, 76, 96, 104; Lake Murray Formation, 96, 104; Spio sands, 186, 320
canyon-fan complex, Anadarko basin, 145
climate, 264
cool balls, 229
cool bearing strata, 97, 98, 99, 198, 229, 282, 310, 311, 327, 342
Desmoinesian Series: Atoka Formation, Atoka Group, see Atokan Series; "Big lime," 96; Bluejacket-Bartlesville Sandstone, 42, 133, 271, 319, 320, 322, 323, 347; Boggy Formation, 2, 96, 327, 352; Booch sandstones, deltaic deposits, 39, 320; Breezy Hill Limestone, 347; Buckhorn asphalt, gastropod, 281; Cabaniss Formation, Cabaniss Group, 310, 311, 342; Calvin Sandstone, 96; Cherokee Group, Cherokee sands, 55, 167, 245, 315, 320, 331, 346, 347; Croweburg coal, 327, 342; Deese Group, 75, 76, 104, 261, 281, 352; Devil's Kitchen Member, Deese Group, 261; Dornick Hills Group, 104, 352; electric-log study, Criner Hills, 190; Fort Scott Limestone, 96; Harthorne Formation, 96, 97, 151, 320, 327; Henryetta coal, 310, 311; Holdenville Shale, 96; Inola Formation, 2, 347; Krebs Group, 96; Labette Shale, 96; Lenapah Limestone, 96; McAlester Formation, 96, 320, 327; Marston Group, 96; Nowata Shale, 96; Oologah Limestone, 96; Pink limestone, 39, 310, 311, 320, 347; Prairie sand, 320, 347; Red Fork Sandstone, 2, 39, 320, 346, 347, 348; Savannah Formation, 96, 327; Senora Formation, 96, 229, 342, 350; Skinner sand, 39, 310, 311, 315, 320, 346, 347, 348; Srawn Group, Texas, 56; Stuart Shale, 96; Thurman Sandstone, 96; Verdigris Limestone, 310, 311, 342, 347, 350; Wetumka Shale, 96; Wewoka Formation, 352
fossil fish, 315, 350, 351, 352
fusulinid zones, 96
Gearyan: Foraker Limestone, 18; Havensville Shale, 165, 176
general, 175, 182, 183, 184, 185, 282
Kansas, general, 282
Missourian Series: Barnsall Formation, 18, 96, 287; Chanute Formation, 18; Coffeyville Formation, 352; Dawson coal, 327; Iola Formation, 18, 96; Ochelata Formation, Ochelata Group, 27, 96; Seminole Formation, 189, 330; Srawn Group, Texas, 56; Tallant Formation, 18; Tonkawa Formation: deltaic deposits, 39; spores, 37; Wann Formation, 18, 96, 225
Morrowan Series: Arkoma basin, 186; Baldwin coal, 327; bioherms, 29; blastoids, 142; Bloyd Formation, 96, 288, 340, 352; brachiopods, 252; Bragg Member, Sausbee Formation, 29; Brewer Bend Limestone, 29; Chisum Quarry Member, McCullay Formation, 29; condont zones, 85; dimetrodon study of sandstones, 44; Dornick Hills Formation, Dornick Hills Group, 75, 76, 96, 104; Goddard Formation, Goddard Shale, 37, 96; Golf Course Formation, 96, 104; Greenleaf Lake Member, McCullay Formation, 29; Hale Formation, 96, 340; Jackfork Sandstone, 110, 151, 204, 294; Johns Valley Shale, 96, 110, 151, 204, 294; Lake Murray Formation, 96, 104; McCullay Formation, 29; Morrow Formation, Morrow sands, petroleum, 26, 37, 270, 275; Noble Ranch Group, 75, 76; Sausbee Formation, 29; Springer Formation, Springer Series, 37, 75, 76, 96, 140; Wapanucka Limestone, 96, 288, 352
Oklahoma City field, petroleum reservoirs, 328
Ouachita Mountains, orogeny, 14, 175, 182, 183, 184, 185, 196, 204
paleoecography, 264, 320
porosity data, sandstones, 192
uranium-resource evaluation, 272
Virginian Series: Ada Formation, Ada Group, 96, 352; Canyon Group, 96; coal, 327; Dewey Limestone, 96; Douglas Group, 96; Endicott sandstone, 39; Foraker Limestone, 18; Heebner Shale, 247, 248; Hoxbar Formation, 96; "Laerty-Hoover" sandstone, 247; Lecompton Formation, 96, 202; Pawhuska Formation, 18; Skiatook Group, 96; Tonkawa sand, 96; Vamoosa Formation, 18, 96, 202, 352; Vanoss Formation, 96

PERMIAN:
Admire Group, uranium, 43
Blaine Formation, 74, 134, 135, 137, 278
bryozoans, 100
Canyon gypsum bed, 135
Chase Group, 43
clay minerals, 165
Cloud Chief Formation, 3, 216, 218
Council Grove Group, uranium, 43
Dog Creek Formation, 114
Doyle Shale, copper, 4
El Reno Group: copper, 74; hydrology, 216; uranium, 43
Flowertop Shale, 74, 112, 113, 134, 135, 150, 169, 171, 257, 278, 298
Foraker Limestone, 18
fossil fish, 21, 22, 276, 351
Garber Formation: copper, 298; paleomagnetism, 130; paleontology, 276, 352
Garber-Wellington aquifer, 48
Garrison Shale, 4
Glorieta Formation, brine disposal, 101
Havensville Shale: brachiopod, 176; clay minerals, 165

[135]

337
Haystack gypsum bed, 135
Hennessey Formation, Hennessey Group: fossil fish, 21, 352; uranium, 43, 220
Kiser gypsum bed, 135
Mangum crater deposit, 169
Marlow Formation, 216
Marty dolomite bed, 135
Matfield Shale, 4
Meadows copper shale, 135
microflora, Upper Permian, 140
Oklahoma Panhandle: general, 175; hydrology, 119; red beds, 119
porosity data, sandstones, 192
Prewitz shale, 112, 113, 115
QuarterMaster Formation, uranium, 43
red beds, Oklahoma Panhandle, 119
Rush Springs Sandstone, 43, 216, 218, 220, 256
San Angelo Formation, 134, 135, 150, 278
uranium mineralization, occurrences, and potential, 3, 43, 220, 272
Vanoss Group, fossil fish, 352
Wellington Formation: hydrology, 48; lungfish, 21; palynology, 210; uranium, 43
Whitehorse Group, uranium, 43
Wichita Formation, uranium, 43
Wreford Megacyclothem, 100, 165, 176, 177
Permo-Pennsylvanian, Osage strata-benchlands, 193

Petroleum and Natural Gas:
abnormal reservoir pressures, 49, 71, 241
accumulation, entrapment, and reservoirs: Anadarko basin, 8, 49, 241; Arkoma basin, 315; Bartlesville Sandstone, 42, 133, 320, 323; Burbank–Bartlesville sand reservoir, 133, 323; Cherokee sands, 167, 315, 348; combination traps, 167; Cumberland thrust, 127; Dibble–Mustang field, 289; gas pools, 161; Oklahoma City field, 328; relation to deltaic deposition, 39, 320; unconformities, 52, 193, 328, 329; Wichita aquifer, 36, 326
Anadarko basin, see Anadarko Basin; see also Petroleum and Natural Gas: exploration and development
aquous solubility, 241
Ardmore basin, 117, 205
Arkoma basin, 39, 315
asphaltite, 91
bibliography of North American oil and gas fields, 296
core and sample analyses, Anadarko basin, 8
data systems, 31, 32, 210, 258
depth wells, 8, 10, 25, 82, 154, 179, 181, 241
enhanced recovery, 80, 81, 82, 108, 122, 133, 146, 147, 148, 156, 168, 275, 322, 323
exploration and development: aerial photography, 79; aeromagnetic profiles, 79; Anadarko basin, 8, 25, 26, 44, 49, 82, 154, 179, 181, 236, 275, 343; Arbuckle Mountains, 66, 117, 179; Ardmore basin, 117, 205; Arkoma basin, 39, 315; Beaver County, 270; Caddo County, 343; Cherokee sands, 167, 315, 348; deltaic–deposit prospecting, 39; dipmeter data, 44; electric-log mapping, 190, 271; Ellis County, 26; El Paso Natural Gas 1 Hunt-Cross Unit, 343; Fort Cobb anticline, 144; future projects, 61; history of exploration, 224; Hunton core, 8; Hunton production, 8; identification of sediments from well logs, 2; LANDSAT studies, 78, 115; magneto-electric exploration, 236; Mapco 1 Howell, 343; Morrow sands, 26, 37, 270, 275; Morrow–Springer tests, 144, 179, 180; new discoveries, 5; Ouachita Mountains, 66, 91, 117; Panhandle, 270; Pennsylvanian fields, 180; permeability, Hunton Group, 8; porosity, data interpretations, 192; porosity, Hunton Group, 8; quantitative mapping, 94; remote sensing, 78, 79, 115, 180, 236; resistivity mapping, 79; southern California, 205; unconformity interpretations, 52, 193; Watonga trend, 180, 236
fields, pools, and districts: all fields, 10; Bayou field, 190; Burbank pool, 146, 156, 168; Carpenter field, 343; Cement field, 78; Ceres field, 348; Cheyenne Valley field, 2; Davenport field, 178; Delaware-Childers field, 322; Dibble field, 349; East Binger field, 236, 343; Greater Seminole district, 39; Handy field, 117; Hawkins pool, 39; Hewitt field, 190; Idalab West field, 91; Mayfield field, 154, 179; Minnnet field, 91; Mustang field, 289; North Chickasha field, 180; North Stanley pool, 133, 147, 148, 168; Northwest Hewitt field, 190; Northwest Raydon field, 179; Oakdale-Campbell trend, 8; Oklahoma City field, 208, 328; Payne-Criner field, 8; Redder field, 91; Raydon field, 343; Silex–Alcehem field, 205; South Bald field, 91; South Ceres pool, 39; Southeast Cogar field, 180; South Powell field, 117; Southwest Cheyenne field, 179; Southwest Lone Grove field, 190; Southwest Minco field, 180; Southwest Raydon field, 181; Watonga trend, 180, 236; West Brock field, 190; West Daisy field, 91; West Edmond field, 8; West Enville field, 117; West Raydon field, 181; Yellowstone field, 86
geothermal gradients, 241
giant oil fields, 253
heavy oil, 122, 331, 338
history: exploration, 224; magnetic interpretation, 208; Oklahoma Geological Survey involvement, 224
Hunt Group, Anadarko basin, general, 8
Hunton production, 8, 179
migration, 241, 328
Oklahoma Geological Survey programs, 188
origin and generation, source, 161, 241, 328, 329
pipelines, 280
refineries, 280
stats, consumption and demand, 118, 158; deep tests, 10, 82; economics, 81, 82, 87, 118, 158, 253; exploration and development, 5, 10, 11, 80, 82, 87, 118, 139, 253, 343; general, 139, 253; natural gas, general, 158; natural-gas liquids, 240; producing formations, 10; production, 5, 9, 10, 73, 81, 118, 158, 212, 280, 305; projections, 5, 61, 80; reserves, 5, 118, 158, 200, 212, 253; rig count, 82; seismic activity, 87; stocks on hand (1974), 118; storage, 158; stripper wells, 129, 253; transportation, 118, 158; well data, 10, 323
stripper wells, 129, 253
technology: enhanced recovery, 80, 81, 82, 108, 122, 133, 146, 147, 148, 156, 168, 275, 322, 323, 338; fracturing-fluids evaluation, 275; heavy-oil-recovery methods, 122, 338; identification of sediments from well logs, 2; magnetic interpretation of Oklahoma City field, history, 208; magneto-electric exploration and interpretation, 236; permeability testing, 275; pressure testing, 275; quantitative mapping techniques, 94; underground gas storage, 86
well logs: electric, 2, 190, 228, 271; gamma-ray, 8; sediment identification, 2; spontaneous-potential, 8; types, 2
Petroleum Data System, 31, 32, 210, 258
plate margins, cross sections, 70, 318, 335
Pleistocene: fossil bear, 244; pond fauna, Major County, 268; terrace and alluvial deposits, Tillman County, hydrology, 217
Pliocene: Ogallala Formation: brine production, 101; general, 175; hydrology, 119
Precordian:
Appalachian-Ouachita succession, 292
Arbuckle Mountains, 69
Blue River Group, 69
continental break-up, 246
craton, 14
Layered series, 238
plutonic igneous geology, Wichita province, 239
structural evolution, 283
Swisher gabbroic terrane, 238, 239
Tishomingo Granite, 69, 127
Troy Granite, 69
volcanic terrane, 23
Wichita Mountains: layered rocks, 238, 239; relation to St. Francois Precambrian, 24

REMOTE SENSING:
serial photography: Arbuckle Mountains, 263; Cement and Davenport fields, 79; Ouachita Mountains, 136, 194; southeastern Kansas, 273
aeromagnetic profiles, Cement and Davenport fields, 79
airborne radioactivity surveys, uranium deposits, 166, 206
infrared imagery, Arbuckle Mountains, 263
LANDSAT imagery: Anadarko basin, 344; petroleum exploration, 78, 115; southeastern Kansas, 273; Wichita Mountains, 344
resitivity mapping, Cement and Davenport fields, 79

SEDIMENTOLOGY:
abnormal pressures, 71
alluvial deposition: Red River basin, 266; Skinner sand, 315; Vamoosa Formation, 202
Anadarko basin, 8, 25, 39, 68, 145, 182, 247, 248
Appalachian-Ouachita facies, 292
Arbuckle Mountains, 8, 52, 66, 127, 145, 172
Ardmore basin, 96, 104, 182, 261
Arkoma basin: Atokan and Morrowan sands, 186; Cherokee sands, 315; deltaic deposition, 39
Atoka Formation, facies, 299
basinward facies changes, Wapanucka Formation, 288
bioherms, 29
Bouma sequences, Anadarko basin, 145
Bromide Formation, facies, 172
canyon-fan complex, Anadarko basin, 145
carbonate deposition, 68, 247, 248, 325, 326
carbonate-fill deposition: Carboniferous, Ouachita Mountains, 294; Red Fork Sandstone, 2, 346, 347, 348; Skinner sand, 315, 346, 348
Clarita Formation, biofacies, 7, 8
clastic deposition, 68, 187, 292
coral balls, Desmoinesian, 229
cyclical sedimentation, Anadarko basin, 247, 248
cyclolithem, Desmoinesian, 342
deltaic deposition: Atoka Formation, 299; Booch sands, 39, 320; Endicott sand, 39; Inola Sandstone, 2; Pennsylvanian, eastern Oklahoma, 320; Pennsylvanian, north-central Texas, 39; Red Fork Sandstone, 2, 39, 320; Skinner sands, 310, 311; Tonkawa Formation, 39
diagenesis: paragenesis, copper deposits, 278; porosity-depth ratios, 187, 192; sakka
diagenesis, 278; sand compaction, 2, 35; sedimentary otes, 16, 113, 278; shale compaction, 71, 187; water expulsion from clastics, 187
evaporite and red-bed deposition: Anadarko basin, 68; Permian, 134, 135, 138
flysch deposition, 25, 123, 127, 151, 196, 204, 209, 265, 294
geanticentrum strata, Cherokee Group, 347, 348
graywacke: Ouachita area, 110, 123, 151, 204, 294; Wichita Mountains, 325, 326
Havenville Shale, depositional environment, 165
Hollis basin, 134, 135
Huntton anticline, 52
Huntton Group, general, 8
lithofacies mapping, Trinity Group, 94
low-volcanic sand deposition, Anadarko basin, 145
Ouachita Mountains, 25, 52, 65, 66, 110, 123, 127, 151, 182, 196, 204, 209, 288, 292, 294
palaeocurrents, Ouachita area, 204
Pennsylvanian, general, 96, 182
Permian: copper shales, 135, 278; Devil's Kitchen Member, Deese Group, 261; Vamoosa Formation, 202; Virgilian, Anadarko basin, 247
recycled sediments, Atoka Formation, 339
re deposition of transported fossils, 223
Red River transition-zone deposits, 257
shelf deposition, 52, 65, 204, 299, 537
Simpson Group, facies, 172
Skinner sand, facies, 315
southern Oklahoma aulacogen, Wichita aulacogen, 36, 172, 265, 325, 326
submarine fans: Anadarko basin, 247, 248; Ouachita Mountains, 209, 294
tidal deposition: Bluejacket-Bartlesville Sandstone, 319; Lecompton Limestone, 202; Permian, Texas, 278
transgressive deposition, Atoka Formation, 299
transgressive-regressive cycles: Cherokee Group, 348; Simpson Group, 172
turbidites, 110, 123, 151, 204, 294
varve deposition, Arkansas Novaculite, 173, 174
Wapanucka Formation, facies, 288
Wichita Mountains, 36, 172, 265, 325, 326
wildflysch: Johns Valley boulders, 151; southern Oklahoma aulacogen, 265

SILURIAN:
Blaylock Sandstone, 5, 8, 84, 151, 204
Bois d'Arc Formation: conodonts, 15; Cravatt Member, 8; Fittstowner Member, 8
Chimneyhill Subgroup, 8
Clarita Formation: conodonts, 8, 15; Fitzhugh Member, 7, 8; general, 8; Prices Falls Member, 8
Cochrane Formation, 8, 15
Frisco Formation, 8
Hagar Formation, 8, 15
Henryhouse Formation, 8, 15, 131, 269
Hunton Group: brachiopods, 7, 8, 131, 269; conodont biostratigraphy, 15; general, Anadarko basin, 8; sedimentology, 8, 151, 204
Keel Formation, 8, 15
Kirbydiamic biofacies, 8
Missouri Mountain Shale, Missouri Mountain Slate, 8, 84, 151, 204
Quarry Mountain Formation, 8
Silurian-Devonian boundary, 8
southern Oklahoma aulacogen, 8, 72, 75, 76, 172, 238, 239, 242, 243, 265, 283, 336, 337, 344
state boundaries, 316

STRATIGRAPHY:
Anadarko basin, 8, 344
Appalachian-Ouachita succession, 294
Arbuckle Mountains: Mississippian, 221; Paleozoic rocks, 8, 66, 204, 221; relation to Anadarko basin, 8; relation to Ouachita Mountains, 204
Arkoma basin, 204
biostratigraphy: Atoka Formation, Atoka Group, Atokan Series, 85, 299, 339, 340; Floyd Formation, palynology, 340; Bois d'Arc Formation, 8, 170; Cambrian, 197, 286, 290; Chimneyhill Subgroup, 8, 170; Clarita Formation, 8, 15, 170; Cochrane Formation, 8, 170; conodonts, 8, 15, 28, 85; Frisco Formation, 8, 170; Hagar Formation, palynology, 340; Hagar Formation, 8, 170; Henryhouse Formation, 8, 170; Hunton Group, 8, 170; Keel Formation, 8, 170; microplankton, 170; Marquette Series, conodont zones, 85, 288; Ordovician, 8, 28, 51, 170, 286, 290; palynology, 339, 340; Proconodontus Zone, 197; Saugia-Mississippia Zone, 286, 290; Yecemore
Limestone, radiolarians, 221; trace fossils, 299; trilobites, 51; Wapanucka Limestone, conodonts, 288; Woodford Shale, 8
Bryan County, general, 127
Cambrian-Ordovician boundary, 286
Early-Middle Ordovician boundary, 20
Flowerpot Shale, 257
Huntig Group, general, 8
Lower Devonian, 8, 170
Lower-Middle Ordovician boundary, 28
Middle Ordovician, correlation with Canadian strata, 51
Mississippian-Anoxic boundary, 85, 299
Oklahoma Panhandle, 88, 173
Osage strata—benchlands, 193
Ouachita Mountains, 66, 151, 196, 204, 292, 339, 340
Ozark Mountains, 204
unconformity analyses, 52, 193
Upper Cretaceous, unconformities, 193

Structural Geology (includes tectonics):
Amarillo-Wichita uplift, 239
Anadarko basin, 8, 33, 38, 68, 72, 96, 115, 182, 239, 246, 273, 277, 328, 342, 344
Arbuckle antitcline, 259
Arbuckle Mountains, 8, 52, 66, 68, 69, 70, 75, 76, 96, 104, 117, 172, 239, 254, 259, 277, 282, 283, 342
Ardmore basin, 8, 70, 72, 75, 76, 96, 104, 117, 182, 186, 261, 336
Arkoma basin, 51, 70, 75, 76, 96, 151, 186, 315, 327, 342
Belton antitcline, 259
Bentino-Broken Bow uplift, 50, 84, 92, 151, 174, 214, 254, 235
Berwyn syncline, 75, 76
Black Knob Ridge, 117
Boktukola fault, 84, 151
Caddo antitcline, 75, 76, 104, 105
Central Oklahoma fault zone, 8
Central Oklahoma platform, 96, 310
central stable region, 33, 132
Cherokee Group, subsurface, 245, 315
Cherokee platform, 315
Chocktaw fault, 84, 96, 151, 186, 204
Cordell faulted foldbelt, Cordell graben, 344
craton, Ouachita area, 14, 89, 151
Criner uplift, 8, 117, 239
Cumberland thrust, 127
Custer County, surficial structure, 344
Duncan-Criner fault, 75, 76
fault lineaments, relation to ores, 107, 155
Franks fault, 8
Glenn syncline, 105
growth faults, Arkoma basin, 151, 186
Hollis basin, 96, 134, 135, 138, 239
Hunton antitcline, 8, 52, 259
Keyes dome, 96
Kinta fault, 186
Lawrence uplift, 8
Marietta basin, 8, 70, 96, 239, 336
Meeers fault, 317
Mill Creek fault, 8
Mountain View fault, 344
Mount Sheridan area, 295, 300
Nemaha anticline, Nemaha arch, Nemaha ridge, Nemaha uplift, 8, 23, 33, 96, 182, 273, 282, 310, 327, 328, 342
North Block horst, 344
Octavia fault, 84, 151
Oklahoma Panhandle, 88, 175
Ouachita Mountains, 14, 17, 25, 35, 50, 52, 65, 66, 72, 84, 89, 91, 92, 96, 110, 117, 123, 136, 143, 151, 152, 175, 182, 185, 189, 196, 204, 209, 245, 246, 254, 274, 282, 292, 318, 327, 334, 335, 336, 337, 342
Overbrook antitcline, 75, 76, 104, 117
Ozark Mountains, Ozark uplift, 23, 33, 96, 182, 183, 184, 273, 282, 310
Pennsylvanian, general, 96, 182, 183, 185
Plainview syncline, 137
Potato Hills, 183, 194, 335
Reagan fault, 75, 76, 117
San Boi Earth, 186
shear deformation, Ouachita Mountains, 92
southern Oklahoma aulaacogen, 8, 72, 75, 76, 172, 238, 239, 242, 243, 265, 283, 336, 337, 344
Southwestern fault, 117
thermal metamorphism, Arkansas Novaculite, 143
thrust masses, Ouachita Mountains, 254
Timbered Hills fault block, 117
Tishomingo antitcline, Tishomingo horst, 117, 259
Ti Valley fault, 117, 151, 204
Tri-State area, 155
Washtia Valley fault, 8, 75, 76, 117, 259
Waurika-Adderbank area, 261
Wichita aulaacogen, Wichita Mountains, Wichita uplift, 8, 36, 70, 96, 106, 238, 239, 277, 295, 317, 325, 326, 327, 336, 342, 344
Wichita-Criner axis, 70, 96, 239
Wichita fault zone, 8
Wichita megashear, 344
Windingstair fault, 84, 151
wrench-fault deformation, Caddo anticline, 105
tectonics, see Structural Geology
Triassic, Dockum Group, Oklahoma Panhandle, 119
Tri-State area: lineament patterns, relation to mineral deposits, 155; origin of ore deposits, 211; zinc-mine water, 178; zinc mining, 9

Uranium:
host rocks, central Great Plains, 349
mineralization, 3, 220
Permian rocks, 3, 43, 220, 272
power projects, future, 61
processing, 341
radioactivity surveys, 166, 306
resource evaluations, 272, 306
Wichita aulaacogen, 36, 325, 326

Wichita Mountains:
basement rocks, age, 24, 255
Carlsbad Rhyolite, 3, 127, 317
calcareous, 327
Cold Springs Granite, 239
copper and uranium mineralization, 3
deposition, 36, 172, 265, 323, 326
deposition, 214
Layered series, 235, 238, 239
Medicine Creek area, igneous-rock relationships, 106
Mesozoic rocks, 153
Mount Scott Granite, 106, 239, 255
Mount Sheridan area, petrogenesis, 295, 300
Mount Sheridan Gabbro, 106, 238, 239, 255, 295, 300
Navajo Mountain basalts, 219
Paleomagnetism, 239, 255, 313, 317
Paleozoic rocks, 153
Plutonic igneous geology, general, 239
Relation of Precambrian rocks to St. Francois Mountains, 24
Source of Permian mineral deposits, 3
Structure and tectonics, 8, 36, 76, 96, 106, 238, 239, 277, 295, 317, 325, 326, 327, 336, 342, 344
Swisher gabbroic terrane, 238, 239
Tillman metasediments, 219
Trilobites, 285
Wichita aulacogen, 36, 325, 326
Wichita fault zone, 8
Wichita Granite, 3, 219, 239, 317
Wichita megashear, 344
Wichita Mountain granites, 3, 106, 219, 238, 239, 255, 313, 317
Wreford Megacyclothem, 100, 165, 176, 177
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY, 1977

Compiled by Elizabeth A. Ham

Bibliography—pages 119-149
Index—pages 149-168

BIBLIOGRAPHY

Bartolina, D. G., see Cole, E. L., Bartolina, D. G., and Swafford, B. G.

Bells, W. H., see Fryberger, J. S., and Bellis, W. H.

Bergström, S. M., see Swett, W. C., and Bergström, S. M.

locality, Lower Permian of Oklahoma: Fieldiana, v. 37, no. 3, p. 61–73, 5 figs.

Boneau, D. F., see Kleinschmidt, R. F., Trantham, J. C., Boneau, D. F., and Patterson, H. L.

Boy, J. A., see Reiter, Leon, and Bray, D. E.

Brower, J. C., see Strimple, H. L., and Brown, C. J.

Burke, W. H., see Denison, R. E., Burke, W. H., Otto, J. B., and Hetherington, E. A.

Burtn, F. W., see Johnson, J. P., and Burtn, F. W.

Burtn, F. W., see also Thomas, R. D., Walker, C. J., and Burtn, F. W.

42. Chandler, C. E., 1977, Subsurface stratigraphic analysis of selected sand-
stones of the “Cherokee” Group, southern Noble County, Oklahoma [part 1]: Shale Shaker, v. 28, p. 56–59, figs. 1–3.
Chaudhuri, S., see Cullers, R. L., and Chaudhuri, S.
Clempitt, R. L., see Boneau, D. F., and Clempitt, R. L.
Clempitt, R. L., see also Trantham, J. C., and Clempitt, R. L.
Corley, R. K., see Thomas, W. O., Jr., and Corley, R. K.
Cox, W. C., see Dickey, P. A., and Cox, W. C.
Crammer, F. H., see Diéz, M. d.C. R., and Crammer, F. H.
58. Cuffey, R. J., 1977, Cenozoic bryozoans and burrowing barnacles of the Wreford Megacyclothem (Lower Permian; Kansas-Nebraska) [abstract]: Geological Society of America Abstracts with Programs, v. 9, p. 587–588. (Reprinted in Oklahoma Geology Notes, v. 37, p. 56.)
Cuffey, R. J., see Simonsen, A. H., and Cuffey, R. J.
Cunningham, J. W., see DuBois, B. M., Johnson, J. P., and Cunningham, J. W.
Davis, R. E., see Playton, S. J., and Davis, R. E.
63. De Filippo, R. J., 1977, Cadmium, in Metals, minerals, and fuels, v. 1 of

De Filippo, R. J., see Cammarota, V. A., Jr., and De Filippo, R. J.

Dewey, J. F., see Burke, Kevin, Dewey, J. F., and Kidd, W. S. F.

DuBois, R. L., see Lawson, J. E., Jr., Dubois, R. L., and Foster, Paul Ebanks, W. J., see Wells, J. S., Ebanks, W. J., and Roberts, J. F.

Eddy, R. E., see Sneider, R. M., Richardson, F. H., Paynter, D. D., Eddy, R. E., and Wyant, I. A.

Ethington, R. L., see Repetski, J. E., and Ethington, R. L.

Fanelli, L. L., see Clarke, T. G., and Fanelli, L. L.

Fanelli, L. L., see also Koelling, G. W., and Fanelli, L. L.

74. Fischer, C. F., and Swafford, Bill, 1976, Soil survey of Canadian County, Oklahoma: U.S. Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station, 64 p., 5 figs., 69 soil maps, 10 tables.

76. Forester, E. B., see Hazel, J. E., and Forester, E. B.

Fortey, R. A., see Shaw, F. C., and Fortey, R. A.

77. Foster, G. T., see Murphy, R. P., Foster, G. T., and Owens, W. W.

Foster, Paul, see Lawson, J. E., Jr., Dubois, R. L., and Foster, Paul

Friedman, S. A., see Manley, F. H., Friedman, S. A., and Mankin, C. J.
Glass, C. R., see Hync, N. J., and Glass, C. R.
Gordon, Mackenzie, Jr., see Saunders, W. B., Manger, W. L., and Gordon, Mackenzie, Jr.
101. Grayson, R. C., Jr., 1977, Correlation of late Morrowan and early Atokan (Early Pennsylvanian) conodont faunas from the frontal Ouachita Mountains and the Ardmore basin (Oklahoma) [abstract]: Geological Society of America Abstracts with Programs, v. 9, p. 600. (Reprinted in Oklahoma Geology Notes, v. 37, p. 57–58.)
102. Grayson, R. C., Jr., and Sutherland, P. K., 1977, Conodont evidence for unconformity within Trace Creek Shale Member of Floyd Formation (Lower Pennsylvanian) in northwestern Arkansas and northeastern Oklahoma, in Sutherland, P. K., and Manger, W. L. (editors), Upper Chesterian–Morrowan stratigraphy and the Mississippian-Pennsylvanian boundary in northeastern Arkansas and northwestern Oklahoma: Oklahoma Geological Survey Guidebook 18, p. 181–185, 3 figs., 1 table.
Grayson, R. C., Jr., see Sutherland, P. K., and Grayson, R. C., Jr.
Grover, E. S., see Williams, G. E., and Grover, E. S.

129. Horowitz, A. S., and Macurda, D. B., Jr., 1977, Late Mississippian and
Early Pennsylvanian blastoids from northeastern Oklahoma and northwestern Arkansas, in Sutherland, P. K., and Manger, W. L. (editors), Upper Chesterian-Morrowan stratigraphy and the Mississippian-Pennsylvanian boundary in northeastern Oklahoma and northwestern Arkansas: Oklahoma Geological Survey Guidebook 18, p. 169-170, 1 table.

136. Ihloff, T. W., see Landman, G. B., Hicks, J. F., and Ihloff, T. W.

142. Johnson, F. S., see Heath, L. J., Miller, J. S., and Johnson, F. S.

146. Johnson, K. S., 1977, Faulted strata on south flank of Arbuckle Mountains: Oklahoma Geology Notes, v. 37, p. 150. (Cover-photo description.)

149. Johnson, K. S., 1977, Limestone and shales on the southwestern edge of the Arbuckle anticline: Oklahoma Geology Notes, v. 37, p. 66. (Cover-photo description.)

152. Johnston, R. R., see Arndt, R. H., Johnson, K. S., and Roberts, J. F.

Kaul, F. W., see Simon, D. E., Kaul, F. W., and Culbertson, J. N.

Koch, M. R., see Morris, R. C., Proctor, K. E., and Koch, M. R.

Koller, L. R., see Fowles, G. R., and Koller, L. R.

169. Kurz, V. E., Trans-cratonic correlation of Early Ordovician conodont faunas B and C between northwest Greenland and western United States [abstract]: Geological Society of America Abstracts with Programs, v. 9, p. 618. (Reprinted in Oklahoma Geology Notes, v. 37, p. 59.)

Lakey, C. J., see Roy, M. B., Tucker, C. W., and Lakey, C. J.

Lamb, G. C., see Steele, K. F., and Lamb, G. C.

Lansford, Bryan, see Kent, D. C., Watts, K. R., and Lansford, Bryan

Levorson, C. O., see Kolata, D. R., Stimpie, H. L., and Levorson, C. O.

178. Lewis, R. D., 1977, Depositional environments and paleoecology of the Oil Creek Formation (Middle Ordovician), Arbuckle Mountains, Oklahoma [abstract]: Geological Society of America Abstracts with Programs, v. 9, p. 59. (Reprinted in Oklahoma Geology Notes, v. 37, p. 32–33.)

Longman, M. W., see Sprinkle, James, and Longman, M. W.

McBride, E. F., see Briggs, Garrett, McBride, E. F., and Moiola, R. J.

McBride, E. F., see also Sholes, Mark, and McBride, E. F.

McClaffin, R. G., see D'Lugosz, J. J., and McClaffin, R. G.

Manger, W. L., see Saunders, W. B., Manger, W. L., and Gordon, Mackenzie, Jr.

Manger, W. L., see also Sutherland, P. K., and Manger, W. L.

Mankin, C. J., see Manly, F. H., Friedman, S. A., and Mankin, C. J.

Mapes, R. H., see Stimpie, H. L., and Mapes, R. H.

Marcher, M. V., see Carr, J. E., and Marcher, M. V.
Marshall, S. Y., see Galloway, W. E., Marshall, S. Y., and Whipple, A. P.

May, R. T., see Al-Shaeib, Zuhair, Olson, R. W., Shelton, J. W., May, R. T., Owens, R. T., and Hansen, R. E.

201. Maybough, R. E., 1977, Soil survey of Pottawatomie County, Oklahoma: U.S. Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station, 118 p., 10 figs., 67 soil maps, 19 tables.

Meyer, E. L., see Guisti, E. V., and Meyer, E. L.

Michalski, B. C., see Harper, W. B., Michalski, B. C., and Parker, M. R.

Miller, J. S., see Heath, L. J., Miller, J. S., and Johnson, F. S.

Minsch, J. H., see Stover, C. W., Simon, R. B., Person, W. J., and Minsch, J. H.

Moiola, R. J., see Briggs, Garrett, McBride, E. F., and Moiola, R. J.

Monaghan, P. H., see Young, Allen, Monaghan, P. H., and Schweitzer, R. T.

National Stripper Well Association, see Interstate Oil Compact Commission and National Stripper Well Association

Nestell, M., see Scott, R. W., Root, S. A., Tenery, J. H., and Nestell, M.

Newland, C. T., see Polone, D. J., Newland, C. T., and Swafford, B. G.

Nuttli, O. W., see Gupta, I. N., and Nuttli, O. W.
219. Oil and Gas Journal staff, 1977, Anadarko basin, home of the deep holes: Oil and Gas Journal, v. 75, no. 21, p. 98.
220. Oil and Gas Journal staff, 1977, New Oklahoma play blossoms: Oil and Gas Journal, v. 75, no. 8, p. 103, 1 fig.
221. Oil and Gas Journal staff, 1977, Prolific wells revive old U.S. oil area: Oil and Gas Journal, v. 75, no. 28, p. 38–39, 1 fig. (Logan County wells.)
222. Oil and Gas Journal staff, 1977, Recovery projects net mixed results: Oil and Gas Journal, v. 75, no. 38, p. 72–73, 3 tables.
227. Olmsted, R. W., see Al-Shaieb, Zuhair, Olmsted, R. W., Shelton, J. W., May, R. T., Owens, R. T., and Hanson, R. E.
230. Otto, J. B., see Denison, R. E., Burke, W. H., Otto, J. B., and Hetherington, E. A.
231. Owens, R. T., see Al-Shaieb, Zuhair, Olmsted, R. W., Shelton, J. W., May, R. T., Owens, R. T., and Hanson, R. E.
232. Owens, W. W., see Murphy, R. P., Foster, G. T., and Owens, W. W.
237. Parker, M. R., see Harper, W. B., Michalski, B. C., and Parker, M. R.
238. Patterson, H. L., see Kleinenschmidt, R. F., Trantham, J. C., Boneau, D. F., and Patterson, H. L.
241. Person, see Minsch, J. H., Stover, C. W., Person, W. J., and Simon, R. B.
242. Person, W. J., see also Stover, C. W., Simon, R. B., Person, W. J., and Minsch, J. H.
243. Phelps, D. W., see Powell, B. N., and Phelps, D. W.
244. Pittman, E. D., see Wilson, M. D., and Pittman, E. D.
249. Powell, J. D., see Kaufman, E. G., Hattin, D. E., and Powell, J. D.
252. Proctor, K. E., see Morris, R. C., Proctor, K. E., and Koch, M. R.

Richardson, F. H., see Sneider, R. M., Richardson, F. H., Paynter, D. D., Eddy, R. E., and Wyant, I. A.

245. Rodriquez, Joaquim, and Gutschick, R. C., 1977, Barnacle borings in live and dead hosts from the Louisiana Limestone (Famennian) of Missouri: Journal of Paleontology, v. 51, p. 718–724, 1 text-fig., 1 pl., 2 tables. (List of Oklahoma occurrences.)

Rook, S. A., see Scott, R. W., Root, S. A., Tener, J. H., and Nestell, M. [Number omitted.]

Schultz, D. J., see Blatt, Harvey, and Schultz, D. J.

Schweizer, R. T., see Young, Allen, Monaghan, P. H., and Schweizer, R. T.

Shelton, J. W., see Al-Shaieb, Zuhair, and Shelton, J. W.

Shelton, J. W., see Al-Shaieb, Zuhair, Olmsted, R. W., Shelton, J. W., May, R. T., Owens, R. T., and Hanson, R. E.

Shekin, I. M., see Osleeb, J. P., and Shekin, I. M.

Simon, R. B., see Minsch, J. H., Stover, C. W., Person, W. J., and Simon, R. B.

Simon, R. B., see also Stover, C. W., Simon, R. B., Person, W. J., and Minsch, J. H.

268. Simonsen, A. H., and Cuffey, R. J., 1977, Fenestrate and pinnate bryozoans in the Wreford Megacyclothem (Lower Permian; Kansas, Oklahoma, and Nebraska) [abstract]: Geological Society of America Abstracts with Programs, v. 9, p. 652. (Reprinted in Oklahoma Geology Notes, v. 37, p. 61.)

Sleslavskiy, K. B., see Ronov, A. B., Sleslavskiy, K. B., and Khain, V. Y.

Sniegocki, R. T., see Bedinger, M. S., and Sniegocki, R. T.

Sprinkle, James, see Katz, S. G., and Sprinkle, James

Stone, C. G., see Gordon, Mackenzie, Jr., and Stone, C. G.

294. Strimple, H. L., see also Kolata, D. R., Strimple, H. L., and Levorson, C. O. Strimple, H. L., see also Pabian, R. K., and Strimple, H. L.

295. Strimple, H. L., see also Warn, J., and Strimple, H. L.

296. Suhm, Raymond, 1977, Joins–Oil Creek outcrops of the Simpson Group (Middle Ordovician), Beach and Baylor Mountains, Culberson County, Texas [abstract]: Geological Society of America Abstracts with Programs, v. 9, p. 75–76.

Sutherland, P. K., see Grayson, R. C., Jr., and Sutherland, P. K.

Sutherland, P. K., see also Henry, T. W., and Sutherland P. K.

Swafford, B. G., see Cole, E. L., Bartolina, D. G., and Swafford, B. G.

Swafford, B. G., see also Fisher, C. F., and Swafford, Bill

Swafford, B. G., see also Polone, D. J., Newland, C. T., and Swafford, B. G.

Tenery, J. H., see Scott, R. W., Root, S. A., Tenery, J. H., and Nestell, M.

Tranham, J. C., see Kleinschmidt, R. F., Tranham, J. C., Boneau, D. F., and Patterson, H. L.

Tucker, C. W., see Roy, M. B., Tucker, C. W., and Lakey, C. J.

Viele, G. W., see Keller, W. D., Viele, G. W., and Johnson, C. H.

Wall, L. J., see Clark, N. E., and Wall, L. J.

Walker, C. J., see Thomas, R. D., Walker, C. J., and Burch, F. W.

Warmath, A. T., see Tehan, R. E., and Warmath, A. T.

Watts, K. R., see Kent, D. C., Watts, K. R., and Lanzford, Bryan

Whipple, A. P., see Galloway, W. E., Marshall, S. Y., and Whipple, A. P.

Williamson, E. A., see Davies, D. K., and Williamson, E. A.

323. Wilson, J. L., 1977, Carbonate facies in geologic history: Springer-Verlag, New York, 471 p., illus., 30 pls. (Includes numerous Oklahoma examples.)

Wright, W. B., see Cohee, G. V., and Wright, W. B.
Wyant, I. A., see Sneider, R. M., Richardson, F. H., Paynter, D. D., Eddy, R. E., and Wyant, I. A.

Zick, Alan, see Waugh, Richard, and Zick, Alan

INDEX
(Numbers refer to entries in bibliography)

AGE DATING
hydrocarbon assemblages, dating of, 326
isotopic, Ouachita foldbelt, 63
potassium/argon, Ouachita foldbelt, 64, 330
rubidium/strontium: Havensville Shale, 45; Ouachita alkalic subsurface rocks, 330; Ouachita tectonics, 64

ANADARKO BASIN
deep wells, 16, 141, 162, 195, 219, 238, 278
iodine, 55
petroleum and natural gas, 16, 34, 54, 65, 141, 162, 195, 219, 238, 266, 273, 278, 318
sedimentology, 8, 54, 88, 273, 278, 318, 328
seismic study, 88

ARROYO BASIN
stratigraphy, 88, 327
structure and tectonics, 8, 37, 54, 88, 126, 187, 212, 276, 312, 313, 318, 327, 328
Washita River—Meers Valley—Mountian View fault, 126

ARBOLACL MOUNTAINS:
algae mounds, 323
Blue River fault, 188
Bromide Formation, 30, 57, 118, 146, 166, 180, 181, 182, 259, 275, 299, 314
Clara fault, 188
conodonts, 259
Dougherty anticline, 145
Eocambrian rocks, 251
Franks fault zone, 188
gem morphology, 98
graptoles, 19
Mill Creek fault and syncline, 187, 188, 189
mineral production, 143
Oil Creek Formation, 57, 146, 178, 259, 294, 299
Precambrian geology, 161
Reagan fault, 188, 189
sedimentology, 37, 178, 180, 259, 294, 318, 323
Simpson outcrops, Texas, 294
source of Permian San Angelo deposits, Texas, 270
stratigraphy, 188
structure and tectonics, 2, 37, 143, 144, 145, 146, 147, 149, 161, 180, 181, 187, 188, 189, 251, 276, 313, 318
Sulphur fault and syncline, 188
trilobites, 36, 259
Washita Valley fault and syncline, 188

ARMORE BASIN:
Golf Course Formation, conodonts, 101
Lake Murray Formation, conodonts, 101
petroleum, 318
seismic activity, 190
structure, 187, 190, 276, 318

ARKOMA BASIN:
Arbuckle facies, 28, 29
Atoka Formation, 9, 28, 29
Booie sand, 54
gas fields, 65
sedimentology, 8, 28, 29, 40, 54, 60
seismic activity, 190
structure and tectonics, 8, 9, 28, 29, 37, 60, 160, 190
trace fossils, 40
bibliographies: Oklahoma geology, 1976, 114; Paleozoic crinoids, 317; remote sensing, 168; sandstone reservoirs, 173

CAMBRIAN:
Arbuckle Group, 37, 38, 90, 118, 188, 189, 280, 326; Buttery Formation, 37, 280;
Fort Sill Formation, 37, 118, 280; Honey Creek Formation, 37, 118, 280; Reagan Formation, 37, 118, 251, 280; Roper Formation, 37, 118, 280; Signal Mountain Formation, 37, 118, 280
Cambrian-Ordovician boundary, 280
Carlton Rhylolite Group, 118, 236, 251
Mount Sheridan Gabbro, 236
Navajo Mountain Group, 251
Ouachita eugensyncline, 247
Quanah Granite, 1, 3
Raggedy Mountain Gabbro Group, 118, 236
Saratoga zone, 280
Sawkill zone, 280
Teewicquahau zone, 280
Tillman Group, 251
Timbered Hills Group, 118, 188, 280: Honey Creek Formation, 118, 280; Reagan Sandstone, 118, 280
Wichita Complex, Wichita Granite Group, 118, 236, 251

Carboniferous, see also Mississippian and Pennsylvanian;
- correlation chart for Oklahoma and Kansas, 99
- Ouachita Mountains, ammonoid-zone correlation, 100
- stratigraphy: general, 297, 298; Tri-State district, 108
- Tri-State district, lead-zinc ores, 108
- clays: role in formation of microspar, Bromide Formation, 182; see also Mineral Industries: Commodities
- Clinton quadrangle, radiometric and magnetic survey, 91
- Coal:
 - coal beds: Baldwin coal, 171, 329; Bluejacket coal, 103; Boggy Formation coal beds, 83, 103; Bucot coal, 9; Cavanal coal, 85, 198; Crowebug coal, 4, 81, 85, 198; Dawson coal, 85; Drywood coal, 103, 198; Fleming coal, 81; general, 84, 230; Hartshorne coal, 5, 9, 85, 198, 215, 218; Iron Post coal, 4, 81, 85; Leigh coal, 9; Lower Wittewell coal, 85; McAlester Formation coal beds, 83, 85, 103; Mineral coal, 81, 85; Neutral coal, 103; Rowe coal, 85, 198, 218; Savanna Formation coal beds, 83, 103; Secor coal, 85, 198, 218; Seminole coals, 4; Senora Formation coals, 81, 83; Stigler coal, 85, 198; Tebo coal, 4; Weir-Pittsburg coal, 81, 85
 - coking coal, 56, 82
 - gasification, 83
 - kerogen analyses, 117
 - mine disasters, 230
 - mined-land reclamation, 148, 230
 - mining operations, 11, 84, 204
 - Muskogee County, general, 218
 - Oklahoma Geological Survey programs, 197
 - origin, alteration of organic matter, 5
 - producers, 12, 84, 204, 230
 - reserves and resources, 81, 82, 83, 84, 85, 103, 148, 198, 215, 320
 - statistics, 10, 11, 12, 56, 82, 84, 85, 148, 230, 308, 309, 320
 - sulfur content, 84
 - technology, 84, 85, 230, 320
 - transportation, 12, 320
 - underclays, 198

Copper:
- Creta deposit, 91, 92, 93, 270
- Mangum deposit, 91, 92, 93
- Meadows copper shale, 89, 92
- mineralization, 89, 91, 92, 93, 122, 123, 270
- Prewitt copper shale, 89, 92
- statistics, 11, 12, 148, 230, 309

Counties:
- all counties: hydrologic units, 311; mineral production, 12, 230; Oklahoma earthquakes, 172; petroleum and natural gas statistics, 13, 136, 244, 300; surface-water-quality data, 285
- all western counties, ground-water levels, 96, 97
- Adair: Atoka Formation, 152; crinoids, 288; microfauna, 217; Trace Creek Shale, 102

Alfalfa: Mississippi trend, enhanced recovery, 115; soil survey, 322; Wakita trend, 54
Atoka: Arkansas Novaculite, 156; Boswell Reservoir, 133; coal, 85
Beaver: fossil wood, 199
Beckham: copper, 122; deep wells, 195, 219, 300; Elk City field, 272, 273; Hunton production, 141; Morrow sands, 34; petroleum and natural gas, general, 300; South Erick gas area, 2; stratigraphy, 327, 328; structure, 327, 328
Blaine: copper, 122; gypsum plant, 240; Mississippi trend, enhanced recovery, 115
Bryan: Bokchito Formation, 134; Boswell Reservoir, 133
Caddo: deep wells, 195; East Binger field, 124; East Cement field, 2
Canadian: seismic stratigraphic study, 88; soil survey, 74
Carters: Arbuckle Mountains, 144; Sholom Alchem field, 46
Cimarron: Atoka Formation, 152; blastoids, 129; crinoids, 288, 289; Morrow-Atokan unconformity, 102
Choctaw: Bokchito Formation, 134; Boswell and Hugo Reservoirs, 133
Cimarron: Cretaceous chalk analyses, 255; Upper Cretaceous rocks, 154, 255
Cleveland: fossil amphibian, 107; geomorphology, 110; road-bank erosion, 110
Coal: Atoka Formation, 9; coal, 85
Comanche: amphiphan, 21; copper, 122; uranium in sandstone lenses, 2; Wichita Complex, 236
Cotton: copper, 122; radioactive deposits, 2
Craig: Atoka Formation, 152; coal, 81, 84, 85, 320; crinoids, 287, 288
Creek: coal, 85; Shoestring field, 54; Tuskegee field, 54; Vamoosa aquifer, 67
Custer: deep wells, 195; structure and stratigraphy, 327, 328
Garfield: copper, 122; Mississippi trend, enhanced recovery, 115
Garvin: copper, 122
Grady: Cox City, radioactive anomalies, 2
Grant: copper, 122; Wakita trend, 54
Greer: copper, 122; South Erick gas area, 2
Haskell: coal, 56, 84, 85, 320; coking coal, 56
Jackson: copper, 122
Jefferson: copper, 122; radioactive sandstones, 2
Johnston: soil survey, 31
Kay: Burbank field, 54
Kingfisher: Mississippi trend, enhanced recovery, 115; vertebrate fossils, 26
Kiowa: Wichita Complex, 236
Latimer: coal, 84, 85
LeFlore: coal, 56, 83, 84, 85, 320; coking coal, 56; waste-treatment program, 192; Wildhorse Mountain Formation, 183
Lincoln: petroleum exploration, 220; Vamoosa aquifer, 67
Logan: East Guthrie field extension, 221; Garber-Wellington aquifer, 39
Love: Bokchito Formation, 134
McClain: copper, 122
McMurray: Arkansas Novaculite, 156, 204, 260; conodonts, 243; ostracodes, 119; soil survey, 239
McIntosh: coal, 85, paleyonyx, 324
Major: Cheyenne Valley field, 54; Mississippi trend, enhanced recovery, 115
Marshall: Bokchito Formation, 134
Mayes: Atoka Formation, 152; coal, 81, 84, 85; crinoids, 288; soil survey, 235
Murray: Arbuckle Mountains, 145, 146, 147, 149
Muskegee: Atoka Formation, 152; blastoids, 129; coal, 84, 85, 320; crinoids, 287, 288, 291, 292; geology, general, 218; microfauna, 217; mineral resources, 218; Morrow-Atokan unconformity, 102; Morrowan bioherms, 24
Noble: "Cherokees" Group, subsurface, 42, 43; copper, 122, 123; Northeast Lucien field, 155
Nowata: coal, 81, 84, 85, 320; Delaware Extension field, 54
Okfuskee: coal, 85; Olympic field, 54; Vamoosa aquifer, 67

[151] 361 [152]
Oklahoma: Garber-Wellington aquifer, 39; Oklahoma City field, 283, 316, 318
Okmulgee: coal, 84, 85, 320
Osage: Birch Creek valley, 112; Burzbank fields, 23, 54; North Stanley field, 70, 142, 158, 159; Vamosa aquifer, 67
Ottawa: lead-zinc ores, Picher field, 108; zinc-mine-water study, 233
Pawnee: copper, 122, 123; Harvansville Shale, Rb/Sr study, 45; Shoestring field, 54; uranium in sandstone lenses, 2; Vamosa aquifer, 67
Pawnee: "Cherokee" Group, subsurface, 42, 43, 262, 263; copper, 122, 123; Vamosa aquifer, 67
Pittsburg: coal, 56, 84, 85, 320; coking coal, 56; South Pine Hollow field, 54
Pontotoc: Atoka Formation, 9; crinoids, 290
Pottawatomie: soil survey, 201; Vamosa aquifer, 67
Roger Mills: Morrow sands, 34; natural gas development, 25; structure and stratigraphy, 327, 328
Rogers: coal, 56, 81, 83, 84, 85, 103, 320; coking coal, 56; kerogen sample analysis, 117
Seminole: Vamosa aquifer, 67
Sequoyah: Atoka Formation, 153; coal, 85; Morrow-Atoka unconformity, 102; waste-treatment program, 192
Stephens: Sholom Alchem field, 46
Tillman: fossil amphibian, 107; radioactive anomalies, 2
Tulsa: coal, 85; fossil fish, 331; Shoestring field, 54; soil survey, 53
Wagoner: Atoka Formation, 152; coal, 84, 85; soil survey, 234
Washington: coal, 85; Coope Reservoir, 113; Little Caney River, 113
Washita: Cordell area, geology, 212; deep wells, 16, 195, 219, 238, 300; Morrow sands, 34; structure and stratigraphy, 327, 328

Cretaceous:
Bennington Formation, 134
Bokchito Formation, 134; Denton Clay Member, 134; McNutt Limestone Member, 134; Pawpaw Sandstone Member, 134; Soper Limestone Member, 134; Weno Clay Member, 134
Caddo Formation, 134
crinoids, 257
Dakota Group, 154, 327
Graneros Shale, 154; Thatcher Limestone Member, 154
Grayson Formation, 134
Greenhorn Formation, 154, 255; Bridge Creek Limestone Member, 154, 255; Hartland Member, 154, 255; Lincoln Member, 154
Kiowa Formation, 327
Marlboro Formation, ostracodes, 119
outliers, Anadarko basin, 328
Ozan Formation, ostracodes, 119
Upper Cretaceous, Cimarron County, 124, 225
data system, petroleum data, 306
Devonian:
Arkansas Novaculite, 28, 29, 78, 156, 160, 185, 194, 264, 265, 303
brachiopods, 176, 177
Chattanooga Formation, 218; black shale member, 218; Sylamore Sandstone Member, 218
Hunt Group, 36, 141, 162, 188, 225, 290; Bois d'Arc Formation, 36; Frisco Formation, 36, 225; Haragan Formation, 36, 290; Turkey Creek Formation, 225
Hunt production, 141, 162
paleoecology, paleogeography, Early Devonian, 36
Woodford Formation, 29, 155, 188
Earthquakes:
El Reno 1952 earthquake, 105, 190, 191
July-September, 1975, 286
map and catalog of, through 1976, 172

October-December, 1975, 205
relation to Nemaha uplift, 190, 191
spatial attenuation, 105

Environmental Geology:
effect of strip mining on fluvial systems, 202
energy-facilities siting, 15
flood-disaster protection, 15, 170
flood-discharge estimates, 305
general, 15, 207
land use: Alfalfa County, 322; Canadian County, 74; effect of water development, 69; general, 15; Johnston County, 31; McCurtain County, 239; Mayes County, 235; Pottawatomie County, 201; regulations, 15, 170, 192; Tulsa County, 53; Wagoner County, 234
mine disasters, 230
mined-land reclamation, 148, 202, 230
Oklahoma Geological Survey programs, 197
road-bank erosion, Cleveland County, 110
soil pollution by oil wastes, 53
soils, see Soils
surface-water management, 15
waste disposal, 192
water laws, 17
water pollution, 86, 138, 192, 202
water quality, see under Hydrology
water-resource planning, 17, 39

Geochemistry:
catagenesis of kerogen, 117
clay-copper mineral relationship, 123
copper mineralization, 89, 91, 92, 93, 122, 123, 270
crude-oil analyses, Oklahoma City field, 283
Fayetteville Shale, 277
geochemical maps, red-bed copper, 123
isotopic Rb/Sr investigations, 45
lead-zinc ores, Tri-State district, 108
microspar formation, Bromide Formation, 182
Permain red beds, sample analyses, 122
petroleum generation, organic-matter alteration, 5
petroleum hydrocarbons: age dating of, 326; carbon-isotope study, 87; pyrolysis analyses, Arbocklum rocks, 37, 38; pyrolysis of kerogen, 117
Quanah Granite, pegmatite dikes, 1
uranium, 1
Vamosa aquifer water, 67
zinc-mine-water analyses, 233
geography: general, 207; Muskogee County, 218

Geomorphology:
Arbocklum Mountains, 98
bar morphology, Red River, 256
Cleveland County, 110
eastern lowlands, 98
fluvial channel patterns, Red River, 256
general, 98, 207
Great Plains, 98
Muskogee County, 218
Osage Plains, 98
Osachita Mountains, 98
Ozark Mountains, 98
Wichita Mountains, 98

Geophysics:
gravity data, Nemaha uplift, 191
magnetic survey: Clinton quadrangle, 91; Lawton quadrangle, 92; Nemaha uplift, 191;
Oklahoma City quadrangle, 93
paleomagnetism in petroleum exploration, 124
radiometric survey: Clinton quadrangle, 91; Lawton quadrangle, 92; Oklahoma City
quadrangle, 93
seismology: Anadarko-basin seismic-stratigraphic model, 88; Ardmore basin, 190;
Arkoma basin, 190; earthquakes, general, 172; earthquakes, recordings, 205, 286;
earthquakes, spatial attenuation, 105; electric logs, 88; Fall Line trend, 139;
frenital Ouachita belt, 139; gamma-ray logs, Permian and Pennsylvanian, 2; gravity
anomalies, southern Oklahoma eugeosyncline, 276; Morrow-Springer geosynclinal model,
50; Nemaha uplift, 139, 190, 191; radioactive anomalies, Permian and Pennsylvanian,
2; recording of train derailment, 242; seismic-exploration statistics, 72; seismic
profiles, Mill Creek syncline, 188; shear waves, Arkansas Novaculite, 78; Wichita-
Amarillo block, 139
Hollis basin: uranium potential, 310

Hydrogeology, Hydrology:
consumption: Black Fox nuclear plant, 104; general, 1970, 214
flood control, 170
hydraulic units, 311
Lawton quadrangle, general, 118
Oklahoma Geological Survey programs, 197
resources: Arkansas-White-Red region, 17; Boswell Reservoir, 133; development of
resources, 321; Garber-Wellington aquifer, 39; general, 138, 207; ground water,
general, 94, 95, 188; ground water, Lawton quadrangle, 118; ground water, Muskogee
County, 218; ground water, western counties, 96, 97; Hugo Reservoir, 133;
Lawton quadrangle, general, 118; Vamoosa aquifer, 67
subsurface waters: Arbuckle-Timbered Hills aquifers, 118; Arkansas River aquifers, 86;
Arkansas-White-Red region, 17; Boone Chert aquifer, 157, 233; development of
resources, 321; Dog Creek-Blaine-Flowerpot aquifers, 118; Garber-Wellington
aquifer, 39; general, 138, 285; ground-water levels, general, 94, 95; ground-water
levels, western counties, 96, 97; Lawton quadrangle, 118; legislation, 321; Red
River aquifers, 86, 118; Rush Springs-Chickasha-Duncan aquifers, 118; Vamoosa
aquifer, 67; zinc-mine water, 233
surface waters: Arkansas River, 17, 44, 86, 135, 218; Arkansas-White-Red region, 17;
Birch Creek, 112; Boswell Reservoir, 133; Canadian River, 44, 110; Cimarron River,
44; Copan Reservoir, 113; Fall Creek, 44; flood discharge, 305; general, 94, 138, 207;
Greenleaf Lake, 218; Hilliby Creek basin, 67; Hugo Reservoir, 133; Keystone
Reservoir, 69; Kiarcirn River, 44; Lake Altus, 118; Lake Ellsworth, 118; Lake
Lawtonka, 118; Lawton quadrangle, 118; Little Caney River, 113; Little River,
110; Muskogee County, 218; Neosho River, 44, 218; Pine Creek Reservoir, 69;
Polecat Creek basin, 67; Red River, 17, 86, 118, 175, 256; Rock Creek, 44; Spencer
Creek basin, 202; surface-water management, 15; use of surface water by nuclear
plants, 105; Verdeigris River, 44, 104, 218; Washita River, 44
technology: flood-discharge estimating techniques, 305
water quality: Arkansas River, 17, 86; Arkansas-White-Red region, 17; Boone Chert
aquifer, 157; effect of strip mining, 202; Garber-Wellington aquifer, 39; general,
138, 285; index of data, 285; Lawton quadrangle, 118; LeFlore and Sequoyah
Counties, waste treatment, 192; pollution, 86, 138, 192, 202; Red River, 17, 86;
Vamoosa aquifer, 67; zinc-mine water, 233

Paleozoic conoids, 317
surface-water-quality data, 285
Lawton quadrangle: hydrology, general, 118; radiometric and magnetic survey, 92; surface
geology map, 118
McAlester basin: gas-producing sands, 54
mapping: status of geologic mapping, 310
Maps:
coal mines, eastern Oklahoma, 84
earthquakes through 1976, 172
hydrologic-unit map of Oklahoma, 311
Lawton quadrangle, aquifer map, geologic map, water-quality map, 118
stratigraphic atlas, 260
Marietta basin: petroleum, 318; sedimentation, 318; structure, 318
memorials: Hugh D. Miser, 282, 304; John A. E. F. Norden, 131, 132

Mineral Industries:
commodities: ammonia, 76; bentonite, 148, 230; cadmium, 63; carbon black, 12, 79;
cement, 10, 11, 12, 148, 237, 309; clay and shale, 6, 10, 11, 12, 148, 218, 230, 308;
coil, see Coal; copper, 11, 12, 89, 91, 92, 123, 125, 148, 230, 270, 309; crushed
stone and aggregate, 11, 143; general, 148, 207; germanium, 109; granite, 11, 148,
230; gypsum, 10, 11, 12, 148, 230, 240, 308, 309; helium, 10, 11, 12, 48, 308;
iodine, 12, 55; lead and zinc, 11, 35, 108, 148, 230, 253, 308; lime, 308; nitrogen,
ammonia plant, 76; petroleum and natural gas, see Petroleum and Natural Gas;
pumice, 304, 309; salt, 11, 12, 77, 308, 309; sand and gravel, 10, 11, 12, 201, 218,
230, 231, 308; silica sand, 11, 148; silver, 148, 309; stone, 10, 11, 12, 143, 148, 218,
230, 241, 308; sulfur, 12, 261; thorium, 271; tripod, 12, 47, 148, 230, 309; under-
classes, 198; uranium, 1, 2, 91, 92, 93, 151, 310; vermiculite, 269; volcanic ash,
10, 12, 148
producers, 12, 48, 63, 109, 230, 240
regulations, 230
statistics, 6, 10, 12, 47, 48, 56, 77, 79, 148, 151, 230, 231, 237, 240, 241, 261, 308,
309, 320
technology: ammonia plants, 76; brick manufacture, 11; cadmium processing, 63; electro-
lytic zinc plant, Bartlesville, 35; helium plant, 48; thorium processing plant, 271;
vermiculite exfoliating plant, 269
transportation, 12

Mississippian:
ammonoid zones, 99, 100
Arkansas Novaculite, 28, 29, 78, 156, 160, 185, 194, 264, 265, 303
Batesville Sandstone, 127, 254
Beavers Bend tuff, 216
Buck Creek formation, 108, 233, 323
bryozoa, 128
Caney Formation, Caney Shale, 29, 188, 303
channel fan sequence, reservoirs, 173
Chickasaw Creek Formation, Chickasaw Creek tuff, 64, 194, 216
correlation chart for Oklahoma and Kansas, 99
Creek Valley Shale, 27, 129, 218, 254, 274, 277, 287, 288, 297; Wedington Sandstone
Member, 254
Hatton tuff, 64, 216
Hindsdale Limestone, 127, 218, 288, 289
Imo Formation, 27, 254, 274, 288
Jackfork Group, 28, 29, 40, 173, 194, 206, 209, 210, 211, 303; Wildhorse Mountain
Formation, 28
Johns Valley Formation, 28, 29, 40, 194, 303
lead-zinc ores, 108
Misener Sandstone, 54
Mississippian-Pennsylvanian boundary, 254, 297, 298
Moorefield Formation, 41, 100, 127, 218, 254; Bayou Menard Member, 218; Ordnance Plant Member, 218; Ruddell Shale Member, 254; Spring Creek Member, 41, 254
Moyers Formation, 29, 194
Mud Creek tuffs, 64, 216
oil recovery, 115
Pitkin Limestone, 27, 125, 129, 217, 218, 254, 287, 288, 289, 292, 296, 297, 301
Springer Formtion, 188
Stanley Group, Stanley Shale, 28, 29, 40, 64, 194, 206, 210, 211, 216, 303
Tennille Creek Formation, 28, 29, 194, 216
tuffs, 28, 64, 194, 216
Woodford Formation, 29

Nemaha Ridge, Nemaha Uplift:
relation to earthquakes, 190, 191
relation to major lineaments, 126
seismology, 139, 190, 191
structure, 126, 139, 190, 191, 283, 323
U.S. Nuclear Regulatory Commission study, 190, 191
nuclear energy: Black Fox plant, water consumption, 104
Oklahoma City quadrangle, radiometric and magnetic survey, 93

Oklahoma Geological Survey:
annual report, July 1, 1976–June 30, 1977, 197
canal programs, 83, 197
environmental geology programs, 197
hydrology programs, 197
petroleum and natural gas programs, 197

Ordovician
Arkabuckie Group, 37, 38, 90, 118, 146, 149, 188, 193, 249, 280, 284, 299, 326:
Butterfly Formation, 37, 280; Cool Creek Formation, 37, 118; Kinkaid Formation, 37, 118, 146, 149; McKenzie Hill Formation, 37, 118; Signal Mountain Formation, 37, 280; West Spring Creek Formation, 37, 118, 146, 149, 299
Bigfork Chert, Bigfork Formation, 29, 64, 157, 160, 194, 243, 303
Blakely Formation, 29, 62, 64, 160, 194, 243, 281, 303
Blaylock Formation, 29, 64, 194
Bromide Formation, 30, 57, 118, 146, 166, 180, 181, 182, 259, 275, 299, 314: Corbin Ranch Member, 57, 299; Poolville Member, 57, 275, 299; Mountain Lake Member, 57, 275, 299
cephalopods, 75
Chimneyhill Formation, 232, 299; Keel Limestone Member, 232, 299
Collier Formation, 29, 64, 160, 194, 243, 303
conodont zonation, 169, 179, 294, 299
Crystal Mountain Formation, 29, 62, 64, 160, 194, 243, 303
calcareous Middle Ordovician stratigraphy, 57
echinoderm zonation, 275
Ferarvale Limestone, 218, 299
graptolites, 19, 71, 243
Lukfeta Formation, 64, 194, 243
McLish Formation, 57, 75, 146, 259, 299
Mazaar Formation, 29, 64, 160, 194, 243, 303
Mississippian zone, 280
Missouri Mountain Formation, 29, 160, 194
Ouachita facies, 249
paleogeography, 19, 178, 179, 180, 181, 259
Pulv Creek Formation, 29, 160, 194, 303
Simpson Group, 19, 57, 146, 155, 178, 179, 188, 200, 249, 259, 294, 299, 326: James
Formation, 19, 57, 146, 179, 259, 294, 299; Marshall Sandstone, 155; Oil Creek Formation, 57, 146, 178, 259, 294, 299
Sylvan Shale 188, 218, 299, 322
Symphyurus zone, 280
Tulip Creek Formation, 57, 146, 259, 299
Viola Limestone, 57, 71, 75, 118, 130, 188, 299, 335
Wombly Formation, 29, 160, 194, 243, 303
Ouachita Mountains (includes Ouachita basin, Ouachita foldbelt, Ouachita geosyncline, Ouachita orogenic belt, Ouachita trend): alkaline, surface rocks, 29, 303
ammonoid zones, 100
Arkabuckie facies, 29, 249
arkose erratics, Blakely Sandstone, 281
Benton-Broken Bow uplift, 64, 243, 246, 315
Black Knob Ridge, 157
Cambrian rocks, associations, 247
Choctaw fault, 29, 160, 218
conodonts, 101, 243
flysch facies, 28, 29, 40, 60, 62, 100, 209, 210, 211, 249, 303, 304
geochronology, 98
hydrocarbon potential, 208, 258
igneous intrusions, chronology, 64
metamorphism: chronology, 64; thermal metamorphism, Arkansas Novaculite, 156
Mississippian tuffs, 28, 64, 216
Ouachita-Marathon thrust belt, 73
Pine Mountain fault, 160
Potato Hills, 157
relation to Appalachians, 304
relation to Black Warrior basin, 203
relation to continental margin and craton, 303
relation to Marathon region, 160, 194
sediology, 28, 29, 40, 60, 62, 100, 160, 183, 184, 185, 186, 194, 206, 208, 209, 210, 211, 216, 218, 258, 258, 265, 282, 295, 303, 304, 318
source of lead-zinc mineralization fluids, 258
stratigraphy, 28, 29, 40, 100, 101, 194, 216, 243, 249, 294, 282, 303, 304
structure and tectonics, 28, 29, 32, 33, 37, 60, 64, 73, 100, 126, 139, 160, 189, 194, 203, 208, 218, 243, 246, 249, 251, 282, 303, 304, 312, 313, 315, 318, 330

Tir Valley fault, 160
trace fossils, 60
volcanism, 194
Windingstair fault, 29, 160
Ozark Mountains: Fayetteville Shale, geochemistry, 277; geochronology, 98; Precambrian geology, 161; structure, 161, 218

Paleobotany:
algae, 27, 277
algae, mucilage, 323
cycads, 196
Hartshorne Formation, 28
Robbinia wood, 199
Stanley Shale, 100

Paleoecology, Paleoenvironments, Paleoecology:
Atoka Formation, 9, 152
Bromide Formation, 180, 181, 275
Cambrian, 280
Carboniferous, Ouachita Mountains, 100
Chesterian, 274
Desmoinesian and Missourian, Tulsa area, 4
Early Devonian, 36
Jackfork Group, 208, 209, 210
lower Paleozoic, 62
Missourian, 154, 274, 296
Oil Creek Formation, 178
Ordovician, 19, 71, 178, 179, 180, 181, 249, 259, 280
Permian: brackish waters, 279; Post Oak Formation, 284
pre-Desmoinesian: Noble County, 43; Payne County, 262
Sauksee Formation, bioherms, 24
Silurian and Devonian, coral biogeography, 225
Upper Cretaceous, Cimarron County, 154
Upper Pennsylvanian, 228, 323
Wichita Mountains, 284
Wreford Megacyclothem, 58, 267, 268

Paleozoic:
acritarchs, index, 66
barnacle borings, 245
crinoids, bibliography and index, 317
cycads, 196
folded strata, Arbuckle Mountains, 145
lower Paleozoic environments, 62
stratigraphy, southern Oklahoma, 187, 188
tectonics, 73, 313

Paleontology:
ammonoids, 99, 100, 254, 292
arthropods, 127
barnacles, 58, 245
blastoids, 129, 153, 293
brachiopods, 57, 125, 127, 130, 176, 177
bryozoans, 58, 127, 128, 267, 268
burrows, 127
carpoids, 166
cephalopods, 75, 292
carbonates, 100, 101, 102, 127, 152, 169, 171, 179, 243, 259, 294, 295, 299
corals, 127, 225, 252
crinoids, 14, 30, 80, 228, 229, 257, 287, 288, 289, 290, 291, 292, 314, 317
dimorphism, trilobites, 36
early Late Silurian biofacies, 7
echinoderms, 127, 275
foraminifers, 9, 27, 100, 127
tuolinites, 9
general: Ardmore area, 140; Chesterian, 127; Oil Creek Formation, 178; Ordovician, 19, 57, 249; Upper Cretaceous, Cimarron County, 154
grapolites, 19, 71, 243
microfauna, general, Chesterian and Morrowan, 217
molluscs, 127, 232
ostracodes, 119, 164, 274
Pterocephaliid biomere, 280
Ptychaspis biomere, 280
radiolarians, 127
sponges, 295
trace fossils, 40, 60, 152
trilobites, 36, 41, 259, 280
vertebrates, 18, 21, 22, 26, 107, 127, 154, 226, 331

Worms, 127

Palynology:
basal Permian, Texas, 106
color alteration of spores, 5
Holocene, 112, 113, 224
Paleozoic acritarchs, index, 66
Pennsylvanian, Texas, 106
Pennsylvanian-Permian boundary, 51
pollens: Birch Creek valley, 112; Little Caney River valley, 113

Pennsylvania:
ammonoid zones, 99, 100
Atokan Series: Atoka Formation, 9, 28, 29, 40, 54, 61, 101, 102, 152, 164, 186, 188, 194, 218, 295, 296, 297, 301; blastoid, 293
channel sands, reservoirs, 173
correlation chart for Pennsylvania and Missippian, 99
coal beds, see Coal

Desmoinesian:
Altamont Limestone, 4
Atoka Formation, see Atoka Series
Bandera Shale, 4
Boggy Formation, 2, 54, 83, 103, 120, 194, 218, 221, 262, 263, 302; Bluejacket-Bartlesville Sandstone Member, 2, 54, 103, 120, 218, 221, 262, 302; Creola Sandstone Member, 218; Inola Limestone Member, 218, 262, 263
Brown limestone, 262
Booche coal, 9
Cabanez Group, 4, 20, 42, 43, 81, 83, 85, 198, 218, 262, 263; Chelsea coal, 4; Croweburg coal, 4, 81, 85, 198; Excello Shale, 4, 121; Iron Post coal, 4, 81, 85; Prue sands, 4, 42, 43, 262; Senora Formation, Senora coals, 4, 20, 81, 83, 218; Skinner sands, 4, 42, 43, 262, 263; Tebo coal, 4; Verdigris Limestone, 4, 262
Calvin Formation, 20, 218
Cavalon coal, 85, 198
"Cherokee" Group, "Cherokee" sands, 2, 42, 43, 54, 262, 263, 283
Deese Formation, 326
Drywood coal, 103, 198
Fleming coal, 81
Fort Scott Limestone, 4
Hartshorne Formation, 5, 9, 20, 28, 83, 85, 194, 198, 215, 218; Cameron-Lequire Member, 218; Keota Sandstone Member, 218; McCurtain Shale Member, 218; Tamaha Sandstone Member, 218; Warner Sandstone Member, 218
Holdenville Formation, 4
Krebs Group, 9, 29
Labette Shale, 4
Leigh coal, 9
Lower Witteville coal, 85
McAlester Formation, 9, 83, 85, 103, 194, 218
Marmaton Group, 4, 42, 43, 218
 Mineral coal, 81, 85
Neutral coal, 103
Nowata Shale, 4
Oologah Formation, 331
Oswego Limestone, 42, 43, 262
Peru sands, 4
Pink limestone, 262, 263
Red Fork Sandstone, 42, 43, 54, 262, 263
Rowe coal, 85, 103, 198, 218
Savanna Formation, 83, 103, 194, 218; Doneley Limestone Member, 218; Sam
Creek Limestone Member, 218; Spaniard Limestone Member, 218; Spiro Sandstone Member, 40, 54, 218, 325
Secor coal, 85, 198, 218
Stigler coal, 85, 198, 218
Sudor Shale, 218
Weir-Pittsburgh coal, 81, 85
Wewoka Formation, 4
Gearyan Series: Harrington Formation, 226; Oscar Formation; Oscar Group, 118, 226; palynology, 51, 106
Missourian Series: Belle City Limestone, 88; black shale deposition, 121; Checkerboard Limestone, 4; Cleveland sand, 4; Coffeyville Formation, 4, 331; Dawson coal, 85; Hassell Limestone, 88; Hogshooter Limestone, 4; Hoxbar Group, 88, 326; Layton sand, 4; Lost City Limestone, 4; Marchand sand, 124; Nellie Bly Formation, 4; Seminole Formation, 4; Shell Creek Sandstone, 4; Skiatook Group, 4, 85, 331; Stark Shale, 4; Tonkawa Limestone, 88; Wann Formation, 227; Winterset Limestone, 4
Morrowan Series:
algae, 167
Atoka Formation, see Atokan Series
bioherms, 24
Bloyd Formation, 102, 125, 129, 153, 164, 171, 217, 218, 228, 254, 274, 288, 291, 295, 296, 297, 329; Baldwin coal, 171, 329; Brentwood Limestone Member, 125, 129, 153, 164, 171, 217, 228, 274, 296, 297, 329; Dye Shale Member, 102, 125, 153, 164, 171, 217, 254, 296, 297, 329; Kessler Limestone Member, 102, 125, 153, 164, 171, 217, 254, 296, 297, 329; Trace Creek Shale Member, 102, 125, 164, 171, 217, 254, 296, 297, 329; Woolsey Member, 153, 171, 217, 254, 296, 297, 329
bryozoans, 128
condomint faunas, 101
corals, 252
Golf Course Formation, 101
Hale Formation, 27, 125, 129, 153, 164, 171, 217, 218, 254, 274, 296, 297: Cane Hill Member, 125, 153, 164, 171, 217, 254, 274, 296, 297; Prairie Grove Member, 125, 153, 164, 171, 217, 254, 296, 297
Jackfork Formation, Jackfork Group, 28, 29, 183, 184, 186, 194, 209, 210, 211, 303; Chickasaw Creek Formation, 29, 194; Game Refuge Formation, 29, 194; Markham Mill Formation, 29, 194; Prairie Mountain Formation, 29, 194; Wesley Formation, 29, 194; Wildhorse Mountain Formation, 28, 29, 183, 194
Johns Valley Formation, 28, 29, 194, 295, 303
Lake Murray Formation, 101
McCullough Formation, 102, 125, 153, 171, 217, 254, 296, 297: Chirum Quarry Member, 102, 125, 153, 171, 217, 254, 296, 297; Greenleaf Lake Member, 102, 125, 153, 171, 217, 254, 296, 297; Shall "A" Member, 102, 125, 153, 171, 217, 254, 296, 297; Shall "B" Member, 102, 125, 153, 171, 217, 296, 297
Mayes Formation, 303
Morrow sand, 25, 34, 50, 64, 266
Morrocan-Atokan: arkose, 2; boundary, 101, 102, 152, 153
Samson Formation, 24, 125, 153, 171, 172, 296, 297; Brewer Bend Sandstone Member, 125, 153, 171, 217, 296, 297; Bragg Member, 24, 125, 153, 171, 217, 296, 297
Springer Formation, 29, 50, 188, 194, 266, 303
Stanley Shale, 64, 303
Wapanucka Formation, 9, 29, 40, 54, 101, 153, 164, 188, 194, 295, 303
Wint Springs Formation, 27
Pennsylvanian-Mississippian boundary, 254, 297, 298
Pennsylvanian-Pennsylvanian boundary, 51, 226
rare earths, 59
reservoirs, Elk City field, 273
sandstones, porosity, 200
uranium in sandstones, 2
Virgilian Series: blastoid, 293; Pontotoc Formation, 61; Vamoosa Formation, 67; Vannos Formation, 2
Permian:
Adimine Group, 122, 196
arkose, 2
Blaine Formation, 118, 323
Chickasaw Formation, 2, 20, 270
Cloud Chief Formation, 2, 118, 212, 327, 328; Moccasin Creek Gypsum Member, 2, 118
copper, 89, 91, 92, 93, 122, 123, 270
Creta copper deposit, 91, 92, 93, 270
cycads, 196
Dog Creek Shale, 118, 212, 226
Doylesville Shale, 122
Dowley Formation, 2, 212, 327, 328
Duncan Sandstone, 2
Elk City Sandstone, 327, 328
El Reno Group, 2, 20, 26, 89, 91, 118, 226, 270, 323
Enterprise Shale, 122
Eskridge Shale, 122
Faulkner Formation, 26, 89, 91, 118, 270
Foot Sill fissure fills, 21
Garber Sandstone, 2, 118
Garrison Shale, 122
Gearyan Series, palynology, 51, 106
Havensville Shale, 45
Hennessey Group, Hennessey Shale, 2, 39, 107, 118
Hughes Creek Shale, 122
Johnson Shale, 122
Mangum copper deposit, 91
Marlow Formation, 20, 118, 212, 226; Verden Sandstone Member, 20
Mattfield Shale, 122
Meadows copper shale, 89
Pennsylvanian-Permian boundary, 51, 226
Pontotoc Formation, 61
Post Oak Conglomerate, 2, 118, 284
Prewitt copper shale, 89
rare earths, 59
Rush Creek Formation, 226
Rush Springs Formation, 2, 20, 118, 212
salt deposits, 780
San Angelo Sandstone, 118
sandstones, porosity, 200
Sumner Group, 2, 106, 118, 122, 226
uranium, 2, 91, 92, 310
vertebrates, 18, 21, 22, 26, 107
Weatherford Dolomite, 212
Wellington Formation, 2, 106, 118, 122, 226
Whitehorse Group, 2, 20, 118, 212, 226
Whole Group, Uranium potential, 310
Wesfer Megacystophorum, 58, 267, 268
Petrography and Petrology:
augenetic clays, 325
crystalline silica in mudrocks, 20
Post Oak Formation, 284
river-bank muds and sands, Recent, 44
Stanley-Jackfork sandstones, 210

Petroleum and Natural Gas:
abnormal pressures, 16, 25, 34, 65, 238
accumulation, entrapment, migration, and reservoirs: Anadarko basin, 65, 141, 218;
aqueous solubility, 16; Arbuckle Group rocks, 37, 38, 90, 193, 195; association with uranium occurrences, 2; Bromide Formation, 180, 181; "Cherokee" sands, Noble County, 43; Cimarron County chalks, 255; effect of authigenic clays, 325; Hunton zone, 141; Northeast Lucien field, 155; Oklahoma City field, 283, 316, 318; Ouachita geosyncline, 258; Payne County, 262, 263; Pennsylvanian reservoirs, 273; sandstone reservoirs, general, 173, 174; southern Oklahoma oulouganec, 318; Stanley and Jack-
fork sands, 211
ages of hydrocarbons, 326
Anadarko basin, see Anadarko Basin
Arbuckle Group oils, 37, 38
composition of petroleum, 37
deep wells, 11, 16, 141, 159, 162, 195, 219, 238, 278, 300
enhanced recovery: carbon dioxide flooding, 222; Elk City field, 272; fluid injections, 222; fracturing, 115, 222; Morrow-Springer sandstone stimulation, 266; polymer
waterflooding, Delaware-Childers field, 302; polymer waterflooding, North Stanley field, 70, 142, 158, 159; production from stripper wells, 137; surfactant flooding, North Burbank field, 23, 163; waterflooding, 213, 250, 307
exploration and development: Anadarko basin, 141, 162, 195, 219; Arbuckle develop-
ment, 141, 162, 195; Barilesville sand development, 221; Beckham County, 195;
East Binger field, paleomagnetism, 124; general, 10, 12, 13, 117, 244, 300; Hoxton
production, 141, 162; Lincoln County, 220; Morrow sands, general, 34; Morrow-
Springer sands, 50, 162; natural gas, general, 165; Ouachita area, 208; relation of
calx diagenesis, 255; Reydon field, Morrow sands, 25; Shalam Alchem field, 46;
use of carbon isotopes, 87
fields, pools, and districts: Agra field, 220; Aledo field, 141, 195; all fields, 10, 12, 136; all
new fields, 13; Burbank fields, 23, 54, 163, 307; Butcher field, 263; Cheyenne Vale-
ley field, 54; Cox City field, 2; Delaware-Childers field, 302; Delaware extension,
54; East Cement field, 2, 87; East Guthrie field, 221; East Tuskegee field, 54; Elk
City field, 195, 272, 273, 318; Enid field, 115; Fitis pool, 318; Golden
Trend, 318; Hawkings field, 54; Healdton field, 37, 318, 326; Hewitt pool, 326;
Hoover field, 37; Hugoton field, 48, 318, 326; Keys field, 48; Kinta field, 54; Loco
field, 318; Lone Elm field, 42; Mills Ranch field, 90, 142, 162, 195, 219; Noble
County fields, 43; North Cement field, 87; North Stanley field, 70, 142, 158, 159;
Northeast Lucien field, 155; Oklahoma City field, 283, 316, 318; Olympic field, 54;
Perry field, 42; Postle field, 250; Red Oak field, 54; Reydon field, 25; Seminole
district, 54; Shoestring field, 54; Shalam Alchem field, 46; Sho-Vel-Tum area, 116,
318; Sooner trend, 116; South Ceres field, 54; South Drummond field, 115; South
Erick field, 2; South Pine Hollow gas field, 54; Southwest Davis field, 143; South-
west Envolve field, 326; Southwest Lone Grove field, 37; Stillwater Airport field,
Stillwater field, 42, 262; Watauga-Chickasha trend, 54; West
Cement field, 87; West Edmond field, 318; West Mayfield field, 90, 141, 195, 219,
300; West Sentinel field, 195; Wilburton field, 54
general operations, 11, 117
geochronology, 37, 38, 87, 326
giant oil fields, 148, 244
heavy oil, 120, 222, 319
helium, Hugoton and Keys fields, 48
Oklahoma Geological Survey programs, 197
origin and generation, source: alteration of organic matter, 5; aqueous solubility, 16, 238;
Arbuckle oils, 37; laboratory generation, 117; Oklahoma City oil field, 283, 316;
tain and Blakely Formations, 62; lacustrine delta orifice, Great Salt Plains, 135; Pennsylvanian and Mississippian reservoirs, 173, 273; Permian, 122; Stanley-Jackfork Sandstones, 210, 211

depositional environments, see Paleocology, Paleoenvironments, Paleo Geography

diagenesis: Arkansas Novaculite, 265; Bromide Formation, 180, 181; cementation and
lithification of sandstones, 61; chalks, Upper Cretaceous, 255; Jackfork Group, consolidation, 185; pressure solution, 208; sandstone porosity study, 200; shales, Ouachita area, 208

dish and pillar structures, Jackfork Group, 28, 184, 186, 206

energy-transport processes in sedimentary basins, Ouachita geosyncline, 258

evaporites, Permian dolomites and gypsum, 212, 323

fluvial-marine deposition, Atoka Formation, 152

flysch deposition: Arkoma basin, 60; Ouachita area, 28, 29, 40, 60, 62, 100, 183, 186, 209, 210, 211, 303, 304

granite-wash deposits, Arbuckle and Wichita areas, 2

karst development, Boone Formation, 108

lead-zinc deposition in carbonates, 253

lime-mud mounds, Pittkin Formation, 301

liquefied-flow deposition, Atoka Formation, 186

meandric mounds, Boone Formation, 323

Morrocan deposition, 295, 296, 297

Oklahoma City field, 283

Ouachita Mountains, 28, 29, 40, 60, 62, 64, 100, 183, 184, 185, 186, 194, 206, 208, 209, 210, 211, 216, 249, 264, 265, 281, 282, 295, 303, 304

paragenesis of lead-zinc ores, 108

Post Oak Formation, 284

presilurian deposition, 29

river-bank deposition, 44, 110, 112

sabkha facies, Permian copper deposits, 270

shallow-marine deposition, Joins and Oil Creek Formations, 294

shelf deposition, 9, 24, 62, 259, 274, 301, 323

southern Arkansas, 280, 318

submarine fans, Jackfork Group, 183, 210, 211

tidal deposition, 2, 28, 37, 259, 270

transgressive deposition, transgressive-regressive sequences: Atoka Formation, 9, 152;

"Cherokee" sands, 42, 262, 263; Chesterian and Morrowan, 275; Oil Creek Formation,

178

tuff deposits, 28, 65, 194, 216

turbidites, 28, 29, 40, 173, 184, 206, 208, 209, 210, 211

Seismology, see Geophysics

SILURIAN:

Bigfork Formation, 29, 64

Blakely Formation, 29, 164

Blackhawk Formation, 28, 29, 64, 160, 194, 303

brachiopods, 176, 177

Collier Formation, 29

crinoid, Henryhouse Formation, 14

Crystal Mountain Formation, 29

Hunton Group, 14, 80, 141, 162, 188, 225: Frisco Formation, 36, 225; Henryhouse Formation, 14, 36, 80, 225

Hunton production, 141

Late Silurian biofacies, 7

Mississippian Mountain Formation, 28, 29, 160, 194, 264, 265, 303

Polk Creek Formation, 29

Womble Formation, 29

SOILS:

Alfalfa County, general, 322

Birch Creek valley, Osage County, 112

Canadian County, general, 74

Johnston County, general, 31

Little Caney River valley, Washington County, 113

McCurtain County, general, 239

Mayes County, general, 235

pollution by oil wastes, 53

Pottawatomie County, general, 201

Tulsa County, general, 53

Wagoner County, general, 234

southern Oklahoma aulacogen, 28, 29, 32, 33, 73, 180, 181, 187, 236, 249, 275, 276, 280, 312, 318, 327, 328

Stratigraphy:

Anadarko basin, 88, 327

Arkansas Novaculite, 264, 265

Atoka Formation, Atokan Series, 9, 91, 152, 217

biostratigraphy:

Atoka Formation, Atoka Series: conodonts, 101, 102, 152; fusulinids, 9, 19; micro-

fauna, 217

basal Permian, mioflora, 126

Cambrian-Ordovician, tribite zonation, 280

Carboniferous, ammonoid zonation, 99, 100, 254

Chesterian: brachiopods, 125; bryozoans, 128; conodonts, 171; general biota, 127,

297, 298; microfossils, 27, 217; Pittkin Limestone, crinoids, 292

Cretaceous: Cimarron County, 154; Upper Cretaceous, ostracode zonation, 119

Early Devonian, tribolites, 36

Morrowan: bioherms, Saukett Formation, 24; blastoids, 153; brachiopods, 125;

bryozoans, 128; conodonts, 101, 102, 152; 171, 288, 295; coral zonation, 252;

general, 298; microfauna, 217; ostracodes, 164; Wapanucka Formation, cono-
donts, 295

Ordovician: cephalopods, 75; conodont zonation, 169, 179, 294, 299; early Middle

Ordovician correlations, 57; echinoderm zonation, 275; general, 249; graptolite

zonation, 19, 71; tribolites, 259, 280

Pennsylvanian: Pennsylvanian and Mississippian, Ouachita area, trace fossil zonation,

40, 60; Pennsylvanian-Permian boundary, palynology, 51; Permian-Carbonifer-
ous boundary, vertebrates, 226; Upper Pennsylvanian, crinoid zonation, 228

Bloyd Formation, 329

Bokchito Formation, 134

Cambrian-Ordovician boundary, 280

Carboniferous, 40, 60, 99, 100, 108, 226, 294, 295, 296, 297, 298

Chesterian, 292, 296, 297, 298, 301: Fayetteville Shale, 277; Pittkin Formation, 292, 301;

Stanley Group, 210, 216; Stanley-Jackfork correlations, 210

general, stratigraphic maps and sections, 260

Mill Creek syncline, 188

Mississippian-Pennsylvanian boundary, 254, 297, 298

nomenclatural changes, 52

Paleozoic, southern Oklahoma, 187, 188

Pennsylvanian: Bloyd Formation, 328, 329; Desmoinesian coals, 103; Mississippian-Pennsyl-

vian boundary, 254, 297, 298; Morrowan, 295, 296, 297, 298, 328; Morrowan-

Atokan contact, 101, 152, 153; Pennsylvanian-Permian boundary, 51; Permian-

Carboniferous boundary, 226; pre-Desmoinesian unconformity, 292

Simpson Group, correlation with Texas, 294

southern Oklahoma aulacogen, general, 318
STRUCTURAL GEOLOGY (includes tectonics):

Anadarko basin, 8, 37, 54, 126, 187, 212, 276, 312, 313, 318, 327, 328
Arbuckle Mountains and Criner Hills, 2, 9, 37, 143, 144, 145, 146, 147, 149, 187, 188, 189, 276, 313, 318, 327
Ardmore basin, 187, 276, 318
Arkoma basin, 8, 9, 28, 29, 37, 60, 160
Beckham County, 327
Bendelari monocline, 108
Blue Creek fault and horst, 327
Blue River fault, 188
block faulting, Ouachita Mountains, 29
Benton-Broken Bow uplift, 64, 243, 246, 315
Carter-Knox anticline, 2
Cement anticline, Comanche faults, 2, 327
"Cherokee" Group, 43, 262, 263
Choctaw fault, 29, 160, 218
Clarita anticline, Clarita fault, 9, 166
Clarita-Phillips fault, 9
clastic dikes, Anadarko basin, 328
Cordell fault and graben, 327, 328
Cox City area, 2
Criner arch, 276
Custer County, 327
Dougherty anticline, 146
Fall Line trend, 139
Franks graben, Franks fault zone, 9, 188
Hollis basin, 276
Lawtonka fault and graben, 327
lineaments: Anadarko basin, 328; central United States, 126
Marietta basin, 276, 318
Meers Valley fault, 126, 327
Miami trough, 108, 233
Mak Creek fault, Miller Creek syncline, 187, 188, 189
Mountain View fault, 126, 327
Muskogee County, 218
Nemaha ridge, Nemaha uplift, 126, 139, 190, 191, 283
Northeast Lucien field, 155
Oklahoma City field, subsurface, 283, 316
Owego Limestone, 42
Ouachita-Marathon thrust belt, 73, 313
Ouachita Mountains, 28, 29, 32, 33, 37, 60, 64, 73, 100, 126, 139, 160, 189, 194, 203, 208, 218, 243, 246, 251, 287, 303, 304, 312, 313, 315, 318, 330
Ozark uplift, 161, 218
Perry anticline, 42
Pine Mountain fault, 160
Reagan fault, 188
Roger Mills County, 327
Sayre graben, 327, 328
Seneca trough, 108
slickensides, Miller Creek fault, 188
southern Oklahoma aulacogen, 28, 29, 32, 33, 73, 187, 236, 249, 251, 276, 280, 312, 313, 318, 327, 328
Stony Point fault, 327
stress faulting, Arbuckle Mountain, 189
strike-slip faulting, southern Oklahoma aulacogen, 32
subduction, Ouachita Mountains, 29

Sulfur fault and syncline, 188
thermal metamorphism, Arkansas Naculite, 156
thrust faulting, Ouachita Mountains, 29
Ti Valley fault, 160
transform faults, Ouachita belt, 203
Tri-State district, 108
Washita County, 327
Washita River-Meers Valley-Mountain View fault, 126
Washita Valley fault and syncline, 126, 188
Waurika-Muenster arch, 2, 276
Wichita aulacogen, see southern Oklahoma aulacogen
Wichita Mountains, Wichita uplift, 2, 37, 139, 161, 236, 251, 276, 280, 284, 313, 318, 327
Windingstain fault, 29, 160
Triassic: Dockum Shale, 20
Tri-State district, lead-zinc ores, 108, 253
URANIUM:

Cambrian occurrences, 1, 3
Clinton quadrangle survey, 91
exploration, 91, 92, 93, 151
Hollis basin potential, 310
Lawton quadrangle survey, 92
mineralization, 1, 3, 91, 92, 93
Oklahoma City quadrangle survey, 93
Pennsylvanian and Permian sandstone deposits, 2, 3, 310
processing plants, 104, 151
statistics, 151
U.S. Geological Survey investigations, 310
uranium in dikes, Quahog Granite, 1, 3
Wichita Mountains, 1, 3

WICHITA MOUNTAINS:

Cambrian rocks, 1, 3, 118, 236, 251, 280
geomorphology, 98
Lawton quadrangle, geology and hydrology, general, 118
pegmatite dikes, Quahog Granite, 1, 3
Precambrian rocks, 161, 236, 251
structure, 1, 3, 37, 139, 161, 236, 251, 276, 280, 284, 313, 318, 327
trilobites, 280
uranium, 1, 3
Wichita aulacogen, see southern Oklahoma aulacogen

Wreford Megacyclothem, 58, 267, 268

[167]
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY, 1978

Compiled by Elizabeth A. Ham

Bibliography—pages 111-135
Index—pages 135-150

BIBLIOGRAPHY

1. Achab, A., 1978, Sur quelques chitinocéphales de la Formation de Vauréal et de la Formation de Macasty (Ordovicien Supérieur, Ile d'Anticosti, Québec, Canada: Review of Palaeobotany and Palynology, v. 25, p. 295-314, 2 figs., 4 pls. (Refers to Oklahoma Sylvan Shale and Viola Limestone species.)

5. Allègre, C. J., see Brevard, O., Shimizu, N., and Allègre, C. J.

6. Al-Shaieb, Zuhair, and Hanson, R. E., 1978, Geochemistry and petrology of uranium bearing pegmatite dikes, Wichita Mountains, Oklahoma [abstract]: Economic Geology, v. 73, p. 315.

15. Bandy, A. R., see Maroulis, P. J., Torres, A. L., and Bandy, A. R.

16. Barrick, J. E., 1977, Multielement simple-cone conodonts from the Clarita Formation (Silurian), Arbuckle Mountains, Oklahoma: Geologica et Palaeontologica, no. 11, p. 47-68, 3 pls., 1 text-fig., 2 tables.

18. Bell, R. M., see Sprinkle, James, and Bell, B. M.

Blatt, Harvey, see Charles, R. G., and Blatt, Harvey.
Boneau, D. F., see Trantham, J. C., Patterson, H. L., and Boneau, D. F.
24. Brower, J. C., and Veinus, Julia, 1978, Middle Ordovician crinoids from the Twin Cities area of Minnesota: Bulletins of American Paleontology, v. 74, no. 304, p. 369-506, 8 figs., 25 pls., 2 tables. (Refers to Oklahoma Bromide species.)

Currier, J. D., see Huffman, G. O., Hart, T. A., Olson, L. J., Currier, J. D., and Ganser, R. W.

Davis, H. G., see Towns, D. J., and Davis, H. G.

Davis, R. E., see Fairchild, R. W., and Davis, R. E.

Davis, R. E., see also Hart, D. L., Jr., and Davis, R. E.

Davis, R. E., see also Playton, S. J., Davis, R. E., and McClaffin, R. G.

Dickinson, W. R., see Kleinschmidt, R. F., Trantham, J. C., Sitton, D. M., and Dickinson, W. R.

DuBois, Mait, see Cunningham, J. W., and DuBois, Mait.

Eby, D. E., see St. John, J. W., Jr., and Eby, D. E.

67. Fanelli, L. L., see Clarke, T. G., and Fanelli, L. L.

69. Fertig, D., see Scott, R. W., Fee, D., Magee, R., and Laali, Hooman.

71. Fisk, J. F., see Estes, L. D., Fischer, J. F., and Taylor, R. J.

81. Ganser, J. D., see Huffman, G. G., Hart, T. A., Olson, L. J., Currier, J. D., and Ganser, R. W.

87. Gilbert, M. C., 1978, Anorogenic Cambrian granite/rhyolite of the south-

88. Gilbert, M. C., 1978, Exfoliation features in igneous rocks, Wichita Mountains: Oklahoma Geology Notes, v. 38, p. 86. (Cover photo description.)

89. Gilbert, M. C., 1978, Granite-granite contact relations, Wichita Mountains: Oklahoma Geology Notes, v. 38, p. 206. (Cover photo description.)

93. Gilbert, M. C., 1978, Quartz Mountain and Lake Altus, Wichita Mountains: Oklahoma Geology Notes, v. 38, p. 2. (Cover photo description.)

Gilbert, O. E., see Roeder, Dietrich, Wielchowsky, C. C., and Gilbert, O. E.

Gonzales, Serge, see Johnson, K. S., and Gonzales, Serge.

Grayson, R. C., Jr., see Sutherland, P. K., and Grayson, R. C., Jr.

Grayson, R. C., Jr., see also Sutherland, P. K., Grayson, R. C., Jr., and Zimbrick, G. D.

102. Haigh, M. J., Microerosion processes and slope erosion on subsurface-mine dumps at Henryetta, Oklahoma: Oklahoma Geology Notes, v. 38, p. 87–96, 6 figs., 1 table.

Hanson, R. E., see Al-Shaieb, Zuhair, and Hanson, R. E.

(Includes Anadarko Basin and Nemaha Ridge.)

19–23, 1 table. (Includes Oklahoma formations.)

116. Harrison, W. E., 1978, Experimental diagenetic study of a modern lipid-
rich sediment: Chemical Geology, v. 21, p. 315–334, 10 figs., 2 tables.
(Modern example corresponds to Oklahoma sands; abstract printed in
Petroleum Abstracts, v. 18, p. 397.)

Oklahoma Geology Notes, v. 38, p. 225–233, 4 figs., 5 tables.

118. Hart, D. L., Jr., and Davis, R. E., 1978, Geochemistry of the Antlers aquifer,
766, 35 p., 12 figs., 3 tables.

sandstone distribution in the Oklahoma portion of the Arkoma Basin
[abstract]: Geological Society of America Abstracts with Programs,
v. 10, p. 7. (Reprinted in Oklahoma Geology Notes, v. 38, p. 74.)

21–24.

Hart, T. A., see Huffman, G. G., Hart, T. A., Olson, L. J., Currier, J. D.,
and Ganser, R. W.

121. Havens, J. S., 1978, Ground-water records for eastern Oklahoma, part 2—
water quality records for wells, test-holes, and springs: U.S. Geological
Water Resources Abstracts, v. 11, no. 21, p. 117.)

122. Havens, J. S., 1978, Reconnaissance of ground water in the vicinity of the
Wichita Mountains, southwestern Oklahoma: U.S. Geological Survey
Open-File Report 78–857, 22 p., 6 figs., 1 table. (Prepared in cooperation
with Oklahoma Geological Survey; report completed in 1975; issued as
open-file report in 1978.)

Heilier, Friedrich, see Van der Voo, Rob, Watts, D. R., Lowrie, William,
and Heller, Friedrich.

Hen, W., see Englert, P., and Hen, W.

123. Hoare, R. D., 1978, Annotated bibliography on preservation of color pat-
terns in invertebrate fossils: The Compass, v. 55, p. 39–63. (Includes
entries on Oklahoma fossils.)

resource, in Johnson, K. S., and Russell, J. A. (editors), Thirteenth
Annual Forum on the Geology of Industrial Minerals: Oklahoma

Holbrook, D. F., see Bush, W. V., Haley, B. R., Stone, C. G., and Hol-
brook, D. F.

125. Holdoway, K. A., 1978, Deposition of evaporites and red beds of the Nip-
pewa Group, Permian, western Kansas: Kansas Geological Survey
Bulletin 215, 43 p., 51 figs., 2 tables.

126. Hollrah, T. L., 1978, Subsurface lithostratigraphy of Hunton Group in
parts of Payne, Lincoln, and Logan Counties, Oklahoma [abstract]:
(Reprinted in Petroleum Abstracts, v. 18, p. 719, and in Oklahoma
Geology Notes, v. 38, p. 106–107.)

127. Hollrah, T. L., 1978, Subsurface lithostratigraphy of the Hunton Group,
in parts of Payne, Lincoln and Logan Counties, Oklahoma, part 1: Shale
Shaker, v. 28, p. 150–156, 5 figs., 3 pls. (Abstract printed in Petroleum
Abstracts, v. 18, p. 921.)

128. Hollrah, T. L., 1978, Subsurface lithostratigraphy of the Hunton Group,
in parts of Payne, Lincoln and Logan Counties, Oklahoma, part 2:
Shale Shaker, v. 28, p. 168–175, 6 figs., 10 table.

of northwest Marshall County, Oklahoma: University of Oklahoma

130. Huffman, G. G., 1978, Stratigraphy of the Bokchito Formation (Cret-
aceous) in southern Oklahoma: reply: Oklahoma Geology Notes, v.
38, p. 26–30.

131. Huffman, G. G., Hart, T. A., Olson, L. J., Currier, J. D., and Ganser,
R. W., 1978, Geology and mineral resources of Bryan County, Okla-
ahoma: Oklahoma Geological Survey Bulletin 126, 113 p., 49 figs., 1
pl. (geologic map), 11 tables.

132. Huntzinger, T. L., 1978, Application of hydraulic and hydrologic data in
urban stormwater management: U.S. Geological Survey Open-File
Report 78–414, 33 p., 24 figs., 4 tables. (Uses Oklahoma examples.)

133. Huntzinger, T. L., 1978, High-flow frequencies for selected streams in
fig. (map), 3 tables. (Prepared in cooperation with Oklahoma Water
Resources Board.)

134. Huntzinger, T. L., 1978, Low-flow characteristics of Oklahoma streams:
(Prepared in cooperation with Oklahoma Water Resources Board.)

135. Industrial Minerals Staff, 1977, Encouraging year for Woodward, in
World of minerals: USA: Industrial Minerals, no. 123, p. 15. (Concerns
iodine production.)

136. Interstate Oil Compact Commission and National Stripper Well Associa-
tion, 1978, National stripper well survey, January 1, 1978: Interstate
Oil Compact Commission, Oklahoma City, 10 p.

137. Ives, L. K., Kasen, M. B., Schramm, R. E., Ruff, A. W., and Reed, R. P.,
1978, A microstructural study of the Tishomingo meteorite: Geochemica
et Cosmochimica Acta, v. 42, p. 1051–1066, 9 figs., 1 table.

Vast potential held by four unconventional gas sources: Oil and Gas Journal, v. 76, no. 24, p. 47–54, 8 figs., 4 tables. (Includes Stanley Shale.)

Lawson, M. H., see Kier, P. M., and Lawson, M. H.

LeMone, D., see Toomey, D. F., and LeMone, D.

Leverson, C. O., see Kolata, D. R., Strimple, H. I., and Leverson, C. O.

Livingston, N. D., see Ebanks, W. J., Jr., James, G. W., Livingston, N. D., Wells, J. S., and Roberts, J. F.

Lowrie, William, see Van der Voo, Rob, Watts, D. R., Lowrie, William, and Heller, Friedrich.

Luza, K. V., 1978, Regional seismic and geologic evaluations of Nemaha Uplift, Oklahoma, Kansas, and Nebraska: Oklahoma Geology Notes, v. 38, p. 49–58, 4 figs., 1 table.

Luza, K. V., see Johnson, K. S., and Luza, K. V.

McCaffrey, K. G., see Playton, S. J., Davis, R. E., and McCaffrey, R. G.

McClain, A. W., see Gentry, R. W., and McClain, A. W.

McHargue, T. R., see Kessler, L. G., and McHargue, T. R.

Maddock, M. P., see Morris, W. K., and Madden, M. P.

Magee, R., see Scott, R. W., Fee, D., Magee, R., and Laali, Hooman.

Mankin, C. J., see Arndt, R. H., and Mankin, C. J.

Mapes, R. H., see Tucker, J. K., and Mapes, R. H.

Mapes, R. H., see also Tucker, J. K., Mapes, R. H., and Aronoff, S. M.

Merrill, G. K., see Von Bitter, P. H., and Merrill, G. K.

Michalski, B. C., see Harper, W. B., Michalski, B. C., Reiss, J. R., and Parker, M. R.

Miller, C. F., see Broome, J. R., Miller, C. F., and Reaser, D. F.

Minsch, J. H., see Stover, C. W., Simon, R. B., Person, W. J., and Minsch, J. H.

Moore, R. C., and Teichert, Curt, editors, 1978, Echinodermata 2 (Crinoi-
dea), pt. 1 of Treatise on invertebrate paleontology: Geological Society of America and the University of Kansas, Boulder, Colorado, and Lawrence, Kansas, 3 volumes, 1027 p., 616 figs.

Morrison, W. K., see Madden, M. P., and Morris, W. K.

National Stripper Well Association, see Interstate Oil Compact Commission and National Stripper Well Association.

Oil and Gas Conservation Division, see Oklahoma Corporation Commission, Oil and Gas Conservation Division, Oklahoma Geological Survey, and U.S. Bureau of Mines.

188. Oil and Gas Journal, 1978, Data on 80,000 reservoirs now available to industry: v. 26, p. 109, 112, 116. (Description of Oklahoma Petroleum Data System.)

190. Oil and Gas Journal, 1978, Oklahoma’s Springer trend is one of the busiest: v. 76, p. 98–99, 1 fig., 1 photo. (Abstract in Petroleum Abstracts, v. 18, p. 617.)

Olson, L. J., see Huffman, G. G., Hart, T. A., Olson, L. J., Currier, J. D., and Ganser, R. W.

Parker, M. R., see Harper, W. B., Michalski, B. C., Reiss, J. R., and Parker, M. R.

Patterson, H. L., see Trantham, J. C., Patterson, H. L., and Boneau, D. F. Person, W. J., see Minsch, J. H., Stover, C. W., Person, W. J., Simon, R. B., and Reager, B. G.

Person, W. J., see also Stover, C. W., Simon, R. B., Person, W. J., and Minsch, J. H.

Porter, J. R., see Everett, J. R., Reid, W. M., and Porter, J. R.

206. Pressler, J. W., 1978, Gypsum, in Metals, minerals, and fuels, v. 1 of Min-
Reagor, B. G., see Minsch, J. H., Stover, C. W., Person, W. J., Simon, R. B., and Reagor, B. G.
Reaser, D. F., see Broome, R. R., Miller, D. V., and Reaser, D. F.
Reed, R. P., see Ives, L. K., Kasen, M. B., Schramm, R. E., Ruff, A. W., and Reed, R. P.
Reid, W. M., see Everett, J. R., Reid, W. M., and Porter, J. R.
Reiss, J. R., see Harper, W. B., Michalski, B. C., Reiss, J. R., and Parker, M. R.
211. Repetski, J. E., 1978, A fish from the Upper Cambrian of North America: Science, v. 200, no. 4341, p. 529–531, 1 fig. (Refers to fossil fish from Fort Sill Limestone.)
Roberts, J. F., see Ebanks, W. J., Jr., James, G. W., Livingston, N. D., Wells, J. S., and Roberts, J. F.
Ruff, A. W., see Ives, L. K., Kasen, M. B., Schramm, R. E., Ruff, A. W., and Reed R. P.
Schramm, R. E., see Ives, L. K., Kasen, M. B., Schramm, R. E., Ruff, A. W., and Reed R. P.
Semet, M. P., see Shimizu, N., Semet, M. P., and Allègre, C. J.
229. Shimizu, N., Semet, M. P., and Allègre, C. J., 1978, Geochemical application...
tions of quantitative ion-microprobe analysis: Geochimica et Cosmo-
chimica Acta, v. 42, p. 1321–1334, 9 figs., 3 tables. (Includes tests on
Tri-State galena.)
Shimizu, N., see Brevard, O., Shimizu, N., and Allègre, C. J.
230. Shufflebarger, T. E., Jr., 1978, Economics of glass-sand prospects in John-
son, K. S., and Russell, J. A. (editors), Thirteenth Annual Forum on the
Geology of Industrial Minerals: Oklahoma Geological Survey Cir-
cular 79, p. 25–35, 6 figs., 3 tables.
Simon, R. B., see Minsch, J. H., Stover, C. W., Person, W. J., Simon, R. B.,
and Reagar B. G.
Simon R. B., see also Stover, C. W., Simon, R. B., Person, W. J., and Minsch,
J. H.
231. Simpson, L. C., 1977, Bibliography of Permian terrestrial vertebrates of
Oklahoma: The Compass, v. 54, no. 4, p. 117–120.
232. Simpson, L. C., 1978, Comments on the pelycosaur Edaphosaurus and the
validity of the species E. minuta Tasch: Journal of Paleontology, v. 52,
p. 211–212.
Sitton, D. M., see Kleinschmidt, R. F., Trantham, J. C., Sitton, D. M., and
Dickinson, W. R.
Spiser, D. E., see Geemaat, R. L., and Spiser, D. E.
233. Sprinkle, James, and Bell, B. M., 1978, Paedomorphosis in edrioasteroid
echinoderms: Paleobiology, v. 4, p. 82–88, 3 figs., 1 table. (Includes
Oklahoma species.)
234. Steinmetz, Richard, 1978, Anatomy of an Arkansas River sand bar [ab-
stract]: Geological Society of America Abstracts with Programs, v. 10,
p. 26. (Reprinted in Oklahoma Geology Notes, v. 38, p. 78–79, and in
Shale Shaker, v. 29, p. 68.)
Steinmetz, Richard, 1978, Statistical summary of wells drilled below
18,000 feet (5,500 meters) in West Texas and Anadarko Basin: Ameri-
figs., 3 tables. (Abstract in Petroleum Abstracts, v. 118, p. 135.)
Stone, C. G., see Bush, W. V., Haley, B. R., Stone, C. G., and Holbrook,
D. F.
Stone, C. G., see also Holbrook, D. F., and Stone, C. G.
236. Stover, C. W., 1977, Seismicity map of the conterminous United States and
Studies Map MF-812, scale: 1:500,000.
Stover, C. W., see Minsch, J. H., Stover, C. W., Person, W. J., Simon, R. B.,
and Reagar, B. G.
238. Strimple, H. L., 1978, Flexible crinoids from Pitkin Formation (Chester-
ian) of Oklahoma and Arkansas: Oklahoma Geology Notes, v. 38,
p. 61–65, 1 fig.
239. Strimple, H. L., 1977, Notes concerning Delocrinus and Graffhamicrinus
(Crinoidae; Inadunata): Iowa Academy of Science, Proceedings, v.
84, p. 157–162, 1 fig.
240. Strimple, H. L., 1978, Occurrence of Cranocrinus Wanner in North Ameri-
ca: Iowa Academy of Science, Proceedings, v. 85, p. 21–24, 1 fig.
Strimple, H. L., see Frest, T. J., and Strimple, H. L.
Strimple, H. L., see also Katz, S. G., and Strimple, H. L.
Strimple, H. L., see also Kolata, D. R., Strimple, H. L., and Levorson, C. O.
equivalents in Arkansas and adjacent areas [abstract]: American As-
38, p. 109–110.)
242. Sutherland, P. K., and Grayson, R. C., Jr., 1978, Redefinition of the Mor-
rowan Series (Lower Pennsylvanian) in its type area in northwestern
Arkansas [abstract]: Geological Society of America Abstracts with
Programs, v. 10, p. 501.
243. Sutherland, P. K., Grayson, R. C., Jr., and Zimbrick, G. D., 1978, Re-
evaluation of Morrowan-Atokan Series boundary in northwestern Ar-
kansas and northeastern Oklahoma [abstract]: American Association
Abstracts, v. 18, p. 797, and in Oklahoma Geology Notes, v. 38, p. 110–
111.)
244. Sweet, G. E., 1978, The history of geophysical prospecting, 3rd edition:
245. Takken, Suzanne, 1978, Developments in Oklahoma and Panhandle of
p. 1372–1376, 1 fig., 4 tables.
246. Tapp, J. B., 1978, Breccias and megabreccias of the Arbuckle Mountains,
Southern Oklahoma Aulacogen, Oklahoma: University of Oklahoma
Tappan, Helen, see Loeblich, A. R., Jr., and Tappan, Helen.
unit in Anadarko Basin, Oklahoma [abstract]: American Association
Abstracts, v. 18, p. 798, and in Oklahoma Geology Notes, v. 38, p. 111.)
248. Taylor, M. E., 1978, Type species of the Late Cambrian trilobite Eurekia
text-figs.
Taylor, R. J., see Estes, L. D., Fischer, J. F., and Taylor, R. J.
Teichert, Curt, see Moore, R. C., and Teichert, Curt.
Thomas, R. D., see Burcrt, F. W., Thomas, R. D., and Walker, C. J.
margin [abstract]: Geological Society of America Abstracts with Pro-
250. Thompson, T. L., 1978, Southern Oklahoma oil country in context of plate
tectonics [abstract]: American Association of Petroleum Geologists Bul-

Thompson, T. L., see Nodine-Zeller, D. E., and Thompson, T. L.

Toomey, D. F., see Rigby, J. K., and Toomey, D. F.

253. Torres, A. L., see Maroulis, P. J., Torres, A. L., and Bandy, A. R.

Trantham, J. C., see Klein Schmidt, R. F., Trantham, J. C., Sitton, D. M., and Dickinson, W. R.

Van der Voo, Rob, see Watts, D. R., and Van der Voo, Rob.

Van Schmus, W. R., see Bickford, M. E., and Van Schmus, W. R.

Veinus, Julia, see Brower, J. C., and Veinus, Julia.

Visher, G. S., see Tassone, J. A., and Visher, G. S.

Walker, C. J., see Burch, F. W., Thomas, R. D., and Walker, C. J.

Wall, L. J., see Clark, M. E., and Wall, L. J.

Watts, D. R., see Van der Voo, Rob, Watts, D. R., Lowrie, William, and Heller, Friedrich.

Watts, K. R., see Kent, D. C., Watts, K. R., and Azimi, Esmaiel.

Wells, J. S., see Ebanks, M. J., Jr., James, G. W. Livingston, N. D., Wells, J. S., and Roberts, J. F.

Whipple, A. P., see Galloway, W. E., Yancey, M. S., and Whipple, A. P.

INDEX

(Numbers refer to entries in bibliography)

age dating, radiocarbon: Hominy Creek alluvium, 105; Little Caney River alluvium, 106

Anadarko Basin:
dee wells, 138, 159, 174, 200, 235
goosegeologic stratigraphic model, 80
geochemical gradients, 32
government exploration, 65
Marchand sands, 14
Mills Ranch complex, 138
Permian red beds and evaporites, 140
petroleum, 12, 38, 58, 80, 138, 174, 186, 187, 189, 190, 200, 235, 247, 253
salt deposits, 142
sedimentology, 14, 21, 80, 141, 142, 189, 208, 209, 247, 253, 254, 255
structure and tectonics, 32, 65, 81, 82, 84, 114, 142, 157, 249, 253, 254
Watonga-Chickasha trend, 38
annual reports: Oklahoma Department of Mines, 69th, 195; Oklahoma Geological Survey,
July 1, 1977–June 30, 1978, 175

Arbuckle Mountains:
algae, 252
Arbuckle Anticline, 20, 21, 81, 246
Arbuckle aquifer, 66
Belton Anticline, 20, 21, 131
breccias, 246
carbonate mounds, Kindblade Formation, 214
Carlton Ryolite, 87, 131, 267
conodonts, Clarita Formation, 15
Franks-Clarita Fault Zone, 10, 20
Hinton Anticline, 20, 21
Mill Creek–Blue River Fault Zone, 20
Mill Creek Syncline, 20, 21
Reagan Fault Zone, 20, 272
sedimentology, 20, 81, 83, 167, 214, 217, 218
source of Quanah Granite, 2
structure and tectonics, 20, 21, 66, 131, 178, 246, 267, 272
Sulphur Fault Zone and Syncline, 20, 21, 131
Tishomingo Anticline, 20, 21, 81, 131
Washita Valley Fault Zone and Syncline, 20, 21, 131, 272

Armadillo Basin: geothermal gradients, 32; petroleum, 191; structure and tectonics, 32, 131, 249

Arkoma Basin:
Backbone Anticline and Fault, 4, 47
Bokoshe Syncline, 47
bryozoans, 171
Cavanal Syncline, 47
Choctaw Fault, 47
Clarita Anticline and Fault, 10
coal, 4, 42, 47, 55, 77, 78
Coal Creek Syncline, 4, 47
heavy oils, 61
James Fork Syncline, 4
Milton Anticline, 47
paleogeography, 119
petroleum, 12, 174, 241
Phillips Fault, 10
sedimentology, 4, 10, 47, 55, 119, 172
Spiro Anticline, 4, 47
structure and tectonics, 4, 10, 47, 55, 119, 131, 172

Bibliographies:
color-pattern preservation in fossils, 123
guidebooks, 86
nontechnical geological publications, 196
Oklahoma geology, 1977, 107
Oklahoma Permian vertebrates, 231

Cambrian:
- Arbuckle Group, 21, 66, 81, 82, 83, 84, 122, 131, 186, 211, 246: Butterfly Formation, 81; Fort Sill Formation, 81, 211; Royer Dolomite, 81
- Carlton Rhylite, 87, 131, 267
- Glen Mountain layered complex, 91
- Meers Quartzite, 101
- Raggedy Mountain Gabbro Group, 88, 91, 92, 94
- Signal Mountain Formation, 81
- Timbered Hills Group, 81, 122, 131, 246: Honey Creek Formation, 81, 131; Reagan Sandstone, 81, 131
- trilobites, 248
- Wichita Granite Group, 2, 87, 88, 89, 90, 91, 92, 93, 94, 101: Lugert Granite, 89, 93; Mount Scott Granite, 88, 90, 91, 101; Quanah Granite, 2, 91, 92; Reformatory Granite, 89, 93
- carbonate rocks, petrography, general, 219
- Carboniferous: Ouachita turbidites, 181

Coal:
- analyses, 47, 76, 77, 78
- classification by rank, 76
- coal beds: Baldwin coal, 26; Cavanal coal, 42, 47, 77, 78; Croweburg coal, 42, 77, 78; Dawson coal, 77, 78; Erasm coal, 77, 78; Iron Post coal, 42, 77, 78; McAlister coals, 42, 47, 55, 77, 78; Mineral coal, 42, 77, 78; Morris coal, 77; Rowe coal, 42, 77, 78; Secor coals, 42, 77, 78; Stigler coals, 4, 47, 55, 77, 78; Weir-Pittsburg coals, 42, 77, 78; Wintyville coals, 77, 78
- exploration and development, 12, 40, 42, 78, 212
- general, 40, 41, 42
- methane recovery, 162
- Oklahoma Geological Survey programs, 12, 175
- power-generating plants, 13
- producers, 4, 12, 40, 41, 78
- projected power plants, 212
- regulations, 13
- reserves and resources, 4, 42, 47, 78
- restrictions on burning, 13
- spoil-bank study, Okmulgee County, 102
- statistics, 11, 13, 41, 49, 75, 174
- technology, 40, 78
- transportation, 13, 43
copper: mineralization, 46; Wellington Formation, 46

Counties:
- all counties: ground water levels, 96; mineral production, 11, 12, 13, 195; petroleum and natural gas, 11, 12, 13, 117, 199
- all eastern counties: ground-water quality, 121
- Adair: brachiopods, 8; Morrowan rocks, 278; Pitkin Formation, 39; Trace Creek Shale, 279
- Atoka: Antlers aquifer, 51, 118
- Beckham: Elk City Sandstone, 67; gypsum, 139; Mills Ranch complex, 138; petroleum development, 58, 159; soils, 211
- Blaine: Blaine Formation, 125; gypsum, 139, 206, 268; Watonga-Chickasha trend, 38
- Bryan: Antlers aquifer, 51, 118; Bokchito Formation, 120, 130; Denison Dam Quadrangle, general geology, 23; general, 131; Washita Group, 224
- Caddo: gypsum, 139; Marchand sands, Binger field, 14; Morrow-Springer exploration, 190; soils, 261
- Canadian: geoseismic stratigraphic model, 80; Morrow-Springer exploration, 190; Oklahoma City Uplift, 157
- Carter: Antlers aquifer, 118; gastropods, 165; Healdton Field, 84; lithium, 44; soils, 261
- Cherokee: brachiopods, 8; Burlington Shelf, 163; Morrowan rocks, 278
- Choctaw: Antlers aquifer, 51, 118; Bokchito Formation, 130; Washita Group, 224
- Cimarron: Dakota Group, 67
- Cleveland: Oklahoma City Uplift, 157
- Coal: Atoka Formation, 10; coal, 78
- Comanche: Cambrian granites, 91; gypsum, 139; soils, 261
- Cotton: soils, 261
- Craig: coal, 12, 75, 78
- Creek: Vamosa aquifer, 53
- Custer: general, 67; gypsum, 139
- Dewey: Permian formations, 67
- Ellis: Permian formations, 67; South Gage Field, 253, 254, 255
- Garvin: Northwest Butterfly Field, 21; soils, 261
- Grady: Morrow-Springer exploration, 190; Oklahoma City Uplift, 157; soils, 261
- Grant: copper, 46
- Greer: gypsum, 139
- Harmon: gypsum, 139; soils, 261
- Harper: gypsum, 139; iodine, 45; Pleistocene Lake Bufalo, 225
- Haskell: coal, 12, 75, 78
- Jackson: gypsum, 139; soils, 261
- Jefferson: fossil fish, 277; soils, 261
- Johnston: Antlers aquifer, 118; soils, 261
- Kay: carbon-black production, 72
- Kay: algae, 252, soils, 261
- Latimer: coal, 75, 78
- Le Flore: coal, 4, 12, 47, 55, 75, 76, 78
- Lincoln: Hunton Group, 126, 127, 128; Misener Sandstone, 155; Vamosa aquifer, 53
- Logan: Cleveland sand reservoir, 160, 161; Hunton Group, 126, 127, 128
- Love: Antlers aquifer, 51, 118; soils, 261
- McCurtain: Antlers aquifer, 51, 128; Paluxy Formation, 29; Washita Group, 224
- Major: gypsum, 139
- Marshall: Antlers aquifer, 51, 118; areal geology, 129; Cretaceous, 129; Denison Dam Quadrangle, general geology, 23; petroleum and natural gas, 129; soils, 261; subsurface geology, 178
- Murray: algae, 252; soils, 261; Southwest Davis Field, 272
- Muskogee: coal, 12, 75, 78; crinoids, 238, 240
- Noble: Cherokee Group rocks, 26; lithium, 44; South Ceres Field, 54
- Nowata: coal, 75, 78; Delaware-Childers Field, 25
- Okfuskee: Vamosa aquifer, 53
- Oklahoma: Oklahoma City Field, 82, 84, 109; Oklahoma City Uplift, 157
- Okmulgee: coal, 12, 75, 76, 78; nautiloids, 259; spoil-bank study, 102
- Osage: crinoids, 239; North Burbank Field, 6, 30, 97, 154, 220, 256; North Stanley Field, 30, 50; pollens, 105; Vamosa aquifer, 53
- Ottawa: tripoli, 3, 207; zinc-mine water, 202
- Pawnee: Vamosa aquifer, 53
- Payne: Hunton Group, 126, 127, 128; Misener Sandstone, 155; Vamosa aquifer, 53
- Pittsburg: coal, 12, 75, 78
- Pontotoc: Atoka Formation, 10; blastoids, 148
- Pottawatomie: Vamosa aquifer, 53
- Pushmataha: Antlers aquifer, 118
- Roger Mills: Cloud Chief Formation, 67; Reydon East Field, 187; soils, 261
- Rogers: coal, 40, 41, 42, 75, 78
- Seminole: Vamosa aquifer, 53
- Sequoyah: brachiopods, 8; Morrowan rocks, 278
- Stephens: North Alma Field, 30; soils, 261; Taco Field, 275
- Tillman: fossil fish, 277; soils, 261

[137] [138]
restrictions on coal burning, 13
salt pollution: Arkansas River Valley, 141; central Oklahoma, 270
soil expansion and contraction, Cimarron River Valley, 18
storm-water management, 132
waste disposals: industrial wastes, 143, 169; radioactive wastes, 142
waste-powered power plant, 212
water quality: Antlers aquifer, 51, 118; Arbuckle aquifer, 66; Arkansas River Valley, 141;
Boone aquifer, 150; Cimarron River Valley, 18; eastern Oklahoma, ground water, 121;
Washita River, 173, 183; zinc-mine water, 202, 203

Geochemistry:
alternation of red beds over petroleum deposits, 68
atmospheric carboxyl sulfide concentration, 176
clay analyses in soils, 216
cal analyses, 47, 76, 77, 78
copper mineralization, 46
fluid analyses for treated wells, 154
grothermal-gradient anomalies, 32
heavy oils, 60, 61
hydrothermal fresh-water carbonates, 257
ion-microprobe study of galena, 22
isotope analysis, Tri-State galena, 22, 229
ekergen analyses, 116
Keyes chondrite, 55Mn study, 62
modern fluvial muds and sands, 31
Quanah Granite, 2
Tishomingo meteorite, 137
uranium-bearing dikes, Wichita Mountains, 5
uranium mineralization, 194, 269
water analyses for uranium, 194, 269
Wichita Granite Group, 2
zinc-mine-water analyses, 202, 203

Geomorphology:
Bryan County, 131
Custer County, 67
Hornicky Creek Valley, 105
Red River Valley, 261
soil-bank erosion, Okmulgee County, 102
Wichita Mountains, 90

Geophysics:
geomagnetism: Carlton Rhyolite, 267; Nemaha Ridge evaluation, 168; Ouachita Mountains, 265; Ozark Uplift, 265
grothermal gradients, 100
history of geophysical prospecting, 244
Midcontinent gravity anomaly, 168
Nemaha Ridge evaluation, 168
Oklahoma Geophysical Observatory, 164
seismology: Anadarko Basin analysis, 80; Cleveland sand study, 160, 161; earthquake-
recording network, 164; earthquakes, 9, 142, 157, 180, 236, 237, 274; exploration for
stratigraphic traps, South Ceres Field, 54; geoseismic model, Morrow-Springer sands,
Watonga-Chickasha trend, 38; Oklahoma seismograph network, 98; telesismic
data, travel-time residuals, 98

Hydrogeology, Hydrology:
flooding, see Environmental Geology
ground-water levels: Antlers aquifer, 51, 118; general, 96
Oklahoma Geological Survey programs, 175
resources: Antlers aquifer, 118; zinc-mine water, 203

Comanchian (Lower Cretaceous) Series:
Dakota Group, 67
Fredericksburg Group:
Goodland Formation, 23, 129, 131
Walnut Formation, 23, 129, 131
Trinity Group:
Antlers Formation, 23, 29, 51, 118, 129, 131, 269
Baum Limestone, 129
Paluxy Formation, 29
Washita Group:
Bennington Formation, 131
Bokchito Formation, 23, 119, 120, 129, 130, 131, 143; Denton Clay Member, 23, 120, 129, 130, 224; McNutt Limestone Member, 120, 129, 130, 131;
Pawpaw Limestone Member, 23, 120, 129, 130, 131, 224; Soper Limestone Member, 120, 129, 130, 131; Weno Clay Member, 23, 120, 129, 130, 224
Caddo Formation, 129, 131
Duck Creek Formation, 23, 129, 224
Fort Worth Formation, 23, 129, 224
Grayson Formation, 23, 131, 224
Kiamichi Formation, 23, 129, 131, 224
Kiowa Shale, 67
Main Street Formation, 23, 224
Gulfian (Upper Cretaceous) Series: Eagle Ford Formation, 131, 143; Woodbine Formation, 131
data systems: General Information Processing System (GIPSY), 27; Petroleum Data System (PDS), 188

Devonian:
Arkansas Novaculite, 124, 149
Hanston Group, 74, 114, 127, 128, 131; Haragan Formation, 74, 127
oil production from shales, 162
Ouachita and Ozark areas, Arkansas, 26
Woodford Formation, 131, 143, 155
earthquakes: earthquake-recording network, 164; El Reno, 1952, 157; general, 142, 180, 236, 237, 274; Modified Mercalli intensity attenuation, 9

Environmental Geology:
diversion of fluid from treated wells, 154
effects of quarrying, 13
flood-disaster protection, 132
flooding: Bixby, 48; Cimarron River Valley, 18; flood deposits, Arkansas River, 234;
flood protection, 132; flood-peak records, 132; storm-water management, 132
flood-plain management, 48
land use: Red River Basin, 261; surface-mined lands, 170; waste-powered power plant, 212
mined and quarried lands, reclamation, 102, 170, 195, 268
mine disasters, 195

mine-dump erosion study, 102
mining regulations, 12, 13, 170, 195
nuclear-facilities siting, 168
oil and gas conservation, 34
Oklahoma Geological Survey programs, 175

Tulsa: coal, 78; flood-plain management, Bixby, 48
Wagoner: coal, 75, 78; crinoid, 240
Washington: crinoids, 239; pollen, 105
Washita: Elk City Sandstone, 67; gypsum, 139; soils, 261
Woods: gypsum, 139
Woodward: gypsum, 139; iodine, 45

Cretaceous:

[139]
storm-water management, 132
subsurface waters: Andrews aquifer, 51, 118; Arbuckle aquifer, 66, 122; Arkansas River Basin, 263; Boone aquifer, 150; Bryan County, 131; Cimarron River Valley, 18; Custer County, 67; eastern Oklahoma, general, 121; El Reno aquifer, 122; general, 96; Marlow aquifer, 67, 122; Paluxy Formation aquifer, 29; Red River Basin, 264; Rush Springs aquifer, 67, 122; Vanossos aquifer, 53; Wichita Mountains area, 122; zinc-mine water, 202, 203
surface waters: Arkansas River, 31, 33, 141, 234, 263; Boswell Reservoir, 131; Bryan County, 131; Canadian River, 31; central Oklahoma, 270; Choctaw Creek, 132; Cimarron River Valley, 18, 31, 141; Custer County, 67; flood-peak records, 132; Foss Reservoir, 67, 173, 183; general, 133, 134, 143; high-flow records, 133; Kiamichi River, 31; Lake Carl Blackwell, 33; Lake Texoma, 131; low-flow records, 134; Red River, 221, 222, 223, 261, 264; Washita River, 31, 175, 183
U.S. Geological programs, 262
water quality: Andrews aquifer, 51, 118; Arbuckle aquifer, 66, 122; Arkansas River, salt pollution, 141; Arkansas River Basin, 263; Boone aquifer, 150; El Reno aquifer, 122; ground water, central Oklahoma, 270; ground water, eastern Oklahoma, 121; ground water, Wichita Mountains area, 122; Marlow aquifer, 122; Red River Basin, 264; Rush Springs aquifer, 122; Vanossos aquifer, 53; Washita River, 175, 183; zinc-mine water, 202, 203
indexes: echinoids, 152; Oklahoma geology, 1977, 107; Oklahoma Geology Notes, v. 38, 193
maps: oil and gas road map, 198; structural-contour map of Pennsylvanian, 79; Wichita Mountains, mapping project, 95
Marietta Basin, 131
memoria: Carl Colton Branson, 271; William Eugene Ham, 251; Malcolm C. Oakes, 57, 108
meteorites: Keysy chondrite, exposure age, 62; Tsihemoso meteorite, 137
MINERAL INDUSTRIES:
commodities: ammonite plant, 70; brick manufacturing, 67; cadmium, 52; carbon black, 12, 72; cement, 11, 12, 13, 273; clay and shale, 7, 11, 12, 67, 195; coal, see Coal; copper, 12, 46, 195; crushed stone and aggregate, 210; feldspar, 11, 13; gallium, 197; germanium, 260; glass sand, 12, 13, 230; granite, 195, 210; gypseum, 11, 12, 13, 67, 139, 195, 206, 268; helium, 11, 12, 13, 36; iodine, 11, 13, 45, 135; lead and zinc, 12, 13, 195, 202; lime, 13; lithium, 44; nitrogen, 70; novaculite, 124; pumice (volcanic ash), 11, 12, 13, 67, 177, 195; salt, 11, 12, 13, 67, 71, 142, 195; sand and gravel, 11, 12, 13, 64, 67, 195; silver, 12; stone, 11, 12, 13, 17, 195, 210; sulfur, 227; thorium-processing plant, 146; tripoli, 3, 11, 12, 13, 124, 149, 195, 207; uranium, 2, 5, 12, 67, 145, 269; vermiculite-exfoliating plant, 103
mine disasters, 195
mined-lands inventory, 170
mined-lands reclamation, 102, 170, 195, 268; Oklahoma Geological Survey programs, 175
Oklahoma Geological Survey programs, 13, 175
producers: cadmium, 52; coal, see Coal; gallium, 197; general, 12, 195; glass sand, 230; gypseum, 139, 206; tripoli, 3
regulations, 12, 13, 170, 195
statistics, 7, 11, 12, 13, 70, 71, 72, 75, 177, 195, 206, 210, 273
technology, 40, 78, 230, 268
transportation, 13
U.S. Geological Survey programs, 13
MISSISSIPPIAN:
Arkansas Novaculite, 124
Boone Formation, 150, 202, 207
Burlington Shelf, 163
Caney Shale, 131
Delaware Creek Shale, 143
Fayetteville Formation, 163, 238
Goddard Shale, 131, 143
Hindsville Formation, 219
Keokuk Formation, 207
Misener Sandstone, 155
Ouachita and Ozark areas, Arkansas, 26
Pickin Formation, 39, 219, 238
St. Joe Formation, 163
Springer Formation, 114, 131
Stanley Shale, 143, 162, 181
Sycamore Sandstone, 35
Warsaw Formation, 207
Woodford Shale, 131, 143, 155
Muenster Arch, 184
Nemaha Ridge: geologic history, 168; seismic study, 168; structure and tectonics, 79, 81, 84, 114, 157, 168
Northeast Oklahoma Shale, coal, 77
Oklahoma Geological Survey:
annual report, July 1, 1977–June 30, 1978, 175
coal programs, 12
rush energy programs, 175
hydrologic investigations, 175
mineral investigations, 175
Oklahoma Geophysical Observatory, 164
Oklahoma Platform, structure, 79, 157
Ourophican:
Arbuckle Group, 66, 81, 82, 83, 84, 122, 157, 186, 214, 217, 218, 219, 246, 252; Cool Creek Formation, 81, 217, 218, 246; Kindblade Formation, 81, 214, 246, 252; McKenzie Hill Formation, 81; West Spring Creek Formation, 81, 219, 246
Bigfork Chert, 16
crinoids, 24
Fernvale Formation, 131, 166
Ouachita and Ozark areas, Arkansas, 26
Simpson Group, 21, 24, 131, 157, 158, 165, 166, 167, 201, 233, 241, 252, 272: Bromide Formation, 21, 24, 131, 157, 158, 166, 233, 272; Mountain Lake Member, 166; Pooleville Member, 166
correlations with Arkansas equivalents, 241
Joins Formation, 21, 131
McLish Formation, 21, 131, 252, 272
Oil Creek Formation, 21, 131, 252, 272
porosity of Simpson orthoquartzitcs, 201
Tulip Creek Formation, 21, 131, 272
Sylvan Shale, 1, 127, 128, 131, 157, 166, 272
Viola Limestone, 1, 21, 131, 157, 166, 272
Womble Shale, 16
Ouachita Mountains:
Arkansas Novaculite, 124
Backbone Anticline and Fault, 4, 47
Benton-Broken Bow Uplift and Fault Zone, 215
Choctaw Fault, 47, 55, 81
conodonts, 99
paleomagnetism, 265
Paleozoic geology, Arkansas, 26
sedimentology, 26, 81, 99, 181, 226
Source of Anadarko Basin Virgilian deposits, 209
Source of Paluxy Formation sediments, 29
Stanley Shale, "right gas," 162
structure and tectonics, 97, 55, 81, 84, 131, 215, 226, 249
Ozark Mountains:
Miami Graben, 185
paleomagnetism, 265
Paleozoic geology, 26, 163, 185
Rialto Basin, 185
sedimentology, 26, 163
Seneca Fault and Graben, 185
structure, 185

Paleobotany:
acritarchs, Ordovician, 166
algae: Boyd and McCully Formations, 278; general, 276; Ordovician, 252; Pleistocene, 225
Hartshorne coals, 47
microphytoplankton, Ordovician, 166

Paleogeology, Paleoenvironments, Paleoclimatology:
Appalachian-Ouachita continental margin, 249
Arbuckle Group, 83, 218
Arkoma Basin, 47, 119
Atoka, 119
Cambrico-Ordovician, Arbuckle area, 218
Francis Formation, 112
Hominy Creek Valley, 105
karst paleotopography, 128
Little Caney River Valley, 106
Mississippian, Ozark area, 163
Ordovician-Devonian, central Oklahoma, 127
paleocurrents, Carboniferous, Ouachitas, 181
Permian, 125, 142
Pleistocene Lake Buffalo, 225
Wapanucka Formation, 99

Paleozoology:
bioherms, 19
blastoids, 147, 148
brachiopods, 8, 219
bryozoa, 171, 219
cephalopods, 219, 258, 259
chitinozoans, 1
conodonts, 15, 99, 185, 242, 266
crinoids, 24, 73, 74, 182, 233, 238, 239, 240
echinoderms, 219
echinoids, 152, 158
toramientos, 185, 219
fossil communities: Francis Formation, 112; Pleistocene, 225
gastropods, 165, 225
graptolites, 16
molluscs, 225
nautiloids, 259
neoteny in crinoids, 233
ostracodes, 219, 225
pelcycylops, 219
sponges, 213, 214
stromatoporoids, 19
trilobites, 248
vertebrates: amphibians, 179; bibliography, 231; fish, 211, 277; pycnozoa, 232
palynology: alteration of pollens in sediments, 104; Hominy Creek Valley, 105; Quaternary pollens, interpretation of diagrams, 104

Pennsylvanian:
algae, 276
Atokan Series, Atoka Formation, Atoka Group, 4, 10, 47, 55, 99, 119, 143, 172, 181, 242, 243, 278; Morrowan-Atokan boundary, 99, 143; Red Oak sands, 119; Spiro sands, 119, 192
caliche, 56

Desmoinesian Series:
Atoka Formation, Atoka Group, see Atokan Series
Cabanis Group; Senora Formation, 77, 143; Stuart Shale, 143
Cherokee Group, Cherokee sands, 28, 60, 61, 115; Burbank sand, 50; Prue sand, 28; Red Fork sand, 28; Skinner sand, 28
conodonts, 266
Deese Group, Deese Formation, 21, 131, 213
Krebs Group, 4, 47, 55:
Boggby Formation, 55, 77, 143
Hartshorne Formation, Hartshorne coals, 4, 47, 55, 76, 77
McAleser Formation, 4, 47, 55, 77, 143; Cameron Sandstone Member, 4, 47; Keota Shale Member, 4, 47; Lequire Sandstone Member, 4, 47; McCurtain Shale Member, 4, 47; Stigler coal, 4, 47; Tamaha Sandstone Member, 4, 47; Warner Sandstone Member, 4, 47
Marmaton Group, 79, 115, 157; Bandera Formation, 143; Holdenville Shale, 143; Labette Shale, 143; Nowata Shale, 143; Oolagah Formation, 79, Altamont Limestone Member, 79; Oswego Limestone, 79, 157; Wetumka Shale, 143; Wewoka Formation, 143, 213, 239, 268, 259
Gearyan Series: Council Grove Group, Foraker Limestone, 157; Oscar Group, 143, 277; Vamoosa Formation, 53, 69, 143; Vannos Group, 143
Missourian Series:
Hoxbar Group, 21, 79, 80, 115, 157, 228, 253, 254, 255; Belle City Limestone, 80; Checkerboard Limestone, 21, 79, 157; Cottage Grove Sandstone, 115, 253, 254, 255; Haskell Limestone, 80; Hogshooter Limestone, 21, 157; Huber sand, 21; Layton sand, 115, 157; Marchand sands, 14, 228; Tonkawa Limestone, 80, 115; Tuley sands, 21
Lancing–Kansas City Group, 255
Ochelata Group, 115, 239, 253, 254, 255; Cottage Grove sand, 115, 253, 254, 255; Wann Formation, 239
Skiatook Group: Cleveland sand, 160, 161; Francis Formation, 112; Seminole Formation, 77, 143

Morrowan Series:
bioherms, 19
Bloyd Formation, 147, 219, 240, 242, 243, 278, 279; Brentwood Limestone Member, 147, 240, 242, 278; Dye Shale Member, 242, 278; Keefer Limestone Member, 242, 243, 278, 279; Trace Creek Shale Member, 242, 243, 278, 279; Woolsey Member, 242, 278
Dornick Hills Group, 38, 131, 143, 189, 190, 247; Cunningham sandstone, 247; Goddard Formation, 131, 143; Springer Formation, 38, 131, 189, 190, 247
growth faults, Arkoma Basin, 172
Hale Formation, 147, 219, 242; Prairie Grove Member, 147
Jackfork Sandstone, 181
Johns Valley Shale, 143, 181
McCully Formation, 147, 278; Chisum Quarry Member, 147, 278; Greenleaf Lake Limestone Member, 147, 278; shale "A" member, 278; shale "B" member, 278
Morrowan-Atokan boundary, 99, 243
Morrowan-Atokan deposition, 172
Morrow sands, 38, 45, 187, 189, 190
Sauhelic Formation, 147, 240: Braggs Member, 240; Brewer Bend Limestone Member, 240
Wapanucka Formation, 79, 99, 148
Ouachita and Ozark areas, Arkansas, 26
Pennsylvanian-Permian orogenic faulting, Ouachitas, 226

Virgilian Series:
Anadarko Basin, 208, 209
arkosic facies, 111
Cisco Group, 21
Council Grove Group, 157
Hoebner Shale, 208, 209, 266
Lecompton Limestone, 157
Oread Limestone, 157
Oscar Group, 143, 277
Pawhuska Formation, 157
Vamoosa Formation, 53, 69, 143: Gypsy Sandstone Member, 69; Vamoosa aquifer, 53
Vanosi Group, 143

Permian:
amphibians, 179
arkosic facies, Lower Permian, 111
caliche, 56

Cimarronian Series, Cimarron Group, 46, 122, 140, 141, 142, 143, 184, 232, 277:
El Reno Group, 122, 139, 141, 142, 143, 268: Blaine Formation, 122, 125, 139, 142, 268: Cedar Springs Dolomite Bed, 125; Haskew Gypsum Member, 123; Medicine Lodge Gypsum Member, 125; Nescutanga Gypsum Member, 125; Shiner Gypsum Member, 125; Van Vaster Member, 139
Chickasha Formation, 122
Dog Creek Shale, 143
Flowerpot Shale, 125, 141, 142, 143
Hennessey Group, Hennessey Shale, 122, 143, 232, 277: Bison Shale, 143; Fairmeat Shale, 143
Post Oak Formation, 122, 184
salt deposits, 140, 141, 142
Sumner Group, 46, 122, 142, 143, 232, 277: Garber Sandstone, 122, 143, 232, 277; Wellington Formation, 46, 122, 142, 143

Cimarron River Valley, 18
Custer County, general, 67
Custer International:
Elk City Sandstone, 67
Foss Group, 67, 122, 139, 143: Cloud Chief Formation, 67, 122, 139; Dosey Shale, 67, 143
Whitehorse Group, 67, 122: Marlow Formation, 67, 122; Rush Springs Formation, 67, 122
Gearyan Series, Pale Pennsylvanian, Gearyan Series gypsum districts, 139
paleogeography, 142
red beds, alteration over petroleum deposits, 68
salt deposits, 140, 141, 142
uranium, 67, 184, 194

Petroleum and Natural Gas:
accumulation, entrapment, and reservoirs: Arbuckle Group, 81, 82, 83, 84; Atokan, Arkoma Basin, 119; Cleveland sand, 160, 161; Cotton Rock Sandstone, 253, 254, 255; Hunton Group, 126, 127, 128; Marchand sands, Binger fields, 14; Marshall County, structural trapping, 178; Miesner sand, 155; Morrow-Springer sands, 189, 247; Paluxy Formation, 29; relation to geothermal-gradient anomalies, 32; Simpson sands, 201, 241; South Ceres Field, 54; Southwest Davis Field, 272; Tuley sandstone, Northwest Butler Field, 21
alteration of red beds over petroleum accumulations, 68
Anadarko Basin, see Anadarko Basin
dereproved recovery, 6, 25, 30, 50, 59, 97, 154, 162, 187, 220, 256, 275
exploration and development: Anadarko Basin, 12, 58, 80, 174, 186, 187, 189, 190, 191, 200, 235; Arbuckle Group, 81, 82, 83, 84, 186; Arkoma Basin, 12, 174, 241; Beckham County, 58; Bryan County, 131; Delaware-Childers Field, 25; Devonian shales, 162; general, 12, 34, 59, 117, 144, 174, 179, 199, 200, 245; helium production, 36; history, 34, 109, 244; Marshall County, 129, 178; methane recovery, 162; Mills Ranch complex, 138; Morrow-Springer sands, 189, 190; North Burbank unit, 154; North Stanley Field, 50; Oklahoma City Field, 109; reservoir-simulation production study, 85; Sholom Alechem Field, 35; Sho-Vel-Tum, 113; Simpson equivalents, Arkansas, 241; Sooner trend, 58, 113; South Ceres Field, 54; southeastern Oklahoma, 191; use of computers in drilling, 159
fields, trends, units: all fields, 11, 12, 13, 117, 199; Aylesworth, 131, 178; Bilbo, 178; Chickasha, 190, 228; Cogar South, 190; Coyle, 128; Cumberland, 131, 178; Delaware-Childers, 25, 97, 220; Dietrich, 190; Durant, 131; East Binger, 14; East Meridian, 128; East Velma, 220; giant oil fields, 109, 117; Healdton, 81, 82, 84; Langston, 128; Little Washita, 190; Madill, 178; Marshall County fields, 129, 178; Mills Ranch, 81, 82, 83, 84, 138, 186; North Alma, 30; North Burbank, 6, 30, 97, 154, 220, 256; North Stanley, 50, 50; Northeast Binger, 14; Northeast Garden, 128; Northwest Butler, 21; Northwest Norge, 228; Oklahoma City, 82, 84, 109; Prairie Gem, 128; Ramsey, 128; Red Mound, 128; Reydon East, 187; Sholom Alechem, 35; Sho-Vel-Tum, 113, 220; Sooner trend, 58, 113; South Ceres, 54; South Gage, 253, 254, 255; South Goodnight, 128; South Langston, 128; South Merrick, 128; South Perkins, 128; Southeast Brook, 81; Southeast Hoover, 81; Southeast Mannsville, 178; Southeast Wilson, 81; Southwest Davis, 272; Southwest Mount Vernon, 128; Southwest Sporn, 128; Springer, 81; Taco, 275; Vinco, 128; Watonga-Chickasha trend, 38; West Mayfield, 81, 82, 83, 84, 138, 186; West Mead, 131; West Meridian, 128
heavy oil fields, 109, 117
history of geophysical prospecting, 244
Morrow-Springer geosismic model, 38
oil and gas road map, 198
Oklahoma Geological Survey programs, 175
origin of oil, kerogen study, 116
Petroleum Data System (PDS), 188
pipelines, 200
projected power and processing plants, 212
statistics: consumption, 49, 113, 156; deep wells, 235; drilling, 59, 117, 144, 199, 245; economics, 11, 12, 13, 59, 113, 117, 156, 174, 235; exploration and development, 113, 117, 156, 199, 245; general, 11, 12, 13, 200; natural gas, general, 156; natural-gas liquids, 37; reserves and resources, 59, 113, 117, 156, 192; stripper wells, 136; waterfloods, 59
subsurface temperatures, 100

Petroleum Data System (PDS), 188
Precambrian: chronology, 17; Raggedy Mountain Gabbro, 92; tectonics, 17; Tishomingo Granite, 66, 131

Quaternary:
Arkoma River Valley, 34
Bryan County, 131
Cimarron River Valley, 18
Custer County, 67
Hominy Creek Valley, 105
Little Caney River Valley, 106
Ogallala Formation, 33, 153
dolos alteration, 104
remote sensing, LandSat imagery: exploration, Anadarko Basin, 65; fracture discrimination for pollution susceptibility of rocks, 150
Salt Plains, 141

Sedimentology:
Anadarko Basin, 14, 21, 80, 111, 189, 209, 209, 247, 253, 254, 255
Arbuckle Mountains, 20, 81, 83, 167, 217, 218
Ardmore Basin, 81, 83
Arkoma Basin, 4, 10, 47, 55, 119, 172
arkosic facies, Pennsylvanian and Permian, 111
Bouma sequences, 181
canyon and fan deposition: Cunningham sandstone, 247; Marchand sands, 228; Upper Pennsylvanian, 151
carbonate shelf deposition: Mississippian, Ozark area, 163; Pennsylvanian, Anadarko Basin, 208, 209; Washita Group, 224
Carboniferous, Ouachitas, 181
channel deposition: Cook Creek Formation, 246; Cottage Grove Sandstone, 253, 254, 255; Hartshorne Formation, 4; Marchand sands, 228; Paluxy Formation, 29; Pennsylvanian, Anadarko Basin, 209; Permian sands, 184; Red River, 221, 222, 223; Vamosa Formation, 69
deltaic deposition: arkosic facies, Pennsylvanian and Permian, 111; Cherokee sands, 28, 61; Hartshorne Formation, 4, 47, 55; Paluxy Formation, 29; Pennsylvanian, Anadarko Basin, 208; Pennsylvanian, Arkoma Basin, 47, 55; Washita Group, 224
diagenesis: authigenic growth of feldspars and clasts, 31; Bromide Sandstone, 167; carbonate compaction and deformation, 219; cornstone (caliche) formation, 56; epigenetic calcite in red beds, 46; kerogen, 116; ore deposition, Ouachitas, 226; porosity modification, 219; replacement of evaporites, Cool Creek Formation, 218; secondary cementation, Cottage Grove Sandstone, 253
dish and pillar structures, 181
effect of growth faults on sedimentation, 172
energy-transport processes, Ouachitas, 226
epigenetic calcite in Permian red beds, 46
estuarine deposition, Washita Group, 224
exfoliation, Cambrian granites, 88
flood deposits, Arkansas River, 234
fluvial deposition: Arkansas River Valley, 31, 33, 234; Cimarron River Valley, 18; modern river deposits, 18, 31, 33, 105, 106, 221, 222, 223; Paluxy Formation, 29; Red River, 221, 222, 223
flysch deposits, 47, 181, 226
Hoxbar Group, 80
hydrothermal deposition of carbonates, 257
karst paleotopography, 128
lead/zinc ore deposition, 204
Marietta Basin, 81
Morroan facies, eastern Oklahoma, 278
oolite shoals and inter-shoals, anoxic deposition, Pikiin Formation, 39
origin of novaculite, 124
origin of Silurian dolomite, 128
Ouachita Mountains, 26, 81, 99, 181, 226
Paluxy Formation, 29
Quarry Mountain Formation, biofacies, 8
Red River, 221, 222, 223
salt deposition, 142
shallow-marine deposition: Boyd and McCully Formations, 278; Bromide Formation, 167; Cottage Grove Sandstone, 253, 254, 255
Southern Oklahoma Aulacogen, 218
strandplain deposition, Paluxy Formation, 29
stromatolites, 218
tidal deposition: Bromide Formation, 167; Cool Creek Formation, 217, 218; Marchand sands, 14; peritidal carbonates, Cool Creek Formation, 218; Permian sands, 184
transgressive-regressive sequences, 111, 218
turbidites: Carboniferous, Ouachitas, 181; Red Oak sands, 119
uranium deposition, 269
Wichita Mountains, 111, 214

Silurian:
Hunton Group, Hunton Limestone, 15, 73, 114, 126, 127, 128, 131, 157; Chimney Hill Subgroup, 15, 127, 128; Clarita Formation, 15, 127, 128; Cochrane Formation, 127, 128; Keel Formation, 128
Henryhouse Formation, 73, 127, 128
Quarry Mountain Formation, 8; Barber Member, 8; Marble City Member, 8
soils: Cimarron River Valley, 18; clay and mineral hydroxy analyses, 216; Red River basin, 261; soil expansion and contraction, Cimarron River Valley, 18
Southern Oklahoma Aulacogen: breccias, 246; petroleum potential, 191; sedimentology, 218; structure and tectonics, 87, 131, 191, 218, 246, 249

Stratigraphy (see also under various geologic systems):
bioturbation: Carboniferous, Ozarks, conodont zonation, 185; Clarita Formation, conodont zonation, 15; Morrowan, conodont zonation, 242; Oil Creek Formation, gastropod correlation, 165; Ordovician, conodont zonation, 16; Ordovician, graptolite zonation, 16; Pikiin Formation, crinoid correlation, 238; Quarry Mountain Formation, brachiopod zonation: Wapanucka Formation, conodont zonation, 99
Cambrian: Arbuckle Group, 81, 84; gabbros, Wichita Mountains, 205; Lugert-Reformational granite contact, 89; mafic rocks, Meers area, 101; Marshall County, 178; Quanah Granite, 92
Cretaceous: Bolchito Formation, 120, 129, 130, 131; Bryan County, 131; Custer County, 67; Marshall County, 178; Washita Group, 67, 131, 224
layered anorthosites, Wichita Mountains, 65
Mississippian: Marshall County, 178; Pikiin Formation, lithostratigraphy, 39
Ordovician: Arbuckle Group, 81, 84; Marshall County, 178; Simpson Group, 241
Paleozoic, Ouachita and Ozark areas, general, 26
Pennsylvanian: Boyd Formation, 279; Checkerboard Limestone, 79; Cherokee sands, Noble County, 28; Hoxbar Group, 79, 80; McCully Formation, 278, 279; Marshall County, 178; Morrowan-Atokan boundary, 99, 243; Osage Limestone, 79; Wapanucka Limestone, 79, 99
Permian: Custer County, 67; Kansas, 125; Red River area, 184
Siluro-Devonian, Marshall County, 178

Structural Geology (includes tectonics):
Anadarko Basin, 32, 65, 81, 82, 84, 114, 147, 157, 249
Arbuckle Anticline, 20, 21, 81, 246
Arbuckle limestones, fracturing, 82
Arbuckle Mountains, 20, 21, 65, 81, 84, 131, 178, 246, 267, 272
Ardmore Basin, 32, 131, 249
Arkoma Basin, 4, 10, 47, 55, 119, 131, 172
Backbone Anticline and Fault, 4, 47
Belton Anticline, 20, 21, 131
Benton-Broken Bow Fault Zone, 215
Bokoshe Syncline, 47
Boone Formation, fracturing, 150
Bryan County, 131
Bryan Fault, 131, 178
Cavanal Syncline, 47
Choctaw Fault, 47, 55, 81

[147]

[148]
Clarita Anticline and Fault, 10, 20
Coal Creek Syncline, 4, 47
contemporaneous faulting, Arkoma Basin, 172
Cumberland Anticline, Syncline, and Fault, 131, 178
Custer County, 67
Dallas junction, 23
effect of faulting on porosity, 201
Franks Fault Zone, 20
growth faults, Atokan, Arkoma Basin, 119
Harford Anticline, 55
Heavenly Anticline, 55
Hunton Anticline, 20, 21
James Fork Syncline, 4
Keene's fault, 185
Kingston Syncline, 23, 131, 178
lineaments: Oklahoma Platform, 79; Wichita Mountains, 93
McClain County, 157
Madill-Aylesworth Anticline, 131, 178
Marietta Basin, 131
Meers Valley Fault, 131
Miami Graben or Trough, 185
Midcontinent gravity anomaly, 168
Mill Creek-Blue River Fault Zone and Syncline, 20, 21
Milton Anticline, 47
Nemaha Ridge, 79, 81, 84, 114, 157, 168
Northeastern Oklahoma Platform, 128
Northwest Butterfly Field, 21
Oakland Anticline, 178
Oklahoma City Uplift and Fault Zone, 157
Oklahoma Platform, 79, 157
Osage Arch, 81
Osagehia Mountains, 47, 55, 81, 84, 131, 215, 226, 249
Ozark Mountains, 185
Pennsylvanian-Permian orogenic faulting, 226
Phillips Fault, 10
Pine Mountain Anticline, 55
Poteau Syncline, 55
Precambrian tectonics, 17
Preston Anticline, 23, 131, 178
Ravia fault block or nappe, 131, 178
Reagan Fault Zone, 20, 272
Rialto Basin, 185
rift, Ouauchita, 249
Seneca Fault and Graben, 185
Southern Oklahoma Aulacogen, 87, 131, 191, 218, 246, 249
Spiro Anticline, 4, 47
Sulphur Fault Zone, 20, 131
Sulphur-Wapanucka Syncline, 20, 21
Tishomingo Anticline, 20, 21, 81, 131
Washita Valley Fault Zone and Syncline, 20, 21, 131, 178, 272
Waurika Arch, 81
Wichita Mountains, 63, 89, 90, 92, 93, 94, 95, 101, 110, 122, 205, 267

Tri-State Area:
heavy oils, 61
lead isotope study of ores, 22, 229
lead-zinc deposits, origins, 204

stratigraphy and structure, 185
zinc-mine water, 202, 203

Uranium:
Antlers Formation, 269
carbonate mounds, Kindblade Formation, 214
gravels, 2, 87, 88, 89, 90, 91, 92, 93, 94, 95, 101
groundwater, 122
intraslab relations of gabbros, 205
layered anorthosites, 63
Lugert-Reformatory granite contact, 89
magnesite-rock unit, 110
magnetite-ilmenite-olivine rocks, 110
mapping project, 95
source of Oklahoma Permian deposits, 184
structure, 63, 89, 90, 92, 93, 94, 95, 101, 110, 122, 205, 267
subsurface ars from facies, 111
uranium, 2, 5, 145, 174

Waurika Arch, 81
Wichita Mountains:
algae, 252
arkose facies, Virgilian and Lower Permian, 111
carbonate mounds, Kindblade Formation, 214
granites, 2, 87, 88, 89, 90, 91, 92, 93, 94, 95, 101
groundwater, 122
highest point, 90
intrusives relations of mafic to felsic rocks, 205
layered anorthosites, 63
Lugert-Reformatory granite contact, 89
magnesite-rock unit, 110
magnetite-ilmenite-olivine rocks, 110
mapping project, 95
source of Oklahoma Permian deposits, 184
structure, 63, 89, 90, 92, 93, 94, 95, 101, 110, 122, 205, 267
subsurface ars facies, 111
uranium, 2, 5, 145, 174
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY, 1979

Compiled by Elizabeth A. Ham

Bibliography—pages 123–150
Index—pages 150–169

BIBLIOGRAPHY

Barker, Colin, see Lipstreuer, K. A., and Barker, Colin

18. Bartolina, D. G., see Mayhugh, R. E., and Bartolina, D. G.

21. Bennison, A. P., 1979, Mobile basin and shelf border area in northeast Oklahoma during Desmoinesian cyclic sedimentation, in Hyne, N.
36. Brookins, D. G., see Chaudhuri, S., and Brookins, D. G.
46. Chatterton, B. D. E., see Perry, D. G., and Chatterton, B. D. E.
48. Chaudhuri, Sambhudas, see Cutlers, Robert, Chaudhuri, Sambhudas, Kilbane, Neil, and Koch, Richard
50. Chism, Alan, see Conkin, J. E., and Chism, Alan
45. Cocks, L. R. M., 1979, New acrotretaceous brachiopods from the Palaeozoic of Britain and Austria: Palaeontology, v. 22, p. 93–100, 2 pls. (Refers to Oklahoma Silurian genera.)

49. Coquel, Robert, see Owens, Bernard, Loboziak, Stanislas, and Coquel, Robert.

53. Cuffey, R. J., see Hall, W. B., and Cuffey, R. J.

54. Cunitte, J. E., 1979, Late Pleistocene molluscs, southeastern Tulsa County, Oklahoma: Oklahoma Geology Notes, v. 39, p. 95–98, 1 fig.

57. Davis, D. K., see Kanino, R. E., and Davis, D. K.

59. Davis, R. E., see Fairchild, R. W., Hanson, R. L., and Davis, R. E.

60. Davis, R. E., see Hart, D. L., and Davis, R. E.

61. Deul, Maurice, 1979, Coalbred derived natural gas in conventional gasfields [abstract]: International Congress of Carboniferous Stratigraphy and Geology, ninth, Abstracts with papers, p. 51. (Includes Hartshorne coal.)

67. Donovan, T. J., see Henry, M. E., and Donovan, T. J.

68. Doolan, B. L., see Willians, Harold, and Doolan, B. L.

70. DuBois, R. L., see Lawson, J. E., Jr., DuBois, R. L., Foster, P. H., and Luza, K. V.

71. DuBois, R. L., see Lawson, J. E., Jr., Luza, K. V., DuBois, R. L., and Foster, P. H.

73. DuBois, S. M., see Steeples, D. W., DuBois, S. M., and Wilson, F. W.

74. Dutton, S. P., see Galloway, W. E., and Dutton, S. P.

75. Dunagan, J. F., Jr., 1979, Geology of the Lower Ordovician rocks of the

67. Engelder, Terry, 1979, The nature of deformation within the outer limits of the central Appalachian foreland fold and thrust belt in New York State: Tectonophysics, v. 55, p. 289–310, 8 figs., 2 tables. (Compares fracture patterns to those in Ouachitas.)

75. Ferguson, J. D., 1979, The subsurface alteration and mineralization of Permian red beds overlying several oil fields in southern Oklahoma, part 2: Shale Shaker, v. 29, p. 200–208, 10 figs.

Fertl, W. H., see King, E. E., and Fertl, W. H.

Finley, R. J., see Gustavson, T. C., and Finley, R. J.

Foyt, R. L., see Donovan, T. J., Foyt, R. L., and Roberts, A. A.

Foster, P. H., see Lawson, J. E., Jr., DuBois, R. L., Foster, P. H., and Luza, K. V.

Foster, P. H., see Lawson, J. E., Jr., Luza, K. V., DuBois, R. L., and Foster, P. H.

Foster, Paul, see Luza, K. V., DuBois, R. L., Lawson, J. E., Jr., Foster, Paul, and Koff, Leonid

78. Freest, T. J., Strimple, H. L., and Coney, C. C., 1979, Paracrinoids (Platycystitidae) from the Benbolt Formation (Blackriverian) of Virginia: Journal of Paleontology, v. 53, p. 380–398, 9 figs., 2 pls., 1 table. (Includes Oklahoma species.)

81. Friedman, G. M., 1979, Differences in size distributions of populations of particles among sands of various origins: Sedimentology, v. 26, p. 3–32, 31 figs., 1 table. (Includes Arkansas River bar.)

84. Friedman, S. A., 1979, Surface mine in Stigler coal, Haskell County, Oklahoma: Oklahoma Geology Notes, v. 39, p. 162. (Cover-photo description.)

Hale, S. A., see Henry, D. O., Butler, B. H., and Hall, S. A.

99. Hall, W. B., and Cuffey, R. J., 1979, Species-level bryozoan assemblages in the Wreford Megacyclothem (Lower Permian) of Kansas, Oklahoma, and Nebraska [abstract]: International Congress of Carboniferous Stratigraphy and Geology, ninth, Abstracts of papers, p. 84–85.

Ham, E. A., see Keener, K. L., Ham, E. A., and Kidd, C. M.

Hanson, R. L., see Fairchild, R. W., Hanson, R. L., and Davis, R. E.

Harding, Richard, see Urban, J. B., and Harding, R. Harding, Richard, T. P.

Haws, Alan, see Bellis, W. H., and Haws, Alan

116. Henson, B. L., see Lee, L. J., and Henson, B. L.

121. Hoenig, M. A., see Hills, J. M., and Hoenig, M. A.

123. Hollenbach, R. E., see Grady, D. E., and Hollenbach, R. E.

125. Hrkel, E. J., see Bradford, R. N., and Hrkel, E. J.

126. Huntzinger, T. L., see Corley, R. K., and Huntzinger, T. L.

133. Jacobson, S. R., 1979, Acrinurids as paleoenvironmental indicators in Middle and Upper Ordovician rocks from Kentucky, Ohio and New York: Journal of Paleontology, v. 53, p. 1197–1212, 12 figs. (Discusses research studies done on Oklahoma Ordovician rocks.)

136. John, C. J., see Kraft, J. C., and John, C. J.

140. Johnson, K. S., see Arndt, R. H., Johnson, K. S., and Roberts, J. F.

143. Jones, M. D., see Wagner, G. H., Konig, R. H., Vogelphol, Sidney, and Jones, M. D.

144. Jones, N. W., and McKee, J. W., 1979, Basement rocks at Potrero de la Mula, Coahuala, Mexico [abstract]: Geological Society of America Abstracts with Programs, v. 11, p. 150. (Suggests relationship of igneous rocks with Ouachita core.)

146. Jordan, Louise, see Frezou, S. E., and Jordan, Louise

147. Kane, V. E., see Bard, C. S., Butz, T. R., Cagle, G. W., Kane, V. E., Nichols, C. E., Rutledge, D. A., and Wolf, D. A.

148. Kasino, R. E., and Davies, D. K., 1979, Environments and diagenesis, Morrow sands, Cimarron County (Oklahoma) and significance to regional exploration, production and well completion practices, in Hyne, N. J., editor, Pennsylvanian sandstones of the Mid-Continent: Tulsa Geological Society, p. 169–194, 18 figs., 3 tables.

Kidd, C. M., see Ham, E. A., and Kidd, C. M.

Kidd, C. M., see also Keener, K. L., Ham, E. A., and Kidd, C. M.

Kisvarsanyi, Geza, see Proctor, P. D., Toweh, S. H., and Kisvarsanyi, Geza

Knauth, L. P., see Jones, D. L., and Knauth, L. P.

Koch, M. R., see Morris, R. C., Proctor, K. E., and Koch, M. R.

Koff, Leonid, see Luca, K. V., DuBois, R. L., Lawson, J. E., Jr., Foster, Paul, and Koff, Leonid

Konig, R. H., see Wagner, G. H., Konig, R. H., Smith, D. A., Steele, K. F., and Zachry, D. L., Jr.

Konig, R. H., see also Wagner, G. H., Konig, R. H., Vogelpohl, Sidney, and Jones, M. D.

151. Lamar, O. W., 1979, Soil survey of Kiowa County, Oklahoma: U.S. Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station, 73 p., 11 figs., 20 soil maps, 10 tables.

Lawson, J. E., Jr., see Luza, K. V., and Lawson, J. E., Jr.

Lawson, J. E., Jr., see also Luza, K. V., DuBois, R. L., Lawson, J. E., Jr.

[135]

[136]
159. Leach, D. L., 1979, Temperature and salinity of the fluids responsible for minor occurrences of sphalerite in the Ozark region of Missouri: Economic Geology, v. 74, p. 931–937, 5 figs. (Includes Ouachita Geosyncline and Arkoma Basin as source areas.)
LeBlanc, R. J., Sr., see Stone, C. G., LeBlanc, R. J., Sr., Haley, B. R., and McFarland, J. D., III
161. Lewan, M. D., Winters, J. C., and McDonald, J. H., 1979, Generation of oil-like pyrolyzates from organic-rich shales: Science, v. 203, no. 4383, p. 897–899, 2 figs., 4 tables. (Oklahoma Woodford Shale is used as an example.)
Lewis, R. D., see Bickford, M. E., and Lewis, R. D.
Lobozia, Stanislas, see Owens, Bernard, Lobozia, Stanislas, and Coquel, Robert
Lowell, J. D., see Harding, T. P., and Lowell, J. D.
165. Luza, K. V., 1979, Granite quarry, Johnston County, Oklahoma: Oklahoma Geology Notes, v. 39, p. 82. (Cover-photo description.)
166. Luza, K. V., 1979, Hydraulic mining near Mill Creek, Oklahoma: Oklahoma Geology Notes, v. 39, p. 110. (Cover-photo description.)
Luza, K. V., see Lawson, J. E., Jr., and Luza, K. V.
Luza, K. V., see also Lawson, J. E., Jr., DuBois, R. L., Foster, P. H., and Luza, K. V.
Luza, K. V., see also Lawson, J. E., Jr., Luza, K. V., DuBois, R. L., and Foster, P. H.
173. MacGormon, D. R., 1979, Lightning location from VHF impulses relative to storm structure from dual Doppler radar (abstract): American Geophysical Union Transactions, EOS, v. 60, p. 837. (Concerns measurements taken at Severe Storms Laboratory in Norman.)
McDonald, J. H., see Lewan, M. D., Winters, J. C., and McDonald, J. H. McFarland, J. D., III, see Stone, C. G., and McFarland, J. D., III.
McFarland, J. D., III, see also Stone, C. G., LeBlanc, R. J., Sr., Haley, B. R., and McFarland, J. D., III.
McGinnis, M. R., see Frest, T. J., Strimpie, H. L., and McGinnis, M. R.
178. McIntosh, G. C., 1979, Abnormal specimens of the Middle Devonian crinoid Bactocrinites and their effect on the taxonomy of the genus: Journal of Paleontology, v. 53, p. 18–28, 2 figs., 2 pls. (Refer to Henryhouse Formation species.)
McKee, J. W., see Jones, N. W., and McKee, J. W.
Malasky, H. J., see Chou, T. W., and Malasky, H. J.

185. Manger, W. L., see Saunders, W. B., Ramsbottom, W. H. C., and Manger, W. L.

186. Manger, W. L., see also Sutherland, P. K., and Manger, W. L.

187. Manger, W. L., see also Sutherland, P. K., and Manger, W. L., editors

190. Mapes, R. H., 1979, Carboniferous and Permian Bactritoides (Cephalopoda) in North America: University of Kansas Paleontological Contributions, Article 64, 75 p., 14 figs., 41 pls.

191. Maxwell, A. J., see Moebius, G. E., and Maxwell, A. J.

192. Mayhugh, R. E., and Bartolina, D. G., 1979, Soil survey of Seminole County, Oklahoma: U.S. Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station, 142 p., 11 figs., 53 soil maps, 19 tables.

193. Meissner, F. F., see Koch, W. J., and Meissner, F. F.

205. Naney, J. W., see Kent, D. C., Naney, J. W., Neafus, R. J., and Witz, F. E.

206. National Stripper Well Association, see Interstate Oil Compact Commission and National Stripper Well Association

208. Neafus, R. J., see Kent, D. C., Naney, J. W., Neafus, R. J., and Witz, F. E.

209. Nemirovskaya, T. I., see Lane, H. R., and Nemirovskaya, T. I.

212. Nichols, J. D., see Bourlier, B. G., Nichols, J. D., Ringwald, W. J., Workman, P. J., and Clemmons, Stanley

214. Niem, A. R., 1979, Patterns of flysch deposition and deep-sea fans in the lower Stanley Group (Mississippian), Ouachita Mountains, Ok-

Nitecki, M. H., see Toomey, D.F., and Nitecki, M. H. Norris, J. B., see Smit, D. E., Norris, J. B., and Watson, P. K.

203. Oil and Gas Journal, 1979, Mid-Continent AAPP meets Oct. 7–9: v. 77, no. 39, p. 231–234. (Contains information on Anadarko Basin and Oklahoma heavy-oil resources.)

208. Oliver, Joseph, see Krothe, N. C., and Oliver, Joseph.

221. Pojeta, John, Jr., see Runnegar, Bruce, Pojeta, John, Jr., Taylor, M. E., and Collins, Desmond

223. Polone, D. J., 1979, Soil survey of Nowata County, Oklahoma: U.S. Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station, 88 p., 8 figs., 48 soil maps, 18 tables.

224. Pope, J. K., see Kelly, S. M., and Pope, J. K.

227. Posis, G. D., see Playford, G., and Posis, G. D.

229. Prout, E. K., see Morris, R. C., Prout, E. K., and Koch, M. R.

231. Puligio, D. G., see Inanciocih, A. T., and Puligio, D. G.

234. Ramsbottom, W. H. C., see Manger, W. L., and Ramsbottom, W. H. C., Ramsbottom, W. H. C., see also Saunders, W. B., Ramsbottom, W. H. C., and Manger, W. L.

235. Raring, A. M., 1979, Structural Configuration in the deep Black Warrior Basin, Mississippi; new evidence [abstract]: Geological Society of America Abstracts with Programs, v. 11, p. 164. (Includes com-

240. Shingleton, L. C., and Watterson, Anderson, Jr., 1979, Soil survey of Atoka County, Oklahoma: U.S. Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station, 153 p., 11 figs., 75 soil maps, 19 tables.

246. Smith, D. A., see Wagner, G. H., Konig, R. H., Smith, D. A., Steele, K. F., and Zachry, D. L., Jr. Smith, D. J., see Takken, Suzanne, and Smith, D. J.

249. Standing, M. B., 1979, A set of equations for computing equilibrium ratios of a crude oil/natural gas system at pressures below 1,000 psi: Journal of Petroleum Technology, v. 31, p. 1193–1194, 1 fig., 1 table. (Study done on Oklahoma City Field Wilcox sand.)

250. Steele, K. F., see Sharp, J. B., Steele, K. F., and Wagner, G. H.

251. Steele, K. F., see also Wagner, G. H., Konig, R. H., Smith, D. A., Steele, K. F., and Zachry, D. L., Jr.

255. Strimple, H. L., see Freest, T. J., Strimple, H. L., and Coney, C. C. Strimple, H. L., see also Freest, T. J., Strimple, H. L., and McGinnis, M. R.

257. Sutherland, P. K., 1979, Stop descriptions—fourth day, afternoon, in Sutherland, P. K., and Manger, W. L., editors, Mississippian–Pennsylvanian shelf-to-basin transition, Ozark and Ouachita regions, Oklahoma and Arkansas: Oklahoma Geological Survey Guidebook 19, p. 61–65, figs. 91–102.

259. Sutherland, P. K., and Manger, W. L., editors, 1979, Mississippian–Pennsylvanian shelf-to-basin transition, Ozark and Ouachita regions, Oklahoma and Arkansas: Oklahoma Geological Survey Guidebook 19, 81 p., 7 pages, 116 figs. (Guidebook for Field Trip 11 of Ninth International Congress of Carboniferous Stratigraphy and Geology.)

261. Sutherland, P. K., see Manger, W. L., and Sutherland, P. K.

266. Taylor, M. E., see Bunnag, Bruce, Pejeta, John, Jr., Taylor, M. E., and Collins, Desmond

270. Thompson, T. B., see Naney, J. W., and Thompson, T. B.

273. Thompson, T. L., see Manger, W. L., and Thompson, T. L.

275. Toomey, D. F., and Nitecki, M. H., 1979, Organic buildups in the
Lower Ordovician (Canadian) of Texas and Oklahoma: Fieldiana, new ser., no. 2, 181 p., 85 figs., 4 tables.

Towe, S. H., see Proctor, P. D., Towe, S. H., and Kisvarsanyi, Geza

Tumbo, D. B., see Sorenson, R. P., and Tumbo, D. B.

Varnes, K. L., see Craig, L. C., and Varnes, K. L.

Visher, G. S., see Vedros, S. G., and Visher, G. S.

288. Wagner, G. H., Konig, R. H., Vogelpohl, Sidney, and Jones, M. D., 1979, Base metals and other minor elements in the manganese deposits of west-central Arkansas: Chemical Geology, v. 27, p. 309–327, 9 figs., 5 tables. (Deposits extend into Oklahoma.)

Wagner, G. H., see Sharp, J. B., Steele, K. F., and Wagner, G. H.

Watson, P. K., see Smit, D. E., Norris, J. B., and Watson, P. K.

Waterson, Anderson, Jr., see Bain, W. R., and Watterson, Anderson, Jr.

Watterson, Anderson, Jr., see also Singleton, L. C., and Watterson, Anderson, Jr.

292. Wickerson, G. J., 1979, Ground water resources of the southern part of the Garber–Wellington ground water basin, in Cleveland and southern Oklahoma Counties and parts of Pottawatomie County, Oklahoma: Oklahoma Water Resources Board Hydrologic Investigations Publication 86, 3 map sheets.

Wilson, F. W., see Steeples, D. W., DuBois, S. M., and Wilson, F. W.

Winters, J. C., see Lewan, M. D., Winters, J. C., and McDonald, J. H., Witz, F. E., see Kent, D. C., Naney, J. W., Neafus, R. J., and Witz, F. E., Witzke, B. J., see Heckel, P. H., and Witzke, B. J.

INDEX
(Numbers refer to entries in bibliography)

age dating: Rb–Sr, Beavers Bend illite, 42; U–Pb, basement rocks, 23

ANADARKO BASIN:
Huntun Group, 28
Marchand sands, 13
Morrocan fan-delta deposits, 239
Morrocan sands, 137, 138, 262, 263
petroleum and natural gas, 13, 14, 45, 52, 61, 62, 69, 70, 106, 114, 125, 128, 137, 138, 145, 175, 193, 203, 218, 239, 243, 262, 268, 272
sedimentology, 13, 14, 20, 28, 61, 62, 92, 137, 262, 263, 272
Simpson Group, 28
structure and tectonics, 51, 52, 61, 69, 70, 80, 105, 106, 114, 128, 194, 268, 294
Upper Permian rocks, 130
waste-disposal reservoirs, 132
annual reports: Oklahoma Department of Mines, 70th, 212; Oklahoma Geological Survey, July 1, 1978–June 30, 1979, 185

ARBURUCK MOUNTAINS:
Arbuckle anticline, 88
Dougahicky Articulate, 93
Lake Anticline, 93
Mill Creek, Fault, Graben, and Syncline, 29, 38, 93
Northwest Butterfly Field, 29
organic builds on, 270
petroleum and natural gas, 29, 38, 302, 303
phytochemical biomere, 215
Reagan fault, 33, 38, 303
sedimentology, 37, 134, 163, 270, 294
source of Vanoss sediments, 37
Southwest Davis Field, 98, 302, 303
analyses, 82, 83, 123, 189, 295
Chelsea area, 139
coal beds: Bluejacket coal, 139; Cavanal coals, 82, 83; Checkerbloom coal, 19, 299, 300; Croweburg coal, 19, 82, 83, 139, 297, 300; Dawson coals, 19, 83, 299, 300; Drywood coal, 139; Egrem coal, 82; Hartshorne coals, 19, 39, 57, 82, 83, 128, 123, 295; Henryetta coal, 290, 291, 297; Iron Post coal, 60, 83, 139; McAlister (Stiger) coals, 82, 85, 84; Mineral coal, 83, 139; Morris coal, 19, 82; Riverton coal, 108, 139, 301; Roe coal, 139; Secor coals, 82, 83; Seminole (Tulsa) coal, 19, 299, 300; Tebo coal, 139; Weir–Pittsburg coal, 83, 139; Witteville (Roe) coal, 82
coil forum, 115
exploration and development, 82, 83, 139
natural gas from coals, 57, 122, 123
Oklahoma Geological Survey programs, 185
producers, 9, 83, 189, 212
production, 9, 83, 115, 212
reserves and resources, 39, 82, 83, 139, 189, 295
spoil-bank study, Henryetta, 95
statistics, 8, 9, 82, 83, 212
technology, 83, 212
vitrinite reflectance of coals in Arkoma Basin, 31
zinc and cadmium distribution in coals, 111
copper mineralization, 50

Counties:
all counties: clays in soils, 234; ground-water levels, 88; mineral production, 8, 9; petroleum and natural gas, 9, 125, 216, 223; surface-water quality, 149
Adair: Carboniferous rocks, 259
Alfalfa: lacustrine delta, 182; petroleum exploration, 264
Atoka: paleontological survey, 232; soil survey, 240
Beaver: hydrology, Palo Duro Creek basin, 228; Missourian and Virgilian rocks, 154
Beckham: Blaine Formation, 271; petroleum and natural gas, 128, 264; uranium, 25
Blaine: Blaine Formation, 271; coal, 72
Bryan: Arkansas Novaculite, petroleum reserves, 197; soil survey, 47
Caddo: Binger fields, 13; cement Field, 61, 62; Clinton Quadrangle, uranium study, 274; Kindblade Formation, 270; Marchand sands, 13, 14; oil fields, 13, 43
Carter: carbonate cements in surface rocks, 117; Kindblade Formation, 270; petroleum and natural gas, 264; soil survey, 190; Woodford shale, pyrolyzates, 161
Cherokee: algal–bryozoan bioherms, 27; Carboniferous rocks, 259; Chesterian rocks, 208; Morrowan Rocks, 209
Choctaw: paleontological survey, 232; soil survey, 261
Cimarron: coal, 72; Keyses field, 43; Morrow sands, 137, 138; uranium, 1
Cleveland: Garber–Wellington aquifer, 292; Golden Trend, 43
Coal: Atoka Formation, 6, 7; coal, 83; paleontological survey, 232; Northeast Olney Field, 175
Comanche: alluvial deposits, 96; floods, 49; petroleum and natural gas, 264; spores, 219; vertebrate fossils, 244
Cotton: coal, 72; vertebrate fossils, 244
Craig: Cherokee sandstones, 65; coal, 83, 139; heavy oil, 108, 109
Creek: Glen Pool, 43
Custer: petroleum and natural gas, 128, 175; South Thomas Field, 175
Dewey: Lenora Gas Field, 278

structure, 29, 37, 38, 93, 294, 302, 303
Sycamore Creek Anticline, 38
Tishomingo Anticline, 38; Prices Falls limb, 38
Washita Valley Fault, 38, 294, 302, 303
Ardmore Basin: structure and tectonics, 105, 194, 268, 294
Ardmore Geological Society, history, 229
Arkoma Basin:
Atoka Formation, 6, 7
Backbone Anticline, 123
Cavanal Syncline, 123
Clarita Fault, 6
coil, 31, 39, 57, 60, 83, 84, 111, 122, 123, 139, 280, 281, 297
Cowlington Syncline, 123
Jack Hills Fault, 6
Kinta Anticline, 123
Milton Anticline, 123
paleogeography, 255
Panther Mountain Syncline, 123
petroleum, 6, 7, 105, 218, 255, 279
San Bois Syncline, 123
sedimentology, 6, 7, 19, 20, 249, 252, 256, 279, 283, 284
Simpson Group rocks, 255
source of Missouri lead–zinc ore fluids, 159
structure, 6, 7, 105, 123, 159, 194, 225, 226, 279, 283, 284
waste–disposal reservoirs, 132
Whitefield Uplift, 123

Bibliographies:
ground water, New Mexico, 30
oil shales and tar sands, 275
Oklahoma geology, 1978, 100
Oklahoma University theses in geology, 140

Cambrian:
Arbuckle Group, 132, 147, 213, 236; Butterfly Dolomite, 147; Fort Sill Formation, 236; Roper Dolomite, 213
biotite gabbros, Wichita Province, 222
Colbert Porphyry, 37
Glen Mountain Layered Complex, 94; Iron Mountain troctolites, 94
Timbered Hills Group, 37, 213; Honey Creek Formation, 213; Rengar Sandstone, 37
Wichita Granite Group, 2, 142; Lugert Granite, 142; Mount Scott Granite, 2; Quanah Granite, 2
Carboniferous:
ammonoids, 181, 237
Carboniferous–Permian boundary, 235
composition of sandstones, Ouachita area, 59
limestone analyses, 287
mesothes, Ozark Shelf, 182, 237
Ouachita Mountains, 163, 249, 250, 251, 252, 253, 256, 257, 258, 259, 284, 293
Ozark Mountains, 182, 237, 258, 259, 287
spores, 219
catalog, Oklahoma Geological Survey well cores, 206
Clinton NTMS Quadrangle, NURE survey, 15, 274
Coal:
Ellis: Southeast Arnett Field, 175
Garvin: Eola Field, 75; Northwest Butterfly Field, 29; Vanoss Group, 37; vertebrate fossils, 244; West Civic Field, 33
Grady: Blaine Formation, 271; petroleum and natural gas, 43, 61, 62, 75, 264
Grant: cobalt, 72
Greer: copper, 129
Harmon: Blaine Formation, 271
Harper: iodine, 167; Mocane-Laverne Field, 43
Haskell: coal, 82, 83, 84, 122, 123; Kinta Gas Field, 43; paleontological survey, 232; petroleum and natural gas, 43, 264; soil survey, 35
Jackson: Altus Oil Field, 75; copper, 129
Jefferson: vertebrate fossils, 244
Johnston: granite quarry, 165; Kintblade Formation, 270; silica-sand quarry, 166
Kay: Wufred Megacyclolhex, 164
Kiowa: Kintblade Formation, 270; Lugert Granite, 142; soil survey, 151
Latimer: Carboniferous rocks, 259; coal, 83; paleontological survey, 232; Red Oak Field, 43
Le Flore: Carboniferous rocks, 259; coal, 82, 83, 122, 123; Poteau Gas Field, 43; paleontological survey, 232
Lincoln: areal geology, 199; Cherokee sands, 280, 281, 282
Logan: fossil amphibian, 207
Love: petroleum and natural gas, 264
McClain: soil survey, 191
McIntosh: Choctaw Antclinion, 64; cobalt, 72; paleontological survey, 232
McIntosh: coal, 82
Marshall: Arkansas Novaculate, petroleum reserves, 197; general, 34; petroleum and natural gas, 264
Mayes: coal, 139; Morrowan rocks, 209
Murray: Butterfly Dolomite, 147; Carboniferous rocks, 259; cobalt, 72; Kintblade Formation, 270; Reagan Fault Zone, 93; Southwest Davis Field, 302, 303; Vanoss Group, 37
Muskogee: algal-bryozoan bioherms, 27; Chesterian rocks, 208; coal, 82, 83
Noble: Perry gas sand, 55; sand and gravel plant, 168; vertebrate fossils, 244
Wufred Megacyclolhex, 164
Nowata: algal-sponge community, 269; coal, 83, 139; soil survey, 220
Oklahoma: Garber-Wellington aquifer, 292; Oklahoma City Field, 247; vertebrate fossils, 244
Okmulgee: coal, 82, 83, 297; Henyetta coal saperes, 297; spoil-bank study, 95
Osage: Avant Limestone, 55; chert, 116; paleoclimate, Quaternary, 97; petroleum exploration, 233; pollen, 116; rotational fault, 44; Wufred Megacyclolhex, 164
Ottawa: Cherokee sandstones, 65; heavy oil, 108, 109
Pawnee: cobalt, 72; Wufred Megacyclolhex, 164
Payne: areal geology, 196; cobalt, 72; Yale Southwest Quadrangle, 230
Pittsburg: Carboniferous rocks, 259; coal, 83; paleontological survey, 232
Pontotoc: Atoka Formation, 6, 7; fossil fern, 186; Pennsylvanian molluscs, 232
Vanoss Group, 37
Pottawatomie: Cherokee Group, Cherokee sands, 225, 226, 280, 281, 282
Garber-Wellington aquifer, 292
Pushmataha: paleontological survey, 232; petroleum and natural gas, 264; soil survey, 12
Roger Mills: uranium, 25
Rogers: coal, 83, 139
Seminole: Cherokee sands, 280, 281, 282; cobalt, 72; Cromwell Field, 43; soil survey, 188; Vanoss Group, 37
Sequoyah: algal-bryozoan bioherms, 27; Carboniferous rocks, 259; magnetic and subsurface study, 290
Stephens: carbonate cements in surface rocks, 117; Velma Field, 74
Texas: hydrology, Palo Duro Creek basin, 228; Morrowan sands, 262
Tillman: Tillman alluvium, ground water, 3; vertebrate fossils, 244
Tulsa: coal, 83, 299; first Red Fork well, 231; plant fossils, 299; Pleistocene molluscs, 54
Wagoner: Chesterian rocks, 208; coal, 83; Morrowan rocks, 209
Washita: soil survey, 192; uranium, 25
Woodward: iodine plant, 58, 124, 167

CRETAUCEOUS:
Comanchean Series:
Fredericksburg Group, 34; Goodland Limestone, 34; Kiamichi Formation, 34
Trinity Group, 34, 48, 110; Antlers Sandstone, 34, 110; Baum Limestone, 48
Washita Group, 34, 179;
Bennington Limestone, 34
Bokchito Formation, 34; Denton Clay Member, 34; McNutt Limestone Member, 34; Pawpaw Sandstone Member, 34; Soper Limestone Member, 34; Weno Clay Member, 34
Caddo Formation, 34; Duck Creek Member, 34; Fort Worth Member, 34
Grayson Marl, 34, 179

Gulfian Series:
Woodbine Formation, 34; Dexter Member, 34
Permain-Cretaceous boundary, 77

DEVONIAN:
Arkansas Novaculate, 90, 119, 134, 197, 201, 202, 249, 288
Hunton Group, 28, 38, 76, 93, 113, 118, 128, 132, 144, 161
Bois d'Arc Formation, 98, 93; Cravat Member, 98; Pittstown Member, 98
Haragan Formation, 38, 93
Henryhouse Formation, 128
Turkey Creek Formation, 113
Woodford Formation, 38, 76, 113, 132, 144, 161
Mississippian–Devonian boundary, 80

Paleogeography, 113
Phosphorites, 113

Pine Ridge Chert, 249

EARTHQUAKES:
catalog, 1900–1978, 158
El Reno, 1962, 40, 170, 171
map, 1900–1978, 157
relation to Nemaha Ridge, 248

ENVIRONMENTAL GEOLOGY:
air pollution, 8
flooding: Atoka County, 240; Blue Beaver Creek, 49; Bryan County, 47; Carter County, 190; Choctaw County, 261; flood control, Red River Basin, 289; flood-hazard estimation through soil moisture, 176; flood-retarding dam, Sugar Creek, 197; Haskell County, 35; McClain County, 191; Nowata County, 230; Osage County, 32; Pushmataha County, 12; Washita County, 192; West Cache Creek, 49
land use: Atoka County, 240; Bryan County, 47; Carter County, 190; Choctaw
seismology: Arkoma Basin, 171; attenuation studies, Mounds, 85; earthquakes, 40, 156, 157, 158, 170, 171, 216; Nemaha Ridge, 170, 172, 248; Oklahoma Geophysical Observatory, 156, 157, 158; seismic activity, petroleum, 1978, 291; seismic stratigraphic analyses, Pennsylvanian sandstones, 86; seismograph-station codes, 221

shale-reservoir logs, 144

history: Ardmore Geological Society, 229; first Red Fork Field well, 231; flood control in Red River Valley, 289; petroleum exploration, 43; Hollis Basin, waste-disposal reservoirs, 132

Holocene: pollens, northeastern Oklahoma, 98

HYDROGEOLOGY, HYDROLOGY:

hydrogeochemical prospecting for uranium, 2, 15, 25, 274

Oklahoma Geological Survey programs, 185

resources: Antlers aquifer, 110; Arbuckle aquifer, 71; Arkansas River Basin, 276; Atoka County, 240; Carter County, 190; Choctaw County, 261; general, 169; Haskell County, 35; Kiowa County, 151; McClain County, 191; Nowata County, 220; Osage County, 32; Seminole County, 188; Washita County, 192

water pollution: Boone aquifer, 110; Arbuckle aquifer, 71; Arkansas River Basin, 276; Atoka County, 240; Carter County, 190; Choctaw County, 261; Garber aquifer, Garber-Wellington aquifer, 18, 292; ground water, general, 88; McClain County, 191; Nowata County, 220; Ogallala aquifer, 148, 227, Pushmataha County, 12; Red River Basin, 277; Rush Springs aquifer, 18; Tillman aquifer, 3; Washita County, 192

subsurface waters: Antlers aquifer, 110; aquifers, general 88; Arbuckle aquifer, 71; Boone aquifer, 10; Garber aquifer, Garber-Wellington aquifer, 18, 292; general, 88; ground-water levels, 88, 276, 277; North Canadian River alluvial aquifer, 56; Ogallala aquifer, 148, 228; Rush Springs aquifer, 18; stream-sediment analyses, Clinton and Lawton Quadrangles, 15; Tillman alluvial aquifer, 3; Washita River alluvial aquifer, 143; zinc-mine water, 8

surface waters: Arkansas River, 160; Blue Beaver Creek, 49; Cimarron River valley, 199; general, 149, 169; Keystone Reservoir, 136; Lake Texoma, 288; North Canadian River, 56; Red River, 92; 288; stream-sediment analyses, Clinton and Lawton Quadrangles, 15; Sugar Creek watershed and dam, 198; Washita River, 143, 198; water-quality management, 169; West Cache Creek, 49

water management: Atoka County, 240; Bryan County, 47; Carter County, 190; Choctaw County, 261; Haskell County, 35; Kiowa County, 151; McClain County, 191; Nowata County, 220; Osage County, 32; pollution control, surface waters, 169; Pushmataha County, 12; Seminole County, 188; Washita County, 192

water quality: Antlers aquifer, 110; Arbuckle aquifer, 71; Arkansas River Basin, 276; Boone aquifer, 10; Garber-Wellington aquifer, 292; Keystone Reservoir, 136; management planning, 169; Ogallala aquifer, 148, 228; pollution control, 169; pollution, general, 8; Red River Basin, 277; seepage estimates from dam, 198; surface waters, general, 149; Washita River alluvial aquifer, 143; zinc-mine water, 8

indexes: Oklahoma geology, 1978, 100; Oklahoma Geology Notes, v. 39, 205; Shale Shaker, v. 23–29, 246

Jurassic Morrison Formation, Cimarron County, 1

Lawton NTMS Quadrangle, NURE survey, 15

McAlester Basin: sedimentology, 24; Spio sand, 24; structure, 283, 284

Marietta Basin: structure, 34, 294

memorials: John Fredrick Roberts, 101

meteorology: Doppler radar recordings of lightning impulses, 89, 173; Doppler radar study of reflectivity, velocity, and spectrum width of storms, 265; Oklahoma thunderstorm study, 89

MINERAL INDUSTRIES:

commodities: boron, 9; brick manufacturing, 8; carbon, 8, 9; cement, 8, 9, 104;
clay and shale, 8, 212; coal, see Coal; cobalt, 72; copper, 129, 130, 212; crushed stone and aggregate, 8; feldspar, 8, 9; glass sand, silica sand, 8, 119, 166; granite, 8, 165, 212; gypsum, 8, 8, 129, 130, 212; helium, 8, 9; iodine, 8, 9, 55, 124, 167; lead and zinc, 9, 129; lime, 8; limestone, 212; petroleum and natural gas, see Petroleum and natural-gas programs, 185

Oklahoma

Geophysical Observatory, 156, 157, 158, 170, 171, 172, 185, 221

Panhandle, waste-disposal reservoirs, 132

see also Counties: Beaver, Cimarron, and Texas

Orographic

Arbuckle Group, 29, 71, 132, 270; Cool Creek Formation, 270; Kindblade Formation, 270

Bigfork Chert, 249

Blakely Sandstone, 249, 250

Collier Formation, 64, 249

Corbin Ranch Limestone, 5

Crystal Mountain Formation, 64, 249

Fernvale Formation, 5

Fite Limestone, 5

Hunten Group, 28

kerogen-diffraction pattern of shale, 107

Lukata Sandstone, 64

Mazan Shale, 64, 249

Orogonian–Silurian boundary, 4

Polk Creek Shale, 249

Simpson Group, 5, 24, 27, 29, 37, 38, 46, 71, 78, 79, 127, 132, 141, 166, 214, 241, 255, 303

Bromide Formation, 5, 29, 38, 46, 78, 79, 127, 141, 214, 255, 303; Mountain Lake Member, 79; Poolville Member, 5

Joins Formation, 29, 255, 303

McLish Formation, 29, 241, 255, 303

Oil Creek Formation, 29, 166, 255, 303

Simpson sands, 24

Tulip Creek Formation, 29, 255, 303

Wilcox sands, 24

Sylvan Shale, 5, 38, 46, 127, 303

Tyner Formation, 5

Viola Formation, 6, 29, 38, 120, 127, 303

Welling Formation, 5

Wombie Formation, 64, 240

Ouachita Mountains, Ouachita geosyncline:

Backbone Anticline and Fault, 123, 253

Broken Bow–Benton Uplift, 64, 201, 227, 249, 293

Carboniferous sandstones, 59

Choctaw Anticlinorium and Fault, 20, 64

Cross Mountain Anticlinorium, 64

glacial, evidence of, 251

Greenwood Syncline, 253

Linson Creek Anticlinorium, 64

manganese deposits, Arkansas Novaculite, 288

Orogonian rocks, Choctaw Anticlinorium, 64

Ouachita seaway, 113

Potato Hills, 293

pre-Carboniferous sandstones, 59

relation of interior zone to Coahuila, Mexico, igneous rocks, 135

relation to Appalachian belt, 103

sedimentology, 51, 91, 103, 134, 163, 196, 200, 202, 249, 250, 252, 253, 256, 258, 259, 283, 284, 293

source of Missouri lead-zinc ore fluids, 159

structure and tectonics, 20, 51, 59, 64, 67, 80, 91, 103, 105, 159, 194, 200, 201, 227, 235, 242, 249, 250, 251, 253, 256, 258, 259, 266, 268, 283, 284, 293, 296

State mining districts, exploration, 224

Mississippian:

Arkansas Novaculite, 90, 119, 134, 197, 201, 202, 249, 253, 288

Boone Formation, 10, 287

Caney Formation, Caney Shale, 187, 195; Delaware Creek Member, 187; Rhoda Creek Shale Member, 195; Sand Branch Member, 187

Compton Limestone, 267

crinoidal bioherms, Osagean, 184

Fayetteville Formation, 180, 183, 208, 210, 237, 257

Hindsville Formation, 180, 208, 257

Imo Formation, 180, 183, 210, 237

Jackfork Group, 183, 195, 196

Kinderhookian–Osagean boundary, 184

Mississippian–Devonian boundary, 80

Mississippian–Pennsylvanian boundary, 80, 180, 183, 195, 208, 210, 253, 256, 257, 258, 259, 260

Ozark Shelf, Chesterian, 182

paleogeography, 51

Pitkin Formation, 180, 181, 183, 208, 210, 237, 257, 287

St. Joe Limestone, 267, 287

Springer Formation, 132, 195

Stanley Group, Stanley Shale, 103, 195, 196, 202, 249, 252, 253, 256; Beavers Bend tuff, 202; Chickasaw Creek Formation, 196, 249, 252, Hatton tuff, 202, 249, 253; Hot Springs Sandstone Member, 253; Moyer Formation, 196; Mud Creek tuff, 202; Tenmile Creek Formation, 196

stratigraphy, general, 80

tectonics, 51

Woodford Shale, 76, 132, 144

Nemaha Ridge, Nemaha Uplift: seismicity, 170, 172; structure, 21, 51, 69, 170, 172, 194, 248

Oklahoma Geological Survey:

annual report, July 1, 1978–June 30, 1979, 185

core catalog, 206

data programs, 185

evironmental programs, 185

hydrologic investigations, 185

mineral investigations, 185

Oklaoma Geophysical Observatory, 156, 157, 158, 170, 171, 172, 185, 221

petroleum and natural-gas programs, 185

uranium programs, 185
Paleobotany:
acritarchs, 127
algae, 27, 48, 269, 270
algal–bryozoan bioherms, 27
algal–sponge community, 269
lycopods, 60
fern, 186
Krebs Group, general, 232
Pennsylvanian coals, 297, 299

Paleocurrents, Paleozoology, Paleoenvironments, Paleogeography:
Atoka, 279
Blaine seas, 271
Bloyd Formation, 304
Carboniferous, Ozark Shelf, 237
Chesterian, 208
Devonian, general, 113
Devonian–Mississippian, 134
Geary and Leonardian, 244
Lansing Group, 154
Late Mississippian, Ouachita area, 103
Late Paleozoic, 235
Lower Ordovician, 270
Marchand sands, 13
Mississippian, general, 51, 80
Missourian, 55
Morrow Series, Morrow sands, 137, 209, 262
Pennsylvanian, general, 121, 194
pre-Pennsylvanian, 225
Quaternary, Osage County, 97
Simpson Group, Arkoma Basin, 255
Wann Formation, 211
Wreford Megacyclothem, 99
paleotemperatures: application of kerogen examination, 31, 107; application to petroleum exploration, 278

Paleozoology:
acritarchs, 127
algal–bryozoan bioherms, 27
algal–sponge community, 269
ammonoids, 181, 237
biometrics, Missourian crinoids, 211
brachiopods, 45, 120, 270, 285
bryozoans, 27, 99, 269
cephalopods, 187, 270
chitons, 236, 270
conodonts, 153, 260, 267, 270
corals, 155
crinoidal bioherms, Lower Mississippian, 184
crinoids, 78, 79, 141, 178, 211, 214, 254
cystoids, 214
fusulinids, 235
gastropods, 270
Krebs Group, general, 232
microfossils, Grayson Formation, 179
molluscs, 11, 54
pychaspis biomere, 213
sponges, 269, 270
trilobites, 213, 215
vertebrates, 112, 207, 244: amphibians, 207; general, 244; reptiles, 112
Wreford Megacyclothem, 99

Palynology:
Cherokee Group, Kansas, 301
miospores, Morrowan, 210
Ordovician acritarchs, 46, 127
pollen: late Holocene, northeastern Oklahoma, 98; Quaternary, Osage County, 97, 116
spores: Pennsylvanian coals, 297, 299, 300; trilete spores, Carboniferous, 219; Wellington Formation, 152

Pennsylvanian:
Atoka Series:
Atoka Formation, 6, 7, 145, 180, 249, 251, 252, 253, 256, 257, 279, 295:
Red Oak Sandstone, 279
Cherokee Group, 301
correlation with Europe, 153
north-central Texas, Ouachita belt, 200
Ouachita Mountains, 283, 284
Wapanucka Formation, 20, 91, 180, 256, 257, 264:
Chickachoc Chert
Member, 91; Trace Creek Shale Member, 91, 180, 257

Desmoinesian Series:
Cabannis Group:
Henryetta coal, 280, 281, 282, 297
Oswego Limestone, 280, 281
Senora Formation, 19, 60, 82, 83, 139, 225:
Croweburg coal, 19, 19, 82, 83, 297; Eram coal, 82; Iron Post coal, 60; Morris coal, 19, 82
Skinner sands, 20, 225, 226, 280, 281, 282
Verdigris Limestone, 65, 225, 280, 281, 282
Cherokee Group, 20, 65, 66, 146, 187, 225, 226, 280, 281, 282, 301:
Bartlesville Limestone, 225, 226; Beech sands, 225, 226; Burkank sands, 146; Inola Limestone, 225; Pink lime, 225; Frue sands, 225, 280, 281, 282; Red Fork sand, 20, 225, 226, 280, 281, 282;
Senora Limestone, 225; Skinner sands, 20, 225, 226, 280, 281, 282;
Verdigris Limestone, 225
Deese Group, Deese Formation, 29, 187
Desmoinesian–Missourian boundary, 299, 300
heavy oil, 108, 109
Krebs Group:
Boggy Formation, 20, 65, 66, 82, 108, 139, 225, 226, 232, 280, 281, 282; Bluejacket–Bartlesville sand, 20, 65, 66, 82, 108, 139, 225, 226, 280, 281, 282; Inola Limestone Member, 139, 225, 280, 281, 282; Secor coals, 82, 83, 232; Taft Limestone Member, 149
Brown Limestone, 280, 281, 282
McAlester Formation, McAlester coals, 19, 39, 65, 66, 82, 83, 84, 108, 122, 123, 139, 232, 253, 256, 296, 301: Booch sands, 20, 225, 226; Cameron Sandstone, 82; Hartshorne Formation, Hartshorne coals, 19, 39, 57, 65, 82, 83, 84, 108, 122, 123, 139, 232, 253, 256, 295; Riverton coal, 108, 139, 301; Stigler coal, 82, 83, 84, 232; Stuart Shale, 232; Thurman Sandstone, 232; Warner Sandstone Member, 65, 66, 82, 108

Pink Limestone, 280, 281, 282

Savanna Formation, 24, 65, 82, 139, 232: Cavanal coals, 82, 232; Drywood coal, 139; Rowe coal, 139; Sam Creek Limestone, 82; Spaniard Limestone, 82; Spiro sand, 24; Witteville (Rowe) coal, 232

Marmaton Group:
Calvins Formation, 82
Cleveland coal, 20
Fort Scott Limestone, 139: Blackjack Creek Member, 139
Holdenville Formation, 19
Pawnee Limestone, 269
Seminoe Formation, 19
Wewoka Formation, 19, 186, 187: Nowata Shale, 19

molluscs, 11

Gearyan Series:
Oscar Group, 68, 99, 244: Wreford Megacyclothem, 99, 164
Vanoss Group, 37, 68, 244

Pennsylvanian-Pennsylvanian boundary, 80, 160, 183, 195, 210, 253, 256, 257, 258, 259, 260

Missourian Series:
Desmoinesian-Missourian boundary, 299, 300
Hoxbar Group, 13, 14, 19, 29, 61, 272; Checkerboard Limestone, Checkerboard coal, 19, 29; Cottage Grove Sandstone, 272; Hogshooter Formation, 13, 29; Huber sand, 29; Marchand sands, 13, 14; Tuley sand, 29
Kansas City Group, 154
Lansing Group, 154
Ochelata Group, 65, 68, 211: Iola Formation, Avant Limestone Member, 55; Wann Formation, 211
Skiatook Group, 19, 20, 68, 299, 300: Checkerboard Limestone, Checkerboard coal, 19, 29, 299, 300; Cleveland sand, 29; Dawson coal, 19, 299, 300; Seminole coal, 19, 299, 300
Stanton Formation, 187

Morroan Series:
bioherms, 27
Bloyd Formation, 91, 180, 209, 237, 254, 257, 287, 304: Brentwood Limestone Member, 180, 237, 254, 257, 287, 304; Dye Shale Member, 180, 209, 257, 304; Kessler Limestone Member, 91, 190, 209, 257, 287; Trace Creek Shale Member, 209, 257; Woolsey Member, 180, 257, 304
correlation with Europe, 153
Dornick Hills Group, 91, 153, 174
fan-delta deposits, 239
Hale Formation, 180, 209, 210, 237, 253, 257: Cane Hill Member, 180, 183, 209, 257; Prairie Grove Member, 180, 209, 237, 253, 257
Jackfork Group, 163, 195, 196, 244, 249, 252, 253: Wesley Formation, 244; Wildhorse Mountain Formation, 249, 252; Prairie Hollow Member, 249
Johns Valley Shale, 195, 249, 250, 252, 253, 256

McCully Formation, 180, 209, 257: Chisum Quarry Member, 180, 209, 257; Greenleaf Lake Limestone Member, 180, 209, 257, Shale "A" Member, 180, 209; Shale "B" Member 209, 257
Morrow sands, 16, 128, 137, 158, 239, 243, 262, 263
Ouachita Mountains, 253, 254
Saukshy Formation, 180, 183, 208, 209, 254, 257; Bragg Member, 180, 183, 209, 254, 257; Brewer Bend Member, 180, 209, 257
Springer Formation, Springer Group, 91, 153, 174, 195: Target Limestone, 153
Union Valley Formation, 195
Wapanucka Formation, 20, 91, 180, 257: Chicachoc Chert Member, 91; Trace Creek Shale Member, 91, 180, 257
Witt Springs Formation, 180

paleogeography, general, 121, 194
Pennsylvania-Pennsylvanian boundary, 235, 298
rare-earth analyses, 55
sandstones: Anadarko Basin, 69; general, 36, 43, 121; waste-disposal reservoirs, 132
uraniferous deposits, 22

Virgilian Series:
Ada Group, 68
Cisco Group, 29
Douglas Group, 154, 285:
Oread Limestone, 154, 285; Heebner Shale Member, 154, 285; Oread Megacyclothem, 285
Tonhawa Sandstone, 154
Stranger Formation, 187
Vamosa Group, 68, 187, 285; Heebner Shale, 285
Vanos Group, 37, 68, 244

PEMIAN:
Carboniferous-Pennsylvanian boundary, 235, 298
Cimarronian Series, Cimarronian Group, 2, 18, 68, 87, 112, 129, 130, 152, 207, 244, 245, 271, 292:
El Reno Group, 68, 129, 130, 152, 244, 245, 271:
Blaine Formation, 129, 130, 245, 271
Chickasha Formation, 130, 271
Dog Creek Shale, 129, 130, 245; Yelton salt, 130
Duncan Sandstone, 130, 244
Flowerpot Shale, 129, 130, 152
Giorietta Formation, 130
Hennessey Group, 68, 207, 244: Fairmont Shale, 207
Post Oak Formation, 2, 87
Sumner Group, 2, 16, 60, 112, 129, 152, 244, 292:
Garber Formation, 2, 18, 112, 244, 292
Wellington Formation, 68, 112, 129, 152, 244, 292
corstones, 150
Custerian Series, 2, 25, 130, 217:
Cloud Chief Formation, 2, 25, 130, 217; Moccasin Creek Gypsum Member, 2
Doxey Shale, 2, 25, 130, 217
dissolution of salts, 92
Geayran, see Pennsylvania paleomagnetism, 217
Permian-Cretaceous boundary, 77
rare-earth analyses, 53
red-bed copper, 50
salties, waste disposal reservoirs, 132
Petroleum and Natural Gas: abnormally pressured, 15
accumulation, entrapment, and reservoirs:
Anadarko Basin, 41, 49, 69, 70, 105, 128, 137, 138, 262, 263, 268, 272
Ardmore-Anadarko Basin trend, 268
Arkansas Novaculite, 197
Arkoma Basin, 6, 7, 105, 279
Atoka sandstones, 6, 7
Creekstone sands, 280, 281, 282
Cove Grove Sandstone, 272
deltaic reservoirs, 36, 43, 86, 239
estuarine reservoirs, Morrow sands, 137
fluvial-sand reservoirs, 36, 86
Jackfork Group, 163
Mills Ranch complex, 128
Morrow sands, 137, 138, 239, 243, 262, 263, 265; estuarine reservoirs, 137
fan-delta deposits, 239
Northwest Butterfly Field, 29
Pennsylvanian sandstones, general, 43, 86, 121
shale reservoirs, 76, 144; shale-reservoir well logs, 144
Southwest Davis Field, 302, 303
submarine-fan reservoirs, 239, 279; Morrowan deposits, 239; Red Oak Sandstone, 279
alteration of red beds over petroleum accumulations, 74, 75
Arbuckle Mountains, 29, 138, 302, 303
Arkoma Basin, 6, 7, 49, 105, 218, 255, 279
coal-bed-derived natural gas, 57, 122, 123
deep wells, 114
economics, 63, 114, 223, 291
enhanced recovery, 52, 73, 203, 243; bauxite fracturing, 52; fracturing, Morrow sands, 203, 243; waterflooding, 73
exploration and development:
Anadarko Basin, 52, 69, 70, 114, 125, 128, 175, 210, 239, 268
application of diagenetic-alteration indicators, 61, 62
application of Landsat direct detection. 62
application of paleotemperature gradients, 278
application of vitrinite reflectance of coals, 31
Arbuckle production, 128
Ardmore-Anadarko Basin trend, 268
Arkoma Basin, 218, 255, 279
computer applications, 233
fluvial-deltaic sands, Pennsylvanian, 36
gamma-ray monitoring, 76
general, 9, 133, 223, 264
giant oil fields, 223
heavy oil, 108, 109, 203; Anadarko Basin, 203; Tri-State area, 108, 109
history, 43, 231
Hunt production, 128
Marchand sands, 13, 14
Morrow sands, 137, 138
Osage County, 233
Pennsylvanian sandstones, general, 43, 69, 86
pyrolysis analysis of well cuttings, 145

Red Oak Sandstone, 279
Simpson sands, 255
fields, trends, units: Aledo, 128; all fields, 125, 293; Altus, 75; Antioch fields, 43; Aylesworth fields, 34; Bartlesville-Dewey, 43; Binger fields, 13, 14;
Brookville, 226; Buffalo Wallow, 239; Burbank, 43; Carpenter, 218; Cement fields, 61, 62; Centerpoint, 226; Chelsea, 43; Cherokee fields, 43; Chickasha, 75; Cromwell, 43; Cumberland, 34; Cushing, 43; Davenport, 61; Doyle, 117; Dutton, 43; Earlsboro pools, 226; Elk City, 218, 239;
Eola, 38, 75; Fox-Graham, 117; Glen, 43; Golden Trend, 43; Granite, 43; Grissom, 226; Handy, 34; Healdton, 43; Isom Springs fields, 34; Jenks, 43; Keyes, 43; King, 226; Kingston, 34; Kinta, 43; Leeedy, 218; Lenora, 278;
Light, 43; Madill, 34; Mannsville, 34; Mauwafu pools, 226; Mayfield, 218; Mills Ranch Complex, 128; Monac-Lavonne, 43; Morrow-Springer trend, 69; Morvin pools, 226; Noel, 218; Northeast Oilney, 175; Northwest Butterfly, 29; Oklahoma City, 247; Poteau, 43; Powell, 34, 218; Red Fork, 43, 231; Red Oak, 43; Reedy-Cheyenne Area, 203, 218, 239, 243; Russellville, 218; St. Louis, 226; Shawnee Lake pools, 226; Shreiky, 239; South Gage, 272; South Thomas, 175; Southwest Arnett, 175; Southwest Davis, 38, 302, 303; Strong City, 218; Tecumse, 226; Tulsa, 43; Velma, 74, 117; Verden fields, 43; Viking, 239; Weatherford, 218; West Cleveland, 34; Wheeler, 43, 117; Yukon, 218
heavv oil, 108, 109, 203, 275; bibliography, 275
Marshall County, 34
migration, 174, 193; constraints, 174; general, 193
Oklahoma Geological Survey core catalog, 206
Oklahoma Geological Survey programs, 185
origin, generation, source, 76, 161, 268, 278; black shales, 76, 161; magmatic heating, 268; relation to paleotemperatures, 278
Perry gas sand, 55
Petroleum Data System, 273
pressure, effect on crude-oil/natural-gas equilibrium, 247
radium in oil-field brines, 26
reserves and resources, 9, 41, 52, 114, 175, 197, 203, 255
simulation study, West Dykeman Sand Unit, 33
statistics: economics, 63, 223, 291; exploration and development, 9, 63, 133, 218, 223; drilling, 63, 133, 218, 223; general, 9; production, 9, 125, 204; reserves and resources, 9, 204, 218, 223, 255; seismic activity, 291; stripper wells, 126; waterflooding, 63, 73
stripper wells, 126
well logs, shale reservoirs, 144
Petroleum Data System, 273
Prcambrian: blue River Gneiss, 23; Spavinaw Granite, 23; Tishomingo Granite, 23, 37; Troy Granite, 23, 37
Quaternary:
Birch Creek Valley alluvium, 116
Blue Beaver Creek alluvium, 96
Crater Creek alluvium, 96
East Cache Creek alluvium, 96
Medicine Creek alluvium, 96
North Canadian River alluvium, 56
Ogalalla Formation, 145
Pleistocene molluscs, Tulsa County, 54
Post Oak Creek alluvium, 96
Tillman alluvium, 3
West Cache Creek alluvium, 96
remote sensing: fracture discrimination, Landsat and Skylab, 10; Tri-State district,
Landsat study, 224; use of Landsat images in assessing pollution susceptibility, Bone aquifer, 10

Sedimentology:
algal-bryozoan bioherms, Morrowan, 27
algal-sponge community, 269
Anadarko Basin, 13, 14, 28, 61, 62, 92, 137, 262, 263, 272
Arbuckle Mountains, 57, 134, 163, 270, 284
Arkoma Basin, 6, 7, 19, 20, 249, 252, 256, 279, 283, 284
bar deposition, 91
basinal clastic deposits, Douglas Group, 145
birdseye structures, McMich Formation, 241
boulder beds, erratics: Johns Valley Shale, 249, 252, 253, 256, 283, 284, 293;
Stanley Shale, 252
Bouma sequences: Atoka Formation, 249, 252, 253, 256; Morrowan and Atokan, Ouachita Mountains, 283, 284
channel-fill deposition: Cherokee Group, 65; Hartshorne Formation, 253; Jackfork Sandstone, 252; Morrow sands, 137
Cretaceous, Marshall County, 34
cyclothemes, cyclic sedimentation: coal cycles, 19; Desmoinesian, 19, 20, 65, 280, 281, 282; mesoethems, Carboniferous, Ozark Shelf, 182, 237; Oread Megacyclothem, 285; Wreford Megacyclothem, 99, 164
deltaic deposition: Atoka Formation, 253; Cherokee sands, 280, 281, 282; Desmoinesian, northeastern Oklahoma, 19, 20, 65; Dockum Group, 177;
Hartshorne Formation, 253; Jackfork Group, 163; lacustrine delta, Alfalfa County, 162; Morrowan and Atokan, Ouachita Mountains, 283, 284; Morrow Formation, 262, 263; Pennsylvanian sands, general, 36;
Pennsylvanian uniferous deposits, 22; Stanley Group, 103
diagenesis: Arkansas Novaculite, 134; Butterfly Dolomite, 147; catagenesis of kerogens, 31, 107; Cherokee sands, 280, 282, Cottage Grove Sandstone, 272;
Huntton Group, 28; Morrow sands, 137; Permian sandstones, 2, 61, 62; Rush Springs Sandstone, 61, 62; Simpson sand, 24, 28; soft-sediment deformation, 250; Spiro sand, 24; Stanley Group, 196; Vanoss sandstones and mudrocks, 37; Wilcox sand, 24
dissolution of Permian salts, 92
evaporite origin of Arkansas Novaculite, 134
flaser deposition, McAlester Formation, 253
fluvial deposition: Arkansas River, 160; Arkansas River point bar, 81; Floyd Formation, 304; Dockum Group, 177; Morrow sands, 262; North Canadian River, 56; Pennsylvanian sands, 56
flysch deposition: Arkansas Novaculite, 253; Atoka Formation, 256; Carboniferous, Ouachita area, 249, 253; Jackfork Sandstone, 252; Stanley Group, 103, 202, 283
Mississippian, general, 51, 80
Morrowan rocks, northeastern Oklahoma, 209, 237
Oread Megacyclothem, shale facies, 285
organic builds, Kindblade Formation, 270
Ouachita Mountains, 51, 91, 123, 196, 200, 202, 249, 250, 252, 253, 256, 258, 283, 284, 293
Ozark Mountains, Ozark Shelf, 180, 182, 237, 256, 257, 258, 259
paragenesis, Permian copper, 152
Pennsylvanian, general, 194
Pennsylvanian sandstones, general, 36, 121
Pitkin and Fayetteville formations, 208, 237
point-bar deposits: Arkansas River, 81; Morrow sands, 262
shallow-marine and shelf deposition: Atoka sandstones, 6, 7; Floyd Formation, 304; Cottage Grove Sandstone, 272; Desmoinesian, northeastern Oklahoma, 19, 20; Kinderhookian–Meramecian carbonate shelf, 184; Lances-ing Group 154; Wapanucka Limestone, 20
submarine-fan deposition: Jackfork Group, 163; Pennsylvanian sands, 36; Red Oak Sandstone, 279; Stanley Group, 103, 202, 252, 253
tidal deposition: Marchand sands, 13, 14; Morrow sands, 137
transgressive barrier facies, Cherokee Group, 146
turbidites: Atoka Formation, 256; Carboniferous, Ouachita area, 249, 253; Jackfork Group, 163, 196; Morrowan and Atokan, Ouachita area, 283, 284; Stanley Group, 196, 202; Wapanucka Formation, 91
Wreford Megacyclothem, 99, 164

Silurian:
Beavers Bend Illite, 42
Blaylock Formation, 42, 249
Hunton Group, 28, 38, 45, 93, 118, 128, 132, 155, 178, 215, 285; Chimneyhill Subgroup: 38, 45, 93, 128, 285; Clarita Formation, 38, 93; Cochrane Formation, 38, 93; Keel Formation, 38
Henryhouse Formation, 38, 93, 128, 156, 178, 215
Missouri Mountain Formation, 249
Ordovician–Silurian boundary, 4

Soils:
Atoka County, general, 240
Bryan County, general, 47
Carter County, general, 190
Choctaw County, general, 261
clay minerals in Oklahoma soils, 234
Enid Quadrangle, derivation of soils, 68
Haskell County, general, 35
Kiowa County, general, 151
McClain County, general, 191
Nowata County, general, 220
Osage County, general, 32
Pushmataha County, general, 12
Seminole County, general, 185
soil-moisture monitoring, 176
Washington County, general, 192
Southern Oklahoma Aulacogen: gravity anomalies, 294; sedimentology, 294; stratigraphy, general, 294; structure, 93, 268, 294

Stratigraphy (see also under various geologic systems):
Anadarko Basin, general, 69
bistratigraphy: Cambrian biomere, 213; Carboniferous, 180, 183, 195, 237, 256, 257, 258, 259; Carboniferous, ammonoid zonations, 237; Cherokee Group, paleontology, 301; Chesterian and Morrowan, 195, 210, 256, 257, 258, 259, 260; Chesterian–Morrowan, conodonts, 260; Desmoinesian–Missourian boundary, plants, 298, 300; Late Ordovician–Early Silurian, 4; Lower Ordovician, 270; Morrowan and Atokan, conodonts, correlation with Europe, 153; Oread Megacyclothem, lithofacies and conodont biofacies, 285; Pennsylvanian–Permian boundary, 298; Permian, fusilines, 235; Wann Formation, conodont zonation, 211; Wreford Megacyclothem, correlation between Kansas and Oklahoma, 164
Carboniferous: Carboniferous–Permian boundary, 235, 298; Chesterian–Morrowan unconformity, 183, 208, 267, 269; Ouachita Mountains, 253, 258, 293
Cretaceous: Marshall County, 34; Permian–Cretaceous boundary, 77
Mississippian: Chesterian, northeastern Oklahoma, 208; Chesterian–Morrowan unconformity, 183, 208, 257, 260; general, 80; Kinderhookian–Osagean boundary, 184; Mississippian–Devonian
boundary, 80; Mississippian–Pennsylvanian boundary, 80, 180, 183, 195, 208, 210, 253, 256, 258, 259, 260; Ouachita Mountains, 253, 258, 259, 293

Ordovician: Ordovician–Silurian boundary, 4; Simpson Group, correlation with Arkansas Ordovician, 255; Weiling Formation, 5

Pennsylvanian: Avant Limestone, 55; Cherokee Group, 65, 66, 225, 226, 301; Chesterian–Morrowan unconformity, 138, 208, 257, 259, 260; Desmoinesian Tri-State area, 65, 66; dichotomy of facies and time boundaries, 68; general, 121; Mississippian–Pennsylvanian boundary, 80, 180, 183, 195, 208, 210, 253, 256, 257, 258, 259, 260; Morrowan, northeastern Oklahoma, 206; Ouachita Mountains, 253, 258, 259, 293; Pennsylvania–Pennsylvanian boundary, 235, 295; Vanoss Group, 37

Permian: Carboniferous–Permian boundary, 235, 298; dichotomy of facies and time boundaries, 68; Permian–Cretaceous boundary, 77; Upper Permian, correlation with Texas and New Mexico, 130; Vanoss Group, 37

Structural Geology (includes tectonics):

Anadarko Basin, 51, 52, 61, 62, 69, 70, 80, 105, 106, 128, 194, 268, 294
Arkabuck Anticline, 38
Arkabuck Mountains, 29, 37, 38, 93, 294, 302, 303
Ardmore Basin, 105, 194, 268, 294
Arkoma Basin, 6, 7, 105, 123, 159, 194, 225, 226, 249, 279, 283, 284, 294
Backbone Anticline and Fault, 123, 253
Boktukola Fault, 249
Bourbon Arch, Kansas, 108
Brazil Anticline, 279
Briery Fault, 249
Broken Bow–Benton Uplift, 64, 201, 227, 249, 293
Carbon Fault, 249
Cavanal Syncline, 123
Central North American Rift System, 21
Creekfield Basin, 106
Creekfield Group, subsurface, 225, 226
Cherokee Platform, 108, 194
Chocaw Fault and Anticline, 20, 64, 91, 249, 256, 279, 283, 284
Clarita Anticline and Fault, 6, 7
Cordell Anticline, 69
Cowlington Syncline, 123
Cratonic folding, Ouachita orogeny, 242
Cross Mountain Anticlinorium, 64
Crustal movement during Desmoinesian, 20
Cumberland Anticline and Syncline, 34
Dougherty Anticline, 93
Fort Cobb Anticline, 13, 69
Greenwood Syncline, 253
Horse Creek Anticline, 108
Kinta Anticline, 123
Lake Anticline, 93
Limeayments, Tri-State area, 224
Lincoln Creek Anticlinorium, 64
Line Fault trend, 69
Lynn Mountain Syncline, 249
McAlester Basin, 283, 284
Madill–Aylesworth Anticline, 34
Marietta Syncline, 34, 294
Miami Syncline, 108
Midcontinent Geophysical Anomaly, 248

Mill Creek Fault, Graben, and Syncline, 29, 38, 93
Milton Anticline, 123
Mississippian, general, 51
Mobeetie Anticline, 69
Morin Pool Horst, 225, 226
Nemaha Ridge, 21, 61, 69, 170, 172, 194, 248
Northwest Butterfly Field, 29
Oakland Anticline, 34
Octavia Fault, 249
Ouachita Mountains, Ouachita Geosyncline, 20, 51, 59, 64, 67, 80, 91, 103, 105, 159, 194, 200, 201, 227, 235, 242, 248, 250, 251, 253, 256, 258, 259, 266, 268, 283, 284, 293, 296
Panther Mountain Syncline, 123
Pivotal fault, Osage County, 44
Plate tectonics, relation to sandstone composition, 59; late Paleozoic, 235, 293
Potato Hills, 294
Preston Anticline, 34
Reagan Fault, 38, 93, 303
Rich Mountain Syncline, 253
San Bois Fault and Syncline, 123, 279, 283, 284
Sayre Anticline, 69
Seminole–Cushing Ridge, 225, 226
Southern Oklahoma Aulacogen, 93, 268, 294
Submarine slumping, Ouachita Mountains, 250
Sycamore Creek Anticline, 38
Tishomingo Anticline, 38
Ti Valley Fault, 91, 249, 256
Washburn Anticline, 253
Washita Valley Fault, 38, 294, 302, 303
Whitefield Anticline, 123
Wichita Mountains, 69, 87, 194, 222, 294
Wilzetta Fault, 225, 226
Windingstair Fault, 64, 91, 249, 253, 256
"Y" City Fault, 253

Tri-State Area:

Cherokee sandstone, 65, 66
heavy oil, 108, 109
Landsat study, 224
lead and zinc, 129, 159
lineaments, 224

Uranium:

association with hydrocarbon deposits, 2
Cambrian granites, 2
Clinton Quadrangle, NURE study, 15, 25, 274
Dockum Group, Texas Panhandle, 177
hydrogeochemical exploration, 2, 15, 25, 274
Lawton Quadrangle, NURE study, 15
mineralization, 1, 2
Morrison Formation, Cimarron County, 1
Oklahoma Geological Survey programs, 185
Pennsylvanian host rocks, 22
Permian sandstones, 2
radium-rich brines, origin, 26
western Oklahoma, 130

Wichita Mountains:

biotite gabbros, 222
geomorphology, 87
Iron Mountain rocks, 94
Kindblade Formation, organic buildups, 270
Lugert Granite, 142
sedimentology, 270
structure, 69, 87, 194, 222, 294
Unap Mountain, 270
uranium mineralization, 2
Wreford Megacyclothem, 99, 164
PUBLICATIONS ON OKLAHOMA GEOLOGY, 1954

The following list is arranged alphabetically by authors. It gives the title, journal, and pages of all published papers on Oklahoma geology issued in the calendar year 1954. The Hopper expects to give a similar list each year and hopes to issue it in March of succeeding years.

Compiled by Francis D. Taaffe

Dana, George F., The subsurface geology of Grant County, Oklahoma. Shale Shaker, vol. 4, no. 10, pp. 4-7, 10-21, 28.
Devonshire, Peggy Frances, A faunal study of the Pumpkin Creek limestone member of the Big Branch formation in the Ardmore area. Shale Shaker, vol. 5, no. 1, pp. 5-16, 21-22, 11 pls. map.

Disney, Ralph W., Anadarko Basin's east flank promising. World Oil, vol. 138, no. 1, pp. 77-78, 80-82.

__________, Drilling along the Wichita Mountain front. Oil and Gas Journal, vol. 52, no. 43, March 1, 1954, pp. 89-90.

___________, Three discoveries spur search for Pennsylvanian oil in Hugoton embayment. Oil and Gas Journal, vol. 52, no. 50, April 19, 1954, pp. 252-253.

Sloss, L. L., and E. C. Dapples, Sedimentary characteristics of producing zones in west Brock area, Carter County, Oklahoma. (S.E.P.M. abstract), Oil and Gas Jour., vol. 52, no. 50, April 19, 1954, p. 206.

THE HOPPER

Wave-cut erosion surface in the Wichita Mountains, Oklahoma. Shale Shaker, vol. 5, no. 4, pp. 5-11.

Williams, Vernon L., Subsurface geology of the Bayou field, Carter County, Oklahoma. Shale Shaker, vol. 4, no. 9, pp. 5-7, 10-21, 28.