Combined Bibliographies of Oklahoma Geology

Compiled by Elizabeth A. Ham and Christine D. Gay
Combined Bibliographies
of Oklahoma Geology

Compiled by
Elizabeth A. Ham and Christine Gay

Oklahoma Geological Survey
Charles J. Mankin, Director
Special Publication 81-5
1981
SPECIAL PUBLICATION SERIES

The Oklahoma Geological Survey's Special Publication series is designed to bring new geologic information to the public in a manner efficient in both time and cost. The material undergoes a minimum of editing and is published for the most part as a final author-prepared report.

Each publication is numbered according to the year in which it was published and the order of its publication within that year. Gaps in the series occur when a publication has gone out of print or when no applicable publications were issued in that year.

This publication is issued and printed by the Oklahoma Geological Survey as authorized by Title 70, Oklahoma Statutes, 1971, Section 3310, and Title 74, Oklahoma Statutes, 1971, Sections 231-238. 1,000 copies of this 2-volume set have been prepared for distribution at a cost to the taxpayers of the State of Oklahoma of $6,370.
Contents

Bibliography for 1955................................. 3
Bibliography for 1956................................. 13
Bibliography for 1957................................. 23
 Index... 31
Bibliography for 1958................................. 37
 Index... 44
Bibliography for 1959................................. 49
 Index... 55
 Addenda to Published Papers in 1959.............. 58
Bibliography for 1960................................. 63
 Index... 71
Bibliography for 1961................................. 79
 Index... 85
Bibliography for 1962................................. 93
 Index... 100
Bibliography for 1963................................. 107
 Index... 113
Bibliography for 1964................................. 121
 Index... 127
Bibliography for 1965................................. 135
 Index... 139
Bibliography for 1966................................. 147
Bibliography for 1967................................. 157
 Index... 162
Bibliography for 1968................................. 171
 Index... 178
Bibliography for 1969................................. 187
 Index... 193
Bibliography for 1970................................. 201
 Index... 205
Introduction

Since 1955, a bibliography of references to Oklahoma geology has been published annually in the Oklahoma Geological Survey's periodical publication, Oklahoma Geology Notes, and in its predecessor, The Hopper. The listings, annotated since 1958, are compiled from material published for the most part during the year preceding the year of compilation. Included are journal articles, theses, abstracts, books, maps, open-file reports, and symposium articles. These represent both published and unpublished items. Some entries are marginal but are included as an aid to the reader seeking information on any phase of the discipline as it pertains to Oklahoma.

The present bibliography is a year-by-year compilation of these previously published lists. For the sake of making this information available without delay to the reader, no attempt has been made to integrate the entries or the indexes.

Beginning with the listings for 1980, the annual bibliography will be issued as a separate volume in the Survey's Special Publication series rather than being incorporated into Oklahoma Geology Notes, as was the case in the past.

A Word About Oklahoma Geology Notes and The Hopper

The Hopper was issued monthly from July 1941 through December 1955; publication was continued thereafter as Oklahoma Geology Notes, with volume numbers successive. From volume 16 through volume 27, Oklahoma Geology Notes was published monthly; since 1968, publication has been bimonthly. All issues of The Hopper are now out of print.

In addition to the annual bibliography of Oklahoma geology, these periodicals have contained short scientific and technical articles, mineral and petroleum statistics, the Director's annual reports, news items, and abstracts.
Published papers on Oklahoma geology in the year 1955

Compiled by Francis Taaffe

Bradfield, H. H., Geology and oil development of Grayson County, Texas. Tulsa Geol. Society Digest, vol. 23, pp. 58-69, 6 figs. The Muenster Arch, Marietta Basin, Ouachita facies and extensive faulting comprise the complex geology of the Grayson County region.

Buse, Daniel A., Deltas significant in subsurface exploration. World Oil, vol. 140, no. 1, January, 1955, pp. 82, 84, 86, 4 figs. Many lenticular sand bodies are of deltaic origin and logically follow deltaic distributary patterns. Isopotenial maps are shown to lend great assistance in tracing channel directions.

Culp, Eugene F., Branson, C. Carl, and Brewster, Eugene B., Highway geology of Oklahoma. Okla. City Geol. Soc. 1955, 172 pp., index map. Road logs of the major highways of the state, with notations on Oklahoma’s historic sites.

Davis, L. V., Geology and ground-water resources of Grady and northern Stephens Counties, Oklahoma. Okla. Geol. Survey, Bull. 73, 1955, 184 pp., 15 tables, 14 figs., map. Stratigraphy of surface rocks, measurement of ground water and data on availability and quality.

Dietrich, Ray Francis, Jr., The Simpson group along the north flank of the Anadarko Basin. Shale Shaker, vol. 5, no. 5, January, 1955, pp. 5-12, 14-16, 17, 18, 21, 7 figs., 4 pls. Stratigraphic and correlation studies of the Simpson group of Oklahoma show its manner of thinning to the north and west. Shale Shaker Digest, 1955, pp. 373-384, 7 figs, 4 pls.

Earlougher, R. C., “Early Nowata, and Olympic (Okl.)”. The Oil and Gas Compact Bull., vol. 14, no. 1, June 1955, pp. 65-70. Two outstanding examples of successful waterflooding projects in Oklahoma are discussed.

Eisner, Stephan M., The lithology of the “Marchand” conglomerate. Shale Shaker, vol. 6, no. 4, December, 1955, pp. 9-10, 13-20, 22-25, 27. Comprehensive study of cores from Cement area shows the “Marchand” conglomerate to consist of a variety of clastics laid down by a stream of changeable regimen.

Gardner, Frank J., Oklahoma still springs pleasant surprises. Oil and Gas Journal, vol. 54, no. 28, November 14, 1955, pp. 261, Speakers at a meeting of the Mid-Continent Section of the A.A.P.G. conclude that Oklahoma still offers many a geological mystery to the oil hunter.

Gibbon, Anthony, McAlester Basin promises new pools. World Oil, vol. 140, no. 6, pp. 104-105, map, May, 1955. Developments in the Northwest Oktaha pool in southern Muskogee County, Oklahoma, loom as forerunners for a major oil discovery along the north rim of the McAlester Basin.

Gouin, Frank, Geologists are “working those hills.” World Oil, vol. 140, no. 5, April, 1955, pp. 112-114. Discussion on the present importance of surface field work by the geologists in the search for oil.

Gussaw, William Carruthers, Time of migration of oil and gas. Amer. Assoc. Petroleum Geologists, Bull., vol. 39, no. 5, pp. 547-573, 4 figs., May, 1955. The Oklahoma City field serves as an example to demonstrate that the capacity of traps to hold gas is a criterion for time of accumulation.

Hall, Alvin E., Boost oil recovery 100 percent. Oil and Gas Journal, vol. 54, no. 11, July 18, 1955, pp. 99-102, 4 figs. Describes how utilized operation and pressure maintenance have more than doubled the expected oil and gas recovery in the West Cement Medrano Unit. Includes a description of the lithology and structure of the Medrano sand.

Ham, William E., Origin of dolomite in the Arbuckle group, Arbuckle Mountains, Oklahoma, Proc. Fourth Subsurface Geological Symposium, 1955, pp. 67-73, 8 figs. Carbonate rocks of Cambro-Ordovician age are shown to contain dolomites of three types, each of which originated at different times under different environments.

Ham, W. E., and McKinley, M. C., Geologic map and sections of Arbuckle Mountains (Oklahoma), Okla. Geol. Survey, Map A-2, 1955, colored, scale 0.88 inch equals 1 mile.

Ingalls, Phillip C., Petroleum provinces ... in the United States and Canada. Oil and Gas Journal, vol. 53, no. 48, April 4, 1955, pp. 122-128, 9 figs. The Anadarko Basin is included as one of the areas in North America offering possible oil-and-gas-bearing rocks which have not been tested sufficiently to establish their producing capacities.

Jeffords, Russell M., Septal arrangement and ontogeny in the porpitid corals. Kansas Univ., Paleontological Contributions, Coeleterata, Article 2, no. 15, June, 1955, pp. 1-16, 3 pls., 4 figs. A species of Gymnophyllum from the Wewoka formation in northeastern Oklahoma is illustrated and described.

Kimberlin, Za Grant, Jr., The subsurface geology of Canadian County, Oklahoma. Shale Shaker, vol. 5, no. 8, April, 1955, pp. 5-12, 14-21, 11 figs. Shale Shaker Digest, 1955, pp. 419-433. 47

Law, Louis L., Development in Texas and Oklahoma Panhandles in 1954. Amer. Assoc. Petroleum Geologists, Bull., vol. 39, no. 6, June 1955, pp. 905-912, 1 fig. The Oklahoma Panhandle had 40 exploratory wells drilled in 1954 as compared with 48 the previous year. Of these, 12 were discoveries or extensions.

Lee, Wallace, Thickness maps can reveal Mid-continent structures. World Oil, vol. 141, no. 2, August, 1955, pp. 77-80, 82, 10 figs. Isopachous maps showing great thicknesses of rocks have revealed structural movements in Rocky Mountain region. They also can reveal milder structural warps of Mid-continent, where rock sequences are thinner and deformation is of lower order.

Levorsen, A. I., Where is tomorrow’s oil coming from? Oil and Gas Journal, vol. 53, no. 48, April 4, 1955, pp. 129-133, 4 figs. An “educated guess,” based on geological evidence, as to where we will be producing our oil in 1975-1980.

McCaslin, John C., Here’s where you’ll be drilling tomorrow. Oil and Gas Journal, vol. 54, no. 27, November 7, 1955, pp. 175-177. Southern Oklahoma and southeastern Beaver County are among a number of areas named in which important development and confirmation work is expected to increase in the next few months.
McCaslin, John C., Hugoton embayment play extends through three counties. Oil and Gas Journal, vol. 54, no. 31, December 5, 1955, pp. 183-184, 1 fig. Southeastern and southwestern Beaver County, Oklahoma, show exploration promise after busy year in the Hugoton Embayment of the Anadarko Basin.

McCaslin, John C., Two areas share October limelight. Oil and Gas Journal, vol. 54, no. 30, November 28, 1955, pp. 148-150. West Short Junction field in Cleveland County and recent strike in Greenville area, Love County, are current focal points of Oklahoma development interest.

McCracken, Earl, Correlation of insoluble residue zones of upper Arbuckle of Missouri and southern Kansas. Amer. Assoc. Petroleum Geologists, Bull., vol. 39, no. 1, January, 1955, pp. 47-59, 3 figs. The standard pre-St. Peter geologic column of Missouri, based on residue zones, may be used in Kansas as well as in other Mid-Continent states.

Melton, Frank A., Photo-geology in “flatland” regions of low dip. Shale Shaker, vol. 6, no. 3, November, 1955, pp. 5-8, 11-12, 15-20, 39, 15 pls. Basic assumptions of structural control of drainage patterns and superposition of drainage are shown to underlie successful geological interpretation of aerial photographs.

Merritt, John W., How to avoid costly errors in gamma ray surveying. World Oil, vol. 141, no. 2, August, 1955, pp. 84, 87-88, 90. 2 figs. Radiation equipment can be used successfully in the search for oil, but the operator must use suitable instruments, proper surveying methods, and professional interpretation. (Geological cross-section of area in Kay County).

Miller, C. R., Jr., and Evans, C. B., Porosity determination from microlog and side wall cores. Proc. Fourth Subsurface Geologic Symposium, 1955, pp. 41-48, 6 figs., 2 charts. Oklahoma formations are used to compare porosity from side wall cores and porosity computed from micrologs.

Morrissey, Norman S., 1947—424 days: 1955—144 days . . . that’s how companies have reduced drilling time at Eola. Oil and Gas Journal, vol. 53, no. 44, March 7, 1955, pp. 115-117. A discussion of the complications involved in drilling at Eola, Garvin County, Oklahoma and how complex geology is the answer in explaining many of the difficulties.

Morrissey, Norman S., Acid fracturing puts this field in the black. Oil and Gas Journal, vol. 54, no. 32, December 12, 1955, pp. 82-84, 4 figs., 2 tables. Improvement of drilling and comple-
tion techniques enables the West Short Junction field to be a profitable limestone producer in Oklahoma.

Morrissey, Norman S., Ellenburger... It's a magic world in West Texas. Oil and Gas Journal, vol. 53, no. 35, January 3, 1955, pp. 78-87. Discussion of the oil potential and lithology of the Ellenburger group of West Texas. Compares and correlates Texas and Oklahoma pre-Pennsian rocks.

Morrissey, Norman S., New pay zone for southern Oklahoma. Oil and Gas Journal, vol. 54, no. 5, June 6, 1955, p. 171. Thick porous dolomite zones in the Arbuckle group of southern Oklahoma are untested but potential producers.

Morrissey, Norman S., and McCaslin, John C. This year should be good for Oklahoma... unless new state laws curb deep drilling. Oil and Gas Journal, vol. 53, no. 42, February 21, 1955, pp. 80-81. An outline of the probable areas of deep drilling emphasis in the future if state legislation does not reverse the present trend to deeper drilling in Oklahoma.

Morrissey, Norman S., and Walper, Jack L., Tight folds should harbor more than one oil trap. Oil and Gas Journal, vol. 54, no. 2, May 16, 1955, pp. 192-195, 9 figs. A geological study shows that reverse faults due to horizontal compression can develop from opposite directions. (Eola pool in Garvin County, Oklahoma).

Morrissey, Norman S., and Walper, Jack L., Why subthrust production is promising. Oil and Gas Journal, vol. 54, no. 10, July 11, 1955, pp. 116-118, 4 figs. Outlines the geological data compiled from the Gotebo area and the Eola field, which indicate that the complex trends, along which these others produce, offer many more fields than those already discovered.

Murray, A. N., Growing vegetation identifies formations. World Oil, vol. 141, no. 1, July, 1955, pp. 102-104. Field geologists can be aided by recognizing the relationship between plants and the formations on which they grow.

Oakes, Malcolm C., The upper limit of the Seminole formation in Oklahoma. Okla. Acad. Science, Proc. for 1953, vol. 34, January, 1955, pp. 148-149. The upper limit of the Seminole formation in the south is shown to be the base of the DeNay limestone, in the north, the base of the Checkerboard; however, the Checkerboard and DeNay are not continuous, but occupy virtually the same stratigraphic position.

Potter, Paul Edwin, and Siever, Raymond, Regional crossbedding and petrology as source area indicators. Science, vol. 122, no. 3178, November 25, 1955, pp. 1021-1022, 1 fig. Studies of basal Pennsylvanian sediments from the mid-Continent (basins) and other regions reveal source areas.

Ross, Clarence S., Provenience of pyroclastic materials. Geol. Soc. Amer., Bull., vol. 66, April, 1955, pp. 427-434, 1 fig. Recent studies of rhyolitic and pyroclastic materials and in particular of welded tuffs and bentonites show that they occur over wide areas and in volumes which greatly exceed earlier evaluations.

Roth, Robert, Paleogeology of Panhandle of Texas. Amer. Assoc. Petroleum Geologists, Bull., vol. 39, no. 4, April, 1955, pp. 422-443, 17 figs. Lithologic character and orogenic environment of each time stratigraphic unit are described and
correlated with units in adjacent Oklahoma. The tectonics and sedimentation are also discussed.

Schoff, S. L., Map of ground-water reservoirs of Oklahoma, Okla. Geol. Survey, Map 72-2, 1955, colored, scale 1 to 720,000.

Sloss, L. L., Facies studies...an important tool in oil finding. Oil and Gas Journal, vol. 54, no. 19, Sept. 12, 1955, pp. 111-114, 5 figs. Pennsylvanian sands of Oklahoma are included in a facies study of several rock systems throughout the United States.

Smith, Earl W., Subsurface geology of eastern Kay County, Oklahoma; and southern Cowley County, Kansas. Shale Shaker, vol. 5, no. 9, May, 1955, pp. 5-12, 14-17, 19-21, 24, 11 figs. 1 table. Shale Shaker Digest 1955, pp. 434-448, 11 figs. 1 table.

Stirton, R. A., Two new species of the equid genus Neohippolopon from the middle Paleozoic Chihuahua, Mexico. Jour. Paleontology, vol. 29, no. 5, Sept. 1955, pp. 886-902, 7 text-figs. Two new closely related species of the equid, genus Neohippolopon, N. floresi, N. sp., and N. arielano, N. sp., from the middle Pliocene are described. These species show relationship to Neohippolopon euryostyle (Cope) from the panhandle of Texas and Oklahoma.

Swain, Paul, Natural-gas storage booming. Oil and Gas Journal, vol. 54, no. 2, May 16, 1955, pp. 118-121. Several depleted pools in Oklahoma are among 170 throughout the nation being used for surplus natural gas storage.

account of the circumstances surrounding the current oil
production from shallow Permian sands in the old Chickasha
gas field.

Weirich, T. E., Regional diagnosis of oil accumulation. World Oil, vol. 140, no. 7, June, 1955, pp. 180-182, 4 figs. Study of geologic units in eastern Kansas and eastern Oklahoma indicates oil accumulation is restricted to a sedimentary shelf. Concept offers basis for judging regions where no tests have been drilled.

A survey by the Structural Clay Products Institute reveals that thirty-three percent of the one-family houses being built today have brick walls, representing an increase of 14% over last year's figures (Ceramic Age, Dec. 1955). It is hard to beat a good brick home. Twelve brick and tile plants are located in Oklahoma, operating in Creek, Custer, Garfield, Greer, Oklahoma, Pittsburg, Pontotoc, Seminole, and Tulsa Counties.

A.L.B.
PUBLISHED PAPERS ON OKLAHOMA GEOLOGY IN THE YEAR 1956

Compiled by Neville M. Curtis, Jr.

Amsden, T. W., Notes on Parmorphis brownportensis and Isolithus arcuria from the Henryhouse and Brownport formations. Okla. Geology Notes, vol. 16, no. 8 (Aug., 1956), pp. 78-85, 3 figs., 2 tables. Levenia subcarinata (Hall) from the Hara- gan formation is distinguished from Parmorphis brownportensis and Isolithus arcuria found in the Henryhouse and Brownport formations.

Andress, B. O., Southwest Velma stepout scores. Oil and Gas Jour., vol. 54, no. 46 (March 19, 1956), pp. 322, 324-326, 4 figs. New discovery possibilities are increased by new evidence of thrust-faulting west of Southwest Velma oil field, Stephens County, Oklahoma.

Barby, B. G., Subsurface geology of the Pennsylvania and Upper Mississippian of Beaver County, Oklahoma. Shale Shaker, vol. 6, no. 10 (June, 1956), pp. 9-32, 13 figs. Stratigraphic and low-relief structural traps affect Ordovician to Tertiary in the Panhandle.

Branson, C. C., Cyclic formations or mapable units, Okla. Geology Notes, vol. 16, no. 11 (Nov., 1956), pp. 122-126, 1 fig. Correlation chart lists "The Kansas Rock Column" (1951) and new simplified nomenclature of Pennsylvanian and early Permian rocks in Kansas and Oklahoma.

Branson, C. C., Hartshorne formation, early Desmoinesian, Oklahoma. Okla. Geology Notes, vol. 16, no. 9 (Sept., 1956), pp. 93-99, 3 figs., 1 table. It is proposed that beds from base of
Des Moines series (top of Atoka formation where present) to top of Upper Hartshorne coal be referred to as the Hartshorne formation.

Burwell, A. L., Basic magnesium carbonate from dolomite. Okla. Geology Notes, vol. 16, no. 9 (Sept., 1956), pp. 91-92. Reconstituted dolomite (Arbuckle Mountain area) and dolomites from McKenzie Hill formation (Comanche County) may be used as raw material for the Pattison process.

Cline, L. M., Some stratigraphic studies of the Mississippian and Pennsylvanian rocks of the Ouachita Mountains, Oklahoma. Tulsa Geol. Soc. Digest, vol. 24 (1956), pp. 100-106, 1 fig. Stratigraphy of Ouachita Mountains and evidence used in concluding that lower portion of Johns Valley shale and underlying Jackfork group are Mississippian.

Curtis, N. M., Jr., Bromine in brines of the Red Fork-Elarboro sands (Pennsylvanian) in the Seminole area, Oklahoma, Okla. Geology Notes, vol. 16, no. 12 (Dec., 1956), pp. 131-135, 2 figs., 2 tables. Bromine content is listed for brines from 21 oil wells. None of the brines considered a commercial source of bromine.

Curtis, N. M., Jr., Some facts about Oklahoma uranium. Okla. Geology Notes, vol. 16, no. 10 (Oct., 1956), pp. 106-120, 4 figs., 2 tables. Recent discoveries in Oklahoma, services available to people searching for uranium, and regulations affecting uranium search and development.

Edinger, W. M., Five-spot water-flood unit ups production 38,000 barrels. Oil and Gas Jour., vol. 54, no. 69 (Aug. 27, 1956), pp. 82-83, 1 fig., 1 map, 4 tables. Northwest Tryon field in Lincoln County has 23 input wells, 17 producers, and one water-supply well.

Enright, R. J., Wildcatting success secret: play it big. Oil and Gas Jour., vol. 54, no. 59 (June 18, 1956), pp. 130-132, 5 figs. The British American No. 2 Harrison well, in Grady County, is deepest producer in Oklahoma.

Flawn, P. T., Basement rocks of Texas and southwest New Mexico. Bur. Econ. Geol., Univ. Texas, no. 5605 (March 1, 1956), 2 figs., 3 plates, 12 tables, 10 photomicrographs. Tentative correlation chart of Precambrian rocks and discussion of structural events in Texas, southern Oklahoma, and southwest New Mexico. Igneous rocks of Arbuckle and Wichita Mountains are discussed.

Gardner, F. J., Two strikes in McAlester-Arkansas lend wildcatters hopes. Oil and Gas Jour., vol. 54, no. 48 (April 2, 1956), p. 179. Two important gas discoveries indicate good possibilities for oil in pre-Pennsylvanian rocks in McAlester Basin.

anticline. Shale Shaker, vol. 6, no. 9 (May, 1956), pp. 7-30, 4 figs., 5 plates, 2 tables.

Harris, D. G., Meramec and Lower Chester strata of northeastern Oklahoma, southwestern Missouri, and northwestern Arkansas. The Compass, vol. 33, no. 3 (March, 1956), pp. 228-272, 7 figs., 6 tables, 24 measured sections. A study of the paleontology, sedimentation, and stratigraphy of Meramec and Lower Chester strata in area.
Hayes, J. A., Jr., Mississippian production in the Osage. World Oil, vol. 142, no. 2 (Feb., 1956), pp. 85-86, 88, 2 figs. Important quantities of oil in Mississippian cherts and limestones is nucleus of new interest in Osage County, Oklahoma.
Hill, J. R., Geophysical history of the Golden Trend of Oklahoma. Geophysical Case Histories, vol. 2 (1956), pp. 563-574, 8 figs. Isopachous maps were made from geophysical data and pinch out zones were tested in Garvin County Golden Trend area.
Huang, W. T., Novacekite from the Wichita Mountains, Oklahoma, Amer. Mineralogist, vol. 41, no. 1-2 (Jan.-Feb., 1956), pp. 152-153. Specimen from Permian red beds described and compared with description of novacekite from Schneeberg, Saxony.

Hunter, Z. Z., 8½ million extra barrels in 6 years. Oil and Gas Jour., vol. 54, no. 69 (August 27, 1956), pp. 86-89, 4 figs. Account of water-flood method used in the North Burbank unit of Osage County, Oklahoma.

Krumbein, W. C., Regional and local components in facies maps. Amer. Assoc. Petroleum Geologists, Bull., vol. 40, no. 9 (Sept., 1956), pp. 2163-2194, 10 figs. Regional zone of lower Deese in West Brock area, Carter County, Oklahoma, used as example. Method of separating regional effects from local effects on facies maps.

Lasky, B. H., Earth temperatures, alteration studies reflect subsurface structure. World Oil, vol. 143, no. 7 (Dec., 1956), pp. 116-121, 1 fig. Discusses surface mineralization or alteration studies as a means of mapping subsurface structure. Ramsey field area, Payne County, Oklahoma, used as an example.

Morrisey, N. S., Gas reserves increase in new Harper County field. Oil and Gas Jour., vol. 54, no. 61 (July 2, 1956), p. 166, 2 figs. Four separate pay zones discovered south and east of Laverne, Harper County, Oklahoma.

Morrisey, N. S., Cherokee trend stretches out 30 miles. Oil and Gas Jour., vol. 54, no. 53 (May 7, 1956), pp. 176-177, 2 figs., 2 tables. Pay zones and drilling procedures described for recent stratigraphic production in Alfalfa and Grant Counties, Oklahoma.

Murphy, L. M. and Cloud, W. K., United States earthquakes 1954. U. S. Dept. Commerce, Coast and Geodetic Survey, serial no. 795 (1956), pp. 9, 69, 1 table. Four tremors reported with about the same intensities on three successive days (April 11, 12, and 13) in 1954 at Holdenville, Oklahoma.

Oakes, M. C., The Hogshooter formation in Creek County, Oklahoma. Okla. Acad. Sci. Proc., vol. 35 (1956), p. 90. Earlier mapping of Hogshooter formation in Creek County is substantially correct and unit may be correlated with the Hogshooter in Okfuskee County, Oklahoma.

Oklahoma Geological Survey, Geology along the Turner Turnpike. Guide Book IV (April, 1956), pp. 1-76, 3 figs., 7 plates, 2 stratigraphic subsurface sections. Contains road log and strip map (3 inches to mile), Tulsa to Oklahoma City, topographic and geologic profile, historical sites, and oil and gas fields.

Stair, Ralph, Tektites and the lost planet. Sci. Monthly, vol. 83, no. 1 (July, 1956), pp. 3-12, 12 figs., 1 table. Tektites (glassy meteorites) may aid in a better understanding of earth's origin. One specimen is from Delhi, Beckham County, Oklahoma.

Taaffe, Francis, Published papers on Oklahoma geology in the year 1955. Okla. Geology Notes, vol. 16, nos. 5-6 (May-June, 1956), pp. 43-55. Annotated bibliography.

Tanner, W. F., Superposed streams of the Arbuckle Mountains. Shale Shaker, vol. 6, no. 6 (Feb., 1956), pp. 14-15, 1 fig. Radial stream pattern in the Arbuckle Mountains of southern Oklahoma suggests that the uplift was formerly covered by a thick blanket of sediments, perhaps Cretaceous.

Thomas, N. O. and Harbeck, G. E., Jr., U.S. Geol. Survey, Water supply Paper 1398-A (1956), pp. 1-99, 3 figs., 2 tables, 1 map. Descriptive data: reservoirs in Oklahoma with capacity of 5,000 acre-feet or more of water; natural lakes with usable capacity of 5,000 acre-feet or more; reservoirs and lakes completed as of January 1, 1954; reservoirs under construction.

Westby, G. H., The discovery by reflection seismograph of a small producing structure in Okmulgee County, Oklahoma. Geophysical Case Histories, Vol. II (1956), pp. 425-438, 9 figs. Refined geophysical methods were needed to find geologic structure having less than 50 feet of closure.

Wilson, L. R. and Hoffmeister, W. S., Plant microfossils of the Croweburg coal. Okla. Geol. Survey, Circ. 32 (1956), pp. 1-56, 4 figs., 3 tables, 5 plates. Fossil spores and leaf cuticles from nine localities in northeastern Oklahoma are described and statistically treated for stratigraphic correlation.

Winland, H. D., Insoluble residue study and correlation of the Arbuckle group in southern Oklahoma, Shale Shaker, vol. 6, no. 5 (Jan., 1956), pp. 7-22, 8 figs. Section of Arbuckle group in Murray and Carter Counties measured and correlated with section of Arbuckle group in northeastern Kiowa County. Correlation based on insoluble residue and differential thermal analyses.

ADDITIONS TO BIBLIOGRAPHY OF OKLAHOMA GEOLOGY, 1956

ANONYMOUS PUBLICATIONS

Panhandle Area Reference Book. Rinehart Oil News Co., P. O. Box 1208, Dallas, Texas (1956), pp. 1-300.

Anonymous, Susie confirmed a conviction. Oil and Gas Jour., vol. 54, no. 3 (Sept. 24, 1956), pp. 88-89, 1 fig. Sinclair No. 1 Susie, 6 miles northwest of Apache field, Caddo County, Oklahoma, produces from Bromide.

Vol. 18, no. 3, March 1958
PUBLISHED PAPERS ON OKLAHOMA GEOLGY IN THE YEAR 1957

Compiled by Neville M. Curtis, Jr.

5. Amsden, T. W., Catalog of Middle and Upper Ordovician fossils. Okla. Geol. Survey, Circ. 43 (1957), pp. 1-41. List of described and/or illustrated Middle and Upper Ordovician fossils from Oklahoma, author of original description, and bibliography (Oklahoma specimens).

11. Barrett, Ed and Culp, E. F., Bois d'Arc pay spurs limestone exploration. Part II. Oil and Gas Jour., vol. 55, no. 23 (June 10, 1957), pp. 172-177, 2 figs., 3 tables, 8 plates. Fields with Bois d'Arc limestone production divided into 3 classes dependent on location relative to line of regional truncation. Data for fields: areal extent, discovery well and data, type of trap, etc.

(27) Branson, C. C., Rejected Oklahoma stratigraphic names. Okla. Geology Notes, vol. 17, no. 11 (Nov., 1957), pp. 106-108. List of Oklahoma units which have been given names already used elsewhere and replacement name in cases where such replacements have been made.

(45) Coldwell, A. E., Importance of channel erosion as a source of sediment. Amer. Geophysical Union, Trans., vol. 38, no. 6 (Dec., 1957), pp. 908-912, 2 figs. Gaging stations near Pauls Valley and Durwood, Washita River, Oklahoma used to illustrate channel erosion as a source of sediment.

(49) Damon, P. E. and Kulp, J. L., Determination of radiogenic helium in zircon by stable isotope dilution technique. Amer. Geophysical Union, Trans., vol. 38, no. 6 (Dec., 1957), pp. 945-953, 3 figs., 5 tables. Apparent age for several Oklahoma zircons. Exact location not given but samples are probably from the Wichita Mountains.

(57) Elias, M. K., Late Mississippian fauna from the Redoak Hollow formation of southern Oklahoma. Part 3. Pelecypod Jour. Paleontology, vol. 31, no. 4 (July, 1957), pp. 757-784, 1 text-fig., 9 plates, 6 tables. New genus Eoplateopus and new subgenus Springeria are introduced, and 37 species and subspecies are described, 17 of which are new. Morphology and taxonomic status of 13 genera are discussed.

(58) Forgoisone, J. M., Jr., Stratigraphy of Comanchean Cretaceous Trinity group. Amer. Assoc. Petroleum Geologists, Bull., vol. 41, no. 10 (Oct., 1957), pp. 2328-2363, 9 figs. Author considers that there is no Paluxy in Oklahoma and that the Walnut formation in Oklahoma is the lateral equivalent of Paluxy formation in Texas.

(65) Gardner, F. J., Oklahoma probes its deepest trough. Oil and Gas Jour., vol. 55, no. 49 (Dec. 9, 1957), p. 189, 1 fig. New producing depth record for state (British-American Oil Producing Company No. 1 Kreiger in T. 2 N., R. 5 W.); Magnolia Petroleum Co. et al. No. 1 Sterba with drilling depth record at 20,426; and possible new world’s depth record of 24,000 with the Howell, Holloway & Howell No. 1 Anadarko Basin well drilling on the Fort Cobb anticline.

(66) Gibbon, Anthony, Injected liquid propane boosts oil production. World Oil, vol. 144, no. 6 (May, 1957), pp. 92-93, 1 fig. Production increased from 15 to 160 barrels per day by solvent extraction secondary recovery method used in small fields in Seminole area, Oklahoma.

(70) Hall, W. J., Jr., Reconnaissance for uranium in asphalt-bearing rocks in the Western United States. U. S. Geol. Survey, Bull. 1046-E (1957), pp. 55-85, 2 figs., 10 tables. Results of field investigations and laboratory analyses of asphalt-bearing rocks (Permian, Pennsylvanian, and Ordovician). Average U in ash of extracted oil ranged from 0.001 to 0.54 percent. Thirty-nine samples analyzed.

(76) Harris, R. W., Ostracoda of the Simpson group of Oklahoma. Okla. Geol. Survey, Bull. 75 (June 1, 1957), pp. 1-333, 19 figs., 10 plates, 5 range charts, type section of Corbin Ranch formation. Ostracods described, illustrated, and ranges given for four Simpson sections in the Arbuckle Mountains and Criner Hills of Oklahoma. Corbin Ranch (new unit) proposed and discussed.

(83) James, G. T., An edentate from the Pleistocene of Texas. Jour. Palaeontology, vol. 31, no. 4 (July, 1957), pp. 796-808, 2 plates, 9 tables, 4 text-figs. One dermal scute from Chlamyderium septentriionale found at Hydro, Caddo County, Oklahoma.

(91) Jordan, Louise, Subsurface stratigraphic names of Oklahoma. Okla. Geol. Survey, Guide Book VI (1957), pp. 1-220. Contains: surface names, obsolete names, subsurface names in good regional usage, author and page reference, description and stratigraphic position, and 212 electric logs showing the unit in the type well or nearby well deep enough to show markers above and below stratigraphic unit.

(92) Kershaw, D. T., Mississippian production in the Fox field Township 2 South, Range 3 West, Carter County, Oklahoma. Fifth Biennial Symposium of Subsurface Geology, University of Oklahoma (March, 1957), pp. 111-132, 9 figs., 1 table. Lithology, thickness, controlling factors of porosity and permeability, and nature of the Sycamore formation in the Fox field. Subsurface structural contour maps and cross sections of Fox field.

(98) Kirsh, M. S., A subsurface section from Osage County to Okfuskee County, Oklahoma. Shale Shaker, vol. 7, no. 6 (Feb., 1957), pp. 2-4 and 9-21, 1 fig., 4 cross sections. Forty-five wells used in making north-south and east-west cross sections. Correlation of Pennsylvanian surface outcrops with subsurface.

(105) McCalin, J. C., Hugoton pre-Permian drive taps new deep reservoirs. Oil and Gas Jour., vol. 55, no. 6 (Feb. 25, 1957), pp. 211, 214, 1 fig. Review of drilling activity in 1957 in Oklahoma Panhandle and northwest Oklahoma.

(106) McCalin, J. C., Sooner wildcatters sight Anadarko's deep sands. Oil and Gas Jour., vol. 55, no. 20 (May 20, 1957), p. 250, 1 fig. Review of deep wells to be drilled into the Ordovician in Anadarko Basin.

(109) McGonagill, F. E., Jr., Where does Oklahoma get her oil? Oil and Gas Jour., vol. 55, no. 18 (May 6, 1957), pp. 179-181, 2 tables. Principal producing formations, cumulative production through 1954, year of field discovery, and additional statistics relative to oil production in Oklahoma.

(113) Miller, C. R. and Evans, C. B., Logs and cores indicate porosity. World Oil, vol. 144, no. 1 (Jan., 1957), pp. 115-119, 6 figs., 2 charts. Data showing close agreement for porosities obtained by contact logging and sidewall coring where they have been used conjunctively.

(114) Misch, Peter and Oles, K. F., Interpretation of Ouachita Mountains of Oklahoma as autochthonous folded belt: preliminary report. Amer. Assoc. Petroleum Geologists, Bull., vol. 41, no. 8 (Aug., 1957), pp. 1899-1905, 1 fig. Discussion as to whether the Ouachita Mountains are an allochthonous or autochthonous folded belt. Evidence is given to prove the autochthonous concept.

(117) Morrissey, N. S., Drilling perks up in central Oklahoma. Oil and Gas Jour., vol. 55, no. 3 (Jan. 21, 1957), pp. 152-153, 3 figs. Wilcox production from small fields 3 to 8 miles east of Norman, Oklahoma.

(118) Morrissey, N. S., New logging technique spots Oklahoma oil. Oil and Gas Jour., vol. 55, no. 7 (Feb. 18, 1957), pp. 218-220, 3 figs. Earlsboro sand in North Remus field and Simpson sand section in Northeast Payne field used to illustrate value of combination induction-electric log in logging formations having low and medium resistivities.

(120) Morrissey, N. S., Seismic-survey maps help in development. Oil and Gas Jour., vol. 55, no. 9 (March 4, 1957), pp. 158-159, 3 figs. Coordinates geologic data with recent seismic survey to map stratigraphic trap on south end of Lucien anticline, South Lucien field, Logan County, Oklahoma.

(121) Morrissey, N. S., Secondary recovery at Eola goes deep, comes high. Oil and Gas Jour., vol. 55, no. 11 (March 8, 1957), pp. 124, 126, 3 figs. Field in Garvin County, Oklahoma will have a simultaneous gas-injection and water-flood program. Bromide sand at 10,200 feet is reservoir unit.

(125) Morrissey, N. S., Active fields report drilling data. Oil and Gas Jour., vol. 55, no. 41 (Oct. 14, 1957), pp. 172-174. Data on contract drilling costs, casing programs, bit requirements, pay zones, completion practices, total days required to drill an average field well, etc.

(126) Morrissey, N. S., A.A.P.G. schedules Morrow symposium for meeting. Oil and Gas Jour., vol. 55, no. 42 (Oct. 21, 1957), pp. 217-218, 1 fig. Announcement of three papers to be presented at the Mid-Continent regional meeting of the A.A.P.G.

(142) Rinehart Oil News Company, Yearbook 1957, vol. 1, 20 pp., 8 figs. Oklahoma drilling summary for 1956 by counties, list of operators and wells completed by each, discoveries and extensions by counties, and drilling and production data.

(143) Robinson, T. H., Oil and gas field development in the United States and Canada, Yearbook 1957 (Review of 1956). Nat. Oil Scouts and Landmen's Assoc., Vol. XXVII (1957), pp. 611-726, 4 figs., 1 table. Discovery and exploratory wells, new fields, pays, extensions, geology and production data, and geophysical and core-drill prospecting data.

(144) Roth, R. L., Texas Panhandle paleogeology. World Oil, vol. 144, no. 2 (Feb. 1, 1957), pp. 82-86, 6 figs. Brief description of time-stratigraphic units (Mississippian-Precambrian) in regard to lithology and orogenic environment and isopachous maps of six units in the Panhandle and along western edge of Oklahoma.

(149) Scott, G. L., Jr. and Ham, W. E., Geology and gypsum resources of the Carter area, Oklahoma. Okla. Geol. Survey, Circ. 42 (1957), pp. 1-64, 5 figs., 2 tables, 8 plates. Stratigraphy (exposed bedrock is in the Guadalupe and Leonard series of Middle Pennsylvanian age) and economic geology (large-tonnage reserves of high-purity white gypsum in the Blaine formation).

and Cromwell sand (both Pennsylvanian) in Rosenwald Pool, Okfuskee County.

(155) Stossier, B. J., Radioactivity logging in carbonate reservoirs. Fifth Bien. Symposium of Subsurface Geology, University of Oklahoma (March 1957), pp. 57-40. 6 figs. Bois d'Arc section of Hunton limestone from well in Short Junction field used to illustrate application of radioactivity logs in evaluating fundamental reservoir data.

(156) Stringer, C. P., Jr., Subsurface geology of western Payne County, Oklahoma. Shale Shaker, vol. 7, no. 8 (April 1957), pp. 3-20. 5 structure contour maps, 1 isochore map, and 2 cross sections.

(157) Thompson, M. L., Northern Midcontinent Missourian fusulinids. Jour. Paleontology, vol. 31, no. 2 (March 1957), pp. 289-328. 2 text-figs., 10 plates, 15 tables. Description and discussion of Missourian fusulinids in Iowa, Kansas, Missouri, Nebraska, and Oklahoma. Includes one sample location in Osage County where *Kansanella (Kansanella) osagenis* is abundant.

(168) Anonymous, Big new structure? Oil and Gas Jour., vol. 55, no. 24 (June 17, 1957), p. 118, 1 fig. Possibility of anticline with 2,000 feet of relief in Southwest Enville field, Love County, Oklahoma.

(170) Anonymous, Conoco moves into atomic research, Oil and Gas Jour., vol. 55, no. 38 (Sept. 23, 1957), p. 92. Description of Continental Oil Co.'s research atomic-radiation laboratory in Ponca City, Oklahoma.

(173) Anonymous, Gas to jump Sims sand output. Oil and Gas Jour., vol. 55, no. 51 (Dec. 23, 1957), p. 40, 1 fig. Velma field recovery may be boosted by more than 240,000,000 barrels in huge secondary-recovery project.

(174) Anonymous, Good year-end strikes recorded in four Oklahoma sectors. Oil and Gas Jour., vol. 55, no. 51 (Dec. 23, 1957), pp. 110-111, 5 figs. Production data for recent completions in Panhandle,
INDEX

PUBLISHED PAPERS ON OKLAHOMA GEOLOGY IN THE YEAR 1957

Prepared by Neville M. Curtis, Jr.

[The numbers refer to entries in the bibliography.*]

age determination by radioactivity: Arbuckle Mts., Precambrian granite, Ham, 72; zircon, radiogenic helium in, Damon and Kulp, 49; zircon, Wichita Mts., Tilton, 158
aggregate, lightweight, Burwell, 37
air/gas drilling, Adams, 2, 3
Alfalfa County, oil and gas discoveries in, Jordan, 87
Anadarko Basin: deep well, Carter-Knox field, Gardner, 65; Ft. Cobb anticline, deep well on, Gardner, 65; drilling activity, Anonymous, 166; drilling program, McCaslin, 106; general, Riggins, 141; magnetic profile, Affleck, 4; oil well discoveries, Gardner, 63, 65
anhydrite, conversion of, to gypsum, Burwell, 38
Arbuckle Mts. region: age of Precambrian granite, Ham, 72; Hunton group, Amsden, 6; magnetic profile, Affleck, 4; Pennsylvanian conglomerate, Ham, 73; possible oil production, Caswell, 41; Simpson group, ostracods in, Harris, 76; tectonic history, Ham, 73
Ardmore Basin—
Devil's Kitchen member, Schacht, 147
Mississippian, Red Oak Hollow formation: fauna in, Elias, 55; brachiopods in, Elias, 56; pelecypods in, Elias, 57
Sycamore formation, Prestridge, 137
Ardmore Geol. Soc., Criner Hills field trip by, Ardmore Geol. Soc., ref. 7
artesian pressures, Burton, 32
ashphalt-bearing rocks: asaphlitie, uranium in, Klepper and Wyatt, 100; uranium, Hail, 70
atomic research, Anonymous, 170
authors, Okla. Geol. Survey, Bull. 40, Anonymous, 167
Beaver County, turtle in Pliocene of, Oechler, 128
Beckham County: gypsum in Blaine formation, Scott and Ham, 149
Spriniger formation, oil production in, McCaslin, 108
Bibliography: algae, Johnson, 86; DeGolyer, E. L., biography of, Branson, 16; magnesites, annotated, Davis, 50; North American geology, King, 95, 96, 97; Oklahoma geology, annotated, Curtis, 47; Ordovician fossils, catalog of, Amsden, 6; silica, high grade, Jaster, 84; stratigraphic names, subsurface, Jordan, 91; theses, Univ. Okla., Dickey, 52; theses, Univ. Okla., additions, Dickey, 53; wells, velocity in, Gaither, 62
brines: oil well samples, Wright, 164; sour, treatment of, Anonymous, 175
building material: aggregate, lightweight, Burwell, 37; anhydrite, to gypsum, conversion of, Burwell, 38; blocks, Burwell, 33; mineral industries, 1955 and 1956, Grandone and Ham, 68; structural, ytong, Burwell, 33
Caddo County, uranium in, Stoever, 154
Cambrian, Girvanella, Bromide formation, Rezak, 140
carbarnate reservoirs, classification, Branson, 18
Carter County: Brock oil field, Powers, 136; deasphalinjg crude oil, Moore and Dunning, 116; tectonics, Schweers, 148

[51] [52]
Carter region, gypsum in, Scott and Ham, 149

catalog (see bibliography)
census, Oklahoma geologists, Branson, 21
channel erosion, Coldwell, 45
charophytes, Branson, 26
coal: Croweburg, sporo flora in, Bhandwaj, 14; resources, Trumbull, 159
completion methods, oil well, Pearson, 134
Cretaceous, Trinity group, Forgotson, 58
Criner Hills: Desmoinesian, Ramsey, 138; general, Lang, 101; geologic map, Frederickson, 60; guidebook, Ardmore Geol. Soc., ref. 7; Pennsylvania, Frederickson, 59; Simpson group, ostracods in, Harris, 76
deep wells: general, Adams, 1; Carter-Knox field, Ft. Cobb anticline, Gardner, 65; production in Carter-Knox field, Stearns, 152; play, Anonymous, 170
DeGolyer, E. L., biography of, Branson, 16
Dewey County, oil production in, Anonymous, 177
discoveries, recent oil, Anonymous, 180
drilling data: Morrisey, 125; Rinehart, 142; Robinson, 143; Anonymous, 179
eastern Oklahoma, field trip in, Brant, 30
Edmond area, Desmoinesian, Benoit, 13
Ellis County, Pliocene vertebrates in, Kitts, 99
Ft. Cobb anticline, drilling on, Anonymous, 166
fuels map of Oklahoma, Okla. Geol. Survey, 130
Garvin County: Eola field, secondary recovery in, Morrisey, 121; subsurface geology, Withrow, 163
geochemistry, Burwell, 40
genealogic map of Oklahoma, Okla. Geol. Survey, 132
genealogic names of North America, Wilson, 162
genealogic: continuous velocity logs, Breek, 31; electric logs indicate porosity, Miller and Evans, 113; electric logging, Payne, Northeast, field, Morrisey, 118; electric logging, Remus, North, field, Morrisey, 118; Healdton, North, field, Bennett, 12; Lucien, South, field, Morrisey, 120; magnetic profiles, Affleck, 4; Ouachita Mts., Lyons, 104; radioactivity logging in Short Junction field, Storseth, 155; seismic exploration, Van Cleave, 160; Soc. Tulsa, Affleck, 4
Grady County: Carter-Knox field, Stearns, 152; deep play, Anonymous, 176
graphite, commercial, Burwell, 34
Great Plains, Pliocene and Pleistocene, Frye and Leonard, 61
ground water: artesian pressures, Burton, 32; industrial, Burwell, 35, 36; levels, Burton, 32; map, Okla. Geol. Survey, 133; resources, Dover, 54
guidebook: Criner Hills, Ardmore Geol. Soc., ref. 7; eastern Oklahoma, Brandt, 30; Mid-Continent, Branson, 24; stratigraphic names, subsurface, Jordan, 91; Wichita Mts., Ham, 74
Gulf Coastal Province, Murray, 127
gypsum: Blaine formation, Beckham County, Scott and Ham, 149; conversion from anhydrite, Burwell, 38
Harper County, wells drilled in Woodward trend, Gardner, 64
Hughes County, Olympic pool in, Jordan, 86
Hugoton embayment: drilling, McCaslin, 105; well discoveries, Gardner, 63
Hunton group, Bois d’Arc member, Barrett and Culp, 9, 10, 11
Kingfisher County, wells drilled in Woodward trend, Gardner, 64
Knox anticline, drilling on, Anonymous, 166
Lake Altus area, geologic map of, Merritt, 112
Lincoln County, geology of Prague area in, Masters, 111
Love County—
Enville field, Southwest: O’Heran, 129; Anonymous, 168
Greenville field, Northeast, Walker and Markley, 161
Liquified petroleum gas: secondary recovery, Jordan, 90; storage of, Bizal, 15
McAlester Basin: air/gas drilling, Adams, 2, 3; magnetic profile, Affleck, 4
McClain County, Golden trend, Morrisey, 122
Maysville area, subsurface oil, Withrow, 163
metal-porphyrin, deasphalting oil, Moore and Dunning, 116
Mid-Continent, geology of, 102
mineral industries, 1955 and 1956, Grandone and Ham, 68
mineral map, Okla. Geol. Survey, 131
Mississippi Lime in Osage County, Sanamnn, 146
Mississippian: bioherms in northeast Oklahoma, Harbaugh, 75; brachiopods in Redoak Hollow formation, Elias, 56; Fox oil field, Kershisnik, 92; Ozark area, stratigraphy and tectonics of, Huffman, 81; paleontology of Redoak Hollow formation, Elias, 55; pelecypods, Branson, 22; pelecypods in Redoak Hollow formation, Elias, 57; stratigraphy. Branson, 24
Morrow symposium, announcement of, Morrisey, 126
nickel, Hodgson and Baker, 78
nodule bed, Pennsylvanian of Kansas, Branson, 28
Norman area, drilling in, Anonymous, 172
Nowata County, sand fracturing in, Wyrick, 165
oil accumulation in Bois d’Arc member, Barrett and Culp, 9, 51
oil fields discovered, 1904-1925, Branson, 23
oil/gas fields—
Alden, Northeast, Morrisey, 124
Apache, Morrisey, 124
Ardmore, Southwest, Hale, 71
Aylesworth, Anonymous, 178
Bartlesville-Dewey, waterflooding; Powell, 135; Anonymous, 175
Berts pool, production in, Sanamnn, 146
Brock-Powers, 136
Carter-Knox, deep well in: Adams, 1; Morrisey, 119; Stearns, 152
Dewey-Bartlesville: Powell, 135; Anonymous, 175
Enville, Southwest: O’Heran, 129; Anonymous, 168, 178
Eola, secondary recovery in, Morrisey, 121
Fox, Kershisnik, 92
Greenville: Walker and Markley, 161; Anonymous, 178
Healdton, North, Bennett, 12
Hobart, Northeast, Hoover, 79
Hogshooter, secondary recovery: Powell, 135; Anonymous, 175
Keokuk, Anonymous, 184
Lucien, South, Morrisey, 129
Norman, Morrisey, 117
Olympic: Jordan, 88; waterflooding, Stiles, 153
Overbrook: South: Hager, 69; Anonymous, 178
Payne, Northeast, Morrissey, 118
Remus, North, Morrissey, 118
Rosenwald: Jordan, 89; Smith and Henderson, 151
Seminole City, secondary recovery, Jenkins, 85
Short Junction: radioactivity logging, Storseth, 155; secondary recovery
in Jordan, 90; Anonymous, 171
Tatum, asphaltic crude oil, Moore and Dunning, 116
Velma, secondary recovery, Anonymous, 173
Okfuskee County—
Olympic pool, Jordan, 88; Rosenwald pool, Jordan, 89; Rosenwald
pool, Smith and Henderson, 151; subsurface section, Kirk, 98
Okmulgee County, geology, Logan, 103
Ordovician, catalog of fossils in, Amsden, 5
Osage County: Belt's pool, Sanman, 146; geology, Clinton, 42, 43; subsurface
sections, Kirk, 98
Ouachita Mts.: folded belt, Misch and Oles, 114; gravity minimum, Lyons,
104
Ozark area, stratigraphy and tectonics of, Huffman, 81
paleoecology of, Texas Panhandle, Roth, 144, 145
paleontology—
algae, bibliography of, Johnson, 86
bioherms, Mississippian, Harbaugh, 75
brachiopods, Mississippian, Elias, 56
charophytes, Branson, 26
conodonts: Branson, 17; Woodford shale, Cloud, 44
dermal scute, James, 83
Fusulinella, Atokan, Searight, 150
fusulinids, Missourian, Thompson, 157
Girvanella, Bromide formation, Rezak, 140
graptolites, morphology of, Decker and Gold, 51
Mississippian, Redoak Hollow formation, Elias, 55
Ordovician, catalog, Amsden, 5
ostracods: Haragan formation, Kesling and Rogers, 93; Simpson
group, Harris, 76
pelecypods, Mississippian: Branson, 22; Elias, 57
spores in the Croweburg coal, Bhadrwaj, 14
vertebrates, Pliocene, Ellis County, Kitz, 99
Panhandle possibilities, oil, Moore, 113
Payne County, subsurface geology in, Stringer, 156
Pennsylvanian: Arbuckle Mts., conglomerates in, Ham, 73; Criner Hills,
history of, Frederickson, 59; facies of north-central Oklahoma, Branson,
29; nodular bed in Kansas, Branson, 28; stratigraphy, Branson,
19, 24
physiographic map, Curtis and Ham, 48
plant supplement, Burwell, 33
Pleistocene stratigraphy, Frye and Leonard, 61
Pliocene: stratigraphy, Frye and Leonard, 61; turtle, Oelrich, 128; vertebrates
in Ellis County, Kitz, 99
porosity, electric logs indicate, Miller and Evans, 113
Pottawatomie County, Prague area in, Masters, 111
Prague area, geology of, Masters, 111
producing formations, oil, McGonagill, 109
production data, Anonymous, 174
production, increased oil—
gas injection: Eola field, Morrissey, 121; Seminole City pool, Jenkins,
85; Short Junction field, Gibbon, 66; Jordan, 90, Anonymous,
171; Velma field, Anonymous, 173
sand fracturing in Nowata County, Wyrick, 165
waterflooding: Bartlesville-Dewey field, Anonymous, 175; Hogshooter
field, Anonymous, 175; Olympic pool, Stiles, 153
reservoirs, carbonate, classifications, Branson, 18
secondary recovery, (see production, increased oil)
sheet erosion, Glyph, 67
Stephens County: deep play in, Anonymous, 176; tectonics, Schweers, 143
Sterba-Ordovician No. 1 well, Anonymous, 179, 181, 182, 183, 185, 186
stratigraphy—
Atoka, subsurface, Ballard, 8
Chattanooga shale, conodonts in, Cloud, 44
Cretaceous, Trinity group, Fogedton, 58
Desmoinesian: Criner Hills, Ramay, 138; Edmond area, Benoit, 13
Devil's Kitchen member in Ardmore Basin, Schacht, 147
facies along Kansas-Oklahoma state line, Branson, 20
Hunton group: in Arbuckle Mts., Amsden, 6; Bois d'Arc member,
Barrett and Culp, 9, 10, 11
Mid-Continent, Branson, 24
Mississippian, Ozark area, Huffman, 81
Morrow, subsurface, Ballard, 8
names: available, Branson, 25; rejected, Branson, 27; subsurface, Jordan,
91
Pennsylvanian problems, Branson, 19
Pleistocene, Frye and Leonard, 61
Pliocene, Frye and Leonard, 61
Sycamore formation in Ardmore Basin, Preistrige, 137
Virgilian, north-central Oklahoma, Branson, 29
Woodford shale, conodonts in, Cloud, 44
subsurface geology: Atoka, Ballard, 8; Desmoinesian in Edmond area,
Benoit, 13; Mayesville area, Garvin County, Withrow, 163; Morrow,
Ballard, 8; Payne County, Stringer, 156; Okfuskee County, Kirk, 98;
Osage County, Kirk, 96
theses, University Oklahoma: Dickey, 52; additions, Dickey, 53
thorium in zircon, Hurley and Fairbairn, 82
titanclinohumite in Wichita Mts., Huang, 80
Triassic, correlation of, Reeds, 139
Tulsa County, seismic exploration in, Van Cleave, 160
uranium: asphaltic rocks, in, Hail, 70; Caddo County, in, Stoever, 154;
nodules, in carbonaceous, Hill, 77; zircon, in, Hurley and Fairbairn,
82
vanadium, Hodgson and Baker, 78
Washington County—
Bartlesville-Dewey field: Powell, 135; Anonymous, 175
Hogshooter field: Powell, 135; Anonymous, 175
water: estimated use of, MacKichan, 110; levels, Burton, 32
weathering process, Burwell, 39
Wichita Mts.: age of zircons in, Damon and Kulp, 49; age of zircons, Tilton, 158; faulting, thrust, Riggs, 141; guidebook, Ham, 74; Lake Altus area, geologic map of, Merritt, 112; magnetic profile, Affleck.
titanelinohumite, Huang, 80; uranium in carbonaceous nodules, Hill, 77

wildcat wells, data, McCaslin, 107; Morrisey, 123; Anonymous, 169
Woods County, oil/gas discoveries in, Jordan, 87
Woodward County, oil production in, Anonymous, 177
Woodward trend, oil wells drilled in, Gardner, 64
ytong, structural material, Burwell, 33
Vol. 19, no. 3, March 1959
PUBLISHED PAPERS ON OKLAHOMA GEOLOGY IN THE YEAR 1958

Compiled by Neville M. Curtis, Jr.

1958c, Geologic range of Dictyonella in the Hunton group: Okla. Geology Notes, vol. 18, no. 2, p. 31-32. Dictyonella may not occur in the Haragan formation in Oklahoma.

1958d, Addition to the catalog of Ordovician fossils: Okla. Geology Notes, vol. 18, no. 3, p. 34. Cephalopod species Nbyvoeceras ulrichi Forste and Teichert 1930 in McElsh formation to be added to catalog.

1958g, White Mound: Okla. Geology Notes, vol. 18, nos. 8 and 9, p. 131-135, 5 figs. History of White Mound (famous fossil locality for Lower Devonian material) and composite Hunton section from area described.

and Huffman, G. C., 1958, Frisco brachiopod from a Hunton core, Pottawatomie County: Okla. Geology Notes, vol. 18, no. 4, p. 73-76, 2 figs. Description of the first fossil (a brachiopod) from the Frisco formation in the subsurface and a brief discussion on the stratigraphic relations of the Frisco and Bois d'Arc formations.

Bival, Robert, 1958, Growing storage to help LPG pricing: Oil and Gas Jour., vol. 56, no. 39, p. 40-43, 2 tables. Location by county of underground LPG storage in Oklahoma. Type of storage, capacity in barrels, and company using underground storage.

Bleakley, W. B., 1958, 24,002 ft. to become world's second-deepest well: Oil and Gas Jour., vol. 56, no. 49, p. 77-79, 1 fig. Drilling method used in drilling Shell Oil Co.'s No. 5 Rumberger in Beckham County, Oklahoma.

Bohart, P. H., Jr., 1958, Subsurface geology of the Purdy oil field, Garvin County, Oklahoma: Shale Shaker, vol. 9, no. 1, p. 2-7, 2 figs., 9 pls. Stratigraphy, structure, geologic history, and field development.

Branson, C. C., 1958a, No Paluxy in Oklahoma?: Okla. Geology Notes, vol. 18, no. 3, p. 15, 1 fig. Review of paper by J. M. Forgetson in which the Paluxy sand formation in Oklahoma is placed in doubt.

1958f, Final chapter of Red Oak Hollow fauna: Okla. Geology Notes, vol. 18, no. 4, p. 76. Tables list number of genera, new genera,
species, and new species, and 1956 nuclei names and how treated in 1958.

1958l. Two Mississippian species of Conocordium: Okla. Geology Notes, vol. 18, nos. 8 and 9, p. 137-142. Figures and describes Conocordium peculiarire Girty and another species of the above genus. A specimen of C. peculiarire has been found in the Pithkin limestone, Cherokee County, Oklahoma.

1958c. The question of priority: Okla. Geology Notes, vol. 18, no. 11, p. 170-171. A reminder that exploration data are needed in order to attract industry to Oklahoma.

Curtis, N. M., Jr., 1958, Published papers on Oklahoma geology in the year 1957: Okla. Geology Notes, vol. 18, no. 3, p. 35-51; Index, p. 52-57.

Davis, L. V., 1958a, Ground water in the Arbuckle and Simpson groups in the Arbuckle Mountains, Oklahoma: Okla. Geology Notes, vol. 18, no. 10, p. 152-157, 1 fig. Description of ground-water in the Arbuckle and Simpson groups and present and potential sources of several cities in Garvin, Murray, and Carter Counties.

1958b. Oklahoma's underground water: Okla. Geology Notes, vol. 18, no. 12, p. 189-202, 7 figs. Aquifers grouped into five classes and each class discussed and shown on state map.

Dickey, P. A., 1958, Oil is found with ideas: Oil and Gas Jour., vol. 56, no. 37, p. 284-291, 5 figs. Brief history of oil discoveries as new ideas and methods evolved in geology and geophysics.

Elias, M. K., 1958, Late Mississippian fauna from the Redoak Hollow formation of southern Oklahoma. Pt. 4: Gastropoda, Scaphopoda, Cephalopoda, Ostracoda, Thoracica, and Problematica: Jour. Paleontology, vol. 32, no. 1, p. 1-45, 4 figs., 4 tables, 4 pls. Descriptions are given: (1) twenty-one species and varieties of gastropods, (2) five species of cephalopods, (3) twenty-three species and varieties of ostracods, (4) etc. Correlation is made with European species.

— 1958c, A recent sink hole in central Blaine County, Oklahoma: Okla. Geology Notes, vol. 18, no. 3, p. 56-64, 8 figs. Description and origin of sink-holes developed in Blaine County, Oklahoma.

Gardner, F. J., 1958a, Wildcatters move into northeastern Oklahoma: Oil and Gas Jour., vol. 56, no. 51, p. 93, 1 fig. Stratigraphic traps may contain oil in Craig and Mayes Counties.

— 1958b, Two-gun approach hits multiple bull's-eye: Oil and Gas Jour., vol. 56, no. 35, p. 213. Geologic and production data for new five-way field in McLain County. Discovery well is the Kirby Petroleum Co.'s No. 1 Weeden, Jr.

— 1958c, Nothing settles dust better than oil: Oil and Gas Jour., vol. 56, no. 26, p. 125. Résumé of new production in western Oklahoma during last two weeks (June 16-June 30).

— 1959e, The Oklahoma story: deeper pays and multiple pays: Oil and Gas Jour., vol. 56, no. 2, p. 143, 1 fig. Geology and production in Gulf Oil Corp. No. 1 Beard, Simpson production in McLain Co.

— 1958c, Water-flood projects in Oklahoma: Okla. Geology Notes, vol. 18, nos. 6 and 7, p. 121-122. Lists name of oil pays, number of acres under flood, number of active oil wells, and average daily oil production per project according to ages of named productive pays.

— 1958e, Deep tests of interest: Okla. Geology Notes, vol. 18, nos. 8 and 9, p. 142-143. Depth, drilling data, and geologic data given for Shell Oil Company’s No. 5 Rumberger and Howell, Ellison et al. No. 1 Anadarko Basin, Beckham and Caddo Counties respectively.

McCaustlin, J. C., 1958a, Oklahoma drilling rebounds: Oil and Gas Jour., vol. 56, no. 11, p. 245-246, Résumé of new production in the northwestern, west, south, southwest, central, and south in Oklahoma.

1958b, Oklahoma reopens Arbuckle hunt: Oil and Gas Jour., vol. 56, no. 27, p. 194. Production data for Sinclair Oil and Gas Co., No. 1 Holcomb in Harper County, Oklahoma.

Megill, R. E., 1958, How much does it cost to find oil?: Oil and Gas Jour., vol. 56, no. 19, p. 189, 192, 196, 198, 6 figs. Cost of exploration in Oklahoma and Kansas since 1942.

Merritt, C. A., 1958, Igneous geology of the Lake Altus area, Oklahoma: Okla. Geol. Survey, Bull. 76, p. 170, 1 fig., 6 pls., 10 tables. Primarily the geology and petrography of igneous rocks in westernmost part of Wichita Mountains but also includes account of Permian sediments and a summary of historical geology for the area.

Morrissey, N. S., 1958a, Exploration steps up in the Arkansas Valley: Oil and Gas Jour., vol. 56, no. 3, 2 figs., 2 tables. Primarily concerned with Arkansas but geology extends into Oklahoma. Table gives stratigraphy of Arkansas Valley.

1958b, Will shaly sands respond to water flooding?: Oil and Gas Jour., vol. 56, no. 14, p. 168-169, 3 figs. Water flooding method used and geology in the Deep Fork unit in Creek County, Oklahoma.

1958d. Planning a 24,000-ft. test: Oil and Gas Jour., vol. 56, no. 24, p. 108-112. Drilling method to be used on Howell and Howell Anadarko Basin No. 1 to test the Fort Cobb anticline, Caddo County, Oklahoma.

1958e. Water-flood project is fully automatic: Oil and Gas Jour., vol. 56, no. 27, p. 135-136, 138, 2 figs. Description of flood project in the Iron Post field, Creek County, Oklahoma.

Oil and Gas Journal, 1958. Oil and gas pool map of Oklahoma: Oil and Gas Jour., vol. 56, no. 11, p. 111-112, 2 figs. Two maps, no text.

1958b. Drilling controls discarded in steeply dipping formation: World Oil, vol. 147, no. 6, p. 115-118, 172, 174, 3 figs., 1 table. Description of "uncontrolled directional drilling" as used in the drilling of the British-American Oil Producing Co.'s Harrison No. 2 in the Carter-Knox field, Oklahoma.

Tanaka, H. H., 1958, Changes in ground-water levels in Oklahoma during 1957: Okla. Geology Notes, vol. 18, no. 3, p. 57. Résumé of increased water levels in various counties and areas throughout the state.

Trumbull, E. J., 1958, Shumard’s type specimens of Tertiary mollusks from Oregon and other types formerly at Washington University, St. Louis: Jour. Paleontology, vol. 32, no. 5, p. 893-906, 3 pls., 1 table. Lists several specimens from Fort Washita, Bryan County, Oklahoma.

Tuttle, R. C., Oklahoma “Wilcox”—an aid in finding deeper structures: World Oil, vol. 147, no. 2, p. 71-73, 3 figs. Discussion of reservoir possibility of the “Wilcox” and description of various zones in the Simpson group.

1958b, Oklahoma’s oldest fossil trees: Okla. Geology Notes, vol. 18, no. 11, p. 172-177, 4 pls. Recent discovery of Callixylon whiteanum in the Woodford formation southeast of Wapanasuk, Atoka County.

(1) Anonymous, 1958, A new depth record for Oklahoma: Petroleum Week, vol. 6, no. 22, p. 22, 23. Drilling method used in Shell Oil Co.’s No. 5 Rumberger, Elk City field, Beckham County, Oklahoma.

(21) Anonymous, 1958, Sooner wildcat sets record: Oil and Gas Jour., vol. 56, no. 24, p. 65. Report of production from Shell Oil Co.'s No. 5 Rumberger in Elk City field, Beckham County, Oklahoma.

(22) Anonymous, 1958, Southeast Hobart field—scene of vigorous shallow depth play: World Oil, vol. 146, no. 7, p. 84-86. Development history, geology, and drilling data for field in Kiowa County, Oklahoma.

(24) Anonymous, 1958, Today's focus is on five deep tests: Petroleum Week, vol. 7, no. 14, p. 40-42, 47. Brief account of Shell Oil Co. No. 5 Rumberger in Beckham County and Howell and Howell et al. No. 1 Anaquadarko Basin, Caddo County.

INDEX

PUBLISHED PAPERS ON OKLAHOMA GEOLOGY IN THE YEAR 1958

Prepared by Neville M. Curtis, Jr.

Age determination in Wichita Mts., Aldrich
Anadarko Basin: clay, Weaver; stratigraphic traps, Pate
Arbuckle group: ground-water, Davis (a); insoluble residue, Winland; oil and gas traps, Watters; petroleum, Ham (c)

Arbuckle Mts.—
brachiopods: Amaden (b); in Bois d'Arc fm., Amaden (b); in Haragan fm., Amaden and Boucot; in Henryhouse fm., Amaden and Boucot; in Hunton group, Amaden (b)
Ceratopsia, Yochelson and Bridge
field trip, early, Long
groundwater in Arbuckle group, Davis (a)
stratigraphy, Amaden and Boucot
superposed streams, Tanner (c)

Ardmore Basin, clay in, Weaver
Arkansas-McAlester coal basin, Miller
Arkansas Valley: Morrisay (a); petroleum possibilities in, Caplin
bibliography, Oklahoma geology, 1957, Curtis
biotite, age of, in granite, Aldrich
Blaine fm., classification of, Ham (e)
Brushy Mt. structure, White
Cabaniss group, spores, Wilson and Hoffmeister
Calxylon, Wilson (b)
cement, portland, new plant, Ham (a)
Chattanooga shale, conodonts, Hass
chitinozoan in Sylvan shale, Wilson (a)
clay, Pennsylvanian and Mississippian, Weaver
concrete, lightweight, Burwell (d)
conveyor belt, world's longest, Ham (d)
County—

Adair, Brushy Mt. structure, White
Beaver, subsurface geology, Mississippian and Pennsylvanian, Barby
Beckham, Blaine fm. in, Ham (e)
Blaine: Permian stratigraph, Fay (d); sink hole, Fay (a)
Bryan, wildcat oil well discovery, Morrissey (e)
Caddo, subsurface geology (Lower Pennsylvanian), Boeckman
Carter, ground-water, Davis (a)
Cimarron, helium plant, Ham (b)
Cleveland: subsurface geology, Johnson; subsurface geology in Purcell area, Kellett
Coal, Franks graben in, Mann
Creek: geologic map, Oakes; water-flooding, Morrissey (f)
Garfield, western, subsurface geology, Caylor
Garvin: geophysics, Levin and Lynn; Golden Trend, Anonymous (5); ground-water, Davis (a); subsurface geology, Pauls Valley area, Lepore; subsurface geology, Maysville area, Withrow.
Grady, subsurface geology, (Lower Pennsylvanian), Boeckman
Harper: Arbuckle production, Anonymous (b) (13); geologic map, Cenozoic, Myer (a); geologic map, pre-Tertiary, Myer (b)
Kay, subsurface geology, Querry
Kiowa: shallow oil production, Anonymous (4) (9); titantium, Reynolds
Lincoln: geology in Prague area, Masters; subsurface geology, Graves; subsurface geology in east-central Oklahoma, Cole; subsurface geology in Prague-Paden area, Blumenthal
Love: structure map, Kelsey; wildcat oil production, Morrissey (c)
McClain: discovery wells, Anonymous (7); subsurface geology, Purcell area, Kellett
Marshall, structure map, Kelsey
Murray, ground-water, Davis (a)
Okfuskee: subsurface geology in Prague-Paden area, Blumenthal; to Osage, subsurface section from, Kirk
Osage: geology, Clinton; to Okfuskee County, subsurface section, Kirk
Payne: subsurface geology, Graves; subsurface geology, western, Stringer
Pontotoc, Franks graben, Mann
Roger Mills, stratigraphy, Kitts (c)
Seminole, Seminole City pool, Anonymous (3)
Sequoyah, Brushy Mt. structure, White
Stephens, wildcat oil production, Morrissey (c)
Texas, geophysics, Levin and Lynn
Tillman, titanium, Reynolds
Decker, C. E., memorial, Huffman (b)
Devonian: brachiopods, Amsden (e); “Delthyris,” Amsden (c); White Mound collecting locality, Amsden (g)
Edmond area, Desmoinesian series, Benoit
Foraminifera: Branson (b); in Pittsburg Co., Henbest
Franks graben, Mann
Frisco fm., brachiopod, Amsden and Huffman
geological, predrilling, in Wichita Mts.,潢 (c)
geophysics: Okea; deep-bore geophone, Levin and Lynn; induction-electrical logging, True; Sulphur pool, Northwest, Howell

Golden Trend, recent discoveries, Anonymous (5)
ground-water: Davis (b); Arbuckle Mts, Davis (a); data, surface waters, U. S. Geol. Survey (b) (c); level changes, Tanaka; quality of surface waters, U. S. Geol. Survey (a); resources, Duster guide book, Robbers Cave State Park, Russell
gypsum in Carter County, Ham and Curtis
Haragan fm: brachiopods, Arbuckle Mts., Amsden (b), Amsden and Boucot; Berychichiwa, Amsden (b); Dictionyrella, Amsden (c)
hibernation, new, Ham (b)
Henryhouse fm, brachiopods in Arbuckle Mts., Amsden (b), Amsden and Boucot
Hollister Basin, new oil production, Gardner (d)
Hugoton embayment, petroleum in, Swearingen
Hunkin group: Big d’Arc brachiopods, Amsden (b); Conocordia, Couch, and Amsden; Dictionyrella, Amsden (c); Frisco fm., brachiopod, Amsden and Huffman; unconformity, post, Maxxell; White Mound, section, Amsden (g)
industry, Burma (e)
Kansas: subsurface Mesozoic, Branson (b)
McAlester-Arkansas coal basin, Miller
McAlester Basin: Chesterian and Morrowan stratigraphy, Laudon; clay, Weaver; recent oil discoveries, Anonymous (23)
Manusville-Madill-Aylesworth anticline, Godfrey
“Marchand” conglomerate, Eiser
Maysville area, subsurface geology, Withrow memorial to C. E. Decker, Huffman (b)
Mesozoic, Kansas subsurface, Branson (b)
mine, Rialto, methods and cost, Netzband
mineral industries, statistics, Grandone and Ham (a) (b)
mineralogy; biotite, age in Wichita Mts., Aldrich; boracite, Wichita Mts., Huang (a); feldspar, in Quanah granite, Burwell (b); hornblende, Ham et al; tebochre, Dam (e)
Mississippi: Beaver Co., subsurface geology, Barby; bryozoan bioherms, Pray; clay, Weaver; Conocordia, Cherokee County, Branson (1); Red Oak Hollow fauna, Elias
oil/gas fields—
Alliance pool, pool, water-flood, DeVore and Wright
Barberville-Dewey, carbon-dioxide flood, Anonymous (15)
Carter-Knox: deep wells, Reedy (a); drilling methods, Reedy (b)
Cement, deep well, Jordan (a)
Cushing, Riggs, C. H.
Deep Fork unit, water-flood, Morrissey (b)
Elk City, deep well, Anonymous (1)
Eola, discovery well, Rody
Hobart, Northeast, Hoover; Southeast, Anonymous (22)
Iron Post, water-flood, Morrissey (e)
Keokuk, Jordan (b)
Knox: British-American No. 1 Teter, Anonymous (6); Gulf’s McKinney No. 1, Anonymous (12)
McClain Co., new field, Gardner (b)
Madill, North, Gaikink
Polo, seismic cross-section, Hammond and Hawkins
Pond Creek, East, Bado
Purdy, subsurface geology, Bohart
Seminole City, L. P. G. Pool, Anonymous (3)
Stockholm, Southeast, Wallace
Sulphur pool, Northwest, geophysics, Howell
Watchorn, East, Tabor
Oklahoma Academy of Science, list of papers presented, Branson (c)
Ordovician: Ceratopea, Yochelson; chitinozoan, Wilson (a); Climacococcus, Amsden (a); Girvanella, Amsden (a); McLeish fm., Nybycoeras, Amsden (d)
Outchita Mts., clay, Weaver; discussion of structure, Kersting; feldspar, type of, Misch and Oles; structural belt, oil possibilities, Goldstein and Flawn; subsurface structure, Flawn

[67]
Ozark Uplift, Hulman (a)
paleontology-
algae, Henbest
Arbuckle Mts. (brachiopods), Amsden (b)
Archaeocystis inmannis, new Pennsylvania c­coholoid, Kier
Bryozoan bioherms, Mississippian, Fry
Boyntchica, Amsden (a)
brachiopod: Arbuckle Mts., Amsden (b), Amsden and Boucot, Amsden and Hulman
Calyxylon, Wilson (b)
cat, saber-tooth, Kitts (a)
cephalopods in Pennsylvanian, Branson (g), Miller and Furnish
Ceratoptya, Arbuckle and Wichita Mts., Yechelson and Bridge
chiton, Wilson (a)
clams: new names, Branson (e); in Wagoner Co., Branson (m)
Clamaceous, Amsden (a)
Conodontium: Hunton group, Branson and Amsden; Mississippian, Branson (l)
conodonts: Chattanooga shale, Gass; key, Fay (b) (e); Woodford shale, Hass
Cordaites, Branson (i)
crinoids, Amsden (f)
cytostem, Bromide fm., Branson (n)
"Deltihystr", Amsden (e)
description of fossils, early, Branson (p)
Dictyonella, Amsden (c)
fish, Pleistocene, Smith
Foraminifera: Branson (h); Henbest
Girvanella, Amsden (a)
Lauidioceras, Amsden (f)
mammalian faunas, Pleistocene, Kitts (b)
mollusks, Cretaceous, Trumbull
Nimravides, Kitts (d)
Nybyoceras, Amsden (d)
ostracod, Amsden (b)
paleoypods, Pliocene and Pleistocene, Herrington and Taylor
pelycosaur, Permian, Vaughn (a) (b)
Phacoceras, Amsden (f)
Psaroniaceae, Vorburg
Redoak Hollow fauna: Branson (f); Elias (f)
sea urchin, new species, Branson (p)
snails in Permian, Branson (k)
snails in Permian, Henbest
sports in Cabaniss group, Wilson and Hoffmeister
White Mound (Devonian), Amsden (g)
Pauls Valley area, subsurface geology, Laporte
pediments, Tanner (b)
Pennsylvanian: algae, Henbest; Beaver Co., subsurface geology, Barby; Caddo Co., subsurface geology, Boeckman; cephalopods, Branson (g), Miller and Furnish; clams, new names, Branson (e); clay, Weaver; Cordaites, Branson (j); Edmond area, Desmoinesian series, Benoît; Foraminifera, Henbest; Grady Co., subsurface geology, Boeckman; Morrow strata, Panhandle, Veroda; sports, Wilson and Hoffmeister; stratigraphic traps, Dapples and Sloss; Wichita Mts., Edwards
Permian, Blaine Co., Fay (d); pelycosaur, Vaughn (a) (b); Psaronia, Vorburg; snails, Branson (k)
petroleum: Dickey, P. A.; Levorsen (a)
Anadarko Basin No. 1, Anonymous (17)
analysis of crude oil, McKinney and Garton
Arbuckle: group, Ham (e); production in Harper Co., Anonymous (8) (13)
Arkansas Valley, oil possibilities, Caplan
Atokan, pre-production, Schweers
British-American No. 1, Tenor, Anonymous (6)
carbon-dioxide flood, Anonymous (15)
cost to find, Jordan (f), Megill
data: oil well, Anonymous (11); Panhandle, Lilly
deep well: Jordan (a) (e); Anonymous (24); Carter-Know, Reedy (a); Gulf's
McKinney No. 1, Anonymous (12); planning, Morrissey (d)
discovery wells, Southeast Oklahoma field, Wallace
Elk City field, deep well, Anonymous (1)
Golden Trend discoveries, Anonymous (5)
Holcomb No. 1, in Harper Co., McCaslin
Laverty No. 1, Anson Pet. Corp., Black
L. P. G.: flooding, Anonymous (3); storage, Bixal
McAlester Basin, recent discoveries, Anonymous (23)
Mannsville-Madill-Aylesworth anticline, Godfrey
map, oil and gas pool, Oil and Gas Journal
Morrow production: Blake Co., Anonymous (27)
Osage Co., drilling history, Anonymous (16)
Ouachita structural belt, oil possibilities, Goldstein and Flawn
Panhandle, Morrow strata, Veroda
Pleistocene, traps, Dapples and Sloss
Pond Creek, East, Bado
possibilities in Oklahoma, Levorsen (b)
production in Jackson Co., Gardner (d); shallow, Kiowa Co., Anonymous (4)
 wildcard in Bryan, Love, Stephens Counties, Morrissey (c)
Purdy oil field, Bohart
recent drilling in McClain Co., Anonymous (7)
Rumberger No. 5, Blythe, Anonymous (1) (18) (20) (21)
sample trap, air- or gas-drilled, Jordan (g)
shallow pays in Kiowa Co., Anonymous (19)
significant discoveries, Anonymous (26)
Simpson oil production, Gardner (e)
statistics, Ross
Sterba-Ordovician No. 1, cost, Anonymous (2)
controlling directional drilling, Reedy (b)
water-flooding: Jordan (e) (d); Allowee pool, De Vore and Wright; Creek Co., Morrissey (f); detergent and citric acid, Johansen; Norfolk Gar Sand Unit, Nelson
western Oklahoma, new oil production, Gardner (c)
Woodward Co., new field, Anonymous (14)
photo-geology, "flatland" regions, Melson
Pick and Hammer Club, early Arbuckle Mt. trip, Long
Pleistocene: fish in Harper Co., Smith; mammalian faunas, Kitts (b); Plecoypoda, Herrington and Taylor
Pliocene: Nimravides, Kitts (d); Plecoypoda, Herrington and Taylor
portland cement, new plant, Ham (a)
pool in concrete, Burwell (a)
Prague area: Masters; Paden area, subsurface geology, Blumenthal
Purcell area: subsurface geology, Kellett
ripple marks, Okmulgee Co., Tanner (a)
Robbins Cave State Park, Russell
sample trap, air- or gas-drilled well, Jordan (g)
sediment delivery rates, Maner
Simpson group: petroleum, Tuttle; subsurface geology, Cronenwett sink hole, Blaine Co., Fay (a)
spectrogram in geochronology, Schieber
stratigraphic names in subsurface, Jordan (h); traps in Craig and Mayes Counties, Gardner (a)
superposed streams in Arbuckle Mts., Tanner (e)
topographic maps: Anonymous (10); schedule, Branson (d)
theses, University of Oklahoma, Dickey, J. W.
underlays, Branson (i), Schultz
volcanic ash used as pozzolan, Burwell (a)
water-flood: Jordan (e) (d); Allowee pool, De Vore and Wright; Creek Co., Morrissey (b); Effie; Deep Fork; Creek Co., Morrissey (b); Iron Post field, Creek Co., Morrissey (e); Norfolk Gas Sand Unit, Nelson; Washington Co., Johnson
PUBLISHED PAPERS ON OKLAHOMA GEOLOGY IN THE YEAR 1959

Compiled by Neville M. Curtis, Jr.

1959b, Stratigraphy and paleontology of the Hunt group in the Arbuckle Mountain region: Part V—Bois d'Arc articulate brachiopods: Okla. Geol. Survey, Bull. 82, 110 p., 18 figs., 5 pls., 2 tables. Contains descriptions of 40 species referable to 22 genera. Stratigraphic and faunal evidence indicate that the Cravatt member and Fittstown member of the Bois d'Arc formation are facies of another and that the Bois d'Arc is a facies of the Haragan formation.

Alsman, T. W., see: Branson, and others.

Alsman, T. W., see: Sutherland, P. K.

Backer, J. T., 1959, Are we missing carbonate pools?: Oil and Gas Jour., vol. 57, no. 8, p. 298-312, 3 figs., 1 table. North McWillie field in Alfalfa County discussed as a carbonate-type field.

Barby, B. G., 1959, Reserves study of Morrow sand, Light field, Oklahoma: Oil and Gas Jour., vol. 57, no. 38, p. 94-98, 5 figs., 2 tables. Petroleum geology and production with emphasis on the Purdy zone.

Bebee, R. W., 1959, Characteristics of Mississippian production in the northwestern Anadarko basin: Tulsa Geol. Soc., Digest, vol. 27, p. 190-205, 7 figs. Stratigraphy, structure, and Mississippian production are reviewed.

Bercutt, Henry, 1959, Isopachous and paleogeologic studies in eastern Oklahoma north of the Choctaw fault: Shale Shaker, vol. 9, no. 6, p. 5-20, 3 figs., 14 pls. Maps show re-located of pre-Deseadan paleontology from the Kansas state line south to the Choctaw fault.

Bike, P. B., see: Rose, W. A.

Black, C. C., see: Kitts, D. B., and Black, C. C.

Bleakley, W. B., 1959, Oklahoma's Laverne field active: Oil and Gas Jour., vol. 57, no. 12, p. 104-107, 2 figs., 1 table. Résumé of geology and production in Laverne field, Harper and Beaver Counties: 10 new isopach maps of the Hoover sand, Marrow sand, Chester zone.

1959b, Pre-Deseadan isopach and paleogeologic study of northwestern Oklahoma: Shale Shaker, vol. 8, no. 10, p. 6-18, 3 figs., 15 pls. Isopach maps of area, with discussion of stratigraphy and geologic history.

1959c, Generic assignment of some fossil clams: Okla. Geology Notes, vol. 19, no. 4, p. 94-95. Concerned primarily with the transfer of some species from the genera Allorina, Campeyla, and Postolia.

1959d, Geologic signs along Highway 77: Okla. Geology Notes, vol. 19, no. 7, p. 120. History of signs along the right of way.

1959e, Location of some Oklahoma type specimens: Okla. Geology Notes, vol. 19, no. 3, p. 43. Mention that the Department of Geology, Washington University (St. Louis), has deposited four type fossil specimens from Fort Washita, Bryan County, Oklahoma, in the Museums.

1959h, Oklahoma's first fossil: Okla. Hist. Soc. Chronicles of Okla., vol. 37, no. 2, p. 239-239, 2 figs. Original locality for Globigerina ichnosa described thickness and show they were made.

1959i, Permian sea-scour from Oklahoma: Okla. Geology Notes, vol. 19, no. 5, p. 111-112. Note that Oklahoma specimen described as Eurypterus oklahombensis belongs to Adociphyllum soliardii.

1959k, Some problematical fossils: Okla. Geology Notes, vol. 19, no. 4, p. 82-87, 6 figs. Taxonomy and synonymy of conical fluted bodies which have generally been referred to the genus Conostichus. [55] 49 [56]
Champlin, S. C., see: Chenoweth, P. A., and others.
Champlin, S. C., see: Curtis, D. M.
Chasteen, Kenneth, 1939, Another boom for the Panhandle: Oil and Gas Jour., vol. 67, no. 40, p. 144-145, 2 figs. Tubb sand and Council Grove (Permen) production reviewed.
Chilson, W. S., 1959, An unusual type of ripple mark: Okla. Geology Notes, vol. 19, no. 8, p. 154-156, 4 figs. Brief discussion and description of ripple marks which have formed parallel to the direction of current flow.
Chisum, R. M., 1959, Is there oil and gas in the Osage Chalks? Okla. Geology Notes, vol. 19, no. 10, p. 198-208, 1 fig. Discusses the six reasons given by geologists for condemning the area as a future oil-producing province and concludes that commercial deposits are present. Includes annotated list of wells in area.
Chisum, P. D., 1959, Late Cenozoic lacustrine rocks in Oklahoma: Okla. Geology Notes, vol. 19, no. 11, p. 232-235, 2 figs. Discussion of the Duncan Delta and another delta (represented by upper portion of Garber-Wellington formation) indicates two rivers flowed across southern Oklahoma from the southeast.
Chisum, P. D., and others, 1959, Sycamore and related formations of south- ern Oklahoma: Tulsa Geol. Soc. Digest, vol. 27, p. 113-122, 7 figs.: Sixth Biennial Geol. Symposium, Univ. Oklahoma, p. 81-95, 5 figs. Sycamore formation of the southern Arbuckle Mountains and Ardmore basin divided into two units (in ascending order) the first being the Sycamore formation and the Sycamore limestone.
Cullinan, T. A., see: Reeves, C. C., and others. Southwest Enville—a development headache.
Cullinan, T. A., see: Reeves, C. C. Jr., and others. Southwest Enville: every well's a wildcat.

1959e, Published papers on Oklahoma geology in the year 1958-59. Okla. Geology Notes, vol. 19, no. 9, p. 31-71. Annotated and indexed.

Elas, M. K., and Branson, C. C., 1959, Type section of the Caney shale: Okla. Geol. Survey, Circ. 52, 24 p., 2 figs., 4 tables. Original type location abandoned except as the source of the name and a type section in the Arbuckle Mountain region is designated and described. Type sections of three members are established west of Viola townsites.

Elas, M. K., see: Branson, and others.

1959b, Pleistocene course of the South Canadian River in central western Oklahoma. Okla. Geology Notes, vol. 19, no. 1, p. 3-12, 5 figs. Geology along course of the South Canadian River in area.

Fix, C. E., 1959, Selected annotated bibliography of the geology and occurrence of uranium-bearing marine black shales in the United States: U. S. Geol. Survey Bull. 1205-F, p. 293-335. Data in annotations indexed according to author, geographic area, stratigraphic units, and subject. There are twenty references for Oklahoma.

1959b, Deep wildcard highlights western McAlester basin: Oil and Gas J., vol. 57, no. 35, p. 143, 1 fig. Drilling and production data for the Magnolia No. 1 Young in Rogers Mills County.

1959a, Panhandle operators reap a second crop: Oil and Gas J., vol. 57, no. 37, p. 255. Brief account of history of production from Council Grove (Permain) in Beaver County.

1959c, The Oklahoma mineral exhibit at the St. Louis World's Fair: Okla. Geology Notes (1959), vol. 19, no. 7, p. 147-150. Account of Oklahoma's display in the mineral building and how the display was brought about.

Gottfried, David, see: Jaffee, H. W., and others.

Ham, W. E., see: Amsden, T. W.

Ham, W. E., see: Grandon, Peter, and others.

Harborth, J. W., 1959, Small scale cross-lamination in limestones: Jour. Sedillogical Prevention. Petrol. vol. 29, no. 1, p. 1-17. Examples of cross-lamination occurring in the West Spring Creek formation of the Arbuckle group are used in discussing small scale cross-lamination.

Hoffman, L. M., see: Pickhardt, H. E.

1950d, Preliminary isopachous and paleostratigraphic studies, central Mid-Continent area: Shale Shaker, vol. 9, no. 8, p. 5-21, 12 figs. Isopachous maps of the Arbuckle group, Simpson group, Vireo-Pevorale shales, Sylvania formation, Hunton group, Chatanooga shales, Mississippian system, Springer-Goddard, Morrow series, Atoka series, and paleostratigraphy map on base of Mississippian. Résumé of major tectonic features and stratigraphy.

Johnston, K. H., see: Riggs, C. H., and others.

Jordan, Louise, 1950a, Arkoma basin: Okla. Geology Notes, vol. 19, no. 11, p. 235-236. Discusses reasons for calling the McAlester basin and the Arkansas basin (both make up a single geologic province) the Arkoma basin.

1950d, Let's call it Arkoma: Oil and Gas Jour., vol. 57, no. 46, p. 212-219. Identification of the name "Arkoma" for that area north of the Ouachita Mountains (Oklahoma and Arkansas) where the Pennsylvanian geosyncline originated at the beginning of Atokan time.

1950e, Natural gas storage in Oklahoma: Okla. Geology Notes, vol. 19, no. 9, p. 182-191, 4 figs., 2 tables. Description (area, cost, geology) of underground natural gas storage in 6 areas in Oklahoma.

1950g, Oil and gas in Creek County, Oklahoma: Okla. Geol. Survey, Bull. 81, p. 61-103, 8 figs., 1 panel, 7 tables. Contains history of petroleum development in Creek County, petroleum production statistics, and stratigraphy of area relative to petroleum.

1950h, Oil and gas in Dewey County, Oklahoma: Okla. Geology Notes, vol. 19, no. 12, p. 233-256, 1 fig. History of oil and gas development.

1950k, Second deepest hole in the world in Elk City field, Beckham County: Okla. Geology Notes, vol. 19, no. 4, p. 88-99. Brief account of drilling Shell Oil Company's No. 5 Rumberger and rocks penetrated by the bit.

1950l, Underground storage in salt, Elk City field, Oklahoma: Geol. and Nat. Monographs, vol. 46, p. 32-34, 1 fig. Account of borehole drilled for underground storage of propane. Lithology shown for lower part of hole and storage cavity.

1950b, Two new vertebrates from the Permian Fort Sill locality (a review): Okla. Geology Notes, vol. 19, no. 3, p. 72. Review of an article by Vaughn in which is described a new reptile, Colobocynctes philetai, and a review of an article in which Vaughn describes Bactrianodon fortissimus.

1950c, and Black, C. C., 1959, A Pliocene vertebrate local fauna from Roger Mills County, Oklahoma: Okla. Geol. Survey, Circ. 48, p. 27-47, 9 figs., 1 pl., 4 tables. Description and age of fauna from the Ogallala group.

Lucas, E. L., 1959, Some relations of the shape of quartz sand grains to their crystallographic orientation: Okla. Acad. Science, Proc., vol. 39, p. 130-133, 2 figs. Many quartz grains tend to be longer and harder in the direction of the optic axis, which supports the idea of unequal wear.

Lynch, B. W., 1939, Subsurface stratigraphy of Mississippian system in McAlester basin: Sixth Bienn. Geol. Symposium, Univ. Oklahoma, p. 65-75, 5 figs. Two cross-sections and three isopach maps.

McCullom, J. C., 1959, Try Oklahoma for size in '59: Oil and Gas Jour., vol. 57, no. 4, p. 291, 1 fig. Forecast of increased production in the northwest and west, south, and east.

McCullom, G. A., 1959, Isopachous and paleogeographic studies of southwest Oklahoma: Shale Shaker, vol. 10, no. 3, 5 figs. 13 pls. Approximately 15,000 square miles included in study area. Includes 10 isopachous maps, 2 paleogeographic maps, and one structural map.

MacEachern, J. P., and Seaman, A. L., 1959, Oil-base mud passed test in deep, hot hole: Oil and Gas Jour., vol. 57, no. 37, p. 201-203, 2 figs. Describes use of oil-base mud in Shell Oil Co.'s No. 5 Rumberger in Beckham County.

Maxwell, R. W., see: Ryniker, Charles, and others.

Melton, F. A., 1959, Aerial photographs and structural geology: Jour. Geology, vol. 67, no. 4, p. 351-370, 18 figs, 1 pl., 1 table. The Pawhuska peninsula of central and southwestern central United States is described in an attempt to show the correlation between drainage and tectonic anomalies in elevated dissected bedrock benches of erosional origin.

Myers, A. J., see: Kitts, D. B., and Myers, A. J.

Oakes, N. C., 1959, Geology and mineral resources of Creek County, Oklahoma: Okla. Geol. Survey, Bull. 81, p. 1-69, 104-134, 12 figs, 2 pls, 3 tables. Includes section on oil and gas by Louise Jordan.

Oil and Gas Journal, 1959a, Beaver County fills in blank spots: Oil and Gas Jour., vol. 57, no. 36, p. 152. Production data for five new wells in southern Beaver County, Okla.

1959b, 58 find develops quickly: Oil and Gas Jour., vol. 57, no. 24, p. 250. Discovery data for 4 new wells in the North Buffalo field, Harper County.

1959c, Good Arbuckle production for Oklahoma's Comanche County: Oil and Gas Jour., vol. 57, no. 51, p. 200, 1 fig. Report of first Arbuckle production in Comanche County, includes production data.

1959d, Hunton moves into Dewey County: Oil and Gas Jour., vol. 57, no. 48, p. 132. Résumé of petroleum development in Dewey County.

1959e, Oklahoma area has top success story: Oil and Gas Jour., vol. 57, no. 19, p. 68-69, 1 fig. Résumé of production data for new discoveries in Beaver, Major, Custer, Harper, Ellis, Texas, and Cimarron Counties.

1959f, Panhandle map is second in series: Oil and Gas Jour., vol. 57, no. 37, p. 279. Announcement of geological pay-formation map.

1959g, Sooner part of Arkoma due for action: Oil and Gas Jour., vol. 57, no. 51, p. 126, 1 fig. Report that Republic Natural Gas Co. has bought 100,000 acres in the area. Production data given for six wells.

Park, Samuel, see: Felix, C. J.

Pate, J. D., see: Jordan, Louise, and others.

Petroleum Week, 1959a, Deep drilling sparks Dewey County: Petroleum Week, vol. 9, no. 22, p. 22. Résumé of drilling play (includes production and discovery data).

1959b, Gas play builds up in two-state basin: Petroleum Week, vol. 9, no. 26, p. 22, 26. Brief account of drilling the Frankfort Oil Co.'s No. 1 Orr, which encountered five different gas pays in the Atkins (Pennsylvanian). Data on three other wells in McAlester basin area.
Rowland, T. L., see: Jordan, Louise.

Scholten, Robert, 1958, Synchronous high: preferential habitat of oil?: Amer. Assoc. Petroleum Geologists, Bull., vol. 43, no. 8, p. 1753-1784, 39 figs. Synchronous highs (hills on sea floor during sedimentation) tend to create conditions favorable to all three stages in the history of petroleum (origin, migration, and accumulation). Several examples are used from Oklahoma (West Edmond field, Garber field, and Devil's sand of sarsen in Carter County).

Seaman, A., see: MacEachern, J. P.

Includes description of Labidosaurus oklahomanus, new species, from the Wellington formation and Labidosaurus from the Hummock shale in the Heumessy shale.

Shortridge, C. G., see: Ryniker, Charles, and others.

— 1960b, Orbilds from the Missourian near Bartlesville, Oklahoma: Okla. Geology Notes, vol. 19, no. 6, p. 115-127, 2 text-figs., 2 pls. Description of seven species.

Sutherland, P. K., and Amsden, T. W., 1959, A re-illustration of the trilobite Lomochomus megehee Decker from the Bromide formation (Ordovician) of southern Oklahoma: Okla. Geology Notes, vol. 19, no. 10, p. 212-219, 3 figs. 2 text-figs., 1 table. Locality and specimen re-described.

Sykes, H. A., see: Reedy, H. J.

— 1950b, The importance of modes in cross-bedding data: Jour. Sedimentary Petrology, vol. 29, no. 2, p. 221-226, 6 figs. The Verden sandstone and Doe Creek sandstone are discussed with respect to their position relative to the shoreline at the time of their deposition.

Taylor, G. L., see: Widess, M. B.

ern Oklahoma, vol. 2, p. 362-334, 1 fig. List with location of 250 outcrops of 166 different stratigraphic units or rock types.

Waring, C. L., see: Jaffe, H. W., and others.

Williamson, S. R., see: Jordan, Louis, and others.

1959d. Genotype of Druseospora Berry, 1937: Okla. Geology Notes, vol. 19, no. 3, p. 47-50, 1 pl. Discussion of Druseospora and recommendation that the species in the Pennington coal be re-examined and a neotype be chosen to replace the discarded holotype.

Worden, J. A., 1929a, Amarillo-Hugoton: fast growing giant: Oil and Gas Jour. vol. 57, no. 44, p. 128-130, 4 figs. Tectonic features and contour maps of top of Precambrian and base of Pennsylvanian.

1959b. A subsurface look at the Amarillo-Hugoton area: Oil and Gas Jour., vol. 57, no. 45, p. 124-126, 2 figs. Subsurface conditions of area and three cross-sections and an isopachous map of the Morrow-Pennsylvanian.

Worrall, H. W., see: Jaffe, H. W., and others.

Zimmerman, J. R., see: Tasch, Paul.

INDEX
PUBLISHED PAPERS ON OKLAHOMA GEOLOGY
IN THE YEAR 1959

Prepared by Neville M. Curtis, Jr.

Age determinations in Wichita Mts.: Jaffe, and others.

Anadarko basin: drilling future, Wheeler; Hunt oil production, Gardner (a), Oatley; Mississippian oil production, Locke (b); Morrowan in Abil (a), petroleum production, Hayden; stratigraphic traps, Gale; Sycamore formation, Barn; wildcat well, Roger Mills Co., Gardner (c)

Arbuckle Mts.: brachiopods in Bois d'Arc, Amsden (b); caves in Curtis (a); Caney in lower, Champlin; Sycamore in Champlin, Weiden in Champlin

Arbuckle-Ouachita "junction", Flen (a)

Armodrn basin: outcrops, best, Tomlinson; Pennsylvanian, Tomlinson and McBee; petrology, Pennsylvania, Jacobson (a)

Arkansas: Atoka, pre.-Fremia; stratigraphy and structure in western, Jackson

Arkoma basin: Jordan (a) (d); activity, petroleum, Oil and Gas Journal (g); petroleum, Rose and Bike. badger, Pliotaia sedaxus, Harper Co., Kitts and Myers, bibliography: coal, Wier; crude oil analyses, Blade; Decker, C. E., of Branson (a); Gould, C. N., Branson (b); North American geology, King, and others; Oklahoma geology, Curtis (d); uranium in marine black shales, Fix, biography: Brant, R. A.; Peterson; Decker, C. E., Huffman (a); Hill, R. F. (c)

Bromide fm., trilobite, Sutherland and Amsden

Brant, R. A., memorial, Petrona

Cabaniss-Apel, Pittsburg Co., Gecott

Caney shale, type locality, Elias and Branson, caves: Arbuckle Mts., Curtis (a); Cottonwood, Curtis (b); gneiss deposits, Curtis (c)

Cenozoic, Roger Mills Co., Kitts (a)

Cottonwood, pre., paleogeology,Bercutt

chemical reaction: rates in Nature, Burwell (e); reversible removal of barium sulfate, Burwell (f)

Cherno, Ouachita facies, Goldstein (a)

cohps, analyses, Arrow, and others; bibliography, stratigraphy and resources, Wier

conodonts, Cambrian, Mueller

Corallaria, String (a)

Cordaites michiganensis, Tynan

Cottonwood Cave, Curtis (b)
glass sand grain size, Burwell (b)
gypsum, oxidizing agent, Burwell (c)
iron-ore resources, Carr, and others
mineral industries, producers, Hammond; statistics, Granod, and others
mining methods, Pikie, oil field, Elizondo
novaculite, use of, Burwell (a)
portland cement, uniformity, Burwell (g)
quicksand, control of, Burwell (d)
shales and clays in Marshall Co., Burwell (h)
Excelsior shale, Echinoceras, Branson (f)
Garber-Wellington Delta, Chenoweth (d)
geologists, photograph of students and faculty in 1911, Monnutt
geomorphology, aerial photographs and structure, Melton
geophysics, sonic log, Golden Trend, Pickhardt and Holley
Guetales, Wilson (d)
Golden Trend, sonic log, Pickhardt and Holley
Gould, C. J., bibliography, Branson (j)
granophyres, Wichita Mts., Hamilton
guano deposits in caves, Curtiss (c)
Highway 71, geologic signs, history, Branson (d)
Hill, R. T., biography, Fay (c)
Hugoton oil field, Woodson (a) (b)
Hunt group: Arbuckle Mts., Anson (b); petroleum production, Gardner (a); post, unconformity, Maxwell
Indian Territory Illuminating Oil Co., Finney
iron-ore resources, Carr, and others
lamination, cross, in West Spring Creek fm., Harbaugh
Laverne fm., alligator in, Woodburne
lead-alpha age determinations in Wichita Mts., Jaffee, and others
library, geology, Univ. Oklahoma, history, Gould (b)
limestone, Mississippian, environment, Curtiss, D. M. and Champlin
McAlester basin: Atoke fm., Blythe; drilling and production, Petroleum Week (c); gas in Atoke fm, Petroleum Week (b); Mississippian, Lynch
wildcat strike in Latimer Co., Gardner (b)
map, Panhandle, pay-formations, announcement, Oil and Gas Journal (f)
Medicine Springs, Pushmataha Co., Johnson
memorial, Decker, C. E., Huffman (a)
determination, determination of valid microfossil count, Wilson (a)
Mid-Continent region, Desmoinesian, pre., Huffman (c) (d)
mineral exhibit, Okloma, at St. Louis Worlds Fair, Gould (c)
mines and mining, statistics, Malloy
Mississippian—
Anadarko basin, oil production in, Beche
limestone, environment of deposition, Curtis, D. M. and Champlin
petroleum production, Clinton
spores, Wilson (a)
subsurface: Jordan and Roseland; correlation, McDuffie
Morrisan: Anadarko basin, Abels; Light oil field, Barby
mud, oil-base, use in Rumberger No. 5, MacEachern and Seaman
Muenster-Waurika arch, Chenoweth (a)
novaculite, Onychita facies, Goldstein (a)
Ogalala, Roger Mills Co., Kitts (a)

oil/gas fields—
Altus, Ryniker, and others
Arndale, Southwest, Hale
Brock, West, Walker
Buffalo, North, Kornfeld
Bunker, Northwest, Duck
Carter-Knox, Reed and Sykes
Cushing, production review, Riggs (a)

Cretaceous, Washita group, nomenclature, Curtis (d)
crinoids, Mississippian, Stirple (b)
cross-bedding, Doe Creek sandstone and Verden sandstone. Tanner (b)
cuttings, logging of drill, Maher
Decker, C. E.: memorial, Branson (f), Huffman (a)
Desmoinesian, pre-: Mid-Continent, Huffman (c) (d); thickness and paleo-geology, Rober (a) (b), Bertwatt
Duncan Delta, Chenoweth (d)
economic—
chat, use of, Burwell (a)
crusher, new in Kay Co., Chandler
Edmond, West, synchronous high, Scholten
Elk City: propane storage, Jordan (l); second deepest hole, Jordan (k)
Elkville, Southwest, Reeves, and others (a) (b)
Frederick, West, Markley
Garber, synchronous high, Scholten
Laverne, Bleakley
Light field, Morrow sand, Barby
McWillie, North, carbonate type, Rado
Madill, North, Gahring
Milbro, Schewers
Muskogee, petroleum-engineering, Riggs, and others
Palacine, South." Atkinson
Velma area: recumbent folding, Chenoweth (e); Springer, Parker
Oklahoma Geological Survey, history of development, Gould (a)
Ouachita facies, cherts and novaculites, Goldstein (a)
Ouachita geosyncline, paleogeology, Goldstein (b)
Ouachita Mts.: Atoka, pre.-Arkansas, Freezor; frontal belt, structure, Hendricks; oil and gas, Chenoweth (c); tectonics at Ouachita-Arkuckle "junction." Flaven
Ozark Region: Atoka, pre.-Arkansas, Freezor; Mississippian, Huffman (b)
paleogeography, Permian-Pennsylvanian, central Oklahoma, Tanner (a)
paleontology—
Atoka fm., Wagner and Mayes Cos., Blythe badger, Pilotaedex nevadensis, Pliocene, Kitts and Myers brachiopod, Chondrites, Amaden (a)
Calloconularia stripliei, Strimple (a)
Capitohalinia, Selfin
conodonts, Cambrian, Mueller
clams, generic assignment, Branson (c)
Conularia, Pennsylvaniaan, Strimple (a)
Cretaceous, types, Branson (e)
crinoids, Missourian, Strimple (b)
Echinoceracous, Excelsus shale, Branson (b)
Galeacrinus allisoni, Strimple (c)
Globigerinae semilenticul, range, Branson (a)
Goniatites choctawensis: Oklahoma's only described fossil, Branson (b); taxonomy, Branson, and others
Hunts group: Amaden (a); brachiopods in Bois d'Arc, Amaden (b)
insects in Midco bed, Tisch and Zimmerman
Isotelia, Amaden and Ham
Labidosaurites, Hennessy shale, Selfin
Labidosaurus, Wellington fm., Selfin
Lonchodoma megacephel, trilobite, Sutherland and Amaden
problematic fossils, Conostichus, Branson (k)
Protritritoeites, Elias
Pseudotritritoeites, Elias
Putrella, Elias
sea-scorpion, Permian, Branson (i)
Spenceriperipites, Felix and Parks
types, location, Branson (e)
vertebrate: alligator, Woodbourne; Permian at Fort Sill, Kitts (b); Pliocene, Roger Mills Co., Kitts and Black; Roger Mills Co., Ceno-
zole, Kitts (a)
palynology: Cordaites michigaei, Tynan; Densoasporites, Wilson (c); Gnetales, Wilson (d); Mississippian spores, Wilson (e); montane, water-miscible, Wilson (b)
Panhandle: petroleum activity, Buchanan; production (Permian), Chasteen
Pawhuska peneplain, drainage and tectonics, Melton
Pennington coal, paleontology, Wilson (c)

Pennsylvaniaian: Ardmore basin, petrology, Jacobson (a); paleogeography, central Oklahoma, Tanner (a)
Permian sea-scorpion, Ranoen (1)
perthite, Wichita Mts., Robertson
paleography, quartz sand grains, Lucas
petroleum—
air drilling technique, Stearns
Altus oil field, Ryniker, and others
Anadarko basin: drilling future, Wheeler; production, Hayden
Arkuckle production in Comanche Co., Oil and Gas Journal (c)
Ardmore field, Southwest, Hale
Arkoma basin: Rose and Bike; activity, Oil and Gas Journal (g)
Beaver Co., Oil and Gas Journal (a)
biography, oil analyses, Ride
Buffalo field, North, Kornfeld, Oil and Gas Journal (b)
Carter-Knox field, Reddy and Spikes
Congress, Fifth World, account, Oklahoma Geology Notes
Council Grove (Permian) production, Gardner (d)
Creek Co., Jordan (g)
Custer Co., first production, Jordan (b)
deep wildcat in Latimer Co., Gardner (b)
Dewey Co., Oil and Gas Journal (d), Petroleum Week (a)
Ellis Co., Jordan (i)
Enville field, Southwest, Reeves and others (a) (b)
forecast for 1955, McCosin
Frederick field, Markley
gas in Custer Co., Jordan (e)
Harper Co., Jordan, and others
Hogsfield field, air drilling, Stearns
Hunts: discoveries, Petroleum Week (d); production, Oxley; strike in Custer Co., Gardner (a)
Indian Territory Illuminating Oil Co., Finney
Laverne field, Bleakley
McAlester basin: Petroleum Week (c); gas in Atoka, Petroleum Week (b)
McWillie field, North, Rado
Madill field, North, Gahring
Mississippian: Anadarko basin, Beebe; production, Clinton
Morrow sand, light oil field, Barby
northwest Oklahoma, Oil and Gas Journal (e)
Oil-base mud in deep hole, MacEachern and Seaman
Ouachita Mts., possibility, Chenoweth (c)
Palacine field, South, Atkinson
Panhandle: exploration and development, Buchanan; map, pay-formula-
tions, announcement, Oil and Gas Journal (f); Permian production,
Chasteen
reservoirs in Springer sandstone, Jacobson (b)
Romerberger No. 5, Jordan (k)
Simpson wildcats, Bike
Springer in Velma-Camp area, Parker
statistics: Christensen; Jordan (f); National Oil and Gas Association; Burchard Oil News Co.; Roberts
storage of natural gas, Jordan (e)
stratigraphic traps, Anadarko basin, Pate
synchronous highs, Scholten
wildcat in Roger Mills Co., Gardner (e)
Woods County, Bowles
Piokee mining unit, methods, Elizondo
Pleistocene, South Canadian River, Foy (b)
Pliocene: alligator, Woodburn; badger in Harper Co., Kitts and Myers; vertebrate fauna in Roger Mills Co., Kitts and Black.

ripple mark, unusual type, Chenoveth (b)
rivers, Llanian, deltas, Chenoveth (d)
Roman Nose State Park, Fay (a)
sand grains, quartz, shape to crystallographic orientation, Lucas sedimentation; Lake Carl Blackwell, Schreiber; synchronous highs, Schotten shales and clays, economic, Marshall Co., Burwell (b)
shorelines, based on cross-bedding, Tanner (b)
Simpson, oil production in southern Oklahoma, Bike
sonic log, Golden Trend, Pickhardt and Holley
Spencerisopteres, Felis and Parks
Springer sandstone: reservoirs, Jacobsen (b); Velma-Camp area, Parker State Park, Roman Nose, Fay (a)

statistics—
mineral industries in Oklahoma, Grandon, and others
mines and mining, Malloy
peelum: Jordan (f); National Oil Scouts and Landmens Association;
Rinchart Oil News Company; Roberts; Panhandle, Christensen
storage of natural gas: Jordan (e); propane in Elk City field, Jordan (f); propane in Seminole Co., Jordan (j)
stratigraphic traps, types, Bush

stratigraphy—
Arkansas, western, Jackson
Atoka fn., Wagoner and Mayes Counties, Blythe
Caney shale: Elias and Branson; Arbuckle Mts., Chaplin
Cornell Ranch member, Prestridge
Deese group, subsurface in Garvin Co., Gunter
Hunton group: Arbuckle Mts., Amaden (b); petroleum, Ozley
Mississippian: boundaries and subdivisions, Branson (g); McAlester basin, Lynch; Ozark area, Huffman (b)
names, geologic, Wilson, and others
Simpson, prec., Barnes, and others
Sycamore fn.: Chenoveth, and others; Prestridge; Anadarko basin.
Braun: Arbuckle Mts., Chaplin
Weiden fn., Arbuckle Mts., Chaplin
Wortham member, Prestridge
tipple analyses, Arseco, and others
uranium, marine black shales, Fiv
Vamoosa quartzite pebbles, source, Chenoveth (f)
Velma area, recumbent folding, Chenoveth (c)
Washita group, nomenclature, Curtis (d)
waterflood: Nowata Co., Powell; Washington Co., Powell
water, surface, for irrigation, chemical, United States Geological Survey (a); surface supply, United States Geological Survey (b)
Wellington, correlation, insects, Tusch and Zimmerman
Wichita Mts: age determinations, Jaffe, and others; granophyres, Hamilton; Pennsylvanian facies changes, Edwards; perthite, Robertson; rhythmites, Denison; seismic reflections, Widess
Woodford, pre-, unconformity, Maxwell

OKLAHOMA GEOLOGY NOTES
VOLUME 20, NUMBER 4
APRIL, 1960

ADDEDA TO PUBLISHED PAPERS ON OKLAHOMA GEOLOGY IN THE YEAR 1959
(Published in Oklahoma Geology Notes, vol. 20, no. 3, p. 55-73)
Compiled by Neville M. Curtis, Jr.

Branson, C. E., 1959, Regional relationships of Ouachita Mississippian and Pennsylvanian rocks: Geology of the Ouachita Mountains, Symposium: Dallas and Ardmore Geol. Societies, p. 118-121, 1 correlation chart. Discussion of the clastic, abnormally thick Mississippian and Morrowan section exposed in the Ouachita Mountain area.

Decker, C. E., 1956, Correlation of Lower Paleozoic formations of the Arbuckle and Ouachita areas as indicated by grapholite zones: Geology of the Ouachita Mountains, Symposium: Dallas and Ardmore Geol. Societies, p. 92-96, 1 table.

Flawn, P. T., 1959, The Ouachita structural belt: Geology of the Ouachita Mountains, Symposium: Dallas and Ardmore Geol. Societies, p. 20-29, 1 map. Discusses tectonics, foreland elements, development of geosyncline, age of deformation, and comparison with Appalachian system.

Goldstein, August, Jr., 1959, Petrography of Paleozoic sandstones from the Ouachita Mountains of Oklahoma and Arkansas: Geology of the Ouachita Mountains, Symposium: Dallas and Ardmore Geol. Societies, p. 97-116, 1 fig., 3 pls.

Ham, W. E., 1959, Correlation of pre-Stanley strata in the Arbuckle-Ouachita Mountain Regions: Geology of the Ouachita Mountains, Symposium: Dallas and Ardmore Geol. Societies, p. 71-86, 1 fig., 1 table. Correlation of pre-Stanley stratigraphic units (based on review of literature), geosynclinal aspects of Arbuckle and Ouachita regions, and depth to Precambrian in McCurtain County, Oklahoma.

Hartman, R. F., 1959, Age classification of the upper Pushmataha series in the Ouachita Mountains: Geology of the Ouachita Mountains, Symposium: Dallas and Ardmore Geol. Societies, p. 130-139, 4 figs. Particularly concerned with the age assignment of the Johns Valley shales and discussion of various "bouldery" shales.

Howell, J. V. and Lyons, P. L., 1959, Oil and gas possibilities of the Ouachita province: Geology of the Ouachita Mountains, Symposium: Dallas and Ardmore Geol. Societies, p. 57-61, 2 tables. Location and stratigraphic level of asphalt deposits.

Pitt, W. D., 1959, Summary discussion of the geology of the core areas of the Ouachita Mountains, Arkansas and Oklahoma: Geology of the Ouachita Mountains, Symposium: Dallas and Ardmore Geol. Societies, p. 87-91. Discussion of field evidence for believing that the core area of the Choctaw anticlinorium of southeastern Oklahoma is anticlinal in structure, rather than a fenster.

Bibliography—pages 55-72
Index—pages 72-81

Bibliography

Adkison, W. L., 1960a, Lissatrypoides concentrica (Hall), emend Boucot and Amsden: Illustrations of the lectotype: Okla. Geology Notes, vol. 20, no. 6, p. 138-139, 1 fig. Specimen is re-illustrated in five different views.

Aushunn, Brian, see Reid, G. W., and others.

Barrett, Edward, 1960, Mississippian or Pennsylvanian: that is the question: Shale Shaker, vol. 11, no. 2, p. 14-17. Discussion of Mississippian and Pennsylvanian correlation problems and general aspects of the two periods.

Bennison, Allan, see Tomlinson, C. W.

Bike, Peter, 1960, Independents can play the deep country, too: Oil & Gas Jour., vol. 58, no. 44, p. 195, 1 fig. Résumé of production from exploratory Ordovician strike in Grady County, Oklahoma.

Branan, C. B., Jr., see Strimple and Blythe.

Branan, C. B., Jr., and Jordan, Louise, 1960a, Recent exploration in the Arkoma basin and Ouachita province, southeastern Oklahoma: Okla. Geology Notes, vol. 20, no. 6, p. 140-147, 1 fig. History of petroleum production in area.

1960b, Southeast Oklahoma reawakens as potential gas giant: Oil & Gas Jour., vol. 58, no. 32, p. 120-122, 1 fig. Résumé of petroleum exploration in the Ouachita Mountains and Arkoma basin.

1960b, Carboniferous problems of the Mid-Continent area: Kansas Geol. Soc. Guidebook 25th Field Conf., North-eastern Oklahoma, p. 44-47, 2 tables. Acceptance of lithofacies and biofacies variations concept may help solve some problems and additional sections solve others.

1960c, Beyond the Panhandle: Okla. Geology Notes, vol. 20,
Development; Year Book 1960 (review of 1959): Internat. Oil
Scouts Assoc. and Soc. Petroleum Engineers AIME, vol. 30, pt. 1,
p. 377-400. Review of discoveries, exploratory well record, and
undeveloped acreage under lease.

20, no. 7, p. 175. Colorado pumiceite to be used in making room
deodorizers. Oklahoma deposits and use described briefly.

Burwell, A. L., 1960b, Rock wool from volcanic ash: Okla. Geology Notes,
20, no. 8, p. 207. Note of article by Dr. M. P. Baulke in the June
1960 issue of Rock Products. Kansas volcanic ash is
similar to Oklahoma volcanic ash.

20, no. 11, p. 275-281, 4 figs. Method used on the Excelsior member,
Senora formation (Pennsylvanian) in Oklahoma. Process removes
organic matter from sample.

Chastain, Kenneth, 1960a, Big Mocane, Laverne fields linked up: Oil
& Gas Jour., vol. 58, no. 18, p. 218-220, 2 figs. Résumé of develop-
ment in two fields (Beaver and Harper Counties).

Chastain, Kenneth, 1960b, Discovery of world’s largest gas field is prelude
to a chain of new strikes for the Panhandle: Oil & Gas Jour., vol. 38,

Chenoweth, P. A., 1960a, Ouachita Mountains do have oil and gas potential:
World Oil, vol. 151, no. 2, p. 94-100, 2 figs. The six reasons
cited by many geologists for reluctance to explore the area for
oil and gas are refuted by Dr. Chenoweth.

Notes, vol. 20, no. 1, p. 3-6, 2 figs. Description of limestone
reef in Jefferson County, Oklahoma.

Geology Notes, vol. 20, p. 35-36, 2 figs. Report of occurrence of
starfish impression in Seminole County.

Clarke, R. T., see Wilson and Clarke (a) (b)

Cline, L. M., 1960, Late Paleozoic rocks of the Ouachita Mountains: Okla.
Geol. Survey, Bull. 85, 113 p., 45 figs, 2 pls. Stratigraphic features
of the Ouachita geosyncline of Oklahoma during Late Mississippian
and Early Pennsylvanian.

Clinton, R. P., 1960, History of petroleum development of Mississippian
44, no. 1, p. 127. Recent play in Osage County shows how the land
attitude will influence a play.

Cochrane, E. M., see Abernethy, R. F.

Cocke, J. M., see Sutherland, P. K.

Conant, G. D., see King, R. R.

Cronoble, W. R., 1960, An occurrence of Ulotrochus buttisi Miller and
Gurley in Oklahoma: Okla. Geology Notes, vol. 20, no. 4, p. 96-99,
3 figs., 1 table. Description of dorsal cup from the Hogsheel
formation in Nowata County, Oklahoma.

1960b, Lignite in the Red Branch member, Woodbine formation, Oklahoma: Okla. Geology Notes, vol. 20, no. 9, p. 240-244, 1 fig. Occurrence and description of sections in Bryan County, Oklahoma.

see Ham and Curtis.

Davis, L. V., 1960, Geology and ground-water resources of southern McCurtain County, Oklahoma: Okla. Geol. Survey, Bull. 36, 108 p., 19 figs., 8 tables, 1 plate. Surface strata are Cretaceous and bulletin is primarily a ground-water report.

see Ham, W. E., and others (a)

Dott, R. H., 1960, Lieutenant Simpson's California Road across Oklahoma: The chronicles of Oklahoma, vol. 38, no. 2, 2 pls. Remarks on the geology encountered along the route which traversed Oklahoma from Ft. Smith, Arkansas, along the south side of the Canadian River to the Oklahoma-Texas line in Roger Mills County, Oklahoma.

Eng, Harvard, see Rollman, H. E.

Ferguson, W. S., see Baker and Ferguson.

Fine, M. M., see Hahn, A. D.

Gelphman, N. R., 1960, West Sentinel oil field, Washita County, Oklahoma: sedimentology of the "granite wash" and structural geology: Shale Shaker, vol. 10, no. 6, p. 2-16, 11 figs., 1 table. A sedimentation study relative to the "granite wash" in the field.

Gilley, E. R., see Brush, B. M.

Gordon, Mackenzie, Jr., 1960, Some American Midcontinent Carboniferous cephalopods: Jour. Paleontology, vol. 34, no. 1, p. 133-151, 2 pls., 3 figs. Description of Axinolobus modulus n. sp. from Morrow series in Muskogee County, Oklahoma and other species that occur in Oklahoma.

Greenkorn, R. A., see Johnson, C. R.

of micropaleontology in the United States and includes Chouteau fauna from the Welden of Oklahoma.

Ham, W. E., 1960a, Glassy pebbles in southwestern Oklahoma—obsidian vs. tektite: Okla. Geology Notes, vol. 20, no. 4, p. 92-95, 3 figs., 1 table. Black glassy pebble from Kiowa County found to be obsidian and not a tektite. The Delhi tektite is discarded and it is concluded that no tektite has been described from Oklahoma.

Ham, W. E., see Grandone, Peter

Harris, R. W., 1960a, An index ostracode from the Arbuckle limestone, Oklahoma: Okla. Geology Notes, vol. 20, no. 9, p. 211-216, 1 fig., 1 pl. Description of new genus Cera toleperditia and genotype Cer a toleperditia ar bucklepsis from outcrop on south side of Arbuckle Mountains.

Huffman, G. G., 1960d, Regional relations of pre-Desmoinesian rocks, central Mid-Continent region: Kansas Geol. Soc. Guidebook 25th Field Conf., North-eastern Oklahoma, p. 48-71, 12 figs. Isopachous and paleogeologic maps are used to study the major tectonic features and pre-Desmoinesian stratigraphy and isopachous relations.

Huffman, G. G., 1960c, Noel shale in northeastern Oklahoma: Okla. Geology
Notes, vol. 20, no. 7, p. 159-163, 2 figs. Résumé of lithology, paleontology, and distribution of Noel shale.

Hunter, H. E., 1960, Topographic control by primary igneous structures in the Raggedy Mountains, southwestern Oklahoma: Okla. Geology Notes, vol. 20, no. 5, p. 112-115, 5 figs. Difference in susceptibility to weathering of different igneous rocks results in characteristic topographic features. The gross topographic features in area appear to be a result of preferred orientation of plagioclase and layered character of intrusive body.

Jaster, M. C., see Withington, C. F.

1960b, Helium plant completed at Keyes: Okla. Geology Notes, vol. 20, no. 1, p. 15. Description of opening ceremony, production of plant, and processes used.

Jordan, Louise, see Brann and Jordan (a) (b)

Jussien, V. M., see King, R. R.

Kent, L. S., see Brann, D. C.

1960b, Las Animas arch—promising oil and gas frontier: World Oil, vol. 151, no. 4, p. 87-92, 3 figs., 1 table. Includes subsurface geologic map contoured on top of Mississippian in the Oklahoma Panhandle.

Lang, R. C., 1960, Western limits of Oil Creek sand in southern Oklahoma and northern Texas [abs.]: Amer. Assoc. Petroleum Geologists, Bull., vol. 44, no. 1, p. 129. Western limit along a line from Stephens County, Oklahoma, to Grayson County, Texas. In Oklahoma, the limit is a result of facies change.
Laughbaum, L. R., 1960, A paleoecologic study of the upper Denton formation, Tarrant, Denton, and Cooke Counties, Texas: Jour. Paleontology, vol. 34, no. 6, p. 1183-1197, 3 figs. Environmental interpretations can be applied to southern Oklahoma along the Red River.

Link, The, 1960, $250,000 salt water: The Link, vol. 25, no. 5, p. 10-11, 1 fig., 4 photos. Salt water disposal system in the Greater Seminole (Oklahoma) oil fields is described.

Loud, E. S., see King, R. R.

Lovett, F. D., and others, 1960, Authigenic apatite and clay minerals from Roger Mills County, Oklahoma: Okla. Geology Notes, vol. 20, no. 8, p. 190-194, 3 figs. X-ray, chemical, and optical data, and stratigraphic occurrence of specimens from the Cloud Chief formation.

Mankin, C. J., see Cassidy, M. M.

Quinn, J. H., 1960, Correlation of Pennsylvanian strata on the basis of northwestern Arkansas goniatites [abs.]: Geol. Soc. America, Program 1960 Ann. Mtgs., p. 183. Winslow formation is not equivalent to the Atoka but is older and the southeastern Oklahoma Morrowan appears to fit between the Brentwood and Kessler members of the Boyd formation. Hale formation and Caney shale also discussed.

Reed, E. W., see Mogg, J. L.

Reeves, C. C., Jr., 1960a, A closer look at Love County: Oil & Gas Jour., vol. 58, no. 1, p. 116-121, 1 table, 3 figs. History of petroleum development and structure in county.

Research Oil Reports, 1960, Analysis of available data on secondary recovery in Oklahoma: Research Oil Reports, 238 p. Pool, operator, formation, depth, number of input wells, oil production, and water injected reported.

Respress, M. C., 1960, Mid-Continent hot spot owes success to modern well-stimulation techniques: Oil & Gas Jour., vol. 58, no. 37, p. 93-96, 3 figs., 3 tables. Resume of production and fracture treatments required for various producing zones.

Roy, Mihir, see Reid, G. W., and others

Sadlick, Walter, 1960, New name for *Spirifer occidentalis* (Girty) and its geologic history: Jour. Paleontology, vol. 34, no. 6, p. 1210-1214. Relates to *Spirifer matheri* and *Spirifer leidyi* in Oklahoma.

Schleicher, J. A., 1960, A study of the temperature necessary to determine the purity of gypsum by dehydration: Okla. Geology Notes, vol. 20, no. 2, p. 37-41, 4 figs. Sample of selenite from Southard, Oklahoma, had an average purity of 99.997 percent CaSO_4\cdot2H_2O.

Schoff, S. L., see Mogg, J. L.

Shaw, C. A., 1960, Better double check the Cimarron: Oil & Gas Jour., vol. 58, no. 50, p. 164-167, 5 figs. Résumé of development and production in the Keyes and Griggs fields. Seventeen pay zones are less than 5,000 feet.

Starke, J. M., Jr., see Huffman, G. G., and Starke (a) (b) (c) (d)

Strimple, H. L., 1960a, Regressive evolution among eriocrinoids. Okla. Geology Notes, vol. 20, no. 6, p. 151-155, 2 figs. *Endocalcarinus* and *Deloccrinus* are used in study to show regressive evolution; also used is *Paradelerocrinus*.

Strimple, H. L., 1960c, The posterior interradius of Carboniferous inadunate crinoids of Oklahoma: Okla. Geology Notes, vol. 20, no. 10, p. 247-253, 3 figs. Mississippian and Pennsylvanian crinoids which are known to occur in Oklahoma are used in this study.

Thompson, Robert, see Reid, C. W., and others

Thrift, L. S., Jr., see Brush, B. M.

Trimble, J. K., see Baker, D. R.

Waddell, D. E., see Frederickson, E. A.

Weaver, C. E., 1960, Possible uses of clay minerals in search for oil: Amer. Assoc. Petroleum Geologists, Bull., vol. 44, no. 9, p. 1505-1518, 7 figs., 3 tables. Major clay mineral facies reflect the source areas and tectonic activity in the Upper Mississippian-Lower Pennsylvanian shales of southern Oklahoma. Area used to show correlation and environmental interpretations that can be made.

West, A. E., 1960, Geology of northeastern Lincoln County, Oklahoma: Shale Shaker, vol. 11, no. 3, p. 2-12, 7 figs., 3 pls. Late Pennsylvanian and early Permian stratigraphy and faunal lists for various units.

Wilson, L. R., 1960a, A Permian hystrichosphaerid from Oklahoma: Okla. Geology Notes, vol. 20, no. 7, p. 170, 1 fig. Description and photograph of specimen from the Flowerpot shale, Greer County, Oklahoma.

Wilson, L. R., and Clarke, R. T., 1960a, A Mississippian chitinozoan from Oklahoma: Okla. Geology Notes, vol. 20, no. 6, p. 148-150, 4 figs. Description of one specimen from the Goddard shale in Johnston County, Oklahoma.

Wynn, L. L., 1960, Simpson group of south-central Kansas [abs.]: Amer. Assoc. Petroleum Geologists, Bull., vol. 44, no. 1, p. 131. Study indicates that Simpson has a normal sequence of deposition and that anomalous or erratic characteristics northward are a result of tectonic movements.

INDEX

Alabaster Caverns, Myers (a) (b)
Amarillo-Hugoton area, Worden
Anadarko basin: cross section, Adkison, Jordan (j); oil and gas environment, Schlackey; petroleum, McCaslin (d); stratigraphy, Ruscoe anhydrite, annotated bibliography, Withington and Jaster
Aptium, Martinson
Arbuckle Mts.: generalized section, Wheeler; Huntun group, Amsden (c); ostracon in Arbuckle Ls., Harris (a)
Arkoma basin, petroleum, Brannen and Jordan (a) (b), McCaslin (d) (e)
Axiolobus modulus, Gordon
Bar M fauna, Hibbard and Taylor
basement rock, southern Oklahoma, Ham and others (a)
Bear Creek, defined, Oklahoma Geological Survey (a)
Beaute Ls., cyclic sedimentation, Imbriche
Berends fauna, Hibbard and Taylor
bibliographic citations, correct form, Branson (d)
bibliography: gypsum and anhydrite, Withington and Jaster; North American geology, 1937, Branson (o); King and others; North American geology, 1956, Oklahoma Geological Survey (b); Oklahoma geology, 1959, Curtis (a) (c); Permian, Dunbar and others; uranium, Dean
biofacies, restricted, Nowata Co., Branson (a)
Boktukola syncline, Shelayburne
Buis Ranch, molluscan fauna, Taylor
California Road, Dott
Cambrian: basement rocks, Ham and others (a); pre-Upper, age in Wichita Mts., Kulp
Carbiferous: cephalopods, Branson (n), Gordon; crinoids, Strimple (e); Mid-Continent problems, Branson (b)
Cavanal syncline, Webb, P. K.
Eaves, Alabaster Caverns, Myers (a) (b)
Cement plant, new, Pryor, Huffman (b)
Cenozoic, molluscan fauna, Taylor
Ceratopithecidae, oestocod, Harris (a)
Chazy canine, Cherokee Co., Huffman and Stark (a)
Cherokee group: cyclic deposition, Baker and Trimble; organic geochemistry, Baker and Ferguson
Clay: clue to oil, Weaver; technique of mineral analysis, Cassidy and Mankin
Climate, High Plains, Pliocene and Pleistocene, Hibbard
Coal, fusibility of ash, Abernethy and Cochrane
Conostichus, Branson (e)
Cordania, Whittington
County:
Beaver: Big Mocane and Laverne fields, Chasteen (a); gas, Light field, Burby; molluscan fauna, Taylor; Planorbula vulcanata, Fraked
Bryan, lignite, Cretaceous, Curtis (b)
Caddo: apatite and magnesite clay, Howey and others; Pennsylvanian subsurface, Harton; uranium, Dean
Canadian, ground water, Mogg and others
Carter: Caddo oil field, Nance, Rouget; foraminifer Tuberitina, Branson (m)
Cherokee: oil and uranium in black shale, Swanson; paleobotany, Huffman and Stark (b); paleontology and stratigraphy, Huffman and Stark (a); Sprider grimes, Huffman and Stark (d)
Cimarron: geology adjacent in New Mexico, Branson (e); helium plant, Jordan (b); soil survey, Murphy and others; uranium in ground and surface water, Landis
Coal, Dalmanites oklahomae, Frederickson
Comanche, rock slide, Mt. Scott, Denison
Creek, soil survey, Oakes and others
Grady: Ordovician oil production, Bike; Pennsylvanian subsurface, Harton
Greer, hystrochoepherid, Wilson (a)
Harper: Big Mocane and Laverne fields, Chasteen (a); Buffalo field, North, Chasteen (c); Ophiussaurus attenuatus, Etheridge, paleontology, Stephens; salt beds in Laverne gas area, Jordan (f); soil survey, Nance and others
Jefferson, Canyon reef, Chenoweth (b)
Johnston, chitinozoan, Wilson and Clarke (a)
Kingfisher, petroleum, Jordan (e), McCaslin (b) (c), Petroleum Week (b) (c)
Kiowa: ilmenite, Hahn and Fine; obsidian or tektite, Ham (a); Raggedy Mts., igneous topography, Hunter
Latimer: Russell; petroleum, Oil and Gas Journal (a)
Le Flore, Shelburne

Lincoln: Chandler area, Strachan; northeastern, West
Logan: Layton sandstone, Bross, Wessman; soil survey, Galloway and others
Love: crinoid, Pennsylvanian, Frederickson and Waddell; petroleum, Reeves (a) (b), Reeves and Mount
Major, Petroleum Week (c)
Mayes: cement plant, new, Huffman (b); Spavinaw granite, Merritt
McClain, Shellburne; ground water, Davis
McIntosh, Eufaula-Texanna area, Branan, Webb, F. S.
Murray, oil and uranium, black shale, Swanson
Muskogee, Axinolobus modestus, Gordon
Nowata: restricted biofacies, Branson (a); crinoid, Cronoble
Okfuskee, Valley-Grove oil field, Wilshire
Osage: electric log cross-section, Kornfeld (a); Gastrocras, Branson (f); petroleum, Clinton; star-fish, Brandon (x)
Pawnee: Bear Creek defined, Oklahoma Geological Survey (a); Cow-skin Creek defined, Oklahoma Geological Survey (a)
Payne, electric log cross-section, Kornfeld (a)
Pittsburg: Eufaula-Texanna area, Branan, Webb, F. S.; Featherston area, Vanderspool
Pontotoc, paleobotany, Wilson and Clarke (b)
Pushmataha, Shelburne
Roger Mills, apatite and clay minerals, Lovett and others
Rogers, Sutherland and Coote
Seminole, star-fish, Chenoweth (e)
Sequoyah, Silurian and Devonian, Amsden (b)
Texas, uranium and ground surface water, Landis
Tillman, ilmenite, Hahn and Fine
Tulsa, Seminole I.; Branson (n)
Washington, waterflood, Faxon, Powell
Washita, "granite wash," Gelpman
Woodward: Alabaster Caverns, Myers (a) (b); gas fields, Jordan (k); karst topography, Myers (b)
Cow-skin Creek defined, Oklahoma Geological Survey (a)
Cretaceous: lignite, Curtis (b); paleoecology, Laughbaum; stratigraphy, Davis
cyclic sedimentation, Beattie Is., Imbrie
Dalmanites oklahomae, Frederickson
datum planes, how to choose, Kornfeld (a)
deep wells, statistics, Adams
Devonian, Sequoyah County, Amsden (b)
directory, geologist and geophysicist, Manley and Murphy
Pony Springs, vertebrate paleontology, Hibbard and Taylor, Stephens
Economic Geology:
air-drilled samples, Jordan (e)
cement plant, new, Pryor, Huffman (b)
coal, fusibility of ash, Abernethy and Cochrane
gas storage in salt beds, Jordan (f)
helium plant, Keys, Jordan (b)
ilmenite, Kiowa and Tillman Counties, Hahn and Fine
petrochemical plants, Oklahoma Geological Survey
pumice, new use, Burwell (a)
refractory, novaculite, Rollman and Eng
rock wool from volcanic ash, Burwell (b)
statistics: mineral industries, Grandon and Ham; petroleum, Jordan
(g), (h), (m); mines and mining, Malloy
sulfur, percent in coal, Abernethy and Cochrane
Tri-State, structural features, Foster
educational, Ham and Curtis
erosorinids, evolution, Stimpfe (a)
Eufaula-Texanna area, Branam, Webb, F. S.
evaporites, Permian, Ham (b); Jordan (f)
field trip: northeastern Oklahoma, Oklahoma Geological Survey (d)
; paleobotanical, Oklahoma Geological Survey (e) (f), Wilson and Nicholson
Castrionera, Osage Co., Branson (f)
geochemistry: black shale, technique, Cassidy and Mankin; gypsum, Schleicher; organic, Cherokee group, Baker and Ferguson
geologists, directory, Manley and Murphy
gemolithology: caves, Myers (a); igneous rock topography, Hunter; karst topography, Myers (b); rock slide, Denison
geophysicists, directory, Manley and Murphy
geophysics, electric logging, Doll and others, Millard (a) (b)
ground water: Canadian County, Mogg and others; McCurtain County, Davis; permeability measurements, Johnston and Greenkorn; uranium content, Landis
geophys, topography, Myers (b)
helium plant, Keyes, Jordan (b)
Hugoton-Amargillo, Warden
Hunton group: stratigraphy and paleontology, Amsden (c); unconformity, Gussow
ilmenite, Kiowa and Tillman Counties, Hahn and Fine
insects, Permian, Branson (i)
International Geological Congress, 21st, Jordan (1)
Jackfork sandstone, age, Miser and Hendricks
Johns Valley shale, age, Miser and Hendricks
karst topography, Woodward County, Myers (b)
lakes, northeast Oklahoma, Huffman (f)
Las Animas Arch, Kornfeld (b)
Layton sandstone, Logan County, Bross, Wessman
lignite, Cretaceous, Curtis (b)
Lissatrycoidea concentrica, Amsdenable(3)
Manning trend, petroleum, Petroleum Week (c)
marine transgressions, Paleozoic boundaries, Huffman (e)
mineral industries, Granda and Ham
MINERAL/Mineralogy:
anhydrite, bibliography, Withington and Jaster
apatite, authigenic: Howery and others; Lovett and others
borate, Ham and others (b)
clay: magnesium, Howery and others; minerals, Lovett and others
educational, Ham and Curtis
gypsum; analysis, Schleicher; bibliography, Withington and Jaster
ilmenite, Hahn and Fine
obsidian, Ham (a)
priceite, Ham and others (b)
proterite, Ham and others (b)
Spavainaw granite, Merritt
tektite, Ham (a)
ulexite, Ham and others (b)
Mississippian: Jordan (d); chitinozoan, Wilson and Clarke (a); Chouteau fauna, Gutschick (b); Foraminifera, Gutschick (a); Johns Valley—Stanley sequence, Miser and Hendricks, Cline; oil/gas, Osage County, Clinton; Ouachita Mts., Cline; Panhandle, Kornfeld (b); plant locality, Huffman and Starke (b); problems, Barrett
Missourian, crinoid, Cronoble
Monograptus nilsoni, Berry
Morrow sand, resistivity-velocity log, Millard
Museum of the Great Plains, Oklahoma Geological Survey (e)
Noel shale, Huffman and Starke (c)
obsidian, Ham (a)
Oil Creek sand, western limit, Lang
Ophisaurus attenuatus, Etheridge
Ordovician: ostracods, Martinsson, Harris (a) (b); graptolites, Branson (j)
Oorthoretiolites hami, Skewington
Ouachita Mts.: petroleum, Branan and Jordan (a) (b); Chenoweth (a), Pitt (a) (b); refractory material, novaculite, Rollman and Eng; sedimentary basin, Barrabe; Mississippian and Pennsylvanian, Cline
Ozark area, Huffman (a) (f)
PALEOBOTANY:
bibliography, Wilson (d)
cordaitean wood, siliceous spherules, Wilson and Clarke (b)
field trip, Oklahoma Geological Survey (e) (f), Wilson and Nicholson
history in Oklahoma, Wilson (d)
microfossils, Geology Notes cover, Wilson (b) (e)
Mississippian, Cherokee County, Huffman and Starke (b)
Paleontological Institute, Oklahoma collection, list, Brann and Kent
PALEONTOLOGY:
Anisocynna, Martinsson
Atoka fm., Blythe
biofacies, restricted, Nowata County, Branson (a)
brachiopod, Pissatrycoidea concentrica, Amsden (a)
cephalopods, Carboniferous, Branson (n); Gordon Ceratoleperaita, Arbuckle ls., Harris (a)
Chazy, Cherokee County, Huffman and Starke (a)
chitinozoan, Mississippian, Wilson and Clarke (a)
Chouteau fauna, Welden ls., Gutschick
collection, Paleontological Institute, Brann and Kent conodonts, Goddard fm., Tomlinson and Bennison
Conostichus, Branson (e)
Cordania falcata, Whittington
crinoid: Cronoble; Strimple (a) (b) (c); Strimple and Blythe;
Pennsylvanian, Frederickson and Waddell
Dalmanites oklahomae, Coal County, Frederickson
erioides, evolution, Strimple (a)
Gastrioceras, Osage County, Branson (f)
goniatiates, Pennsylvanian correlation Quinn
graptolite: correlation, Berry; Texas, Oklahoma Ordovician, Branson (j)
Hunton group, Arbuckle Ms., Amsden (c)
hystrichospherid, Wilson (a)
insects, Permian, Branson (i)
microfossils: Wilson (b) (c); foraminifer, Tuberinina, Branson (m); Mississippian foraminifera, Gutschick (a)
mollusc fauna, Beaver County, Taylor
Neoprobalomia oklahomae, Frederickson
Othsoretiolites hami, Shexington
ostracods: Harris (a); Ordovician, Martinsson; primitioeid, Harris
Ozark region, Huffman (a)
Paragassazorinus; Strimple (b); Strimple and Blythe
Planorbula vulcanata, Beaver County, Frankel
Productidea, Wood-Muir and Cooper
Pseudozaphrentoides, Sutherland and Cocke
Seminole fm., Branson (h)
Spirifer grimesi, Huffman and Starke (d)
Spirifer occidentalis, Sadlick
starfish: Hilltop shale, Chenoweth (c); Cottonwood limestone, Branson (k)
vertebrate: High Plains, Hibbard; Ophiosaurus attenuatus, Etheridge
Paleozoic: boundaries, Huffman (e); cross section, Adkison, Jordan (j); Ouchita Ms., Cline
Panhandle, petroleum, McCaslin (a), Chasteen (b), Gorrod, Kornfeld (b)
Paragassazorinus, Strimple (b), Strimple and Blythe
Pennsylvanian: coral, Sutherland and Cocke; crinoid, Frederickson and Waddell; facies change, Edwards; goniatiates, Quinn; Johns Valley—Stanley, Miser and Hendricks; Latimer County, Russell; Layton sandstone, Bross; Ouchita Ms., Cline; problems, Barret, reef, Jefferson County, Chenoweth (b); stratigraphy, Rasee; subsurface, Caddo and Grady Counties, Harlton
Permian: authigenic minerals, Howery and others; borate minerals, Ham and others (b); correlation, Dunbar and others; evaporites, Ham (b); ground water in Canadian County, Mogg and others; hystrichospherid, Wilson (a); insects, Branson (i); karst topography, Myers (b); limestone facies, Imbrie; salt beds, Jordan (f); starfish in Osage County, Branson (k); stratigraphy, Branson (l); Rasee petrochemical plants, list, Oklahoma Geological Survey (g)
petrography, see petrology

PETROLEUM:
activity, Oil and Gas Journal (c) (d) (e)
air-drilled samples, Jordan (c)
Anadarko basin McCaslin (d)
Arkoma basin, Branan and Jordan (a) (b), McCaslin (d) (e)
Big Mocane field, developments, Chasteen (a)
Blackdog field, electric log cross section, Kornfeld (a)
Buffalo field, North, Chasteen (c)
Caddo County, Pennsylvanian, Harlton
Caddo field, Nance, Rouget
Cement pool, stratigraphy, Harlton
clay facies, Weaver
cost of well, Jordan (a)
Cushing, Southeast, Kornfeld (a)
deep wells, statistics, Adams
environment, Schlaikjer
Grady County, Ordovician, Bike; Pennsylvanian, Harlton
Greasy Creek field, Kornfeld (a)
Griggs field, Shaw
Keys field, Shaw
Kingsfisher County, Jordan (e), McCaslin (b) (c), Petroleum Week (b) (c)
Las Animas arch, Panhandle, Kornfeld (b)
Latimer County, Oil and Gas Journal (a)
Laverne: Doll and others; developments, Chasteen (a); salt beds for storage, Jordan (f)
Light field, Barby
Logan County, Bross
Love County, Reeves (a) (b), Reeves and Mount
Major County, Petroleum Week (c)
Manning trend, Petroleum Week (c)
Osage County, Mississippian, Clinton
Ouchita Ms.: Branan and Jordan (a) (b), Chenoweth (a), Pitt (a) (b)
Panhandle, Chasteen (b), Gorrod, McCaslin (a) Oil and Gas Journal (b)
permeability measurements, Johnson and Greenhorn
petrochemical plants, Oklahoma Geological Survey (g)
production: Arkoma basin, Branan and Jordan (a) (b); Ouchita province, Branan and Jordan (a) (b)
Purdy, Northeast, waterflood, Petroleum Week (a)
salt-water disposal: Link; Arkansas and Red River basin, Reid and others
secondary recovery, Research Oil Reports
Sentinel field, West, “granite wash,” Gelpman shale, in black, Swanson
sonic log, Morrow sand, Millard (b)
statistics, Brush and others, High Plains Gas and Oil Scouts, Assoc., Jordan (g) (h) (m), Lawson and others, Roberts, Adams
stimulation, well, Respers
Valley-Grove field, Wilshire
waterflood: Research Oil Reports; Washington County, Faxon, Petroleum Week (a), Powell
Woodward County, Jordan (k)
Petrology:

basement rocks, southern Oklahoma, *Ham and others* (a)
cyclic deposition, Cherokee group, *Baker and Trimble*
educational, *Ham and Curtis*
evaporites, Permian, *Ham* (b)
"granite wash," Sentinel field, *Gelpman*
Hunting group, Arbuckle Mts., *Amsden* (c)
limestone, chemical analyses, *Huffman* (b)
magnetite-pyroxene textures, *Hiss and Hunter*
Spavina granite, *Merritt*
Wichita Mts., Mt. Scott, *Denison*

Planorbula vulcanata, Frankel
Pleistocene: climate, *Hibbard*; *Ophisaurus attenuatus, Etheridge*; vertebrates, *Hibbard and Taylor*; *Stephens*
Pliocene, climate, *Hibbard*
Precambrian, southern Oklahoma, *Ham and others* (a)
Productoida, *Wood-Muir and Cooper*
Pseudozaphrentoides, Sutherland and Cocke
pumice, new use, *Burwell* (a)
Raggedy Mts., igneous topography, *Hunter*
Red River, tributaries named, *Oklahoma Geological Survey* (h)
reef, Canyon, in Jefferson County, *Chenoweth* (b)
resistivity-velocity log, Morrow sand, *Millard*
rock wool from volcanic ash, *Burwell* (b)
salt beds, Harper County, *Jordan* (f)
salt-water disposal, Seminole fields, *Link*
Seminole fm., paleontology, *Branson* (h)
Silurian: *Monographus nilssoi, Berry*; Sequoyah County, *Amsden* (b)
Simpson group, *Wynn*
soil survey: Creek County, *Oakes and others*; Cimarron County, *Murphy and others*; Harper County, *Nance and others*; Logan County, *Galloway and others*
sonic log, Morrow sand, *Millard* (b)
Spavina granite, *Merritt*
Spirifer grimesi, Huffman and Starke (d)
Spirifer occidentalis, Sadieck
Stanley shale, age, *Miser and Hendricks*
starfish, Seminole County, *Chenoweth* (c); Osage County, *Branson* (k)
storage, gas in salt bed, *Jordan* (f)

Stratigraphy:

Amarillo-Hugoton area, *Worden*
Atoka, *Blythe*
Boktukola syncline, *Shelburne*
Carboniferous, problems, *Branson* (b)
Cavanal syncline, *Webb, P. K.*
Cherokee group, cyclic deposition, *Baker and Trimble*
Desmoinesian, pre-, *Jones*
Devonian, Sequoyah County, *Amsden* (b)
Featherston area, Pittsburg County, *Vanderpool*
Hunting group, *Amsden* (c), *Gussow*

isopachous study, eastern Oklahoma, *Huffman*; north-central Oklahoma, *Jones*
Jackfork sandstone, age, *Miser and Hendricks*
John Valley shale, age, *Miser and Hendricks*
Rayton sandstone, Logan County, *Bross, Wessman*
Mayes County, *Huffman* (b)
Mid-Continent, *Huffman* (c) (d)
Mississippian: *Jordan* (d); Ouachita Mts. area, *Cline*; problems, *Brace*
Names, *Branson* (g)
Noel shale, *Huffman and Starke* (c)
Oil Creek sand, *Lang*
Ouachita Mts., *Cline*
Ozark region, *Huffman* (a)
paleoepiglogic study, eastern Oklahoma, *Huffman*; north-central Oklahoma, *Jones*
Paleozoic: cross section, *Adkinson, Jordan* (j); boundaries, *Huffman* (e)
Permian: correlation, *Darby and others*; evaporites, *Ham* (b); limestone facies, *Imrie*; nomenclature, history, *Huffman* (l); Mid-Continent, *Rasco*
Silurian, Sequoyah County, *Amsden* (b)
Stanley shale, age, *Miser and Hendricks*
Tiff member, Goddard fm., *Tomlinson and Bennison*
Tyner fm., *Huffman and Starke* (a)
surface water, uranium content, *Landis*

Technique:

interpretation of air-drilled samples, *Jordan* (c)
organic, removal from black shale, *Cassidy and Mankin*
palynology, *Wilson* (c)
resistivity-velocity log, *Millard* (a)
sonic log, evaluate sand, *Millard* (b)
stimulation of oil well, *Respress*
wire-line well logging, *Doll and others*

Tectonics:

Arbuckle Mts., *Wheeler*
Desmoinesian, pre-, *Jones*
Mid-Continent, *Huffman* (c) (d)
Ouachita Mts. area, *Barrabé*
Ozark region, *Huffman* (a)
Paleozoic boundaries, *Huffman* (c)
Simpson group, *Wynn*
Tri-State mining area, *Fowler*
Wichita Mts. area, *Barrabé*
tektite, *Ham* (a)
Tiff member, Goddard fm., *Tomlinson and Bennison*
Ulocrinus buttsi, Cronoble
uranium: black shale, Swanson; Caddo County, D'an; ground and surface
water, Landis
Viola limestone, Orthoretiolites hami, Shevington
volcanic ash-rock wool, Burwell (b)
water: chemical, U. S. Geological Survey (a) (b); drawdown data,
Johnson and Greenhorn; mineral springs, Ward; statistics, U. S.
Geological Survey (c); uranium content, Landis
waterflood, Washington County, Faxon, Petroleum Week (a), Powell
Well Log Analysts, Society of, Jordan (i)
Wichita Mts.: age, Kulp; facies changes, Edwards; igneous topography,
Hunter; magnetite-pyroxene textures, Hiss and Hunter; rock slide,
Denison, sedimentary basin, Barrabé
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY
1961

Prepared by Kenneth S. Johnson

Bibliography—pages 57-69
Index—pages 69-78

BIBLIOGRAPHY

Arkansas Geological and Conservation Commission, see University of Oklahoma, School of Geology, and others.

Barby, B. E., 1961a, Panhandle gas hunt sets pace: Oil and Gas Jour., vol. 59, no. 22 (May 29), p. 210-217 incl. ads, 4 figs., 1 table.

Barby, B. E., 1961b, Reserves may spell success for the Panhandle: Oil and Gas Jour., vol. 59, no. 23 (June 5), p. 128-130, 2 figs.

Beghtel, F. W., see Furnish, W. M., and Beghtel, F. W.

Bell, R. J., 1961, Pre-Pennsylvanian subsurface geology of the East Lindsay area, Garvin County, Oklahoma: Okla. City Geol. Soc., Shale Shaker, vol. 11, no. 7 (Mar.), p. 2-18, 11 figs.

Brazelton, W. F., see Reeves, C. C., Jr., and Brazelton, W. F.

Burbridge, P. P., see Felix, C. J., and Burbridge, P. P.

Busch, D. A., 1961, Make the most of those electrical logs if you want to find salt traps: Oil and Gas Jour., vol. 59, no. 28 (July 10), p. 162-163, 166-167, 4 figs. East-west cross section; T. 7 N., Rs. 6 to 15 E., Savanna Formation (Pennsylvanian) to Caney Shale (Mississippian).
Castagno, J. L., see Johnston, K. H., and Castagno, J. L.
Cobb, W. A., see Gill, J. R., and Cobb, W. A.
Petrography of Permian limestone being mined to allow LPG storage.
Cunningham, B. J., 1961, Stratigraphy Oklahoma-Texas Panhandles, in Oil and gas fields of the Texas and Oklahoma Panhandles: Panhandle Geol. Soc., p. 45-60, 2 figs. Precambrian through Quaternary.
Dodd, C. G., see Ham, W. E., Dodd, C. G., and Ray, Satyabrata.
Eddleman, M. W., 1961, Tectonics and geologic history of the Texas and Oklahoma Panhandles, in Oil and gas fields of the Texas and Oklahoma Panhandles: Panhandle Geol. Soc., p. 61-68, 2 figs.
City Geol. Soc., Shale Shaker, vol. 12, no. 2 (Oct.), p. 2-20 incl. ads, 8 figs., 1 table.
Enright, R. J., 1961, Marietta basin dazzles gas hunters: Oil and Gas Jour., vol. 59, no. 6 (Feb. 6), p. 82-84. Southeast Marietta Field, Love County.
Fay, R. O., see Reimann, I. G., and Fay, R. O.
Fort Smith Geol. Soc., see Tulsa Geol. Soc. and Fort Smith Geol. Soc. Fraser, C. D., see Pirson, S. J., and Fraser, C. D.
Graft, R. D., see Bailey, O. F., and Graft, R. D.
Grandon, Peter, see McDougal, R. B., and Grandon, Peter.
Guerrero, E. T., and Stewart, F. M., 1961, How to find original oil in place by the volumetric method: Oil and Gas Jour., vol. 59, no. 7 (Feb. 13), p. 89-91, 3 figs., 4 tables. Example used is Northwest Triume Field, Tillman County.
Guest, M. E., see Wilson, L. R., and Guest, M. E.

Joensuu, Oiva, see Marshall, R. R., and Joensuu, Oiva.

1961g, Oil and gas in Kingfisher County, Oklahoma: Kansas-Oklahoma Oil Reporter, vol. 3, no. 10 (Jan.), p. 38-43 incl. ads, 4 figs. Development and geology.

1961j, see Ham, W. E., and Jordan, Louise.

Leonard, A. R., see Ward, P. E., and Leonard, A. R.

Madeley, H. M., see Pitt, W. D., Madeley, H. M., and Robertson, J. R.

Mankin, C. J., see Ham, W. E., Mankin, C. J., and Schleicher, J. A., see Young, L. M., and Mankin, C. J.

Moses, P. L., 1961, Geothermal gradients now known in greater detail: World Oil, vol. 152, no. 6 (May), p. 79-82, 1 fig., 1 table. Includes map of Oklahoma with contours in degrees per 100 feet.

Murphy, J. J., see Fite, C. O., Murphy, J. J., and Orth, R. P.

Oil and Gas Journal, 1961, Deep drilling marks Oklahoma's Anadarko: Oil and Gas Jour., vol. 59, no. 50 (Dec. 11), p. 135-136, 141, 1 fig.
Orth, R. P., see Pate, C. O., Murphey, J. J., and Orth, R. P.

Pirson, S. J., and Fraser, C. D., 1961, Revised method interprets electric logs in oil-wet rocks: The Petroleum Engineer, vol. 33, no. 7 (July), p. 32-37, 3 figs., 3 tables. Electric logs of Springer sands (Pennsylvanian) in southern Oklahoma used as examples.

Planalp, R. N., see McClain, K. M., and Planalp, R. N.

Reeves, C. C., Jr., 1961a, Cross-sections show Marietta basin's Pennsylvanian strata: World Oil, vol. 153, no. 6 (Nov.), p. 120-121, 3 figs. (Augments Reeves, C. C., Jr., 1961b.)

Robertson, J. R., see Pitt, W. D., Madeley, H. M., and Robertson, J. R.

Rogat, Henry, 1961, Shallow oil and gas fields of the Texas Panhandle and Hugoton, in Oil and gas fields of the Texas and Oklahoma Panhandles: Panhandle Geol. Soc., p. 8-37, 6 figs.

Schleicher, J. A., see Ham, W. E., Mankin, C. J., and Schleicher, J. A.

Schultz, L. G., see Frezon, S. E., and Schultz, L. G.

Stewart, F. M., see Guerrero, E. T., and Stewart, F. M.

Survey, Okla. Geology Notes, vol. 21, p. 225-229, 1 pl. Description of Pennsylvanian crinoids: P. wapanucka from the Wapanucka Limestone, Pontotoc County; P. johnstomensis from the Pumpkin Creek Limestone, Johnston County; and P. atoka from the Atoka Formation, Coal County.

Tinsley, J. D., see Rogers, R. G., and Tinsley, J. D.

University of Oklahoma, Department of Business and Industrial Services, Extension Division, see University of Oklahoma, School of Geology, and others.

Watt, W. T., see Strimple, H. L., and Watkins, W. T.

Weinert, J. L., see Gutschick, R. C., Weinert, J. L., and Young, Leighton.

Wheeler, R. R., 1960, The structural map of the Midcontinent from Denver to the east Texas Gulf Coast: Robert R. Wheeler, Dallas, Texas. Scale: 1 inch = 6 miles. Central Series (consisting of 3 Sheets) covers Oklahoma from T. 24 N., southward into north Texas; Eastern Sheet extends from Oklahoma-Arkansas state line to R. 7 W.; Center Sheet extends from R. 8 W. to R. 11 ECM.; Western Sheet includes T. 1 N., Rs. 1 to 10 ECM.

Young, Leighton, see Gutschick, R. C., Weiner, J. L., and Young, Leighton.

INDEX

abnormal bedding, Savanna Sandstone and Boggy Shale, Hendricks
abstracts, research in 1961, U. S. Geological Survey (a)
Alabaster Cavern, Upper Room, Myers
ANADARKO BASIN:
borate minerals, Permian, Ham, Mankin, and Scheleicher
Cement-Chickasha area, Herrmann
deep wells, Oil and Gas Journal
‘million-dollar’ test wells, Dahlgren
Springer Formation, heavy-mineral segregation, Duane
stratigraphy: Mississippian and Devonian, Ellzy; Permian, Flowerpot through Quartermaster, Ham and Jordan; Sycamore Limestone, Culp
western part, oil and gas fields, maps, National Petroleum Bibliography (b)
ARBUCHELLE MOUNTAINS:
brachiopods, Ireland
bryozoans under study, Ham (c)
stratigraphy: Frisco and Sallisaw Formations, Amsden; pre-Des Moines, Frezon; pre-Stanley, Ham (b)
ARDMORE BASIN:
Cumberland Field, Jenny
Hartshorne Sandstone, lithologic identification, Westheimer
Springer Formation, heavy-mineral segregation, Duane
tourmaline in Pennsylvanian sediments, Lucas
ARKOMA BASIN:
abnormal bedding, Savanna Sandstone and Boggy Shale, surface study, Hendricks
Atoka Formation, sedimentation compared with Gulf Coast Plio-Miocene, Scull
bentonite in Atoka Formation, Frezon and Schultz
Carterville Field, Lahoud
drilling, costs, geology, Planalp; deep, for gas, Kornfeld; programs and problems, Bowman
field trip, Tulsa Geological Society and Fort Smith Geological Society
fossil response to low-grade metamorphism, Wilson
geosyncline, Branson (a)
Kinta gas district, Woncik (b)
oil and gas fields and recent discoveries, Rose
Red Oak gas area, McClain and Planalp
stratigraphy: Fernvale-Viola Limestones, Mairs; Hartshorne Sandstone, McDaniel; Hunton Group, England (a) (b); Pennsylvanian, Branson (d); pre-Des Moines, Frezon
symposium, University of Oklahoma, School of Geology, and others
tectonics, Diggis
Atoka Formation: bentonite, Frezon and Schultz; sedimentation, Scull
basement rocks, petrography, Craig County, Ham (a)
bentonite, Atoka Formation, Arkoma basin, Frezon and Schultz
bibliography: conodonts, Ash, Fay (b); geologic mapping in Oklahoma, 1901-1960, Branson and Jordan; Oklahoma geology, 1960, Curtis
Blaine Formation, Jordan (c)
Boggy Shale, Hendricks
Canadian River: channel sands, composition and texture, Pollack;
stream deposits and sedimentary structures, Young and Mankin
carbonates: facies, Chandler; industrial uses, Ham (d)
Carboniferous: crinoids, Strimple (f); stratigraphy, Ouachita Mountains, Laudon
cave, Upper Room of Alabaster Cavern, Myers
Cherokee Group, cyclothem, compared with Atlantic Coast sedimentation, Fischer
Chimney Rock, Woodward County, Nicholson
eclays, petrography: Ottawa County, Burwell; Wichita Mountains, Ham, Dodd, and Ray
coal mining, landscape modification, Doerr
code of stratigraphic nomenclature, review, Branson (b)
COUNTRIES:
Beaver, LPG storage, Flowerpot salt, Jordan (c); new spore genus, Felix and Burbridge
Blaine: borate minerals, Ham, Mankin, and Scheleicher; geologic map, Fay (c)
Bryan, Cumberland Field, Jenny
Caddo, Cement-Chickasha area, Herrmann
Carter: brachiopods, Ireland; carpsoid, Strimple (h); ostracodes, Levinson
Cherokee: brachiopods, Branson (h), Stehli; crinoid, Strimple (f); northeastern, surface geology, Starke
Cimarron: helium, Keyes area, Jordan (a); helium plant, Keyes, Deaton and Haynes
Cleveland: stream bar deposits, concretions, Pitt, Madeley, and
Robertson; stream deposits and sedimentary structures, Canadian River, Young and Mankin
Coal, crinoid, Strimple (e)
Comanche: cotylosaur, Warren; Wichita Mountains Seismological Observatory, Norden
Craig, igneous basement rocks, petrography, Ham (a)
Custer: borate minerals, Ham, Mankin, and Schleicher; gypsum plant, Ham (c)
Garvin, East Lindsay area, Bell, R. J.
Grady, Cement-Chickasha area, Herrmann
Grant, Wellington Formation, salt, Jordan (h)
Haskell, Kinta gas district, Woncik (b)
Hughes, central, subsurface geology, Harvey
Jackson, soil survey, Bailey and Graft
Johnston, crinoid, Strimple (b) (e)
Kay: LPG storage in Wreford Limestone, Jordan (b); Wreford Limestone, petrography, Cronoble
Kingfisher: North Okarche Field, Bado (b); oil and gas, Jordan (g); recent drilling activity, Woncik (a); Southwest Dover Field, Bado (a)
Latimer, Red Oak gas area, McClain and Planalp
Le Flore: Cartersville Field, Lahoud; Red Oak gas area, McClain and Planalp
Love: Southeast Marietta Field, Enright; Stockton Field, Reeves and Brazelton
Marshall, Cumberland Field, Jenny
McIntosh, Hoffman gas area, Hamric
Murray: brachiopods, Ireland; travertine and mosses, Wilson and Guest
Muskegee: crinoid, Strimple (d); Muskogee area, surface geology, Bell, Walton
Noble: conchostracans, Tasch (a) (b); Lake Carl Blackwell, sedimentation survey, Schreiber; Upper Wolfcampian carbonate facies, surface geology, Chandler
Okmulgee: crinoids, Strimple (c); geologic map, Oakes; Hoffman gas area, Hamric
Osage, waterflood and pressure maintenance, oil fields, Johnston and Castagno
Ottawa: clay, properties, Burwell; galena, analyses, Marshall and Joensuu
Pawnee: south-central, subsurface geology, Berryhill; Upper Wolfcampian carbonate facies, surface geology, Chandler
Payne: Lake Carl Blackwell, sedimentation survey, Schreiber; Upper Wolfcampian carbonate facies, surface geology, Chandler
Pittsburg, abnormal bedding, Savanna Sandstone and Boggy Shale, Hendricks
Pontotoc: blastoid, Reimann and Fay; crinoids, Strimple (e) (f), Strimple and Watkins; Foraminifera, Gutschick, Weiner, and Young; trilobite, Branson (g)
Pushmataha: key test well, Bike; natural gas, Jordan (e)
Seminole, brachiopod, Branson (f)
Sequoah, Frisco and Sallisaw Formations, stratigraphy, Amsden
Texas: Guymon-Hugoton gas area, Rogate; soil survey, Meinders and others
Tillman, Northwest Triune Field, original oil in place, Guerrero and Stewart
Washington, blastoid, Fay (a)
Woods: brachiopods, Branson (h), Stehli; salt, removal by ground water, Ward (b)
Woodward: Alabaster Cavern, Upper Room, Myers; Chimney Rock, Nicholson; salt, removal by ground water, Ward (b)

CRETACEOUS:
Late, paleogeographic map of distribution, Gill and Cobban southeast Oklahoma, field trip, Shreveport Geological Society
Des Moines, pre-, stratigraphy, Freson
Desmoinesian, McElroy
DEVONIAN:
Anadarko basin, Ellzey stratigraphy, Frisco and Sallisaw Formations, Amsden
ECONOMIC GEOLOGY:
clay, Ottawa County, Burwell
coal mining and landscape modification, Doerr
drilling costs, Arkoma basin, Planalp
drilling programs and problems, Arkoma basin, Bowman
gypsum plant, Ham (c)
helium, Keyes area, Jordan (a)
helium plant, Keyes, Deaton and Haynes
limestone and dolomite, industrial uses, Ham (d)
LPG storage, Jordan (i)
mineral industries, statistics, McDougal and Grandone, McDougal, Grandone, and Ham
mines and mining, statistics, Malloy
original oil in place, calculation of, Guerrero and Stewart
Ficher district, galena, analyses, Marshall and Joensuu
waterflood and pressure maintenance, Osage County, Johnston and Castagno
electric log interpretation, oil-wet rocks, Springer sands, Pirson and Fraser
Fernvale-Viola Limestones, Mairs
field trips: Arkoma basin and Ouachita Mountains, Tulsa Geological Society and Fort Smith Geological Society; southeast Oklahoma, Cretaceous, Shreveport Geological Society; Wichita Mountains, clay petrography, Ham, Dodd, and Ray
Flowerpot Shale, Jordan (c)
Frisco and Sallisaw Formations, Amsden geomorphology: cave, Myers; Chimney Rock, Nicholson; landscape modification, coal mining, Doerr
geophysics: magnetic prospecting, Cumberland Field, Jenny; Wichita Mountains Seismological Observatory, Norden
geosyncline, Arkoma basin, Branson (a)
geothermal gradients, Moses
gypsum, new plant, Ham (c)
Hartshorne Sandstone, McDaniel, Westheimer
helium, Keyes area, Jordan (a)
helium plant, Keyes, Deaton and Haynes
Hollis basin, stratigraphy, Sycamore Limestone, Culp
Hunton Group, stratigraphy, Arkoma basin, England (a) (b)

HYDROLOGY:
cave development, Myers
ground water: Leonard, Hart (b); removal of salt by, Ward (b), Ward and Leonard
salt springs, western Oklahoma, Ward (a)
surface waters, chemical analyses, Fate, Murphey, and Orth, U.S. Geological Survey (b)
surface water, supply, statistics, U.S. Geological Survey (c) (d)
water-level fluctuations, Hart (a)

Lake Carl Blackwell, sedimentation survey, Schreiber
magnetic prospecting for oil, Cumberland Field, Jenny
maps: Blaine County, geologic, Fay (c); geologic mapping in Oklahoma, bibliography and index, Branson and Jordan; oil and gas fields, National Petroleum Bibliography (a) (b), Panhandle Geological Society; Oklahoma, tectonic, Wheeler; Okmulgee County, geologic, Oakes

MIAMIETTA BASIN:
Southeast Marietta Field, Enright
Stockton Field, Reeves and Braelton
stratigraphy, Pennsylvanian, Reeves (a) (b)
mathematical probability, an oil search tool, examples in Beaver, Cimarron, and Harper Counties, Douds
metamorphism, low-grade, fossil response to, Wilson

MINERAL/MINERALOGY:
andesite tuff and dacite, Craig County, Ham (a)
bentonite, Atoka Formation, Arkoma basin, Frezon and Schultz
borates, in gypsum, Ham, Mankin, and Schleicher
channel sands, composition and texture, Canadian River, Pollack
clay: Ottawa County, Burwell; Wichita Mountains, Ham, Dodd, and Ray
galena, trace elements and crystal habit, Marshall and Joensuu
heavy mineral segregation, Springer Formation, Duane
tourmaline in Pennsylvanian sediments, Ardmore basin, Lucas
travertine, associated with mosses, Wilson and Guest
Wreford Limestone, Kay County, Cronoble
mineral industries, statistics, McDougal and Grandone, McDougal, Grandone, and Ham
mines and mining, statistics, Malloy

MISSISSIPPIAN:
brachiopods, Branson (h), Stehli
clay, Ottawa County, Burwell
crinoids, Strimple (b) (g)
Foraminifera, Gutschick, Weiner, and Young
spore genus, Felix and Burbridge
stratigraphy: Anadarko basin, Ellzey; Sycamore Limestone, Culp

ORDOVICIAN:

bryozoans under study, Ham (e)
carpoid, Strimple (h)
ostracodes, Levinson
stratigraphy: Fernvale-Viola Limestones, Mairs; North American, Patterson

OUACHITA MOUNTAINS:
field trip, Tulsa Geological Society and Fort Smith Geological Society
key test well, Bike
natural gas, Pushmataha County, Jordan (e)
oil and gas fields and recent discoveries, Rose
stratigraphy: Carboniferous, Laudon; pre-Stanley, Ham (b)
tectonics, Branman

PALEOBOTANY:
Acanthotritiletes uncinatus, Felix and Burbridge
fossil response to low-grade metamorphism, Wilson
mosses, associated with travertine, Wilson and Guest

PALEONTOLOGY:
Acrotritezia siluriana, Ireland
Agassizocrinus, Strimple (b)
Agnostastus dotti, Fay (a)
Ameura sangamonensis, Branson (g)
ammonoid, Furnish and Beghtel
Artiokreta parva, Ireland
Bairdia, Sohn
biastoids, Fay (a), Reimann and Fay
brachiopods, Branson (e) (f) (h), Ireland, Stehli
Bronaughoecirinus cherokeensis, Strimple (f)
B. figuratus, Strimple (g)
bryozoans, under study, Ham (e)
captorhinus, Warren
carpoid, Strimple (h)
cephalopod, Unklesbay
conchostracans, Tasch (a) (b)
conodonts, bibliography and index, Ash, Fay (b)
Conostichus, Branson (c)
cotylosaur, Warren
crinoids, Strimple (a) (b) (c) (d) (e) (f) (g), Strimple and Watkins
Cyclus (Loesestheria), Tasch (b)
Foraminifera, arenaceous, Gutschick, Weiner, and Young
Gactina moorefieldensis, Branson (h), Stehli
Gaestraceras venatum, Furnish and Beghtel
Hydrocerus rosei, Strimple (d)
Mantikosocrinus castus, Strimple (g)
Moorroceras normale, Unklesbay
Myeinctyrites natus, Strimple (h)
ostracodes, Levinson, Sohn
Pakistania shucherti, Branson (h), Stehli
Paradocrinus, Strimple (e)
Paragassicrinus, Strimple (a)
Pemphycycus laminatus, Tasch (a)
Polydeltoides, Reimann and Fay
Productoida, review, Branson (e)
Reticulata, Branson (f)
systemedusus, Branson (c)
Stuartwellererinia praedita, Strimple (f)
Synbathocrinus ? antiquus, Strimple and Watkins
trilobite, Branson (g)
Wewokites, Furnish and Beghtel

Paleozoic, ostracodes, Sohn

Panhandle:

helium, Keyes area, Jordan (a)
helium plant, Keyes, Deaton and Haynes
petroleum: exploration and development, Totten; gas hunt, Barby (a); Guyom-Hugoton gas area, Rogatz; maps, statistics, oil and gas fields, National Petroleum Bibliography (b), Panhandle Geological Society; mathematical probability aids exploration, examples in Panhandle, Dowds; reserves, Barby (b); statistics, Rogers and Tinsley
stratigraphy, Precambrian through Quaternary, Cunningham

tectonics, Eddieleman

Pennsylvanian:

abnormal bedding, Savanna Sandstone and Boggy Shale, Hendricks
ammonoid, Furnish and Beghtel
Atoka Formation, sedimentation compared with Gulf Coast Pli-Miocene, Scull
bentonite beds, Atoka Formation, Arkoma basin, Frezon and Schultz
blastoid, Fay (a)
brachiopod, Branson (f)
cephalopod, Unklesbay

Cherokee Group, cyclothemes compared with Atlantic Coast sedimentation, Fischer
crinoids, Strimple (a) (c) (d) (e)
geosyncline, Arkoma basin, Branson (a)

Hartshorne Sandstone, lithologic identification, Westheimer

scyphomedusan, Branson (c)

Springer Formation, heavy-mineral segregation, Duane
Springer sands, electric log interpretation, Pirson and Fraser

stratigraphy: Arkoma basin, Branson (d); Des Moines, McElroy; Hartshorne Sandstone, McDaniel; Marietta basin, Reeves (a) (b); Muskogee area, surface geology, Bell, Walton
tourmaline in Ardmore basin, Lucas

trilobite, Branson (g)

Permian:

Blaine Formation, gamma ray and lithologic logs, Jordan (e)
borate minerals, Ham, Mankin, and Schleicher
brachiopod, Branson (h), Stehli
conchostracans, Tasch (a) (b)
correlation, Hills
cotylosaur, Warren

Flowerpot Shale, gamma ray and lithologic logs, Jordan (c)
stratigraphy, Flowerpot through Quartermaster, Ham and Jordan
Upper Wolfcampian carbonate facies, surface geology, Chandler

Wellingtom Formation, salt, Jordan (h)

Wreford Limestone: electric and lithologic logs, Jordan (b); petrography, Cronoble

Petroleum:

Cartersville Field, Lahoud
Cement-Chickasha area, Herrman
Cumberland Field, magnetic prospect, Jenny
deep wells: Anadarko basin, Oil and Gas Journal; Arkoma basin, Kornfeld
drilling costs, geology, Arkoma basin, Planalp
drilling programs and problems, Arkoma basin, Bowman
East Lindsay area, Bell, R. J.
explosion and development, Panhandle, Totten
facies changes, Marietta basin, Reeves (a) (b)
fields and recent discoveries, Arkoma basin and Ouachita Mountains, Rose
gas hunt, Panhandle, Barby (a)
geothermal gradients, Moses
Guyom-Hugoton gas area, Rogatz
Hoffman gas area, Hamric
Hughes County, central, Harvey
Kingfisher County, Jordan (g), Woncik (a)

Kinta gas district, Woncik (b)

LPG storage: Wreford Limestone, Osage County, Jordan (b);
Flowerpot salt, Beaver County, Jordan (c); statistics, Jordan (i)

maps: geologic mapping in Oklahoma, bibliography and index, Branson and Jordan; oil and gas fields, National Petroleum Bibliography (a) (b), Panhandle Geological Society; mathematical probability aids exploration, examples in Beaver, Cimarron, and Harper Counties, Dowds

‘million-dollar’ test wells, Anadarko basin, Dahlgren
North Okarche Field, Bado (b)
oil-wet rocks, electric log interpretation, Springer sands, Pirson and Fraser

Oklahoma City uplift, western flank, Mississippian and Devonian stratigraphy, Ellzy

original oil in place, calculation of, Northwest Triune, Field, Guerrero and Stewart
Panhandle, Barby (a) (b)
Pawnee County, south-central, Berryhill
Pushmataha County: key test well, Bike; natural gas, Jordan (e)
Red Oak gas area, McClain and Panola
reserves, Panhandle, Barby (b)
Southeast Marietta Field, Enright
Southwest Dover Field, Bado (a)
statistics: oil and gas, Atkins, Mackey, Jordan (f), Sowers and
others; Panhandle, National Petroleum Bibliography (b),
Panhandle Geological Society, Rogers and Tinsley; natural
gas, Jordan (d)
Stockton Field, Reeves and Brazelton
stratigraphic traps, Busch
uranium, in crude oil, Hyden
waterfall and pressure maintenance, Osage County, Johnston and
Castagno

PETROLOGY:
andesite tuff and dacite, Craig County, Ham (a)
carbonate facies, Chandler
channel sands, composition and texture, Canadian River, Pollock
clay: Ottawa County, Burwell; Wichita Mountains, Ham, Dodd,
and Ray
Hartshorne Sandstone, lithologic identification, Westheimer
heavy-mineral segregation, Springer Sandstone, Duane
stream deposits and sedimentary structures, Canadian River,
Young and Mankin
tourmaline in Pennsylvanian sediments, Lucas
Wreford Limestone, Kay County, Cronoble
Picher district, Ottawa County, galena, Marshall and Joensuu
Pleistocene, travertine and mosses, Wilson and Guest
Prices Falls, travertine and mosses, Wilson and Guest
research, 1961, abstracts, U. S. Geological Survey (a)
Sallisaw and Frisco Formations, Amsden
salt: LPG storage, Beaver County, Jordan (c); removal by ground
water, Ward (b), Ward and Leonard; springs, western Oklahoma,
Ward (a); Wellington Formation, Grant County, Jordan (h)
Savanna Sandstone, Hendricks

SEDIMENTATION:
Atoka Formation, compared with Gulf Coast Plio-Miocene, Scull
channel sands, composition and texture, Canadian River, Pollack
concretions, stream bar deposits, Pitt, Madeley, and Robertson
cyclothems, Cherokee Group, compared with present Atlantic
Coast, Fischer
grain-orientation and sedimentary structures, Canadian River,
Young and Mankin
incrustation of travertine on mosses, Wilson and Guest
Lake Carl Blackwell, Schreiber
Seismological Observatory, Wichita Mountains, Norden

SILURIAN:
blastoid, Reimann and Fay
brachiopods, Ireland

crinoid, Strimple and Watkins
soil survey: Jackson County, Bailey and Graft; Texas County, Meinders
and others
Springer Formation, Duane
Stanley, pre-, stratigraphy, Ham (b)
stratigraphic traps, use of electric logs in finding, Busch

STRATIGRAPHY:
Atoka Formation, sedimentation compared with Gulf Coast Plio-
Miocene, Scull
Carboniferous, Ouachita Mountains, Laudon
Cherokee County, northeastern, surface geology, Starke
Cherokee Group, cyclothems, compared with Atlantic Coast sedi-
tmentation, Fischer
code of nomenclature, review, Branson (b)
correlation of Permian, Hills
Des Moines, north-central Oklahoma, isopach and lithofacies, Mc-
Elroy
Devonian, Anadarko basin, Ellzey
Fernvale-Viola Limestones, Arkoma basin, Mairs
Frisco and Sallisaw Formations, Sequoyah County and Arbuckle
Mountains, Amsden
Hartshorne Sandstone: Arkoma basin, McDaniell; lithologic iden-
tification, Westheimer
Hunton Group, Arkoma basin, England (a) (b)
Mississippian, Anadarko basin, Ellzey
Muskegee area, surface geology, Bell, Walton
Ordovician, North America, Patterson
Ordovician through Mississippian, East Lindsay area, Bell, R. J.
Ordovician through Pennsylvanian: Hoffman gas area, Hamric
Hughes County, Harvey
Ordovician through Permian, Pawnee County, Berryhill
Pennsylvanian: Arkoma basin, Branson (d); Marietta basin,
Reeves (a) (b)
Permian, Flowerpot through Quartermaster, Ham and Jordan
Precambrian through Quaternary, Panhandle, Cunningham
pre-Des Moines, Arkoma basin and Arbuckle Mountains, Frezon
pre-Stanley, Arbuckle-Ouachita Mountains region, Ham (b)
Sycamore Limestone, southern Oklahoma, Culp

Sycamore Limestone, Culpeper
geology: Arkoma basin, Diggs; Oklahoma, map, Wheeler; Ouachita
Mountains, Branman; Panhandle, Eddleman
Turner Falls, travertine associated with mosses, Wilson and Guest
uranium, in crude oil, Hyden
Viola and Fernvale Limestones, Mairs
waterfall, Osage County, Johnston and Castagno
Wellington Formation, Jordan (h)
Wichita Mountains:
clay petrography, Ham, Dodd, and Ray
Seismological Observatory, Norden
Wreford Limestone, Cronoble, Jordan (b)
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY

1962

Prepared by KENNETH S. JOHNSON

Bibliography—pages 51-65
Index—pages 65-74

BIBLIOGRAPHY

Adams, J. W., see Olson, J. C., and Adams, J. W.
Barghusen, Herbert, see Olson, E. C., and Barghusen, Herbert.
Barker, F. B., see Scott, R. C., and Barker, F. B.
Benson, R. H., see Gutentag, E. D., and Benson, R. H.
Boone, R. L., see Pitt, W. D., and Boone, R. L.
Bozian, C. N., see Heyl, A. V., Jr., and Bozian, C. N.
Bruns, E. R., 1962, Type specimens of two Oklahoma Mississippian brachiopods: Okla. Geol. Survey, Okla. Geology Notes, vol. 22, p. 240-244, 1 pl. Type specimens of Marginifera adaiensis and Productus cherokeesensis belong to the genera Kozlowskia and Inflata, respectively. Collected from Fayetteville Shale and Hindsville Limestone in Mayes County.
Butler, A. P., Jr., Finch, W. I., and Tвенhofel, W. S., 1962, Epigenetic

Cohen, G. V. [ch.], and others, 1961 [1962], Tectonic map of the United States, exclusive of Alaska and Hawaii: U. S. Geol. Survey and Amer. Assoc. Petroleum Geologists, scale 1:2,500,000 (approximate 1 inch to 40 miles); 2 sheets.

Conklin, D. R., see Soister, P. E., and Conklin, D. R.

Danilchik, Walter, see Hyden, H. J., and Danilchik, Walter.

Dapples, E. C., see Sloss, L. L., Dapples, E. C., and Krakmein, W. C.

Davis, G. L., see Tilton, G. R., Weatherill, G. W., and Davis, G. L.

Ellinwood, H. L., see Bell, W. C., and Ellinwood, H. L.

Finch, W. I., see Butler, A. P., Jr., Finch, W. I., and Twenhofel, W. S.

Flawn, P. T., and others, 1962, The Ouachita system: Texas Univ., Pub. 6120, 401 p., 13 figs., 15 pls., 7 tables. Interpretation of stratigraphy, tectonics, and history of the geosyncline and deformed belt from Mexico to Mississippi. Of the 15 articles, 10 of them, written by Flawn, August Goldstein, Jr., P. B. King, and C. E. Weaver, pertain to Oklahoma.

Flawn, P. T., see Goldstein, August, Jr., and Flawn, P. T.

Fleischer, Michael, 1962, Fluoride content of ground water in the conterminous United States (maximum reported value for each county): U. S. Geol. Survey, Misc. Geol. Inv. Map 1-387, scale 1:5,000,000.

Fox, Jeannette, and Sheldon, M. G., 1987, Index map of central Mid-
continent region giving lines of sections that show detailed lithology of Paleozoic and Mesozoic rocks: U. S. Geol. Survey, Oil and Gas Inv. Map OM-184, scale 1:250,000. Bibliography includes cross section in northeast Oklahoma, and several in Panhandle and Ellis County.

Glenister, B. F., see Furnish, W. M., Glenister, B. F., and Hansman, R. H.

Griffin, J. B., see Crane, H. R., and Griffin, J. B.

Haley, J. D., see Halloran, A. F., and Haley, J. D.

Ham, W. E., see McDougall, R. B., and Ham, W. E.

Hansman, R. H., see Furnish, W. M., Glenister, B. F., and Hansman, R. H.

Hedlund, R. W., see Wilson, L. R., and Hedlund, R. W.

Hendricks, T. A., see Goldstein, August, Jr., and Hendricks, T. A.

Jaster, M. C., see Rogers, C. L., and Jaster, M. C.

Jizba, K. M. M., 1962, Late Paleozoic bisaccate pollen from the United States Midcontinent area: Jour. Paleontology, vol. 36, p. 871-887, 4 pls. The following pollen reported from Wolfcampian (Permian) strata in Noble County: *Compsisporites polymorphus*, new genus, new species; *Alisporites plicatus*, new species; *Platysaccus sarensis* and *Striatites richteri*, new combinations.

Jordan, Louise, 1962a, First production in Roger Mills County, Okla-
homa: Okla. Geol. Survey, Okla. Geology Notes, vol. 22, p. 82-84, 1 fig. Discovery well in West Reynold field.

1962b, Geologic map and section of pre-Pennsylvanian rocks in Oklahoma, showing surface and subsurface distribution: Okla. Geol. Survey, Map GM-5, scale 1:750,000.

1962e, Oklahoma’s Kingfisher and Blaine Counties keep drillers interested: Oil and Gas Jour., vol. 60, no. 25 (June 18), p. 154-158, 4 figs., 2 tables.

Jordan, Louise, see Bado, J. T., and Jordan, Louise.
Kammerer, J. C., see MacKichan, K. A., and Kammerer, J. C.
King, J. E., see Norden, J. A. E., and King, J. E.
Krumbein, W. C., see Sloss, L. L., Dapples, E. C., and Krumbein, W. C.
Landis, E. R., 1962, Uranium and other trace elements in Devonian and Mississippian black shales in the central Midcontinent area: U. S. Geol. Survey, Bull. 1107-E, p. 289-336, 10 figs., 3 pls., 10 tables. In Oklahoma, 24 samples from the Woodford, Chattanooga, and Arkansas Novaculite Formations were examined.

Leach, G. W., see Burditt, M. R., and Leach, G. W.
Mankin, C. J., see Norden, J. A. E., and Mankin, C. J.
McBee, William, Jr., see Tomlinson, C. W., and McBee, William, Jr.

1962b, Zinc in the United States (exclusive of Alaska and Hawaii): U. S. Geol. Survey, Mineral Inv. Res. Map MR-19, scale 1:3,168,000 (50 miles to the inch), with 18 pages of text. Location of districts containing more than 1,000 short tons; includes Picher and Peoria fields in Ottawa County and Davis area in Murray County.

Parrish, I. S., see Finch, W. L., Parrish, I. S., and Walker, G. W. Pavlides, Louis, see Crittenden, M. D., and Pavlides, Louis.

Reimann, I. G., see Fay, R. O., and Reimann, I. G.

Robb, G. L., see Thralls, H. M., Robb, G. L., and Schisler, A. J.

Schisler, A. J., see Thralls, H. M., Robb, G. L., and Schisler, A. J.

Schoff, S. L., see Marine, I. W., and Schoff, S. L.

Sheldon, M. G., see Fox, Jeannette, and Sheldon, M. G.

Stipp, J. J., and others, 1962, University of Texas radiocarbon dates I: Radiocarbon, vol. 4, p. 43-50. Wood from Spiro site, Le Flore County, is 1144±165 years old.

--- 1962b, Crinoids from the Oologah Formation (Pennsylvanian), Tulsa County, Oklahoma: Okla. Geol. Survey, Circ. 60, 75 p., 9 pls. Fauna comprises 16 families, 33 genera, and 45 species, including one new genus and 16 new species.

--- 1962d, Endelocrinus bransoni, a new species from the Lena-

Taylor, Constance, see Branson, B. A., Taylor, John, and Taylor, Constance.

Taylor, John, see Branson, B. A., Taylor, John, and Taylor, Constance.

Twenhofel, W. S., see Butler, A. P., Jr., Finch, W. L., and Twenhofel, W. S.

Walker, G. W., see Finch, W. L., Parrish, I. S., and Walker, G. W.

Ward, P. E., see Leonard, A. R., and Ward, P. E.

Wetherill, G. W., see Tilton, G. R., Wetherill, G. W., and Davis, G. L.

Wilson, L. R., 1962a, A Permian fungus spore type from the Flowerpot

1962d. Permian plant microfossils from the Flowerpot Formation, Greer County, Oklahoma: Okla. Geol. Survey, Circ. 49, 50 p., 2 figs., 3 pls., 1 table. Description of 23 genera and 27 species of spores and pollen, of which 9 genera and 22 species are new.

Zimmerman, J. R., see Tasch, Paul, and Zimmerman, J. R.

INDEX

ANADARKO BASIN:

- Cement field, *Feust*
- Southeast Dover field, *Durham*
- Taloga-Custer City area, petroleum geology, *Slade*
- Anhydrite deposits, U. S. A., *Withington*

ARDUCKLE MOUNTAINS:

- Brachiopods, *Amsden* (a)
- Conodonts, *Harris*
- Foreland uplift of Ouachita system, *Flawn* (a)
- Isotopic dating of igneous rocks, *Tilton, Wetherill, and Davis*
- Microfossils of Sylvan Shale, *Wilson and Hedlund*
- Stratigraphy, Hunton Group, *Amsden* (b)

ARMORE BASIN:

- Pennsylvanian sediments and orogenies, *Tomlinson and McBea*

ARKOMA BASIN:

- Application of geology and geophysics, *Throoks, Robb, and Schisler*
- Foreland basin of Ouachita system, *Flawn* (a)
- Fossil response to low-grade metamorphism, *Wilson* (c)
- Photogeology, *Desjardins*
- Stratigraphy: *Fernvale-Viola, Mairs*; Ordovician through Pennsylvanian, *Frezon, Tulsa Geological Society* (a)
- Symposium, *Tulsa Geological Society* (b)
- Tectonics, *Lyons*
- Asphalt, rock, uranium content, *Bell*
- Atoka Formation, maroon shale, *Pitt and Boone* (a)

BIBLIOGRAPHIES:

- Cross sections, Midcontinent region, *Fox and Sheldon*
- Hydrology, *Riggs*
- New taxa published in Oklahoma Geology Notes, *Oklahoma Geological Survey* (c)
- North American geology, 1959, *King and others*
- Oklahoma geology, 1961, *Johnson*
- Ostracodes, *Levinson*
- Uranium and thorium, *Soister and Conklin*
- Wichita Mountains, *Halloran and Haley*

**CAMBRIAN, trilobites, *Bell and Ellinwood* CHEROKEE GROUP, organic geochemistry, *Burbank* field, *Baker*
- Cimarron salt, *Jordan* (c)
- Clay mineralogy, *Ouachita Mountains, Weaver*
- Coal balls, fossils in, *Pittsburg County, Mamay and Yochelson*
- Coal reserves, statistics, *Averitt*
- Cottonwood Limestone, paleoecology, *Laporte*
- Criner Hills, stratigraphy, *Hunton Group, Amsden* (b)
- Cross sections: eastern Palo Duco basin, *North Texas Geological Society*; Midcontinent region, *Fox and Sheldon*

COUNTRIES:

- Alfalfa, Mississippian stratigraphy, *Thornton*
- Atoka: Lane NE quadrangle, surface geology, *Krivanek*; maroon shale in Atoka Formation, *Pitt and Boone* (a); siliceous shale in Tenmile Creek Formation, *Pitt and Boone* (b)
- Beaver: ground-water resources, *Marine and Scholff*; LPG storage, *Jordan* (c); ostracodes, *Guttenag and Benson*; soil survey, *Allgood and others*
- Blaine: economic geology and petrology of gypsum and anhydrite, *Ham*; geophysical and geochemical study of Blaine Formation, *Norden and Mankin*; petroleum geology, *Bado and Jordan, Jordan* (e); stratigraphy and general geology, *Fay*
- Caddo: Cement field, *Feust*; Pleistocene pelecypods and gastropods, *Branon, Taylor, and Taylor*
- Canadian, Pleistocene, pelecypods and gastropods, *Branon, Taylor, and Taylor*
- Carter: conodonts, *Harris*; Dolman Member of Hoxbar Formation, type section, *Frederickson* (a); Joiner City field, *Heilmann*; ostracodes, *Sohn* (b)
- Cherokee, microcrinoids, *Strimple* (f)
- Cleveland: geophysical detection of faults, *South Norman field, Norden, King, and McDaniel*; vertebrate fossils, *Olson* (c)
Coal, manganese deposits, Crittenden and Pavilides
Comanche: thorium and zircon crystals, Olson and Adams; titanium deposits, Rogers and Jaster
Craig, crinoids, Strimple (a) (j)
Custer, Taloga-Custer City area, petroleum geology, Slate
Delaware, radiocarbon dating, Crane and Griffin (b)
Dewey, Taloga-Custer City area, petroleum geology, Slate
Garfield, Mississippian stratigraphy, McDuffie
Gravin: East Pauls Valley area, petroleum geology, Young; radiocarbon dating, Crane and Griffin (b)
Grady, Chitwood field, Jordan (d)
Grant, Mississippian stratigraphy, Thornton
Greer, spores, Wilson (a), and pollen, Wilson (d)
Harper, ostracodes, Gutentag and Benson
Johnston: brachiopods, Amsden (a); cephalopod, Flower; manganese deposit, Crittenden and Pavilides
Kay, insects, Tasch and Zimmerman
Kingfisher: Mississippian stratigraphy, Rowland; petroleum geology, Jordan (e); soil survey, Fisher and others; Southeast Dover field, Bade; Southeast Lincoln field, Durham; vertebrate fossils, Olson and Barghusen.
Kiowa, titanium deposits, Rogers and Jaster
Le Flore: radiocarbon dating, Crane and Griffin (a) (b), Stipp and others; vanadium deposit, Fischer
Lincoln, geophysical detection of faults, South Parks field, Norden and King
Logan, Mississippian stratigraphy, Rowland
Love: coral, Frederickson (e); crinoids, Strimple (g); ostracodes, Sohn (b)
Mayes, brachiopods, Branson (g)
McCurtain, manganese deposits, Crittenden and Pavilides
Murray: cephalopod, Gordon; zinc deposits, Heyl and Bozian, McKnight, Newman, and Heyl (b)
Muskogee: blastoid, Fay and Reimmann (a); cephalopod, Quinn, McCaleb, and Webb; radiocarbon dating, Crane and Griffin (b)
Noble: conchostracans, Tasch; insects, Tasch and Zimmerman; Mississippian stratigraphy, McDuffie; pollen, Jizba
Nowata: crinoid, Strimple (d); uranium, Vine
Okfuskee, pelycopod, Branson (f)
Okmulgee: crinoids, Branson (a); echinoderm, Carini
Osage: brachiopods, Branson (c); Burbank field, Baker; crinoids, Strimple (c)
Ottawa: geothermometry in Miami-Picher district, Schmidt; lead deposit, McKnight, Newman, and Heyl (a); zinc deposit, McKnight, Newman, and Heyl (b)
Pawnee, soil survey, Galloway
Pittsburg, fossils in coal balls, Mamay and Yochelson
Pontotoc: blastoid, Fay and Reimmann (b); cephalopods, Quinn (a) (b); chiton, Frederickson (b)
Pushmataha, Lane NE quadrangle, surface geology, Krivanek
Roger Mills: fossil sinkhole, Myers (a); West Reydon field, Jordan (a)
Sequoah, Silurian and Early Devonian strata, Amsden (b)
Tulsa, crinoids, Strimple (b)
Wagoner, radiocarbon dating, Crane and Griffin (b)
Washington, crinoids, Strimple (e)
Woods, Mississippian stratigraphy, Thornton

DEVONIAN:

brachiopods, Amsden (a)
carbonate rocks, Amsden (b)
Hunt Group, Boucot, Shannon (a) (b)
uranium in black shales, Landis
eastern Palo Duro basin, cross section, North Texas Geological Society

ECONOMIC GEOLOGY:
coal reserves, statistics, Averitt
gypsum and anhydrite: Blaine County, Ham; U. S. A., Withington
lead deposits in U. S. A., McKnight, Newman, and Heyl (a)
manganese deposits in U. S. A., Crittenden and Pavilides
mineral industries, statistics, McDougal (a) (b), McDougal and Ham
thorium and rare earths in U. S. A., Olson and Adams
titanium deposits in U. S. A., Rogers and Jaster
uranium: deposits in U. S. A., Butler, Finch, and Twenhofel, Finch, Parrish, and Walker, Schnabel; in black shales, Landis, Swanson; in coaly carbonateous rocks, Vine; in Pennsylvanian rocks, Hyden and Danilchik; in petroleum and rock asphalt, Bell
vanadium deposits in U. S. A., Fischer
zinc deposits in U. S. A., Heyl and Bozian, McKnight, Newman, and Heyl (b)
evolution, vertebrate, related to changing food habits, Olson (a)
Fernvale and Viola Formations, Arkoma basin, Mairs
Flowerpot Formation: spores and pollen, Greer County, Wilson (d); vertebrates, Kingfisher County, Olson and Barghusen
geochemistry: Blaine Formation, Norden and Mankin; organic, Baker; thanadrite in gypsum, Mankin
geomorphology: fossil sinkhole, Myers (a); Washita River watershed, Ross
geochronology: Arkoma basin, Thralls, Robb, and Schisler, and Ouchita Mountains, Lyons; Cement field, Faust; detection of faults, Norden and King, Norden, King, and McDaniel; magnetic susceptibility in Blaine Formation, Norden and Mankin
geothermometry, liquid-inclusion, Miami-Picher district, Schmidt
gypsum deposits, U. S. A., Withington
Hopetone Formation, Dolman Member, Frederickson (a)
Hunt Group, Amsden (b), Boucot, Shannon (a) (b)

HYDROLOGY:

bibliography, Riggs
distinction between oil-field and salt-spring brines, Leonard and Ward

[67] [68]
ground and surface water used, U. S. A., statistics, MacKichan and Kammerer
ground water: Beaver County, Marine and Schoff; fluoride content, Fleischer; uranium and radium content, Scott and Barker
surface water: chemical analyses, United States Geological Survey (a); supply, statistics, United States Geological Survey (b)
water-surface area and evaporation rates, Meyers
igneous activity, Ouachita Mountains, Flawn (b)

ISOPTIC DATING OF IGNEOUS ROCKS, Wichita and Arbuckle Mountains,
Tilton, Wetherill, and Davis
lead deposits, U. S. A., McKnight, Newman, and Heyl (a)
lithofacies maps, Sloss, Dapples, and Krumbein
manganese deposits, U. S. A., Crittenden and Pavides
MAIL:
fluoride content of ground water, U. S. A., Fleischer
gypsum and anhydrite, U. S. A., Withington
index to cross sections, Midcontinent region, Fox and Sheldon
lead deposits, U. S. A., McKnight, Newman, and Heyl (a)
lithofacies, Sloss, Dapples, and Krumbein
manganese deposits, U. S. A., Crittenden and Pavides

paleogeologic, Levorsen
pre-Pennsylvanian rocks in Oklahoma, Jordan (b)
tectonic, U. S. A., Cohee and others
thorium and rare earths, U. S. A., Olson and Adams
titanium deposits, U. S. A., Rogers and Jaster
uranium deposits, U. S. A., Butler, Finch, and Twenhofel, Finch, Parrish, and Walker, Schnabel
vanadium deposits, U. S. A., S. A., Fischer
zinc deposits, U. S. A., McKnight, Newman, and Heyl (b)
metamorphism: low-grade, fossil response to, Wilson (c); Ouachita Mountains, Flawn (d)
mineral industries, statistics, McDougal (a) (b), McDougal and Ham

MINERAL/MINERALOGY:
Blaine Formation, Norden and Mankin
clays, Ouachita Mountains, Weaver
g eo thermometry, liquid-inclusion, Schmidt
gypsum and anhydrite, Ham
thenardite in gypsum, Mankin

MISSISSIPPIAN:
brachiopods, Branson (g)
cephalopods, Gordon
crinoids, Strimple (a) (j)
microcrinoids, Strimple (f)
siliceous shale in Tennmile Creek Formation, Pitt and Boone (b)
stratigraphy: Anadarko basin, Gibbons, McDuffie, Rowland, Thornton; Ouachita Mountains, Goldstein and Hendricks, Krivanek
uranium in black shales, Landis
Muenster arch, foreland uplift of Ouachita system, Flawn (a)
Oologah Formation, crinoids, Strimple (b)

ORDOVICIAN:
cephalopods, Flower
conodonts, Harris
microfossils, Wilson and Hedlund
stratigraphy, Fernvale-Viola, Mairs

OUACHITA MOUNTAINS:
basins and uplifts north of, Flawn (a)
clay mineralogy, Weaver
economic possibilities, Goldstein and Flawn
igneous activity, Flawn (b)
maroon shale in Atoka Formation, Pitt and Boone (a)
metamorphism, Flawn (d)
Ouachita system: regional, general statements, Flawn (c); symposium, Flawn and others
sileceous shale in Tennmile Creek Formation, Pitt and Boone (b)
stratigraphy: Cambrian (?) through Pennsylvanian, Flawn (f), Goldstein; Late Mississippian and Pennsylvanian, Goldstein and Hendricks; Ordovician through Mississippian, Tulsa Geological Society (a)
structure, Goldstein
surface geology, Lane NE quadrangle, Krivanek
tectonics, Flawn (e), King, P. B., Lyons

Ozark uplift, foreland uplift of Ouachita system, Flawn (a)

PALEOBOTANY:
bisaccate pollen, Permian, Jizba
fossil response to low-grade metamorphism, Wilson (c)
fossils in coal beds, Mamay and Yochelson
history of Oklahoma's vegetation, Wilson (b)
microfossils, Sylvan Shale, Wilson and Hedlund
Reduviaporonites catenatus, Wilson (a)
spores and pollen, Permian, Greer County, Wilson (d)
paleoecology, Cottonwood Limestone, Permian, Laporte
paleoecologic maps, Leversen

PALEONTOLOGY:
Agassizicrinus globosus, Strimple (a)
Bemaspis, Bell and Ellinwood
Berna, Bell and Ellinwood
blastoids, Fay and Reimann (a) (b)
brachiopods, Amsden (a), Branson (e) (g)
Brachycycloceratidae, nautiloid family, Furnish, Glenister, and Hansman
Caddo Local Fauna, Pleistocene, Branson, Taylor, and Taylor
Captorhinikos chozaenis, Olson (c)
cephalopods, Branson (b), Furnish, Glenister, and Hansman, Flower, Gordon, Quinn (a) (b), Quinn, McCaleb, and Webb, Unklesbay
chiton, Frederickson (b)
Columnell ellipticus, Strimple (g)
C. quadrangulatus, Strimple (g)
conchostracans, Tasch

[69] [70]
conodonts, *Harris*
coral, *Frederickson* (c)
Coryelliina capax, *Sohn* (b)
C. intermedia, *Sohn* (b)
crinoids, *Branson* (a), *Strimple* (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
Cryphiocrinus bouderi, *Strimple* (a)
Delocerinus brownvillensis, *Strimple* (c)
D. ponderosus, *Strimple* (c)
Ecdycera expansum, *Flower*
Echinaria moorei, *Branson* (c)
echinoderms, *Carini*
Endocerinus brensoni, *Strimple* (d)
Ethelocerinus texensis, *Strimple* (b)
Eumorphoceras reticula, *Quinn*, *McCabe*, and *Webb*
fossils in coal balls, *Manay and Yochelson*
gastropods, *Branson*, *Taylor*, and *Taylor*
Goniactites multiliratus, *Gordon*
Graphioicrinus stantoniensis, *Strimple* (e)
Helminthochiton riddelli, *Frederickson* (b)
insects, Tasch and Zimmerman
Linnadiopsisolea noblesis, *Tasch*
Meeria, Bell and Ellinwood
Metacarmocerinus oklahomensis, *Strimple* (b)
microcrinoids, Strimple (f)
new taxa published in Oklahoma Geology Notes, Oklahoma Geologic Survey (c)
ostracodes, *Gutentag and Benson, Sohn* (a) (b), *bibliography, Levinson*
Paleolimnadiops carpenteiri, *Tasch*
pelecypods, Branson, Taylor, and Taylor, Branson (f)
Pentremites rusticus, Fay and Reimann (a)
Polydeltoides endosatus, Fay and Reimann (b)
radiocarbon dates of fossils, *Crane and Griffin* (a)
Schizodus insignis, Branson (f)
Sylvan Shale fauna, Arbuckle Mountains, Wilson and Hedland
Syringopora multatenuata, Frederickson (c)
Tarachiocerinus, Strimple (i)
Thalattoocanthus connusus, Carini
Tholacrinus, Strimple (j)
trilobites, Bell and Ellinwood
vertebrates, Olson (a) (b) (c), *Olson and Barghusen*
Wewokites venatus, Branson (b)
Zeacrinites peculiaris, Strimple (j)
Paleozoic: ostracodes, Sohn (a); stratigraphy, *Arkoma basin, Frezon*
Panhandle, stratigraphy, Pennsylvanian and Permian, Rascoe

Pennsylvanian:
blastoid, *Fay and Reimann* (a)
cephalopods, *Branson* (b), *Furnish, Glenister, and Hansman*, *Quinn* (a) (b), *Quinn, McCabe, and Webb, Unklesbay*

Cherokee Group, organic geochemistry, Baker
chiton, Frederickson (b)
coral, *Frederickson* (c)
crinoids, *Branson* (a), *Strimple* (b) (c) (d) (e) (g) (h)
Delman Member of Hoxbar Formation, Frederickson (a)
echinoderms, *Carini*
fossils in coal balls, *Manay and Yochelson*
marroon shale in Atoka Formation, *Pitt and Boone* (a)
ostracodes, *Sohn* (b)
pelecypod, Branson (f)
pre-, rocks in Oklahoma, map, Jordan (b)
sediments and orogensies, *Ardmore basin, Tomlinson and McBeek*
stratigraph: Anadarko basin, Gibbons, and Panhandle, Rascoe; Midcontinent, Branson (e); *Ouachita Mountains, Goldstein and Hendricks, Krivanek*
symposium, *Branson* (d)
uranium, *Hyden and Danilchik, Vine*

Permian:
Blaine Formation: geophysical and geochemical study, Norden and Mankin; petrology, Ham
brachiopods, *Branson* (c)
Cimarron salt, Jordan (c)
conchostracans, Tasch
Cottonwood Limestone, paleoecology, Laporte
fossil sinkhole in Doxy Formation, *Myers* (a)
ground water, *Beafer County, Marine and Schoff*
insects, *Tasch and Zimmerman*
pollen, *Jizba, Wilson* (d)
salt, potential storage of radioactive waste materials, Pierce and Rich
spores, Wilson (a) (d)
stratigraphy: Anadarko basin and Panhandle, Rascoe; Beaver County, Marine and Schoff; Blaine County, Fay
thenardite in gypsum, Mankin
vertebrates, Olson (a) (b) (c), *Olson and Barghusen*
Whitehorse Group, Tait and others

Petroleum:
Anadarko basin: northeast flank, McDuffie, Rowland, Thornton; north flank, Gibbons
Blaine County, Bado and Jordan, and Kingfisher County, Jordan (e)
Burbank field, organic geochemistry, Baker
Cement field, Faust
Chitwood field, Oklahoma's deepest production, Jordan (d)
East Pauls Valley area, Young
index to cross sections, Midcontinent region, Fox and Sheldon
Joiner City field, Hellman
Kingfisher and Blaine Counties, Jordan (e)
LPG storage, Jordan (c)
natural-gas storage, *Jordan* (g)
organic geochemistry, Burbank field, Baker
Ouachita Mountains, economic possibilities, Goldstein and Flawn
Southeast Dover field, Bado
Southeast Lincoln field, Durham
South Norman field, Norden, King, and McDaniel
South Sparks field, Norden and King
statistics, oil and gas, Atkins, Jordan (f), Mackey, Sowers and others, Panhandle, Burditt and Leach
Taloga-Custer City area, Slate
uranium content, Bell
West Reydon field, Jordan (a)

petrology/petrography: Cambrian (?) through Pennsylvanian strata, Ouachita Mountains, Flawn and others; liquid-inclusion thermometry, Schmidt; gypsum and anhydrite, Ham
photogeology, Arkoma basin, Desjardins

PLEISTOCENE:
Blaine County, Fay
ostracods, Guttenag and Benson
pelceyopods and gastropods, Branson, Taylor, and Taylor
stream channel in northwestern Oklahoma, Myers (b)

PRECAMBRIAN, isotopic dating of igneous rocks, Arbuckle Mountains, Tilton, Wetherill, and Davis

pre-Pennsylvaniaian rocks in Oklahoma, map, Jordan (b)
radioactive waste material, storage in salt beds, Pierce and Rich
radiocarbon dating, Crane and Griffin (a) (b), Stipp and others
radium, in ground water, U. S. A., Scott and Barker

RECENT, radiocarbon dating, Crane and Griffin (a) (b), Stipp and others

QUATERNARY, ground water, Beaver County, Marine and Schoff
salt: distinction between oil-field and salt-springs brines, Leonard and Ward; LPG storage in, Jordan (e); potential storage of radioactive waste material, Pierce and Rich

SILURIAN:
blastoid, Fay and Reimann (b)
carbonate rocks, Amsden (b)
Hunton Group, Boucot, Shannon (a) (b)
sinkhole, Roger Mills County, Myers (a)

soil surveys: Beaver County, Allgood and others; Kingfisher County, Fisher and others; Pawnee County, Galloway

STRATIGRAPHY:
Atoka Formation, maroon shale, Pitt and Boone (a)
Cambrian (?) through Pennsylvanian, Ouachita Mountains, Flawn (f), Goldstein

Devonian, Early, and Silurian, Amsden (b)
Dolman Member of Hoxbar Formation, Frederickson (a)
Fernvale-Viola, Arkoma basin, Mairs
Hunton Group, Boucot, Shannon (a) (b)
Mississippian, Anadarko basin, McDuffie, Rowland, Thornton
Mississippian and Pennsylvanian: Anadarko basin, Gibbons; Ouachita Mountains, Goldstein and Hendricks, Krivanek

Ordovician through Mississippian, Ouachita Mountains, Tulsa Geological Society (a)
Ordovician through Pennsylvanian: Arkoma basin, Frezon, Tulsa Geological Society (a); Joiner City field, Hillman; Southeast Lincoln field, Durham; Taloga-Custer City area, Slate
Ordovician through Permian: Blaine County, Bado and Jordan;
East Pauls Valley area, Young
Pennsylvaniaian: Ardmore basin, Tomlinson and McBee; Midcontinent, Branson (e)
Pennsylvaniaian and Permian, Anadarko basin and Panhandle, Rascoe
Permian: Beaver County, Marine and Schoff; Blaine County, Fay
Pleistocene: Blaine County, Fay; northwestern Oklahoma, Myers (b)

Precordillar through Permian, eastern Palo Duro basin, North Texas Geological Society
Silurian and Early Devonian, Amsden (b)
Tenmile Creek Formation, siliceous shale, Pitt and Boone (b)
Whitehorse Group, Tait and others

Sylvan Shale, microfossils, Wilson and Hedlund

TECTONICS:
Ardmore basin, Tomlinson and McBee
Arkoma basin and Ouachita Mountains, Lyons
basins and uplifts north of Ouachita system, Flawn (a)
map of U. S. A., Cohee and others

Ouachita Mountains, Flawn (e), King, P. B.

Tenmile Creek Formation, siliceous shale, Pitt and Boone (b)

TERTIARY, ground water, Beaver County, Marine and Schoff

thorium: bibliography, Soister and Conklin; deposits, U. S. A., Olson

and Adams

titanium deposits, U. S. A., Rogers and Jaster

URANIUM:
bibliography, Soister and Conklin
deposits in U. S. A., Butler, Finch, and Twenhofel, Finch, Parrish, and Walker, Schnabel
in black shales, Landis, Swanson
in coaly carbonaceous rocks, Vine
in ground water, U. S. A., Scott and Barker
in Pennsylvanian rocks, Hyden and Danilechik
in petroleum and rock asphalt, Bell
vanadium deposits, U. S. A., Fischer
Washtena River watershed, geology and geomorphology, Ross

WICHITA MOUNTAINS:
bibliography, Halloran and Haley
isotopic dating of igneous rocks, Tilton, Wetherill, and Davis
thorium and zoned zircon crystals, Olson and Adams
titanium deposits, Rogers and Jaster
zinc deposits, U. S. A., Heyl and Bozian, McKnight, Newman, and Heyl (b)
zircon crystals, Comanche County, Olson and Adams
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY

1963

Prepared by Kenneth S. Johnson

Bibliography—39-52
Index—52-60

BIBLIOGRAPHY

Bolles, J. P. F., Jr., see Mackey, F. L., and Bowles, J. P. F., Jr.

Bozian, C. N., see Heyl, A. V., and Bozian, C. N.

Bradt, Robert, see McGinnes, Douglas, and Bradt, Robert.

——— 1963d, Type species of Edestus Leidy: Okla. Geol. Survey, Okla. Geology Notes, vol. 23, p. 275-280, 3 figs. E. torax, fragment of Pennsylvanian shark originally believed to have been found at a Muskogee County locality, now thought to be from Illinois.

Briggs, Garrett, see Agerberg, F. P., and Briggs, Garrett.

Bromery, R. W., see Andreassen, G. E., and Bromery, R. W.

Brooks, R. P., Jr., 1963, Ira Rinehart’s reference book, Arkoma basin exploration [vol. 2], Oklahoma: Dallas, Rinehart Oil News Company, 275 p., illus. Geological, production, and exploration data concerning the basin developments. Sections on geology and production were not issued initially, but are forthcoming.

Buck, K. L., see Cannon, R. S., Jr., Buck, K. L., and Pierce, A. P.

Craner, H. H., and Griffin, J. B., 1963, University of Michigan radiocarbon dates VIII: Radiocarbon, vol. 5, p. 228-253. Conch shell fragments from Spiro site, Le Flore County, are 550\(\pm\)75 years old; charcoal from three levels at Harlan site, Cherokee County, range from 610 to 820 years old.

Davis, L. V., see Tanaka, H. H., and Davis, L. V.

Dodd, C. G., see Mankin, C. J., and Dodd, C. G.

vol. 11, p. 211-224, 6 tables. Study of 11 soil profiles developed on Pennsylvanian and Permian strata in eastern and central Oklahoma.

Griffin, J. B., see Crane, H. R., and Griffin, J. B.

Ham, W. E., see McDougall, R. B., and Ham, W. E.

Henderson, E. P., see Roy, S. K., Glass, J. J., and Henderson, E. P.

Henderson, J. R., see Keller, Fred, Jr., and Henderson, J. R.

Henson, O. G., see Burgess, D. L., Nichols, J. D., and Henson, O. G.

Hoskinson, A. J., see Cook, K. L., Hoskinson, A. J., and Shelton, G. R.

Huang, W. T., leader, 1962, Precambrian igneous rocks of the Wichita Mountains, Oklahoma: Texas Christian Univ. and Baylor Geol. Soc. (Field Trip Guidebook), Mar. 3-4, 1962, Waco, Texas, 27 p., 4 figs., 1 pl., 3 tables.

Humphrey, J. E., see Huffman, G. G., Cathey, T. A., and Humphrey J. E.

Kinnering, Russell, see Chandler, J. B., Kinnering, Russell, and Massey, D. S.

Leonard, A. B., see Frye, J. C., and Leonard, A. B.

Little, C. B., see Sharp, W. R., and Little, C. B., also Epperson, C. M., and Little, C. B.

Lynne, R. D., see Roark, J. J.

Malley, J. M., see Padgett, Ward, and Malley, J. M.

Mankin, C. J., see Cronk, W. R., and Mankin, C. J.

Massey, D. S., see Chandler, J. B., Kinningham, Russell, and Massey, D. S.

Matthews, T. A., 1963, The South Burbank unit—a comparison of oil recoveries by various type drives: Jour. Petroleum Technology, vol. 15, no. 11 (Nov.), p. 1180-1182, 4 figs. Gas injection and water flooding have both been used to develop reservoir in Osage County.

Merrill, G. K., 1963, Polygnathodella Harlton, 1933, or Idiognathoides Harris & Hollingworth, 1933?: Jour. Paleontology, vol. 37, p. 504-505. The Pennsylvania conodont Idiognathoids is a junior synonym of Cavaugnathus, not of Polygnathoida as has been previously assumed.

Merritt, C. A., see Branson, C. C., and Merritt, C. A.

Miller, R. D., see Munnery, R. D., and Miller, R. D.

Reed, L. W., see Gray, Fenton, Reed, L. W., and Moltchan, H. D.

Reesman, A. L., see Keller, W. D., and Reesman, A. L.

Rowett, C. L., 1963, Wapanucka-Atoka contact in the eastern and northeastern Arbuckle Mountains, Oklahoma: Okla. Geol. Survey,

Scott, H. W., see Lundin, Robert, and Scott, H. W.

Seilacher, Adolf, 1963, Umbelung und Rolletransport von Cephalopoden-Gehäusen: Neues Jahrbuch Geologie und Paläontologie, Monatshefte, no. 11, p. 593-615, 9 figs. Includes discussion of impact marks left in Johns Valley Shale (Ouachita Mountains) by corroded goniatite shells carried in turbidity currents.

Sheldon, M. G., see Adkison, W. L., and Sheldon, M. G.

Shelton, G. R., see Cook, K. L., Hoskinson, A. J., and Shelton, G. R.

Stacy, B. L., see Wood, P. R., and Stacy, B. L.

Geology Notes, vol. 23, p. 101-107, 4 figs., 1 pl. D. aulicus; new crinoid species from Mississippian Fayetteville Formation, Craig County.

Sullivan, C. W., see Bergman, D. L., and Sullivan, C. W.

Sykes, H. A., see Reddy, H. J., and Sykes, H. A.

Urban, J. B., see Wilson, L. R., and Urban, J. B.
Venkatachala, B. S., see Wilson, L. R., and Venkatachala, B. S.
Ventress, W. P. S., see Amsden, T. W., and Ventress, W. P. S.
Vosburg, D. L., see Jordan, Louise, and Vosburg, D. L.
Wessman, H. G., see Cramer, R. D., Gatlin, Leroy, and Wessman, H. G. [eds.].
Westphal, J. A., see Tucker, P. M., and Westphal, J. A.
William, H. B., see Templeton, J. S., and Willman, H. B.

Wong, John, 1962 [1963], Kinta gas field, Haskell County, Oklahoma, in Tulsa Geological Society, Symposium on natural gas in

INDEX

ANADARCO BASIN:
Carver-Knox field, Ready and Sykes
Endicott sand, Ellis County, Winter
Laverne gas area, Patel
Lenora field, Gatlin
Permian salt and associated evaporites, Jordan and Vosburg
petroleum, Cramer, Gatlin, and Wessman
salt, El Reno Group, Johnson (c)
south flank, frontal Wichita fault system, Hariton
well-surface descriptions, Adkison and Sheldon

ARBuckle MOUNTAINS:
brachiopods, Amsden (c), Amsden and Ventress
field trip, Ham (a)
gelogic history, Ham (b)
oolites and algal aggregates, petrology, Schramm
Ordovician beds correlated with Illinois section, Templeton and Willman
stratigraphy, Silurian, Amsden (b)
Wapanucka-Atoka contact, Rowett

ARKoMA BASIN:
drilling problems, McLenor
Kinta field, Wong
logging and interpretation techniques, Irwin
petroleum, Cramer, Gatlin, and Wessman, Brooks
Red Oak-Norris field, Six
statistical analysis of ripple marks, Agterberg and Briggs
Atokan rocks, Arkoma basin, statistical analysis of ripple marks, Agterberg and Briggs
Atoka-Wapanucka contact, Arbuckle Mountains, Rowett
Beavers Bend State Park, Pitt and others

BIBLIOGRAPHIES:
clays, U. S. A., Mark
conodonts, Ellison
hydrology, Riggs
natural gas in Oklahoma, Cramer
new taxa published in Oklahoma Geology Notes, *Oklahoma Ge-logical Survey* (c)

Oklahoma geology, 1962, *Johnson* (a)

Blaine Formation, stratigraphy, southwestern Oklahoma, *Pendery*

brine well, Beckham County, *Johnson* (b)

CAMBRIAN:

Wichita Mountains, *Huang*
Wichita and Arbuckle Mountains, *Ham* (a)

clays: formation and accumulation in soils, *Gray, Reed, and Molthan*;
high-alumina kaolinitic, bibliography, *Mark*; reference illite,
Ouachita Mountains, *Mankin and Dodd*
coal bed, igneous cobble in, *Branson and Merritt*

Coffeyville Formation: genesis of limestones, *Cronoble and Mankin*;
limestone buildups, *Cronoble*

COUNTIES:

Adair: magnetic delineation of basement surface, *Norden and Langton* (a); magnetic profile across Watts reef, *Norden, Langton, and Hancock*
Beaver: camel, *Hibbard*; Laverne gas area, *Pate*; petroleum production, *Epperson and Little*
Beckham, salt, *Johnson* (b) (c)
Caddo: ground-water resources, Rush Springs Sandstone, *Tanaka and Davis*; Pond Creek basin, hydrology, *Clark*; radiocarbon dating, *Chandler, Kinningham, and Massey*
Carter, fracture-treatment log, *Dunlap* (a)
Cherokee: magnetic profile of basement, *Norden and Langton* (b); radiocarbon dating, *Crane and Griffin*
Cimarron: petroleum production, *McGinness and Brandt*; sporo-morphs, *Potter*
Cleveland, South Norman area, petroleum, *McDaniel*
Cotton, meteorite, *Roy, Glass, and Henderson*
Craig, crinoid, *Strimple* (c)
Dewey, Lenora field, *Gatlin*
Ellis, Endicott sand, subsurface, *Winter*
Garvin, Purdy field, *Dunlap* (b)
Grady: Carter-Knox field, *Reedy and Sykes*; Southeast Bradley field, *Dunlap* (b)
Harmon, salt deposits, *Ward*
Harper, Laverne gas area, *Pate*
Haskell, Kiota field, *Wonick*
Latimer: Red Oak-Norris field, *Six*; Sinclair No. 1 Reneau, *Unruh*
Le Flore: igneous cobble in coal bed, *Branson and Merritt*; radiocarbon dating, *Crane and Griffin*; Red Oak-Norris field, *Six*; surface geology, Ouachita Mountains, *O. D. Hart, Seely*
Logan, natural-gas storage, *Wallace*
McClain, South Norman area, petroleum, *McDaniel*
McCurtain: Beavers Bend State Park, *Pitt and others*; reference illite, *Mankin and Dodd*; thickness variation in Mazarn-Womble Shales, *Pitt*
Murray: ostracodes, *Lundin and Scott*; palynomorph, *Wilson and Urban*
Muskogee, shark fragment, *Branson* (d)
Nowata, Coffeyville and Hogshooter Formations, *Cronoble, Cronoble and Mankin*
Okmulgee: surface geology and stratigraphy, *Oakes*; water resources, *Motts*
Osage: crinoid, *Strimple* (a); South Burbank unit, *Matthews*
Ottawa: aeromagnetic map, *Keller and Henderson*; lead-isotope study of galena, *Cannon, Buck, and Pierce*
Pawnee, petroleum geology, *Clare*
Ponotoc: hystrichospherid, *Eisenack*; silicified wood, *Wilson* (b); trilobite, *Hessler*
Roger Mills: recent channel changes in Sandstone Creek, *Bergman and Sullivan*; soil survey, *Burgess, Nichols, and Henson*
Rogers, spores, *Wilson and Venkatachala* (b)
Sequoyah, brachiopods, *Amsden* (a), *Amsden and Ventress*
Stephens, Carter-Knox field, *Reedy and Sykes*
Texas, petroleum production, *Sharp and Little*
Tillman, Trimble-Frederick area, petroleum, *Helton*
Tulsa, spores, *Wilson and Venkatachala* (c)
Washington, Coffeyville and Hogshooter Formations, *Cronoble, Cronoble and Mankin*
Washita, salt in El Reno Group, *Johnson* (c)
Woods, Northeast Waynoka field, *Barby*
Woodward, geology and ground-water resources, *Wood and Stacy craton, North American, rock stratigraphic units, Sloss*

CRETACEOUS:

deposition and paleoentatics, Gulf Coast area, *Fogtson*
Foraminifera, *Maslakova*
sporomorphs, *Potter*
cyclothem, Pennsylvanian, Midcontinent, *Wanless and others*
Desmoinesian rocks, Arkoma basin, statistical analysis of ripple marks, *Agerberg and Briggs*

DEVONIAN:

brachiopods, *Amsden* (a) (c), *Amsden and Ventress*
crinoids, *Strimple* (b)
ostracodes, *Lundin and Scott*
palynomorph, *Wilson and Urban*
eastern Palo Duro basin: petroleum, *Laing* (b); seismic problems and profiles, *Laing* (a); Trimble-Frederick area, petroleum, *Helton*

ECONOMIC GEOLOGY:

mineral industries, statistics, *McDougall* (a) (b), *McDougall and Ham*
mines and mining, statistics, *Padgett and Malloy*
salt: brine-well production, *Johnson* (b); western Oklahoma, *Jordan and Vosburg*
zinc, Tri-State area, *Heyl and Bozian*
El Reno Group, salt, Elk City area, Johnson (c)
Endicott sand, computer study of, Ellis County, Winter
field trips: Wichita Mountains, Huang; Wichita and Arbuckle Mountains, Ham (a)
Flowerpot Shale, salt, Ward
fracture orientation and rock stresses, south-central Oklahoma, Dunlap (b)
Frisco Formation, brachiopods, Amsden and Venetress
galena, lead-isotope study, Cannon, Buck, and Pierce
gems and minerals of Oklahoma, Gilmore
géologie history of Oklahoma, outline, Barrett, Myers
géomorphology, recent channel changes in Sandstone Creek, Bergman and Sullivan

GEOPHYSICS:
aeromagnetic map, Tri-State area, Keller and Henderson
gravity survey, northeastern Oklahoma, Cook, Hoskinson, and Shilton
magnetic delineation of basement surface, Norden and Langton (a)
magnetic profiles: basement configuration, Norden and Langton (b); Watts reef, Norden, Langton, and Hancock
seismic problems and profiles, eastern Palo Duro basin, Laing (a)
seisomorph profiles near Tulsa, Roark, Tucker and Westphal
total-intensity aeromagnetic profiles, northeastern Oklahoma, Andersen and Bromery
gravity survey, northeastern Oklahoma, Cook, Hoskinson, and Shilton
Haragan Formation, brachiopods, Amsden (c)
helium, in natural gases, analyses, Munnerlyn and Miller
Hogshooter Formation: genesis of limestones, Cronoble and Mankin; limestone buildups, Cronoble
Hugoton embayment, petroleum production, Epperson and Little, McGeenness and Brandt, Sharp and Little
Hunton Group, crinoids, Strimple (b)

HYDROLOGY:
bibliography, Riggs
ground water: levels, D. L. Hart (a) (b), Marine; Okmulgee County, Motts; summary of State resources, A. R. Leonard
Pond Creek basin, Clark
recent channel changes in Sandstone Creek, Bergman and Sullivan
Rush Springs Sandstone, Caddo County, Tanaka and Davis
surface waters, chemical analyses, United States Geological Survey
Woodward County, ground-water resources, Wood and Stacy
igneous rocks: cobble in coal bed, Branson and Merritt; dissolved products of, Keller and Reesman
illite, reference, Ouachita Mountains, Mankin and Dodd
insoluble residues, McCracken
linear sandstone trends, eastern Oklahoma, Tanner (a)
magnetic delineation of basement surface, Adair County, Norden and Langton (a)
magnetic map, aero-, Tri-State area, Keller and Henderson
magnetic profiles: aero-, northeastern Oklahoma, Andersen and Bromery; basement configuration, Norden and Langton (a) (b); Watts reef, Norden, Langton, and Hancock
maps: aeromagnetic, Tri-State area, Keller and Henderson; oil and gas fields of Oklahoma, Cramer, Gallin, and Wessman, Brooks, National Petroleum Bibliography
Mazarr-Womble Shales, thickness variation, Pitt
meteorite, Roy, Glass, and Henderson
mineral industries, statistics, McDougall (a) (b), McDougall and Ham

MINERAL/MINERALOGY:
clays in soils, Gray, Reed, and Molthan
guide to gems and minerals of Oklahoma, Gilmore
lead-isotope study of galena, Cannon, Buck, and Pierce
meteorite, Roy, Glass, and Henderson
reference illite, Ouachita Mountains, Mankin and Dodd
zinc, Tri-State area, Heyl and Bosson
mines and mining: coal-mine disasters, Keenan; statistics, Padgett and Malloy

MISSISSIPPIAN:
crinoid, Strimple (c)
hystrichospherid, Eisenack
Springer Formation, fracture orientation and rock stresses, Dunlap (b)
stratigraphy, Ouachita Mountains, O. D. Hart, Seely
trilobite, Hessler
Watts reef, magnetic profile across, Norden, Langton, and Hancock

ORDOVICIAN:
Mazarr-Womble Shales, thickness variation, Pitt
oolites and algal aggregates, Arbuckle Mountains, Schramm
Simpson Group and Viola-Fernvale Limestones correlated with Illinois section, Templeton and Willman
structure and stratigraphy, South Norman area, McDaniel

OUACHITA MOUNTAINS:
Beavers Bend State Park, Pitt and others
eastern Winding Stair Range, O. D. Hart
goniastite impact marks in Johns Valley Shale, Seilacher
Mazarr-Womble Shales, thickness variation, Pitt
Potato Hills, Sinclair No. 1 Reneau, Unruh
reference illite, Mankin and Dodd
Rich Mountain area, Seely
structure and vein quartz, Miser
tectonic patterns, Tanner (b)

Ozark Mountains, geology of state parks, Huffman, Cathey, and Humphrey

PALEOBOTANY:
algae and oolites, Schramm
Arcellites hexapartitus, Potter
Dodoxylon adaense, Wilson (b)
geological history of Oklahoma's vegetation, Wilson (a)
Quasiquelites buckhornensis, Wilson and Urban
Tasmanites noremi, Eisenack
Thymospora pseudothiessenii, Wilson and Venkatapala (c)
Vesicaaspis, Wilson and Venkatapala (a)
Vestispis, Wilson and Venkatapala (b)

Paleontology:
arthropods, new taxa, Branson (b)
brachiopods, Amsden (a) (c), Amsden and Ventress, Branson (a), Muir-Wood
camel, Hibbard
chonetid brachiopods, Branson (a), Muir-Wood
conodonts, Branson (c), Merrill, bibliography, Ellison
crinoids, Strimple (a) (b) (c)
Dasciocinura aulisic, Strimple (c)
Edestus vorax, Branson (d)
Foraminifera, Maslakova
Globigerina seminolensis, Maslakova
goniatite impact marks in Johns Valley Shale, Seilacher
Graphiocrinus lineatus, Strimple (a)
Hedbergella, Maslakova
Idiognathohoides, Merrill
new taxa published in Oklahoma Geology Notes, Oklahoma Geological Survey (c)
ostracodes, Lundin and Scott
Phanassometria, Lundin and Scott
Proetus (Pudoproteus) chappeleensis, Hessler
radiocarbon dating of fossils, Chandler, Kinningham, and Massey,
Crane and Griffin
shark fragment, Branson (d)
Tanupolama vera, Hibbard
trilobite, Hessler
Panhandle: petroleum production, Epperson and Little, McGinness and Brandt, Sharp and Little; petroleum statistics, Lacer; water-level fluctuations, Marine

Pennsylvanian:
Bartlesville sand, natural-gas storage, Wallace
Coffeyville and Hogshooter Formations, Cronoble, Cronoble and Mankin
conodonts, Merrill
crinoid, Strimple (a)
cyclothems, Midcontinent, Wanless and others
Endicott sand, Ellis County, Winter
Hart sand, fracture orientation and rock stresses, Dunlap (b)
igneous cobbles in coal bed, Branson and Merritt
isopach and lithofacies study, north-central Oklahoma, Fambrough linear sandstone trends, eastern Oklahoma, Tanner (a)
shark fragment, Branson (d)
silicified wood, Wilson (b)
soil profiles on, clay mineralogy, Gray, Reed, and Moltchan
spores and pollen, Wilson and Venkatapala (a) (b) (c)
statistical analysis of ripple marks, Arkoma basin, Agterberg and Briggs

Stratigraphy: north-central Oklahoma, Fambrough; Okmulgee County, Oakes; Ouachita Mountains, O. D. Hart, Seely
Wapanucka-Atoka contact, Arbuckle Mountains, Rowett
water resources, Okmulgee County, Motts

Permian:
El Reno Group, salt, Johnson (c)
Rush Springs Sandstone, ground-water resources, Tanaka and Davis
salt: brine-well production, Johnson (b); Harmon County, Ward soil profiles on, clay mineralogy, Gray, Reed, and Moltchan stratigraphy, Blaine Formation, southwestern Oklahoma, Pendery western Oklahoma, salt and evaporites, Jordan and Vosburg

Petroleum:
Anadarko basin, Cramer, Gatlin, and Wessman
Arkoma basin, Cramer, Gatlin, and Wessman, Brooks
Beaver County, pre-Permian production, Epperson and Little Carter-Knox field, Reedy and Sykes
Cimarron County, pre-Permian production, McGinness and Brandt drilling problems, Arkoma basin, McLernon
Ellis County, Endicott sand, Winter fracture-treatment log, Carter County, Dunlap (a)
helium-bearing natural gases, analyses, Munnerlyn and Miller
Hennessey area, Mogharabi
Kinta field, Wencik
Laverne gas area, Pate
Lenora field, Gatlin
linear sandstone trends, eastern Oklahoma, Tanner (a)
logging and interpretation techniques, Arkoma basin, Irvin
maps, oil and gas fields, National Petroleum Bibliography
Meramec trend, eastern Palo Duro basin, Laing (b)
natural gas: bibliography, Cramer; chemical analyses, Munnerlyn and Miller; statistics, Moore; symposium, Tulsa Geological Society
north-central Oklahoma, Fambrough
North Dover area, Hurley
Northeast Waynoka field, Barby
Pawnee County, Clare
Purdy field, fracture systems, Dunlap (b)
Red Oak-Norris field, Six
sample descriptions, wells in Anadarko basin, Adkison and Sheldon seismic problems and profiles, eastern Palo Duro basin, Laing (a)
Sinclair No. 1 Reneau, drilled in Potato Hills, Unruh
South Burbank unit, Matthews
Southeast Bradley field, fracture systems, Dunlap (b)
South Norman area, McDaniel
statistics: natural gas, Moore; oil and gas, Atkins, Jordan, Lacer, Lahee, Mackey and Bowles, Sowers and others
Texas County, pre-Permian production, Sharp and Little
Trimue-Frederick area, Helton

[57] 116 [58]
West Edmond field, natural-gas storage, Wallace

PETROLOGY/PETROGRAPHY:
Coffeyville and Hogshooter Formations, Cronoble, Cronoble and Mankin
dissolved products of igneous rocks, Keller and Reesman
igneous cobble in coal bed, Branson and Merritt
meteorite, Roy, Glass, and Henderson
öölites and algal aggregates, Arbuckle Mountains, Schramm

PLEISTOCENE:
geology of Red River basin, Frye and Leonard
mammoth tusk, radiocarbon dating, Chandler, Kinningham, and Massey

Pond Creek basin, hydrology, Clark

Potato Hills anticlinorium, Sinclair No. 1 Reneau well, Unruh

PRECAMBRIAN:
Arbuckle Mountains, field trip, Ham (a)
magnetic delineation of, Adair County, Norden and Langton (a)
magnetic profile of, Cherokee County, Norden and Langton (b)
quartz, in Ouachita Mountains, Miser
radioactivity, lead-isotope study of galena, Cannon, Buck, and Pierce
radiocarbon dating, Chandler, Kinningham, and Massey, Crane and Griffin

RECENT, radiocarbon dating, Crane and Griffin
Red River basin, Pleistocene geology, Frye and Leonard
residues, insoluble, McCracken
Rich Mountain area, Ouachita Mountains, surface geology, Seely
ripple marks, statistical analysis, Arkoma basin, Agterberg and Briggs

Rush Springs Sandstone, ground-water resources, Caddo County, Tanaka and Davis

Sallisaw Formation, brachiopods, Amsden (a)
salt: brine well, Beckham County, Johnson (b); El Reno Group, Elk City area, Johnson (c); shallow deposits, Harmon County, Ward;
western Oklahoma, Jordan and Vosburg

sandstone trends, linear, eastern Oklahoma, Tanner (a)

sedi mentary environments, Pennsylvanian cyclothems, Midcontinent, Wanless and others

sedimentation: Coffeyville and Hogshooter Formations, Cronoble, Cronoble and Mankin; Cretaceous, Gulf Coast area, Forgotson;
insoluble-residue studies, application, McCracken

SILURIAN:
crinoids, Strimple (b)
reference illite, Ouachita Mountains, Mankin and Dodd
stratigraphy, Arbuckle Mountains, Amsden (b)

Sinclair No. 1 Reneau, well drilled in Potato Hills, Unruh

soil survey, Roger Mills County, Burgess, Nichols, and Henson
state parks, geology: Beavers Bend State Park, Pitt and others; Ozark Mountains region, Huffman, Cathey, and Humphrey

STRATIGRAPHY:
Anadarko basin, well-sample descriptions and correlations, Adkison and Sheldon
Blaine Formation, southwestern Oklahoma, Pendery
El Reno Group, Elk City area, Johnson (c)
insoluble-residue studies, application, McCracken
Mazam-Womble Shales, thickness variation, Pitt
Mississippian and Pennsylvanian: Hennessey area, Mogharabi;
North Dover area, Hurley; Ouachita Mountains, O. D. Hart, Seely

Ordovician: rocks in Arbuckle Mountains correlated with Illinois section, Templeton and Willman; South Norman area, McDaniel

Ordovician through Pennsylvanian, Pawnee County, Clare
Pennsylvanian: cyclothems, Midcontinent, Wanless and others;
north-central Oklahoma, Fambrough; Okmulgee County, Oakes

Permian, western Oklahoma, Jordan and Vosburg
rock-stratigraphic units, North American craton, Sloss

Silurian, Arbuckle Mountains, Amsden (b)
Wapanucka-Atoka contact, Arbuckle Mountains, Rowett
structure: frontal Wichita fault system, Hariton; Ouachita Mountains, O. D. Hart, Miser, Seely, Tanner (b); parameters of subsurface reconnaissance, South Norman area, McDaniel
tectonics: fracture orientation and rock stresses, south-central Oklahoma, Dunlap (b); Ouachita Mountains, Tanner (b); paleo-,
Cretaceous, Gulf Coast area, Forgotson

TERTIARY, camel, Hibbard
Trinity Stage, deposition and palaeotectonics, Gulf Coast area, Forgotson

Tri-State area: aeromagnetic map, Keller and Henderson; oxidized zinc deposits, Heyl and Bozian
Wapanucka-Atoka contact, Arbuckle Mountains, Rowett

West Spring Creek Formation, öölites and algal aggregates, Schramm

WICHITA MOUNTAINS:
clay deposits, bibliography, Mark
field trips, Ham (a), Huang

frontal fault system, Hariton

Winding Stair Range, Ouachita Mountains, surface geology, O. D. Hart

zinc, Tri-State area, Heyl and Bozian
Bibliography and Index of Oklahoma Geology
1964

Prepared by Kenneth S. Johnson

Bibliography—pages 55-67
Index—pages 67-75

Bibliography

Amsden, T. W., see Boucot, A. J., and Amsden, T. W.

Barclay, J. E., see Steele, C. E., and Barclay, J. E.

Denison, R. E., see Ham, W. E., Denison, R. E., and Merritt, C. A. Dolly, E. D., see Wilson, L. R., and Dolly, E. D.

Folk, R. L., see Shoji, Rikii, and Folk, R. L.

Furnish, W. M., see McCaleb, J. A., and Furnish, W. M., also McCaleb, J. A., Quinn, J. H., and Furnish, W. M.

Gilbert, F. P., see Andreasen, G. E., Bromery, R. W., and Gilbert, F. P.

Glasser, G. C., see Norden, J. A. E., Kotila, D. A., and Glasser, G. C.

Gott, G. B., see Fierce, A. P., Gott, G. B., and Mytton, J. W.

Grandjean, J., Grégoire, Ch., and Lutts, A., 1964, On the mineral components and remnants of organic structures in shells of fossil molluscs: Académie royale de Belgique, Bull., Classe des Sciences, ser. 5, vol. 50, p. 562-595, 7 pls. Cephalopod shells from Pennsylvanian Buckhorn asphalt deposit (Murray County) were studied and are illustrated in electron micrographs.

Grawe, O. R., see Hagni, R. D., and Grawe, O. R.

Ham, W. E., and Johnson, K. S., 1964, Copper in the Flowerpot Shale (Permian) of the Creta area, Jackson County, Oklahoma: Okla. Geol. Survey, Circ. 64, 32 p., 10 figs., 2 pls., 3 tables.

Ham, W. E., see McDougall, R. B., and Ham, W. E.

Hansen, D. L., see Chenoweth, P. A., and Hansen, D. L.

Hedlund, R. W., see Wilson, L. R., and Hedlund, R. W.

Jordan, Louise, see Branson, C. C., and Jordan, Louise.

Lamar, O. W., see Ringwald, W. J., and Lamar, O. W.

Lutts, A., see Grandjean, J., Grégoire, Ch., and Lutts, A.

Lyons, P. L., see Jones, V. L., and Lyons, P. L.

Mamay, S. H., see Read, C. B., and Mamay, S. H.

Mankin, C. J., see Branson, C. C., and Mankin, C. J.

McCabe, J. A., see Furnish, W. M., Quinn, J. H., and McCabe, J. A.

Merritt, C. A., see Ham, W. E., Denison, R. E., and Merritt, C. A.

Miller, J. H., see Atkins, R. L., and Miller, J. H.

Moeller, M. D., see Wood, P. R., and Moeller, M. D.

283-287, 2 figs. G. stovalli; crocodile skull from Jurassic rocks of Cimarron County.

Mytton, J. W., see Pierce, A. P., Gott, G. B., and Mytton, J. W.

Norrell, G. P., see Miller, R. D., and Norrell, G. P.

Oklahoma Geological Survey, see Oklahoma City Geological Society and Oklahoma Geological Survey.

Padden, Patricia, see Felix, C. J., and Padden, Patricia.

Penfound, W. T., see Shed, J. S., and Penfound, W. T.

Quinn, J. H., see Furnish, W. M., Quinn, J. H., and McCaleb, J. A., also McCaleb, J. A., Quinn, J. H., and Furnish, W. M.

Reed, W. E., see Degens, E. T., Hunt, J. M., Reuter, J. H., and Reed, W. E.

Reuter, J. H., see Degens, E. T., Hunt, J. M., Reuter, J. H., and Reed, W. E.

Schmitz, Richard, see Branson, C. C., and Schmitz, Richard.

Shoji, Riki, and Folk, R. L., 1964, Surface morphology of some limestone types as revealed by electron microscopy: Jour. Sed. Petrology, vol. 34, p. 144-155, 5 pls. Illustrated and discussed are five samples of Ordovician and Devonian rocks from Murray County.

Six, D. A., 1964, Arkoma gas field is big, complex: Oil and Gas Jour., vol. 62, no. 23 (June 8), p. 214-218, 4 figs. Geology and production in Red Oak-Norris gas field.

Spradlin, C. B., see Pitt, W. D., and Spradlin, C. B.

Sutherland, P. K., see Rowett, C. L., and Sutherland, P. K.

Toomey, D. F., see Smith, A. G., and Toomey, D. F.

Trask, Juel, see Stoever, E. C., and Trask, Juel.

Velde, Bruce, and Hower, John, 1963, Petrological significance of illite polymorphism in Paleozoic sedimentary rocks: Amer. Mineralogist, vol. 48, p. 1239-1254, 7 figs., 2 tables. Rock specimens studied include ten samples from Oklahoma.

Venkatachala, B. S., see Wilson, L. R., and Venkatachala, B. S.

Wegner, Karen, see Reso, Anthony, and Wegner, Karen.

Wermund, E. G., 1964, Geologic significance of fluviodelitral glauconite: Jour. Geology, vol. 72, p. 470-476, 3 figs., 3 tables. Test areas include Wichita and Arbuckle Mountains.

INDEX

ANADARKO BASIN:
- Blaine Formation and related strata, Fay
- Morrowan sandstones, diagenetic aspects, Adams

ARBUCKLE MOUNTAINS:
- chitons, Smith and Toomey
- fluviodeltral glauconite, Wermund
- igneous rocks, Ham, Denison, and Merritt
- sponges, Toomey and Ingels
- Wapanucka Formation, Rowett and Sutherland
- West Timbered Hills area, tectonics, Hariton

Arkoma basin, Hunton production, Jordan (d)
- asphaltite deposits, Jordan (e)
- Atoka Formation, sole trails, Branson (k)
- basement rocks, southern Oklahoma, Ham, Denison, and Merritt
- Baum Limestone, Branson and Schmitz

BIBLIOGRAPHIES:
- geologic mapping in Oklahoma, Branson and Jordan
- geophysics in Oklahoma, Roark
- North American geology, 1960, Clarke and others
- Oklahoma geology, 1963, K. S. Johnson (a)
- petroleum and natural gas, Hutchison

biostratigraphy: Red Eagle cyclothem, McCrone; Wapanucka Formation, Rowett and Sutherland
- Blaine Formation and related strata, Fay
- Blaylock Sandstone, Silurian-Ordovician age, Pitt and Spradlin
- Bromide Formation: trilobites, Esker; selerites, Branson (i) / Reso and Wegner
- Buckhorn asphalt deposit, fossil mollusks, Grandjean, Grégoire, and Latts / Teichert
- Caddo Canyons, geomorphology and stream development, Vining
- Cambrian, igneous rocks, southern Oklahoma, Ham, Denison, and Merritt
- clay mineralogy: Pennsylvanian shales, northeastern Oklahoma, Mankin; petrological significance of illite polymorphism, Velde and Hower
- coal mining, use or disposal of refuse, Shead (b)
- Coffeyville Limestone, Cronoble
- copper, in Flowerpot Shale, Ham and Johnson

COUNTIES:
- Beaver: gas fields, Totten and Horn; Morrowan rocks, Barrett
- Beckham, South Erick gas area, Blazenho
- Caddo, Caddo Canyons, Vining
- Canadian, Caddo Canyons, Vining
- Carter: cephalopods, McCaleb and Furnish; Chitinozoa, Wilson and Dolly; chitons, Smith and Toomey; meteorite, Grafham; ostracode, Harris, Jr.; sclerites, Branson (i) / Reso and Wegner; shark fragments, Branson (g); trilobites, Branson (i) / Esker / Frederickson
- Cherokee, geophysical study, Norden
- Cimarron, crocodile skull, Mook
- Coal, cephalopod, Branson (c)
- Cotton, soil survey, Ringwald and Lamar
- Creek, subsurface geology, Furlow
- Dewey, Putnam field, Brown
- Garvin, tectonics, Hariton
- Greer: ground-water resources, Steele and Barclay; South Erick gas area, Blazenho
- Harmon, ground-water resources, Steele and Barclay
- Hughes, shell-boring organism, Branson (1)
- Jackson: copper deposit, Ham and Johnson; ground-water resources, Steele and Barclay; gypsum plant, K. S. Johnson (b)
- Johnston, cephalopods, McCaleb and Furnish
- Latimer, surface geology, western Winding Stair Range, Fellows
- Le Flore: Hunton production, Jordan (d); surface geology, western Winding Stair Range, Fellows
- Lincoln, subsurface geology, Ferguson / Kurash
- Marshall, relation of legumes to surface geology, Shed and Penfound
- McCurtain, Blaylock Formation contains Ordovician fossils, Pitt and Spradlin
- McIntosh, Bryant area, petroleum geology, Musgrove
- Murray: Chitinozoa, Wilson and Hedlund; chitons, Smith and Toomey; limestones, surface morphology, Shoji and Folk; mollusks, Grandjean, Grégoire, and Latts; tectonics, Hariton
- Muskogee, geophysical study, Norden / Norden, Kotila, and Glasier (a) (b)
- Nowata: Coffeyville and Hogshooter Limestones, Cronoble; conodont mineralogy, Branson and Mankin; Hogshooter Limestone, Ballard; shell-boring organism, Branson (b)
- Okfuskee, Bryant area, petroleum geology, Musgrove
- Okmulgee, Bryant area, petroleum geology, Musgrove
- Osage: aeromagnetic map, Andreassen, Bromery, and Gilbert (b); basement tests, Jordan (b); Red Eagle cyclothem, McCrone
- Payne: aeromagnetic map, Andreassen, Bromery, and Gilbert (a); basement tests, Jordan (b)
- Pittsburg, unusual structure, Branson (m)
- Pontotoc: cephalopod, Branson (d) / Furnish, Quinn, and McCaleb; ostracodes, Landin; trilobite, Frederickson
Pottawatomie, petroleum geology, *Pybas*
Roger Mills, Pliocene dog jaw, *Kitts*
Seminole, dolomite in DeNay Limestone, *Mogharabi*
Texas, gas fields, *Totton and Horn*
Wagoner, geophysical study, *Norden*
Washington: Coffeyville and Hogshooter Limestones, *Cronoble*;
Hogshooter Limestone, *Ballard*
Woodward, soil survey, *Nance and others*

CRETACEOUS:
Baum Limestone, *Branson and Schmitz*
Foraminifera, *Maslakova*
meteorite, Carter County, *Graffham*
Croweburg coal, spores, *Wilson / Wilson and Hofheimer*
DeNay Limestone, occurrence of dolomite, *Mogharabi*

DEVONIAN:
brachiopods, *Boucot and Amsden / Boucot and Johnson*
limestones, surface morphology, *Shoji and Folk*
stratigraphy, Ouachita Mountains, *Fellows*
diagenetic aspects of sandstones, *Adams*
dolomite, in DeNay Limestone, *Mogharabi*
eastern Palo Duro basin, geophysical study, *Laing*

ECONOMIC GEOLOGY:
copper deposit, *Ham and Johnson*
gypsum plant, *K. S. Johnson* (b)
mineral industries, statistics, *McDougall (a) / McDougall and Ham*
mines and mining, statistics, *Padgett*
uses of concretions, nodules, and segregations, *Shead (a)*
education, geologic, in secondary schools, *Stoever and Trask*

Excelsior Shale, *Cassidy*:
field trips: northeastern Oklahoma, *Oklahoma City Geological Society and Oklahoma Geological Survey*; Ozark Mountains area, *Huffman*
Flowerpot Shale, copper deposit, *Ham and Johnson*
geologic history of Oklahoma, summary, *Jordan (c)*
geomorphology, Caddo Canyons, *Vining*

GEOBIOLOGY:
aeromagnetic map: *Payne County, Andreasen, Bromery, and Gilbert (a); Osage County, Andreasen, Bromery, and Gilbert (b)*
bibliography, *Roark*
Bouguer gravity-anomaly map, *Lyons (a) / Lyons, Jones, and Jacobsen*
magnetic study of basement rocks, *Norden / Norden, Kotila, and Glaser (b)*
reflection seismograph, early development, *Schriever*
seismic study, eastern Palo Duro basin, *Laing*
study of Webbers Falls reef, *Norden, Kotila, and Glaser (a)*
vertical-intensity magnetic map, *Jones / Jones and Lyons / Lyons, Jones, and Jacobsen*
glaucinite, fluviodeltrital, *Wermund*

**Glencoe-Ripley area, aeromagnetic map, *Andreasen, Bromery, and Gilbert (a)*
gypsum plant at Duke, *K. S. Johnson (b)*
Hogshooter Limestone, *Ballard / Cronoble*
Hominy area, aeromagnetic map, *Andreasen, Bromery, and Gilbert (b)*

HUNTON GROUP:
gas production, Arkoma basin, *Jordan (d)*

HYDROLOGY:
annual runoff and aquifers, *U. S. A., McGuinness*
floods, magnitude and frequency, *Patterson*
ground water: levels, in observation wells, *Wood and Moeller;*
resources, Harmon, Jackson, and Greer Counties, *Steele and Barclay*
preliminary results of several projects, *United States Geological Survey (c)*
stream development, Caddo Canyons, *Vining*
surface waters: quality, *Cummings (a) / United States Geological Survey (a); stream-flow records, United States Geological Survey (b)*
illite polymorphism, petrological significance, *Velde and Hower*

JURASSIC:
crocodile skull, *Mook*

Kindblade Formation, chitons, *Smith and Toomey*:
Lake Murray meteorite, *Graffham*

LIMESTONES:
northeastern Oklahoma, *Ballard / Branson (e) / Cassidy / Mankin / Oklahoma City Geological Society and Oklahoma Geological Survey*; surface morphology revealed by electron microscope, *Shoji and Folk*
lithofacies, Simpson Group, *Schramm*

MAPS:
aeromagnetic: *Osage County, Andreasen, Bromery, and Gilbert (b); Payne County, Andreasen, Bromery, and Gilbert (a)*
Bouguer gravity-anomaly, *Lyons (a) / Lyons, Jones, and Jacobsen*
geologic mapping in Oklahoma, bibliography and index, *Branson and Jordan*
Hogshooter Limestone, thickness, *Ballard*
petroleum-impregnated rocks and asphaltite deposits, *Jordan (e)*
vertical-intensity magnetic, *Jones / Jones and Lyons / Lyons, Jones, and Jacobsen*
meteorite, Carter County, *Graffham*

MINERAL/MINERALOGY:
composition of conodonts, apatite-group mineral, *Branson and Mankin*
copper deposit, *Ham and Johnson*
illite polymorphism, *Velde and Hower*
paragenesis of minerals, Tri-State area, *Hagni and Graeber*
mineral industries, statistics, *McDougall (a) / McDougall and Ham*
mines and mining, statistics, *Padgett*

MISSISSIPPIAN:
brachiopods, *Branson (f)*
cephalopods, Branson (c) (d) / Furnish, Quinn, and McCaleb / McCaleb, Quinn, and Furnish
floral zones, Read and Mamay
pre-Chesterian rocks, northwestern Oklahoma, Hoffman
stratigraphy: Ouachita Mountains, Fellows; Stillwater-Chandler area, Heinzelmann

Morrison Formation, crocodile skull, Mook
Morroan sandstones, diagenetic aspects, Adams

ORDOVICIAN:
Chitinozoa, Wilson and Dolly / Wilson and Hedlund
chitons, Smith and Toomey
conodonts, Harris (b) (c)
graptolites found in Blaylock Formation, Pitt and Spradlin
limestones, surface morphology, Shoiji and Folk
ostracodes, Harris (a) / Harris, Jr.
sclerites, Branson (i) / Reso and Wegner
Simpson Group, paleoecology and lithofacies, Schramm
sponges, Tookey and Ingels
trilobites, Branson (i) / Esker / Frederickson

OUACHITA MOUNTAINS:
Silurian-Ordovician age of Blaylock Sandstone, Pitt and Spradlin
structural evolution, Walper
unusual structure, Branson (m)
Wapanucka Formation, Rowett and Sutherland
Winding Stair Range, western part, Fellows

Ozark Mountains, field trip, Huffman

PALEOBOTANY:
Cirratiradites, Wilson and Hoffmeister
Croweburg coal, assemblage, Wilson
floral zones and floral provinces, Read and Mamay
Florinites elegans, Wilson and Venkatachala
Lycospora, Wilson and Hoffmeister
Potonieaesporites elegans, Wilson and Venkatachala
Trinidadium diamphids, Felix and Paden
paleoecology, Red Eagle cyclothem, McRone
paleoecology, Simpson Group, Schramm

PALEOZOLOGY:

Aelurodon, Kitts
Axinolobus, McCaleb and Furnish
barnacle burrows in fossil shells, Branson (a)
birds, Harrell
brachiopods, Amsden / Boucot / Boucot and Amsden / Boucot and Johnson / Branson (f) (h)
Calathium, Toomey and Ingels
Callipteris divaricatus, Fredericksen
Calpichitina, Wilson and Dolly / Wilson and Hedlund
cephalopods, Branson (c) (d) / Furnish, Quinn, and McCaleb / McCaleb and Furnish / McCaleb, Quinn, and Furnish
Ceratothoracites ambachtensis, Harris, Jr
Chitinozoa, Wilson and Dolly / Wilson and Hedlund
chitons, Smith and Toomey
Chonetes oklahomensis, Branson (f)
Chonostrophiella, Boucot and Amsden
Conochitina infraspinosa, Wilson and Dolly
conodonts, Harris (b) (c) / Huddle
conodont mineralogy, Branson and Mankin
corals, Rowett and Sutherland
crocodile skull, Mook
Delepinoceras, Furnish, Quinn, and McCaleb
dog jaw, Kitts
echinoderms (holothurian?), sclerites, Branson (i) / Reso and Wegner
Estesosternum, Wilson (g)
Encrinuroides capitosus, Frederickson
Eospiriferidae, Boucot / Boucot and Johnson
Erismodus, Harris (b)
false color pattern on goniatite, Branson (c)
Foraminifera, Branson (j) / Maslakova
Girtyoceratidae, McCaleb, Quinn, and Furnish
Globigerina seminolensis, Maslakova
Goniatites choctawensis, Branson (c) (d)
Goniopholus stovalli, Mook
Hedbergella, Maslakova
Hoegeisphaera bransonii, Wilson and Dolly
Minammodytes, Branson (j)
mollusks, Buckhorn asphalt deposit, Grandjean, Gregoire, and Lutts / Teichert
Multioiodostus, Harris (c)
Neochonetes oklahomensis, Branson (f)
ostracodes, Harris (a) / Harris, Jr. / Lundin
Pentameridae, Amsden
Reticulatia americana, Branson (h)
rugose corals, Rowett and Sutherland
sclerites, Branson (i) / Reso and Wegner
segmented organisms, trails, Branson (k)
Serpulopsis, Branson (j)
shell-boring organisms, sponges, Branson (b) (l)
shell-burrowing organisms, barnacles, Branson (a)
sole trails, Branson (k)
sponges, Branson (b) (l) / Toomey and Ingels
Squamarina moorei, Branson (h)
Thaliphsoides striatopunctatus, Lundin
Thurhola, Reso and Wegner
trilobites, Branson (i) / Esker / Frederickson
worm tubes, Branson (j)

Panhandle: gas fields, Totten and Horn; Morroran rocks, Barrett; oil and gas, statistics, Shelby; uranium and helium in gas fields, Pierce, Gott, and Mylton / Vosburg
paragenesis of minerals, Tri-State area, Hagni and Grawe
Pennsylvanian:
 barnacle burrows, Branson (a)
cephalopods, McCaleb and Furnish / McCaleb, Quinn, and Furnish
clay minerals, Mankin
conodont mineralogy, Branson and Mankin
conodonts, Huddle
DeNay Limestone, dolomite occurrence, Mogharabi
floral zones, Read and Mamay
Foraminifera, Branson (j)
limestones, Ballard / Branson (e) / Cassidy / Cronoble / Mankin / Oklahoma City Geological Society and Oklahoma Geological Survey
mollusks, Buckhorn asphalt deposit, Grandjean, Grégoire, and Lutts / Teichert
Morroan rocks, Beaver County, Barrett
sandstones, diagenetic aspects, Adams
shark fragments, Branson (g)
shell-boring organism, Branson (b) (i)
spores, Felix and Poden / Wilson / Wilson and Hoffmeister / Wilson and Venkatachala
stratigraphy, Ouachita Mountains, Fellows
Wapanucka Formation, biostratigraphy and corals, Rowett and Sutherland
Webbers Falls reef, geophysical study, Norden, Kotila, and Glaser (a)

Permian:
barnacle burrows, Branson (a)
brachiopods, Branson (h)
Caddo Canyons, Vining
copper deposit, Ham and Johnson
floral zones, Read and Mamay
Red Eagle cyclothem, McCrone
Red Eagle cyclothem, McCrone
stratigraphy: Blaine and related formations, Fay; South Erick
gas area, Blazenko

Petroleum:
 basement tests, Payne and Osage Counties, Jordan (b)
 Beaver County, Barrett
 bibliogaphy, Hutchison
 brine waters, amino acids and oxygen isotopes, Degens, Hunt, Reuter, and Reed
 Bryant area, Musgrove
diagenesis of reservoir sandstones, Adams
early prospecting with reflection seismograph, Schriever
Eola field, tectonics, Harlton
exploration, Levensen
geologic mapping in Oklahoma, bibliography and index, Branson and Jordan
Hunton production, Arkoma basin, Jordan (d)
impregnated rocks and asphaltite deposits, Jordan (e)
Kellyville district, Furlow
Lincoln County, Ferguson / Kurash
natural gas: analyses, Jordan (a) / Miller and Norrell (a) (b); bibliogaphy, Hutchison; fields, Panhandle, Totten and Horn
northeastern Oklahoma, Taylor and Branan
Pottawatomie County, southwestern, Pybas
Putnam field, Brown
Red Oak-Norris gas field, Six
South Erick gas area, Blazenko
Southeast Hoover field, tectonics, Harlton
statistics, Atkins and Miller / Chenoweth and Hansen / Jordan (f) / Lindsly and others / Shelby
uranium and helium, Panhandle, Pierce, Gott, and Myton / Vosburg

Petrology/Petrography:
 basement rocks of southern Oklahoma, Ham, Denison, and Merritt
 Coffeyville and Hogshooter Limestones, Cronoble
diagenetic aspects of sandstones, Adams
illite polymorphism, Velez and Hower
limestones, surface morphology revealed by electron microscope, Shoii and Folk
phosphate nodules, Shead (c)

Pleistocene, birds, Harrell

Pliocene, dog jaw, Kitts

Precambrian:
magnetic study of: Muskogee County, Norden, Kotila, and Glaser (b); Muskogee-Tahlequah area, Norden
southern Oklahoma, Ham, Denison, and Merritt
test wells to, Payne and Osage Counties, Jordan (b)
Red Eagle cyclothem, McConne

sedimentation: fluviodetrital glauconite, Wermund; phosphate nodules, Shead (c)

Silurian:
brachiopods, Amsden / Boucot
Hunton production, Jordan (d)
ostracodes, Lundin

Simpson Group: Chitinozoa, Wilson and Dolly; conodonts, Harris (b) (c); ostracodes, Harris (a); paleogology and lithofacies, Schramm
soil surveys: Cotton County, Ringwald and Lamar; Woodward County, Nance and others
soils, rock type and vegetation: Marshall County, Shed and Penfound; Wichita Mountains, Buck / Crockett

Stratigraphy:
 Baum Limestone, Branson and Schmitz
Blaine Formation and related strata, Fay
Blaylock Formation contains Ordovician fossils, Pitt and Spradlin
Devonian through Pennsylvanian, Ouachita Mountains, Fellows
Mississippian, Stillwater-Chandler area, Heinzelmann
Morroan rocks, Beaver County, Barrett
Ordovician through Pennsylvanian: Bryant area, Musgrove; Creek County, Furlow; Lincoln County, Ferguson / Kurash; Pottawatomie County, Pybas
Permian, South Erick gas area, Blazenko
pre-Chester Mississippian rocks, northwestern Oklahoma, Hoffman
Wapanucka Formation, Rowett and Sutherland
structure: basement rocks of southern Oklahoma, Ham, Denison, and Merritt; Ouachita Mountains, Branson (m) / Fellows / Waiper
Sylvan Shale, Chitinozoa, Wilson and Hedlund
tectonics: basement rocks of southern Oklahoma, Ham, Denison, and Merritt; portions of Garvin and Murray Counties, Hariton
Tri-State area, mineral paragenesis, Haghi and Grover
Wapanucka Formation, biostratigraphy and corals, Rowett and Sutherland
Webbers Falls reef, geophysical study, Norden, Kotila, and Glaser (a)
West Timbered Hills area, tectonics, Hariton
WICHITA MOUNTAINS:
fluvidetrital glauconite, Wermund
igneous rocks, Ham, Denison, and Merritt
vegetation and rock type, Buck / Crockett
Winding Stair Range, Ouachita Mountains, surface geology, Fellows
X-ray studies, conodont mineralogy, Branson and Monklin
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY

1965

Prepared by Jane Howe

Bibliography—pages 55-64

Index—pages 64-73

BIBLIOGRAPHY

Barclay, J. E., see Steele, C. E., and Barclay, J. E. Becker, Edith, see Dufor, C. N., and Becker, Edith.

Carrales, M., Jr., see Dietzman, W. D., Carrales, M., Jr., and Jirik, C. J.

Cinnamon, C. G., see Doman, R. C., Cinnamon, C. G., and Bailey, S. W.

Conkin, B. M., see Conkin, J. E., and Conkin, B. M.

Crammatte, Florence, see Hobbs, H. M., and Crammatte, Florence.

Doman, R. C., see Ham, W. E., Denison, R. E., and Merritt, C. A.

Doerr, A. H., 1965, Arid and semiarid climates in Oklahoma, 1923-1958:

Elliott, G. F., see Muir-Wood, Helen, Stehli, F. G., Elliot, G. F., and Hatai, Kotora.

Erickson, A. J., Jr., 1965, Temperatures of calcite deposition in the upper Mississippi Valley lead-zinc deposits: Econ. Geology, vol. 60, p. 506-528, 10 figs., 4 tables.

Feth, J. H., and others, 1965, Preliminary map of the counterminous United States showing depth to and quality of shallow ground water containing more than 1,000 parts per million dissolved solids: U. S. Geol. Survey, Hydroil. Inv., Atlas HA-199.

Grant, R. E., see Ager, D. V., Grant, R. E., McLaren, D. J., and Schmidt, Herta.

Harris, Beth, see Harris, R. W., and Harris, Beth.

Hatai, Kotora, see Muir-Wood, Helen, Stehli, F. G., Elliott, G. F., and Hatai, Kotora.

Jirik, C. J., see Dietzman, W. D., Carrales, M., Jr., and Jirik, C. J.

Johnson, J. G., see Boucot, A. J., Johnson, J. G., Pitrat, C. W., and Stonet, R. D.

Madden, E. B., 1965, Channel design for modified sediment regime.

Mankin, C. J., see Cronoble, W. R., and Mankin, C. J.

McCaslín, J. C., 1965, Blaine County wildcats: Oil and Gas Jour., vol. 63, no. 11 (Oct. 11), p. 241, 1 fig.

McLaren, D. J., see Ager, D. V., Grant, R. E., McLaren, D. J., and Schmidt, Herta.

Merritt, C. A., see Ham, W. E., Denison, R. E., and Merritt, C. A.

Meyer, R. P., see Healy, J. H., Steinhart, J. S., and Meyer, R. P.

Nassichuk, W. W., see Strimple, H. L., and Nassichuk, W. W.

Pakiser, L. S., see Hamilton, Warren, and Pakiser, L. S.

Pemberton, E. L., see Lara, J. M., and Pemberton, E. L.

Peters, L. K., see Kennedy, L. E. and Peters, L. B.

Pitrat, C. W., see Boucot, A. J., Johnson, J. G., Pitrat, C. W., and Staton, R. D.

Polone, D. J., see Warth, Peter, and Polone, D. J.

Redman, R. H., see Frederickson, E. A., and Redman, R. H.

Richardson, W. E., 1965, Oswego is prolific target in Oklahoma: Oil and Gas Jour., vol. 63, no. 51 (Dec. 20), p. 96-100, 5 figs.

Rowland, T. L., see Amsden, T. W., and Rowland, T. L.

Sanderson, G. A., see Toomey, D. F., and Sanderson, G. A.

Schmidt, Herta, see Ager, D. V., Grant, R. E., McLaren, D. J., and Schmidt, Herta.

Stacy, B. L., see Wood, P. R., and Stacy, B. L.
Stanton, R. D., see Boucot, A. J., Johnson, J. G., Pitrat, C. W., and Stanton, R. D.
Steele, C. E., and Barclay, J. E., 1965, Ground-water resources of Harman County and adjacent parts of Greer and Jackson Counties, Oklahoma: Okla. Water Resources Board, Bull. 29, 96 p., 8 figs., 7 pls., 6 tables.
Steinhart, J. S., see Healy, J. H., Steinhart, J. S., and Meyer, R. P.
Teichert, Curt, see Grégoire, Charles, and Teichert, Curt.
Toomey, D. F., see Crane, Carey, and Toomey, D. F.
Weaver, C. E., see Shaw, D. B., and Weaver, C. E.
Williams, Alwyn, see Muir-Wood, Helen, and Williams, Alwyn.
Wilson, J. W., see Chenoweth, P. A., Hansen, D. L., and Wilson, J. W.
Wright, A. D., see Williams, Alwyn, and Wright, A. D.

INDEX

Anadarko basin: Morrowan sandstones, diagenesis, Adams; Springer Group, Peace
Arbuckle Group: conodonts, Harris and Harris; dolomitization, Burgess; stratigraphy, Harlton; structure maps, Herndon (a) (b) / Kennedy and Peters (a) (b) (c) / Wallace; symposium, Tulsa Geological Society
Arbuckle Mountains, igneous rocks, Ham, Denison, and Merritt
Arkansas River, channel design, Madden
Arkoma basin, structure, Hames
basement: Rogers County, Chenoweth (a); structure, Ham, Denison, and Merritt; tests, Jordan (c)
Bibliographies:
- field-trip guidebooks, Branson (d)
- fusulinids, Toomey and Sanderson
- new taxa published in Oklahoma Geology Notes, Oklahoma Geological Survey (b)
- North American geology, 1961, Clarke and others
- Oklahoma geology, 1964, Johnson (a)
- Black Mesa, highest point in Oklahoma, Myers (a)
- Blackgun Formation, Amsden and Rowland
- block diagrams, England
- Boggy Formation, shagreen granules, Branson (m)
- Bromide Formation: chitinozoans, Taugorin; trilobite, Branson (j)
- Buckhorn asphalt, cephalopods, Grégoire and Teichert
- Caddo Limestone: annelid, Branson (o); cephalopod, Branson (f)

Cambrian:
- igneous rocks, southern Oklahoma, Ham, Denison, and Merritt / Merritt
- Mt. Scott Granite, Merritt
- relation to Paleozoic, northeastern Oklahoma, Wheeler
- stratigraphy, Hartton / McCracken
- carbonates, Hartton
- Checkerboard Limestone, Branson (a)
- chemical analyses: barite, Sheed; granite, Merritt; gypsum, Johnson (b) / Sheed; limestones, Sheed; natural gas, Miller and Norrell; sandstones, Sheed; shales, Sheed; surface water, Cummings (a) / Sheed
- Cherokee group, Berry / Clayton
- Chickasha Formation, vertebrates, Olson (a)
- Cloud Chief Formation, gypsum quarry, Johnson (b)
- coal: mining districts, Given; names, Branson (g)
- computer, use in petroleum exploration, Dowds
- Cottage Grove Sandstone, oil and gas, Calvin

Counties:
- Beaver, petroleum exploration, Dowds
- Adair: Silurian stratigraphy, Amsden and Rowland; soil survey, Warth and Polone
- Beckham, ground water, Burton / Hollowell (b)
- Blaine, vertebrates, Olson (a)
- Caddo, ground water, Hart / Oklahoma Water Resources Board
- Canadian, vertebrates, Olson (a)
- Carter: chitinozoans, Taugorin; conodonts, Harris and Harris / Mound (a) / (b); sandstones, internal structure, Hamblin; trilobites, Branson (j) / Graftham
- Cherokee: bivalve, Branson (i); blastoid, Macurda; Silurian stratigraphy, Amsden and Rowland
- Choctaw: annelid, Branson (o); cephalopod, Branson (f)
- Cimarron: fungus, Wilson (c); highest point in Oklahoma, Myers (a); petroleum exploration, Dowds
- Coal: cephalopods, Stimpson and Nassiguki; sponges, Croneis and Tooney
- Comanche: ground water, Hollowell (a); gypsum quarry, Johnson (b); limestone quarry, Ham
- Craig, rugose coral, Branson (b)
- Creek: Cushing field, Bennison; Mississippian rocks, Kruger
- Custer: ground water, Hart; petroleum, Richardson
- Dewey, petroleum, Richardson
- Ellis: Cenozoic geology, Kitts; petroleum exploration, Dowds
- Grady, vertebrates, Olson (a)
- Greer, ground water, Steele and Barclay
- Harmon, ground water, Steele and Barclay
- Harper, petroleum exploration, Dowds
- Hughes, shagreen granules, Branson (m)
- Jackson: Fernvale Formation, Jordan (b); Frisco Formation, Jordan (b); ground water, Steele and Barclay
- Johnston, cephalopods, Stimpson and Nassiguki
- Kingfisher, vertebrates, Olson (a)
- Kiowa: Elk Creek sediment load, Sheppard; ground water, Hart / Hollowell (a) / (b)
- Lincoln, petroleum, Richardson
- Love: petroleum geology, Westheimer; surface geology, Frederickson and Redman
- Major, petroleum exploration, Dowds
- Mayes, Spavinaw Granite, Wheeler
- McClain: Byars fossil site, Branson (e); subsurface geology, Thomas; vertebrates, Olson (a) / (b)
- Murray: bivalve, Branson (i); cephalopods, Grégoire and Teichert; foraminifers, Conkin and Conkin; trilobite, Branson (j)
- Muskogee: brachiopods, Branson (h); echinoid, Kier
- Noble: Billings field, Wallace; palynological assemblage, Hedly
- Nowata: Hogshooter Formation, Cronoble and Mankin; trilobite, Branson (r)
- Okfuskee: conularid, Branson (l); sandstones, internal structures, Hamblin
- Okmulgee, Checkerboard Limestone, Branson (a)
- Osage: Arbuckle pools, Akins (b); Caney River arch, Chenoweth (b); Cherokee group, Berry; Country Club field, Kennedy and Peters (a); Mississippian rocks, Kruger; South Canyon field, Kennedy and Peters (b); Whitecliff Dome field, Kennedy and Peters (c)
- Pawnee, Cottage Grove Sandstone, Catun
- Payne, Cherokee group, Clayton
- Pittsburg: measured section, Springer Formation, Hendricks; Ouachita structure, English; palynological assemblage, Wilson (b)
- Pontotoc: bivalve, Branson (i); brachiopod, Branson (n); cephalopods, Stimpson and Nassiguki; foraminifers, Conkin and Conkin; shagreen granules, Branson (m); trilobite, Hessler
- Rogers: Caney River arch, Chenoweth (b); Gunter Sandstone, Chenoweth (a); Mississippian rocks, Kruger; shagreen granules, Branson (m)
Sequoyah, Silurian stratigraphy, Amsden and Rowland
Texas, Morrowan sandstones, Arro
Tillman: Frederick field, Herndon (a); ground water, Hollowell (a); West Frederick field, Herndon (b)
Tulsa: Caney River arch, Chenoweth (b); Mississippian rocks, Kruger
Wagoner, Mississippian rocks, Kruger
Washington: bivalve, Branson (i); Hogshooter Formation, Cronoble and Mankin; sandstones, internal structures, Hamblin
Washita, ground water, Hart / Hollowell (b)
Woods: geology and mineral resources, Fay; petroleum exploration, Dows
Woodward: ground water, Wood and Stacy; petroleum exploration, Dows
Cretaceous:
anneal, Branson (a)
cephalopod, Branson (f)
depositional patterns, Tanner
Love County, Frederickson and Redman
depositional environment: Cherokee group, Clayton; Cretaceous, Tanner; Wewoka Formation, Cronoble and Toomey
Devonian:
bivalve, Branson (i)
Frisco Formation, Jordan (b)
McCain County, Thomas
diagenesis, Morrowan sandstones, Adams
dolomitization, Arbuckle Group, Burgess
ecology, Permian mollusks, Nicol
Economic Geology:
coal seams, Given
Comanche County, gypsum quarry, Johnson (b)
lead-zinc deposits, northeastern Oklahoma, Erickson
Love County, Frederickson and Redman
Woods County, Fay
electron microscopy, cephalopods, Grégoire and Teichert
Elk Creek: ground water, Hollowell (b); sediment load, Sheppard
evaporites, Jones
Excelsior Shale, shagreen granules, Branson (m)
Fayetteville Shale, rugose coral, Branson (b)
Fort Scott Limestone, petroleum, Richardson
Geography: climate, Doer; highest point in Oklahoma, Myers (a); Ouachita Province, Thornbury; place names, Branson (a) (c) (k)
geomorphology, Thornbury
gephysics: crustal cross section, Hamilton and Pakiser; seismic reflection study, Healy, Steinhart, and Meyer
guidebooks, field-trip, Branson (d)
Gunter Sandstone, Chenoweth (a)
gypsum quarry, Johnson (b)
Henryhouse Formation, ostracodes, Lundin (a) (b)
Hogshooter Formation, Chenoweth (b) / Cronoble and Mankin
Hydrology:
agricultural watersheds, Hobbs and Grammatte
channel design, Arkansas River, Madden
chemical analyses, surface water, Cummings (a) (b)
chemical quality, public water supplies, Dufor and Becker / Jordan (a)
ground water: Beckham County, Burton / Hollowell (b); Caddo County, Hart / Oklahoma Water Resources Board; chemical quality, Feth and others; Comanche County, Hollowell (a); Custer County, Hart; Greer County, Steele and Barclay; Harmon County, Steele and Barclay; Jackson County, Steele and Barclay; Kiowa County, Hart / Hollowell (a) (b); levels, Wood; Rush Springs Sandstone, Oklahoma Water Resources Board; Tillman County, Hollowell (a); Washita County, Hart / Hollowell (b); Washita River, Hart; Woodward County, Wood and Stacy
reservoir sediments, Lara and Pemberton
sediment load, Elk Creek, Sheppard
Joins Formation, conodonts, Mound (a) (b)
Lenapah Limestone, trilobite, Branson (r)
Maps: Arbuckle structure, Herndon (a) (b) / Kennedy and Peters (a) (b) (c) / Wallace; ground water, Feth and others; topographic coverage in Oklahoma, Branson (q)
meteorology, arid and semiarid climates in Oklahoma, Doerr
Mineral/Mineralogy:
calcite, Erickson
clays, Wong
mineral collecting, Young
plagioclase, Doman, Cinnamon, and Bailey
shale, Shaw and Weaver
mineral industry: coal-mining districts, Given; gypsum quarry, Johnson (b); limestone quarry, Ham; statistics, McDougal / Padgett
mines and mining, statistics, Padgett
Mississippian:
Anadarko basin, Peace
bivalve, Branson (i)
blastoïd, Macurda
brachiopods, Branson (h)
echinoid, Kier
McCain County, Thomas
trilobite, Hesser
Tulsa County, Kruger
Morrowan sandstones, Adams / Arro
Mt. Scott Granite, Merritt
Oklahoma Board on Geographic Names, Branson (k)
Ordovician:
chitinozoans, Taugorodeau
conodonts, Harris and Harris / Mound (a) (b)
Cottage Grove Sandstone, Calvin
dolomitization, Burgess
Fernvale Formation, Jordan (b)
foraminifers, Conkin and Conkin
Gunter Sandstone, Chenoweth (a)
McClain County, Thomas
stratigraphy, Hariton / McCracken
trilobites, Branson (j) / Graffham
Otter Creek, ground water, Hollowell (a)

OUACHITA MOUNTAINS:
clay mineralogy, Wong
measured section, Springer Formation, Hendricks
structure, Engleman
turbidites, McBride

PALEOBOTANY:
Cordaitanthus, Wilson (a)
Ephedra antisiphilitica, Bond (a)
Ephedrites, sp., Bond (a)
Florinutes, Wilson (a)
fungus, Wilson (c)
new taxa published in Oklahoma Geology Notes, Oklahoma Geological Survey (b)
nomenclatural procedure, Wilson (a)
palynological assemblage, Pennsylvanian, Wilson (b); Wellington Formation, Hedlund
pollen grains, Bond (a)
Rhizophagites, Wilson (c)

PALEOZOLOGY:
Aecodius auritus, Harris and Harris
amphibians, Olson (a) (b)
annelid, Branson (g)
armadillo, Myers (b)
Astinobus quinni, Strimple and Nassichuk
bivalve, Branson (i)
Blastammina sp., Conkin and Conkin
blastoid, Macurda
brachiopods, Ager, Grant, McLaren, and Schmidt / Amsden and
Bierrat / Boucot, Johnson, Pitrat, and Staton / Branson (h)
(n) / Muir-Wood, Stehli, Elliott, and Hatai / Muir-Wood
and Williams / Rowell / Williams and Wright
Byars fossil site, Branson (e)
cephalopods, Branson (f) / Strimple and Nassichuk / Grégoire
and Teichert
crittendens, Taugordeau
Chosonodina? luna, Harris and Harris
Conocardium lanterna, Branson (i)
conodonts, Harris and Harris / Mound (a) (b)
conularid, Branson (l)
Dasypus bellus, Myers (b)
Ditomopyge parvulus, Branson (r)
echinoid, Kier
electron microscopy, cephalopods, Grégoire and Teichert

fishes, Olson (a)
foraminifers, Conkin and Conkin
fusulimids, bibliography, Toomey and Sanderson
Henryhouse Formation: ostracodes, Lundin (a) (b); rugose corals, Sutherland
Homoetius bromidensis, Branson (j) / Graffham
hystrichosphaerids, Bond (b)
molluscan ecology, Neirol
Mortoniceras verspertinum, Branson (f)
Neomultioistodus compressus, Harris and Harris
new taxa published in Oklahoma Geology Notes, Oklahoma Geological Survey (b)
Orophoecus actatus, Macurda
ostracodes, Lundin (a) (b)
Paraonuloria magna, Branson (l)
Petrodus, Branson (m)
Polytaxicardiis lirata, Kier
Pterocentodus aquilus, Harris and Harris
Pterocentodus exilis, Harris and Harris
reptiles, Olson (a)
rugose corals, Branson (b) / Sutherland
Schizophoria oklahomae, Branson (n)
Scolopodus striolatus, Harris and Harris
Serpula cragini, Branson (o)
shagreen granules, Branson, (m)
snail borings, Branson (p)
sponge borings, Branson (p)
sponges, Cronies and Toomey
Thagrigobides roundyi, Hessle
Thuramminoides sphaerochilus, Conkin and Conkin
Tolyposoma sp., Conkin and Conkin
trilobites, Branson (j) (r) / Graffham / Hessle
Uricalodina cristata, Harris and Harris
vertebrates: Permian, Olson (a) (b); Pleistocene, Myers (b)
Zatrachys serratus, Olson (b)

PENNSYLVANIAN:
bivalve, Branson (i)
brachiopods, Branson (h) (n)
Buckhorn asphalt, Grégoire and Teichert
cephalopods, Grégoire and Teichert
Cherokee group, Berry / Clayton
conularid, Branson (l)
Cottage Grove Sandstone, Calvin
Dewey Formation, Chenoweth (b)
Fort Scott Limestone, Richardson
Hogshooter Formation, Chenoweth (b) / Cronoble and Mankin
Holdenville Formation, Chenoweth (b)
Lenapah Formation, Chenoweth (b)
McClain County, Thomas
Morrowan sandstones, Adams / Arro
Nowata Formation, Chenoweth (b)
rugose coral, Branson (b)
sandstones, internal structures, Hamblin
shagreen granules, Branson (m)
shale, Branson (p)
sponge borings, Branson (p)
sponges, Croneis and Toomey
Springer Formation (Group): Anadarko basin, Peace; measured section, Hendricks; palynological assemblage, Wilson (b)
trilobite, Branson (r)

PERMIAN:
Byars fossil site, Branson (e)
El Reno Group, Fay
evaporites, Jones
molluscan ecology, Nicol
Rush Springs Sandstone, ground water, Oklahoma Water Resources Board
vertebrates: Chickasha Formation, Olson (a); McClain County, Olson (a) (b)
Wellington Formation: evaporites, Jones; palynological assemblage, Hedlund
Whitehorse Group, Fay
Woods County, Fay

PETROLEUM:
Arbuckle pools: Oklahoma, Akins (a) ; Osage County, Akins (b)
Arbuckle production, northeastern Oklahoma, Bloesch
basement tests, Jordan (e)
Billings field, Wallace
Blaine County, McCaslin
computer analysis, western Oklahoma, Douds
Cottage Grove Sandstone, Calvin
Country Club field, Kennedy and Peters (a)
Criner area, McClain County, Thomas
Cushing field, Bennison
Frederick field, Herndon (a)
heavy crude oil reservoirs, Dietzman, Carrales, and Jirik
impregnated rocks and shallow oil fields, Ball Associates
Love County, Westheimer
natural gas, chemical analyses, Miller and Norrell
Osewego limestone, northern Oklahoma, Richardson
South Canyon Creek field, Kennedy and Peters (b)
statistics, Atkins, Miller, and Gillian / Chenoweth, Hansen, and
Wilson / Dietzman, Carrales, and Jirik / Jordan (c) / Lindsly
and others
West Frederick field, Herndon (b)
Whitecliff Dome field, Kennedy and Peters (e)

PETROLOGY/PETROGRAPHY:
clays, Wong
evaporites, Jones
Fernvale Formation, Jordan (b)

Frisco Formation, Jordan (b)
Hogshooter Formation, Cronoble and Mankin
Morrowan sandstones, Adams
Mt. Scott Granite, Merritt
shale, Shaw and Weaver
Pitkin Formation, echinoid, Kier
Pleistoence: Bar M local fauna, Myers (b); fungus, Wilson (c); hystrichospherids, Bond (b); pollen grains, Bond (a)
Precambrian, southern Oklahoma, Ham, Denison, and Merritt
Quarry Mountain Formation, Amsden and Rowland
Quaternary: Beckham County, Burton / Hollowell (b); Caddo County, Hart; Comanche County, Hollowell (a); Custer County, Hart; Ellis County, Kitts; Kiowa County, Hart / Hollowell (a) (b); terraces, Frederickson and Redman; Tillman County, Hollowell (a); Washita County, Hart / Hollowell (b)
radionuclide dating, Bar M local fauna, Myers (b)
radiocarbon dating, Bar M local fauna, Myers (b)
reservoirs, sedimentation, Lara and Pemberton
Rush Springs Sandstone, ground water, Oklahoma Water Resources Board
St. Joe limestone, Macurda
sedimentation in reservoirs, Lara and Pemberton
Seminole Formation, conularid, Branson (1)
shorelines, Cretaceous, Tanner

SILURIAN:
bivalve, Branson (1)
McClain County, Thomas
ostracodes, Lundin (a) (b)
rugose corals, Sutherland
stratigraphy, northeastern Oklahoma, Amsden and Rowland
soil survey, Adair County, Warth and Polone
Spavinaw Granite, Wheeler
Springer Formation (Group): Anadarko basin, Peace; measured section, Hendricks; palynological assemblage, Wilson (b)

STRATIGRAPHY:
Arbuckle Group, Harlot / McCracken
Cambrian, Harlot / McCracken
Cherokee group, Berry
Devonian, McClain County, Thomas
Mississippian: McClain County, Thomas; Tulsa County, Kruger
Ordovician: McClain County, Thomas; northeastern Oklahoma, McCracken; Oklahoma, Harlot
Pennsylvanian: McClain County, Thomas; Tulsa County, Chenoweth (b)
Permin, Woods County, Fay
Silurian: McClain County, Thomas; northeastern Oklahoma, Amsden and Rowland
Springer Group, Anadarko basin, Peace
Timbered Hills Group, Harlot
Structure: basement, southern Oklahoma, Ham, Denison, and Merritt; crustal cross section, Hamilton and Pakiser; Ouachita Mountains,
Engleman / Hammes; Pennsylvanian, Tulsa County, Chenoweth
(b)
Sylvan Shale, foraminifers, Conkin and Conkin
Tenkiller Formation, Amsden and Rowland
Tertiary, Ellis County, Kitts
turbidites, McBride
Viola Limestone, chitinozoans, Taugor deau
Wapanucka Limestone: brachiopod, Branson (n); cephalopods, Strimple and Nassichuk
Washita River, ground water, Hart
Welden Limestone, trilobite, Hessler
Wellington Formation: evaporites, Jones; palynological assemblage, Hedlund
West Spring Creek Formation: conodonts, Harris and Harris; dolomitization, Burgess
Wewoka Formation: shagreen granules, Branson (m); sponges, Croneis and Toomey
Wichita Mountains, igneous rocks, Ham, Denison, and Merritt / Merritt
BIBLIOGRAPHY OF OKLAHOMA GEOLOGY

1966

Prepared by Jane Howe

Adams, J. A. S., see Harris, R. C., and Adams, J. A. S.

Albans, L. L., see Moore, C. A., and Albans, L. L.

Allen, Don, see Cheatum, E. P., and Allen, Don

Anderson, A. D., see Leonhardy, F. C., and Anderson, A. D.

Arlin, J. C., see Cole, E. L., Arlin, J. C., and Rhoads, C. E.

Bartlett, C. S., Jr., 1966, Arkoma's search for porosity broadens: Oil and Gas Jour., vol. 64, no. 4, Jan. 24, p. 126-132, 9 figs.

Bellis, W. H., see Mankin, C. J., and Bellis, W. H.

Bowman, M. C., see Fox, R. C., and Bowman, M. C.

David, Martham, see Fogtson, J. M., Jr., Statler, A. T., and David, Martham.

Deike, R. G., see Randolph, J. R., and Deike, R. G.

Demirmen, Ferruh, see Harbaugh, J. W., and Demirmen, Ferruh.

Denison, R. E., see Muehlberger, W. R., Hedge, C. E., Denison, R. E., and Marvin, R. F.

Feth, J. H., and others, 1965 (1966), Preliminary map of the conterminous United States showing depth to and quality of shallowest ground water containing more than 1,000 parts per million of dissolved solids: U. S. Geol. Survey, Hydrol. Inv. Atlas 199.

Fons, Lloyd, see Camargo, Orlando, and Fons, Lloyd.

Gibbon, Anthony, 1966, Anadarko basin gas strike is one of the world's giants: World Oil, vol. 163, no. 4, p. 104, 1 text fig.

Harp, L. J., 1966a, Do not overlook fractured zones: World Oil, vol. 162, no. 5, April, p. 119-123, 4 figs.

Harris, R. W., and Harris, R. W., Jr., 1965 [1966], Pruitt Ranch, new member of Oil Creek (Simpson) in Criner Hills (Oklahoma), in Symposium on the Simpson: Tulsa Geol. Soc., Digest, vol. 33, p. 144-161, 6 figs., 2 tables, 1 pl.

Harris, R. W., Jr., see Harris, R. W., and Harris, R. W., Jr.

Hedge, C. E., see Goldich, S. M., Muehlberger, W. R., Lidiak, E. G., and Hedge, C. E.

Hedge, C. E., see Muehlberger, W. R., Hedge, C. E., Denison, R. E., and Marvin, R. F.

Hetherington, E. A., see Denison, R. E., Hetherington, E. A. and Kenny, J. S.

Hollowell, J. R., see Tanaka, H. H., and Hollowell, J. R.

Huddle, J. W., see Hass, W. H., and Huddle, J. W.

Huffman, G. G., see Branson, C. C., Huffman, G. G., and others.

Huffman, G. G., see Strong, D. M., and Huffman, G. G.

Hunter, H. E., see Hiss, W. L., and Hunter, H. E.

Jaanusson, Valdar, see Guber, A. L., and Jaanusson, Valdar.

Jordan, Louise, see Tarr, R. S., Jordan, Louise, and Rowland, T. L.

Kenny, G. S., see Denison, R. E., Hetherington, E. A., and Kenny, G. S.

Klement, K. W., see Toomey, D. F., and Klement, K. W.

Lane, H. R., see Rexroad, C. B., and Lane, H. R.

Lidiak, E. G., see Goldich, S. S., Muehberger, W. R., Lidiak, E. G., and Hedge, C. E.

Marvin, R. F., see Muchberger, W. R., Hedge, C. E., Denison, R. E., and Marvin, R. F.

McCaslin, J. C., 1966a, Anadarko basin: Rigs running high on the shelves and down yonder in the trough: Oil and Gas Jour., vol. 64, no. 4, June 13, p. 131, 1 fig.

1966b, Drilling picks up in northwest Oklahoma: Oil and Gas Jour., vol. 64, no. 14, April 4, p. 227-228, 1 fig.

1966c, Oklahoma strains to produce more oil: Oil and Gas Jour., vol. 64, no. 49, Dec. 5, p. 74-75.

1966d, Sooner Panhandle counties see plenty of drilling action: Oil and Gas Jour., vol. 64, no. 26, June 27, p. 190, 1 fig.

1966e, Wide spacing paves way to deep tests: Oil and Gas Jour., vol. 64, no. 11, March 14, p. 68-69, 1 fig.

Mowatt, T. C., see Hower, John, and Mowatt, T. C.

Muehlberger, W. R., see Goldich, S. S., Muehlberger, W. R., Lidisk, E. G., and Hedge, C. E.

Oklahoma Highway Department, 1965a, Engineering classification of geological materials and (related soils), Division 1: Okla. Highway Dept., 248 p., 11 figs., 40 tables, 7 charts, 8 maps.

1965b, Engineering classification of geological materials and (related soils), Division 8: Okla. Highway Dept., 287 p., 28 figs., 76 tables, 7 charts, 14 maps.

Price, L. I., see Stovall, J. W., Price, L. I., and Romer, A. S.

Rhoads, C. E., see Cole, E. L., Arlin, J. C., and Rhoads, C. E.

Romer, A. S., see Stovall, J. W., Price, L. I., and Romer, A. S.

Roswell Geological Society, Stratigraphic Committee, see Motts, W. S.

Rowland, T. L., see Tarr, R. S., Jordan, Louise, and Rowland, T. L.

Scheidegger, A. E., see Pulpan, H., and Scheidegger, A. E.

Shewsbury, R. D., see Moore, B. J., Miller, R. D., and Shewsbury, R. D.

Sloss, L. L., see Beckman, W. A., Jr., and Sloss, L. L.

Statler, A. T., see Forgotson, J. M., Jr., Statler, A. T., and David, Martham.

Stevens, M. K., 1966, The osteology and relationships of the Pliocene ground squirrel, Citellus dotti Hibbard, from the Ogallala Formation of Beaver County, Oklahoma: Texas Memorial Museum, Pearce-Sellards Ser., no. 4, 24 p., 6 figs., 3 tables.

Utgard, John, see Boardman, R. S., and Utgaard, John

Waddell, D. E., see Cronoble, W. R., and Waddell, D. E.

Wenger, W. J., see McKinney, C. M., Ferrero, E. P., and Wenger, W. J.

Wroblewski, E. F., 1966, Big potential keeps drillers busy in Anadarko basin: Oil and Gas Jour., vol. 64, no. 44, p. 122-124, 1 fig.
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY

1967

Prepared by PATRICIA W. WOOD

Bibliography—pages 39-49
Index—pages 49-60

BIBLIOGRAPHY

Anderson, K. F., see Weaver, L. K., and Anderson, K. F.

Ash, R. D., see Klinger, R. R., and Ash, R. D.

Baggett, B. G., see Culver, J. R., Bain, W. R., and Baggett, B. G.

Bain, W. R., see Culver, J. R., Bain, W. R., and Baggett, B. G.

Baskett, K. R., see Johnston, K. H., and Baskett, K. R.

Boardman, R. S., see Merida, J. E., and Boardman, R. S.

Boucot, A. J., see Amsden, T. W., Boucot, A. J., and Johnson, J. G.

Bowsher, A. L., see Walthall, B. H., and Bowsher, A. L.

Brett, G. W., see Weld, B. A., Griffin, M. S., and Brett, G. W.

Brinlee, R. C., see Frie, J. W., Brinlee, R. C., and Craft, R. D.; also Mobley, H. L., and Brinlee, R. C.

Brown, A. R., see Logsdon, Truman, and Brown, A. R.

Burbridge, P. P., 1967, see Felix, C. J., and Burbridge, P. P.

Caplan, W. M., see Wise, O. A., and Caplan, W. M.

Cline, L. M., see Briggs, G., and Cline, L. M.

[39] [40]

DeGreer, W. D., see Redding, H. D., DeGreer, W. D., and Huber, C. A. Denison, R. E., see Muehlberger, W. R., Denison, R. E., and Lidiak, E. G.

desai, A. A., see Hagni, R. D., and Desai, A. A.

Dickey, P. A., see Koonin, D. N., and Dickey, P. A.

Downey, M. W., see Edwards, A. R., and Downey, M. W.

Egleston, G. C., see Collins, A. G., and Egleston, G. C.

Feray, D. E., see Oetking, Philip, Feray, D. E., and Renfro, H. B.

Glaenzer, J., see Walters, J. G., Ortuglio, C., and Glaenzer, J.

Graft, R. D., see Friee, J. W., Brinlee, R. C., and Graft, R. D.

Gray, Fenton, see Stahlke, Clyde, and Gray, Fenton.

Griifin, M. S., see Welf, B. A., Griffin, M. S., and Brett, G. W.

Ham, W. E., see Mc Dougall, R. B., and Ham, W. E.; also Toomey, D. F., and Ham, W. E.

Hartner, F. E., see Walker, P. E., and Hartner, F. E.

Hedlund, R. W., see Upshaw, C. F., and Hedlund, R. W.

Hershey, Garland, see Coons, R. L., Woollard, G. P., and Hershey, Garland.

Holbrook, D. F., see Sterling, P. J., Stone, C. G., and Holbrook, D. F.

Huber, C. A., see Redding, H. D., DeGreer, W. D., and Huber, C. A.

Janus, J. B., see Aresco, S. J., Janus, J. B., and Walker, F. E.

Johnson, J. G., see Amsden, T. W., Boucot, A. J., and Johnson, J. G.; also Boucot, A. J., and Johnson, J. G.

Jordan, Louise, see Branson, C. C., Jordan, Louise, and Roberts, J. F.

Stratigraphic traps in Chester- and Morrow-aged rocks in the Anadarko basin.

Lidiak, E. G., see Muehlberger, W. R., Denison, R. E., and Lidiak, E. G.

Menzie, D. E., see Flinnjosa, E., and Menzie, D. E.

Mesnard, M. L. (ed.), 1967. The oil producing industry in your state:

Meyers, W. C., 1967, Palynological correlation of the Henryetta coal,
 34-38, 2 figs.

Miller, R. D., see Moore, B. J., Miller, R. D., and Shrewsbury, R. D.
 Miller, T. H., 1967, Techniques for processing and photographing chitinozoans:
 Rans., Univ., Paleont. Contr., Paper 21, 10 p., 1 fig., 4
 pls.

Mobley, H. L., and Brinlee, R. C., Soil survey of Comanche County,

Moore, B. J., and Shrewsbury, R. D., 1967, Analyses of natural gases,
 tables.

Moore, B. J., Miller, R. D., and Shrewsbury, R. D., 1966, Analyses of
 Circ. 8302, 144 p., 1 fig. Analyses of some helium-bearing natural
 gases from Oklahoma.

 rocks in continental interior of United States: Amer. Assoc.

 Okla. Geology Notes, vol. 27, p. 3-8.

Oakes, M. C., 1967, Geology and mineral resources of McIntosh County,
 pt. I of Geology and petroleum of McIntosh County, Oklahoma:
 Okla. Geol. Survey, Bull. 111, p. 5-49, 68-85, figs. 1-8,
 pls. 3, 2.

 in Mid-Continental Pennsylvanian sediments: Jour. Sed. Petrology,
 vol. 37, p. 610-623.

 highway map of the Mid-Continental region—Kansas, Oklahoma,
 Geol. Highway Map Ser., Map 1, scale 1:1,000,000, sections, text.

Oklahoma Geological Survey, 1967a, Résumé of new nomenclature
 published in Oklahoma Geology Notes, January 1966 through
 27, p. 29.

Oklahoma Water Resources Board, 1967, Oklahoma’s water resources,
 illus., 3 tables.

 Survey, Circ. 74, 111 p., 12 figs., 3 pls.

Ortnglio, C., see Walters, J. G., Ortnglio, C., and Glaenzner, J.

Peterson, E. C., 1966, Titanium resources of the United States: U. S.

Qualls, B. R., see Tryggvason, E., and Qualls, B. R.

Redding, H. D., DeGreer, W. D., and Huber, C. A., 1967, Anadarko’s
 deep play challenge to drillers: Oil and Gas Jour., vol. 65, no.
 20, p. 84-86, 18.

Renfro, H. B., see Oetking, Philip, Feray, D. E., and Renfro, H. B.

Riley, L. R., 1966, The challenge of deep exploration—the Chitwood
 pool, Grady County, Oklahoma: Oklahoma City Geol. Soc., Shale

———1967b, Statistics of Oklahoma’s petroleum industry, 1966:
 figs., 4 tables.

Roberts, J. F., see Branson, C. C., Jordan, Louise, and Roberts, J. F.

Rodda, P. U., see Fisher, W. L., and Rodda, P. U.

Rowland, T. L., see Ansden, T. W., and Rowland, T. L.

Scharon, LeRoy, see Ku, Chao-Cheng, Sun, Stanley, Soffel, Heinrich,
 and Scharon, LeRoy.

———1967b, Investigation of selected Lower Pliocene and Pleistocene
 Geology Notes, vol. 27, p. 24-33, 1 fig., 1 table, 9 meas. secs.

Schramm, M. W., Jr., 1967, Application of trend analysis to pre-Morrow
 surface, southeastern Hugoton embayment area: Oklahoma City

Sellars, R. T., Jr., 1967, The Siluro-Devonian rocks of the Ouachita

Shaw, N. G., 1967, Chelostomata from Gulfian (Upper Cretaceous)
 1393-1432, 4 pls., 16 text-figs. Descriptions of several Oklahoma
 specimens.

Sheffey, N. B., see Zubovic, Peter, Sheffey, N. B., and Stadnichenko,
 Taisia.

Shelton, E. M., see McKinney, C. M., and Shelton, E. M.

Shrewsbury, R. D., see Moore, B. J., Miller, R. D., and Shrewsbury,
 R. D.; also Moore, B. J., and Shrewsbury, R. D.

Skvarla, J. J., see Wilson, L. R., and Skvarla, J. J.

Smith, Russell (ed.), 1967, Stratigraphic cross section of Paleozoic
 rocks Oklahoma to Saskatchewan: Amer. Assoc. Petroleum Geo-
 logists, Cross Sec. Pub. 5, 25 p., 1 fig., 6 pls. Plate 1 is a cross
 section of Oklahoma, cited under Edwards, A. R., and Downey,
 M. W.

Soffel, Heinrich, see Ku, Chao-Cheng, Sun, Stanley, Soffel, Heinrich,
 and Scharon, LeRoy.

Stadnichenko, Taisia, see Zubovic, Peter, Sheffey, N. B., and Stadni-
 Chenko, Taisia.

Stahnke, Clyde, and Gray, Fenton, 1966, A mineralogical study of
 thick-surfaced Brunzemic soils: Okla. Acad. Science, Proc. 1965,
 vol. 46, p. 72, 2 tables.

Stone, C. G., see Sterling, P. J., Stone, C. G., and Holbrook, D. F.

Sun, Stanley, see Ku, Chao-Cheng, Sun, Stanley, Soffel, Heinrich, and Scharon, LeRoy.

Venkatadchala, B. S., see Wilson, L. R., and Venkatadchala, B. S.

Walker, F. E., see Aresco, S. J., Janus, J. B., and Walker, F. E.

Weaver, K. L., and Anderson, K. F., 1966, Oil recovery from gas-cap reservoirs: an engineering evaluation of conservation practices in
Wilson, J. L., see Ham, W. E., and Wilson, J. L.
World Oil, 1966. Anadarko basin gas strike is one of world's giants: World Oil, vol. 163, no. 4, p. 104, 1 illus.
Ziegler, Willi, see Klapper, Gilbert, and Ziegler, Willi.

INDEX

acid residues, depositional-basin correlation, Ireland
Anadarko basin: stratigraphic-trap trends, Klinger and Ash; deep tests, Kornfeld (b); Permian System, MacLachlan; production, Swanston; giant gas strike, World Oil
analog models, Arkansas and Verdigris Rivers, Tanaka
Appalachian Province, Lower Devonian sedimentary rocks, Boucot and Johnson (a)
Arbuckle limestone: Barbat; amphibian, McGinnis
Arbuckle Mountains area: Washita Valley fault, Tanner; mound-building organism, Toomey and Ham
Ardmore basin, relation to Tishomingo uplift, Precambrian, Harlot / Tarr
Arkansas River valley, analog model, Tanaka
Arkansas valley, front Ouachita Mountains, geology, Stone
Arkoma basin, terrain problems, strip-mining area, Kornfeld (a)
Athens Plateau, Ouachita Mountains, Arkansas, correlation with Oklahoma, Walthall
Atokan growth faulting, McAlester basin, Kinn and Dickey basement rocks: structure, Wichita Mountains, Han; paleomagnetism, Ku et al.; continental interior, Muehlberger, Denison, and Lidiak
Beavers Bend illite, chemical analyses, x-ray fluorescence, Kerns (b)
BIBLIOGRAPHIES:
publications by Oklahoma organizations, Branson (b)
Arkansas geology, 1966, Howe
bibliography of Louise Jordan, Oklahoma Geological Survey (b)
new nomenclature published in Oklahoma Geology Notes, 1966, Oklahoma Geological Survey (a)
Bromide Formation, Ordovician, brystoan, Merida and Boardman
Brunzemic soils, mineralogic study, Stahnke and Gray
Buckhorn Ash Plant, Pennsylvanian, cephalopods, Sulphur, Oklahoma, Grégoire
Butcher Pen area, Lake Texoma, delta, Ganser
Buttram, Frank, memorial, Branson (a)
CAMBRIAN:
Arbuckle limestone, Barbat basement rocks, structure, Wichita Mountains, Han; Wichita Mountains, Muehlberger, Denison, and Lidiak; paleomagnetism, Ku et al.
granites, rhyolites, Wichita Mountains, Merritt (b)
Mt. Scott Granite, Wichita Mountains, Merritt (a), (b)
Canadian River, structural control, Brown carbonate unit, cross-bedding, Moorefield Formation, Swinnett Carboniferous, amphibian, McGinnis
Carlton Rhyolite Group, Wichita Mountains, Merritt (a), (b)
Cavanal coal, trace elements, Zubovic, Sheffey, and Stadnichenko chemical analyses, x-ray fluorescence, Kerns (b)
Cherokee Group, subsurface stratigraphic, Creek County, Hanke
Chimneyhill Limestone: sequence revised, Ansden (a); correlation, Ireland
clay fabric, sedimentary structures, Pennsylvanian, Odom
COAL:
analyses, Aresco, Janus, and Walker / Walker and Hartner / Walters, Ortuglio, and Glaenzer / Zubovic, Sheffey, and Stadnichenko
Dawson coal, spores, Wilson and Venkatala
light oils in coals, Walters, Ortuglio, and Glaenzer
sulfur in coals, Walker and Hartner
tars in coals, Walters, Ortuglio, and Glaenzer
trace elements in coals, Branson (f), Zubovic, Sheffey, and Stadnichenko

[49] [50]
Cold Springs Granite, Wichita Mountains, Merritt (b)
Comanchean, Cretaceous, north Texas, stratigraphy, paleozoology, Hendricks
core catalog, Roberts (a)
Countries:
Alfalfa: iodide in oil-field brines, Collins and Egleson; Wakita trend, Red Fork sand, Withrow
Beaver, Pleistocene and Pliocene deposits, Schemel (b)
Carrr, thermal recovery, waterflooding, Johnston and Basket
Cimarron, pickeringite, Kerns (a)
Cleveland, vertebrates, Olson
Coal: coals, trace-element analyses, Zubovic, Sheffey, and Stadnichenko; type locality, Cordania falcata, Graffham
Comanche, soil survey, Mobley and Brinlee
Craig, coals, trace-element analyses, Zubovic, Sheffey, and Stadnichenko
Creek, subsurface stratigraphy, Cherokee Group, Hanke
Garfield: iodide in oil-field brines, Collins and Egleson; soil survey, Swafford
Garvin, thermal recovery, waterflooding, Johnston and Basket
Grady, Chitwood pool, Riley
Grant, Wakita trend, Red Fork sand, Withrow
Greer, soil survey, Frie, Brinlee, and Groft
Harper, Pleistocene and Pliocene deposits, Schemel (b)
Haskell, coals, trace-element analyses, Zubovic, Sheffey, and Stadnichenko
Jackson, vertebrates, Olson
Jefferson, vertebrates, Olson
Kay: soil survey, Culver, Bain, and Baggett; vertebrates, Olson
Kingfisher, iodide in oil-field brines, Collins and Egleson
Latimer, coals, trace-element analyses, Zubovic, Sheffey, and Stadnichenko
Le Flore, coals, trace-element analyses, Zubovic, Sheffey, and Stadnichenko
Logan, vertebrates, Olson
Major, iodide in oil-field brines, Collins and Egleson
Marshall, Turkey Creek inlier, conodonts, Klapper and Ziegler
McClain: East Washington-West Goldsby Osborn trend, Weber; vertebrates, Olson
McIntosh: coals, trace-element analyses, Zubovic, Sheffey, and Stadnichenko; geology, mineral resources, Oakes; petroleum, Koontz
Noble, vertebrates, Olson
Okmulgee, coals, trace-element analyses, Zubovic, Sheffey, and Stadnichenko
Pittsburg, coals, trace-element analyses, Zubovic, Sheffey, and Stadnichenko
Rogers, coals, trace-element analyses, Zubovic, Sheffey, and Stadnichenko

Sequoyah, coals, trace-element analyses, Zubovic, Sheffey, and Stadnichenko
Stephens: iodide in oil-field brines, Collins and Egleson; thermal recovery, waterflooding, Johnston and Basket
Texas, ground water, Wood and Hart
Tillman, vertebrates, Olson
Tulsa: Dawson coal, Wilson and Venkatathala; microspores, Coffeyville Formation, Upsaw and Hedlund
Woods, Oakdale Red Fork sand field, Tthatman
Woodward, iodide in oil-field brines, Collins and Egleson

Cretaceous:
Comanchean, north Texas, stratigraphy, paleozoology, Hendricks
Guilfin, Chelistonata, Shaw
nomenclature, Fisher and Rodda
sands, southern Oklahoma, Fisher and Rodda
cross-bedding, carbonate unit, Moorefield Formation, Swinichatt
cross section, Paleozoic, Oklahoma, Edwards and Downey / Smith
crystal structure, seismic-refraction measurements, Tryggevason and Qualls
Dawson coal, Tulsa County, spores, Wilson and Venkatathala
delta, Lake Texoma, Ganzer
depositional-basin correlation, acid residues, Foraminifera, Ireland

Devonian:
brachiopod, Chronichidium, Amsden, Boucot, and Johnson
conodonts, Turkey Creek inlier, Marshall County, Klapper and Ziegler

depositional-basin correlation, acid residues, Foraminifera, Ireland
Hunt Group, Chimneyhill Limestone sequence revised, Amsden (a); oil and gas, Kunsman / Logsdon and Brown
Kansas, stratigraphy, correlation with Oklahoma, Hipman
New Mexico, stratigraphy, correlation with Oklahoma, Bowsler / McGlasson
ostracods, stratigraphy, Haragan Formation, Lundin
sedimentary rocks, Appalachian Province, Boucot and Johnson (a)
Silurian and Devonian strata, discussion, Amsden (b); maps and cross sections, Amsden and Rowland (a); subsurface résumé, Amsden and Rowland (b); Ozark uplift, Koenig; Hunton Group, oil and gas, Kunsman / Logsdon and Brown; New Mexico, West Texas. McGlasson; Ochilith Mountains, Sellars; northern Arkansas, Wise and Caplan
diatoms, lake deposits, volcanic ash, Schemel (b)
differential thermal analysis, pickeringite, Kerns (a)
differentiation indices, granites, rhyolites, Wichita Mountains, Merritt (b)
Duncan Sandstone, vertebrates, Olson
engineering classification, geologic materials, soils, Hayes
epirogeny, orogeny, Paleozoic, central U. S., Ham and Wilson
flysch facies, Ouachita Mountains, Clive / Tucker
Forsythe coal, trace elements, Zubovic, Sheffey, and Stadnichenko
Fort Riley Limestone, Lower Permian, scolecodont carriers, Gafford
fossil names, stratigraphic nomenclature, Kerohan
Garber Formation, vertebrates, Olson
geologic materials, soils, engineering classification, Hayes

Geology:
 McIntosh County, Oakes
 Oakdale Red Fork sand field, Thalman
 Oklahoma, Jordan
 Ouachita Mountains, Arkansas, Sterling, Stone, and Holbrook / Stone / Walthall and Bowsher
geophysics: paleomagnetism, Wichita Mountains, basement rocks, Ku et al.; seismic refraction, Tryggvason and Qualls; gravity, Midcontinent high, Coons, Woollard, and Hershey
ground water: levels, south-central U. S., U. S. Geological Survey; Texas County, Wood and Hart
growth faulting, McAlester basin, Koinn and Dickey
Haragan Formation: Cordania falcata, Coal County, Graffhem; ostracodes, stratigraphy, Lundin
Harthorne coal beds (upper and lower), trace elements, Zubovic, Sheffy, and Stadnickenko
Headquarters Microgranite, Wichita Mountains, Merritt (b)
Hennessey Formation, vertebrates, Olson
Henryetta coal: palynology, Meyers; trace elements, Zubovic, Sheffy, and Stadnickenko
Henryhouse Formation: trilobites, Campbell (a) (b); ostracodes, stratigraphy, Lundin; correlation with Kansas, Ireland
Hollis basin, paleotectonic investigation, Permian System, MacLachlan
Hugoton embayment, trend analysis, pre-Morrow surface, Schramm
Hunton Group: Chimneyhill Limestone sequence revised, Amsden (a); oil and gas, Kunsman / Logsdon and Brown; stratigraphy, Hillman / Ireland

Igneous Rocks
 basement, Harvard / Muehlberger, Denison, and Lidiak
 Mt. Scott Granite, Wichita Mountains, Merritt (a) (b)
 Raggedy Mountain Gabbro Group, Wichita Mountains, Hunter / Merritt (b)
 Wichita Mountains, structure, Harvard
Jones Creek coal, trace elements, Zubovic, Sheffy, and Stadnickenko
Jordan, Louise: memorial, Nicholson; bibliography, Oklahoma Geological Survey (b)
Kansas: crude oil correlation, Barbat; new petroleum activity, Buchanan; stratigraphy, Devonian, correlation with Oklahoma, Hillman

Lake Texoma, Butcher Pen area, delta, Ganser
Laverne Formation, type locality, Schemel (a) (b)
Lindsey Bridge Member, Moorefield Formation, Swinchant
Lugert Granite, Wichita Mountains, Merritt (b)
M bed limestone, Mississippian, Tri-State district, solution thinning, Hagni and Desai
maps: index to geologic mapping, surface, subsurface, Branson, Jordan, and Roberts; Sherman quadrangle, Texas, Barnes; Silurian-Lower Devonian maps, cross sections, Amsden and Rowland (a); topographic maps, Branson (e); Midcontinent geological highway map, Oetting, Feray, and Renfro; maps in U. S. Geological Survey open files, Weld, Griffin, and Brett
McAlester basin, growth faulting, Atokan, Koinn and Dickey
McAlester-Stigler coal, trace elements, Zubovic, Sheffy, and Stadnickenko
memorials: Buttram, Frank, Branson (a); Jordan, Louise, Nicholson
Mississippian:
 basement rocks, Muehlberger, Denison, and Lidiak
 geological highway map, Oetting, Feray, and Renfro
 gravity high, Coons, Woollard, and Hershey
 sedimentary structures, clay fabric, Pennsylvanian, Odom

Mineral/Mineralogy:
pickeringite, Cimarron County, Kerns (a)
soils, Brunizemic, Stahnke and Gray
uranium minerals, Finch
mineral industry, statistics, McDougal / McDougal and Ham / Padgett
mineral resources: McIntosh County, Oakes; titanium, Peterson

Mississippian:
 amphibian, oolite, McGinnis
 Chesterian, stratigraphic traps, Anadarko basin, Klinger and Ash
 conodonts, type Morrowan region, Lane
 crinoids, Strimple
 M bed limestone, Hagni and Desai
 Moorefield Formation, Lindsey Bridge Member, Swinchant
 oil-field brines, Collins and Egleson
 Stanley Group, sandstones, petrology, provenance, Ouachita Mountains, Hill
 stratigraphy, structure, Ouachita Mountains, Walthall
 Moorefield Formation, Lindsey Bridge Member, Swinchant
 Morrowan, conodonts, type region, Lane
 Mt. Scott Granite, Wichita Mountains, Merritt (a) (b)
 natural-gas analyses, Moore and Shrewsbury / Moore, Miller, and Shrewsbury
 New Mexico: Devonian stratigraphy, Bowsher; Silurian-Devonian stratigraphy, correlation with Oklahoma, McGlasson
 open file, U. S. Geological Survey, Weld, Griffin, and Brett

Ordovician:
 Arbuckle limestone, Barbat
 brachiopod, Amsden, Boucot, and Johnson
 Bromide Formation, Bryozoa, Merida and Boardman
 mound-building organism, Pulchriamina, Toomey and Ham
 Simpson Group, Barbat
 orogeny, epeirogeny, Paleozoic, central U. S., Ham and Wilson
 oolite, amphibian, McGinnis
 Ouachita Mountains:
 Arkansas, correlation with Oklahoma, Sterling, Stone, and Holbrook / Walthall / Walthall and Bowsher
 basement rocks, Paleozoic, Muehlberger, Denison, and Lidiak
flysch facies, Cline / Tucker
frontal, Arkansas, Stone
paleocurrents, sediment source areas, Briggs and Cline
relation to Tishomingo uplift, Ardmore basin, Harlton / Tarr
Silurian-Devonian strata, Sellars
Stanley Group, Mississippian, sandstones, petrology, provenance, Hill
stratigraphy, Walthall
structure, Viele / Walthall
Ozark uplift, stratigraphy, Hilpman / Ireland / Koenig

PALEOBOTANY:
Circlitellusporites, synonym of Leschikisporis, Wilson and Venkatatcha
Coffeyville Formation, microspores, Upshaw and Hedlund
electron microscopy, Quisquilites, Tasmanites, Wilson and Skvarla
Henryetta coal, palynological correlation, Meyers
Leschikisporis, Circlitellusporites, synonym, Wilson and Venkatatcha
microspores, Coffeyville Formation, Upshaw and Hedlund
new nomenclature published in Oklahoma Geology Notes 1966,
Oklahoma Geological Survey (a)
Quisquilites, wall structure, Wilson and Skvarla
Springer Formation, southern Oklahoma, Felix and Burbridge
synonymy, Circlitellusporites and Leschikisporis, Wilson and Venkatatcha
Tasmanites, wall structure, Wilson and Skvarla
paleocurrents, source areas for Late Paleozoic sediments of Ouachitas,
Briggs and Cline
paleomagnetism, basement rocks, Wichita Mountains, Ku et al.

PALEOZOIC:
basement rocks, Wichita Mountains, structure, Ham
cross section, Edwards and Downey / Smith
epeirogeny, orogeny, Ham and Wilson

PALEOZOOGLOGY:
algal (?) mound builder, Pulchrilamina, Toomey and Ham
ammonoids, Pennsylvanian, Buckhorn Asphalt, Grégoire
amphibian, Phlegethontia, ostoology, McGinnis
annelids, scolecodont carriers, Gafford
Aphelecrinidae, Strimple
brachiopods, Amsden, Boucot, and Johnson / Boucot and Johnson
(b)
Bryozoa, Bromide Formation, Merida and Boardman
Caryocarb removed from faunal list Branson (b)
cephalopods, Buckhorn Asphalt, Pennsylvanian, Grégoire
Cheiostomata, Cretaceous, Shaw
chitinozoans, photography of, Miller
coelenterate (?), Pulchrilamina, Toomey and Ham
Coelosipora, species and distribution, Boucot and Johnson (b)
Comanchean, Cretaceous, stratigraphy, north Texas, Hendricks
Conchidium, Ordovician to Devonian, Amsden, Boucot, and Johnson
conodonts: Icriodus latericersens huddlei, Marshall County, Klappper and Ziegler; Mississippian and Pennsylvanian from type Morrowan region, Lane
Cordania falcula, trilobite, Haragan Formation, type locality, Graffham
crinoids, Branson (b) (c) / Strimple
echinoids, ophiuroids, Permian, Hattin
Foraminifera, arenaceous, Silurian-Devonian, Ireland
fresh-water sponges, Branson (d)
Icriodus latericersens huddlei, Devonian, Marshall County, Klappper and Ziegler
nautiloids, Pennsylvanian, Buckhorn Asphalt, Grégoire
new nomenclature published in Oklahoma Geology Notes 1966
Oklahoma Geological Survey (a)
Oklahomacrinus, distribution, Branson (c)
ophiuroids, echinoids, Permian, Hattin
ostrocods, Silurian-Devonian, Henryhouse and Haragan Formations, Lundin
Pentamerinae, Amsden, Boucot, and Johnson
Phlegethontia, amphibi, ostoology, McGinnis
Foriara, Branson (d)
Protozoa, chitinozoans, Miller
Pulchrilamina spinosa, Toomey and Ham
scolecodont carriers, Gafford
sponges, fresh-water, Branson (d)
trace fossils, Branson (g)
trilobites, Henryhouse Formation, Campbell (a) (b); Haragan Formation, Cordania falcula, Graffham
Pauu Sand, epigenetic uranium minerals, Finch

PENNOSLAVIAN:
amphibian, ostoology, McGinnis
Cherokee Group, subsurface, stratigraphy, Creek County, Hanke
conodonts, type Morrowan region, Arkansas, Lane
Henryetta coal, palynology, Meyers
Missourian microspores, Upshaw and Hedlund
Morrowan: stratigraphic traps, Anadarko basin, Klinger and Ash; conodonts, Lane
oil-field brines, Collins and Eagleson
sedimentary structures, clay fabric, Odom
Springer Formation, palynology, Felix and Burbridge
stratigraphy, structure, Ouachita Mountains, Walthall

PERMIAN:
amphibian, ostoology, McGinnis
ophiourids, echinoids, Hattin
palaeotectonic investigation, MacLachlan
scolecodont carriers, Gafford
vertebrates, Olson
PETROLEUM:

Anadarko basin, oil-field brines, Collins and Egleson; stratigraphic traps, Klinger and Ash; deep tests, Kornfeld (b) / Redding, DeGreer, and Huber / Wroblewski; production, Swanson; gas, Anadarko basin, World Oil

Apache field, Barbat
Bowlegs field, Barbat
Cement field, West, gas-cap-reservoir recovery, Weaver and Anderson
Chitwood pool, Grady County, Riley
core catalog, Roberts (a)
conservation practices, gas-cap-reservoir recovery, Weaver and Anderson
crude oils: sulfur content, McKinney and Shelton; correlations, Barbat
Cumberland field, Barbat
deep tests, Anadarko basin, Kornfeld (b) / Redding, DeGreer, and Huber / Wroblewski; Chitwood pool, Riley
Edmond field, North, Barbat
gas-cap reservoirs, recovery, Weaver and Anderson
 giant gas strike, Anadarko basin, World Oil
Glennpool field, Barbat
Hunton Group, oil and gas, Kunsman / Logsden and Brown
iodide in oil-field brines, Collins and Egleson
Kansas, southwestern, Buchanan
Lucien field, Barbat
McIntosh County, Koontz
Oakfield field, Red Fork sand, Thalman
oil-field brines, iodide, Collins and Egleson
Oklahoma City field, crude-oil migration, Barbat
Panhandle, Buchanan
production, Anadarko basin, Swanson
Red Fork sand: Oakfield field, Thalman; Wakita trend, Withrow
shallow exploration, Taylor
statistics: Atkins; waterflood, Fronjoa and Menzie; sulfur in crude oils, McKinney and Shelton; production, Mesnard / Roberts (b) / Stiles; natural-gas analyses, Moore and Shrewsbury / Moore, Miller, and Shrewsbury; exploration, Summers
stratigraphic traps, Anadarko basin, Klinger and Ash
Stroud field, Barbat
sulfur content, crude oils, McKinney and Shelton
thermal recovery, Carter, Garvin, Stephens Counties, Johnston and Basket
Wakita trend. Red Fork sand, Withrow
Washington field, East-Goldbye field, West-Osborn field trend, McCloud County, Weber
waterflood, Carter, Garvin, Stephens Counties, Johnston and Basket
well-cuttings, Bryozoa, use in subsurface stratigraphy, Merida and Boardman

PETROLEUM:

petrology, Stanley Group, Mississippian, sandstones, Ouachita Mountains, Hill

photography of chitinozoans, Miller
pickeringite, differential thermal analysis, Kerns (a)

Pliocene:

Laverne Formation, Schemel (a)

Precambrian:

goetic history, Muehliuberger, Denison, and Lidiad

map on Precambrian basement rocks, eastern and central U. S., Flawn et al.

Tishomingo uplift, relation to Ardmore basin, Ouachita Mountains, Harton / Tarr

Quanah Granite, Wichita Mountains, Merritt (b)

Quartermaster Formation, epigenetic uranium minerals, Finch

Raggedy Mountain Gabbro Group, structure, igneous rocks, Wichita Mountains, Hunter / Merritt (b)

Red Fork sand: Oakfield field, Thalman; Wakita trend, Withrow

Red River area, nomenclature of Cretaceous rocks, Fisher and Rodda

Reformatory Granite, Wichita Mountains, Merritt (b)

reports, U. S. Geological Survey open file, Weld, Griffin, and Brett

Rush Springs Sandstone, epigenetic uranium minerals, Finch

St. Clair Limestone, Silurian, correlation with Kansas, Ireland

Secor coal, trace elements, Zubovic, Sheffey, and Stadnichenko

sedimentary structures, clay fabric, Odem

seismic-refraction measurements, Tryggvason and Qualls

Silurian:

brachiopod, Amsden, Boucot, and Johnson
depositional basins, correlations using acid residues and Foraminifera, Ireland

Henryhouse Formation, trilobites, Campbell (a) (b)

Hunton Group: Chimneyhill Limestone sequence revised, Amsden (a); oil and gas, Kunsman / Logsden and Brown

New Mexico, stratigraphy, correlation with Oklahoma, McGlasson

ostracodes, stratigraphy, Henryhouse Formation, Lundin

Silurian and Devonian strata: discussion, Amsden (b); maps and cross sections, Amsden and Rowland (a); subsurface résumé, Amsden and Rowland (b); Ozark uplift, Koenig; Hunton Group, oil and gas, Kunsman / Logsden and Brown; ostracodes, stratigraphy, Haragan and Henryhouse Formations, Lundin; New Mexico, West Texas, correlation with Oklahoma, Bousher / McGlasson; Ouachita Mountains, Sellars; northern Arkansas, Wise and Caplan

Simpson Group, Barbat

soil surveys: Comanche County, Mobley and Brinlee; Garfield County, Swafjord; Greer County, Frie, Brinlee, and Graff; Kay County, Culver, Bain, and Baggett

soils, engineering classification, Hayes

solution thinning, M bed limestone, Mississippian, Tri-State district, Hagni and Desai

Springer Formation, palynology, Felix and Burbridge

Stanley Group, Mississippian, sandstones, petrology, provenance, Ouachita Mountains, Hill
stratigraphic nomenclature, fossil names, Keroher

Stratigraphy:

Arkansas, correlation with Oklahoma, Sterling, Stone, and Holbrook / Walhalla / Walhalla and Boshier / Wise and Caplan Cherokee Group, Pennsylvanian, subsurface, Creek County, Hanke Comanchean, Cretaceous, north Texas, paleozoology, Hendricks cross section, Paleozoic strata, Oklahoma, Edwards and Downey / Smith

Devonian, Hargan Formation, ostracodes, Lundin fossil names used in evolving Midcontinent nomenclature, Keroher Hargan Formation, Devonian, ostracodes, Lundin Henryetta coal, palynological correlation, Meyers Henryhouse Formation, Silurian, ostracodes, Lundin New Mexico, Silurian-Devonian, correlation with Oklahoma, Bowsher / McGlasson Ouachita Mountains, Arkansas, correlation with Oklahoma, Sterling, Stone, and Holbrook / Walhalla Ozark uplift, Silurian-Devonian, Koenig Silurian, Henryhouse Formation, Campbell (a); ostracodes, Lundin Silurian and Devonian rocks, Oklahoma and environs, Toomey subsurface, using bryozoans from well-cuttings, Merida and Boardman trend analysis, pre-Morrow surface, Hugoton embayment, Schramm unconformity analysis, Chenoweth strip-mining area, terrain problems, Arkoma basin, Kornfeld (a)

Structure:

basement rocks: Muehler, Denison, and Lidiak; Wichita Mountains, structural evolution, Ham crustal, seismic-refraction measurements, Trygviason and Qualls growth faulting, Atokan, McAlester basin, Koinm and Dickey McAlester basin, growth faulting, Koinm and Dickey Midcontinent gravity high, structural significance, Coons, Woolard, and Hershey Mt. Scott Granite, Wichita Mountains, Merritt (a) (b) Ouachita Mountains, Arkansas, correlation with Oklahoma, Viele / Walhalla Raggedy Mountain Gabbro Group, Wichita Mountains, Hunter structural control of Canadian River, Brown structure contour map on Precambrian surface, eastern and central U. S., Flawn et al.

Washita Valley fault, wrench faulting, Tanner Wichita Mountains, igneous rocks, Stone wrench faulting, Washita Valley fault, Arbuckle Mountains area, Tanner

Subsurface:

gеologic mapping, index, Branson, Jordan, and Roberts
stratigraphic analysis, Cherokee Group, Creek County, Hanke stratigraphy, Bryozoa, Merida and Boardman

surface geologic mapping, index, Branson, Jordan, and Roberts
surface-water data, U. S. Geological Survey (c)
terrain problems, strip-mining area, Arkoma basin, Kornfeld (a)
Texas, Cretaceous, Comanchean, stratigraphy, paleoecology, Hendricks Tillman Group, Wichita Mountains, basement rocks, Muehler, Denison, and Lidiak
Tishomingo uplift, relation to Ardmore basin and Ouachita Mountains, Harlin / Tarr
titanium resources, Peterson
topographic mapping, progress, Branson (e)
trace elements, coals (review), Branson (f)
trace-fossil names, protest, Branson (g)
trend analysis, pre-Morrow surface, Hugoton embayment, Schramm Tri-State district, M bed limestone, Mississippian, solution thinning, Hagni and Desai
Turkey Creek inlier, Devonian, Marshall County, Klapper and Ziegler unconformity analysis, Chenoweth uranium, epigenetic, in Oklahoma sandstones, Finch Verdigris River valley, analog model, Tanaka vertebrates: Permian, Olson; amphibian, McGinnis Wakita trend, Grant and Alfalfa Counties, Withrow Washita Valley fault, Arbuckle Mountains area, Tanner water resources, Oklahoma Water Resources Board / U. S. Geological Survey (a) (b) (c); Texas County, Wood and Hart waterflood statistics, Franjosa and Menzie Wellington Formation, vertebrates, Olson West Texas, Silurian-Devonian stratigraphy, correlation with Oklahoma, McGlasson Wichita Formation, epigenetic uranium minerals, Finch

Wichita Mountains:

basement rocks: structure, Ham / Muehler, Denison, and Lidiak; paleomagnetism, Ku et al.
granites, rhyolites, ages, Merritt (b)
Mt. Scott Granite, Cambrian, Merritt (a) (b); age, Merritt (b)
Raggedy Mountain Gabbro Group, Cambrian, structure, Hunter structure, igneous rocks, Stone wrench faulting, Washita Valley fault, Arbuckle Mountains area, Tanner

x-ray diffractometry, pickeringite, Kerns (a)
x-ray-fluorescence spectroscopy: pickeringite, Kerns (a); chemical analyses, Beaver's Bend illite, Kerns (b)

18. Berry, Richard M., see Cline, L. M., and Berry, R. M. (46); see also Visher, G. S., Branson, C. C., and Berry, R. M. (164).

25. Bowsher, Arthur L., and Johnson, Norman L., 1968, Road log for...

35. Byars, C., 1968, Sooner floods to add 150 million bbl: Oil and Gas Jour., vol. 66, no. 7 (Feb. 12), p. 72-73, 76, 1 fig.

44. Clarke, Robert T., see Gibson, L. B., and Clarke, R. T. (65).

Conkin, Barbara M., see Conkin, J. E., Conkin, B. M., and Canis, W. F. (48).

Dingess, Paul R., see Brockie, D. C., Hare, E. H., Jr., and Dingess, P. R. (31).

58. Dowds, John P., 1968, Mathematical probability approach proves successful: World Oil, vol. 167, no. 7 (Dec.), p. 82-85, 4 figs. (1 example of oil and gas exploration in Cimarron Co.).

Gillan, Santos, see Schoeppe, R. J., and Gilaranz, Santos (129).

Gray, Fenton, see Culver, J. R., and Gray, Fenton (144).

Griffin, James B., see Crane, H. R., and Griffin, J. B. (50).

82. Johnson, Fritz K., see Buchanan, R. S., and Johnson, F. K. (32).

84. Johnson, Norman L., see Bowsher, A. L., and Johnson, N. L. (31).

87. Kirby, John R., see Zietz, Isidore, and Kirby, J. R. (177).

88. Klapper, Gilbert, see Amsden, T. W., Klapper, Gilbert, and Ornstein, A. R. (6).

96. Lucia, F. Jerry, and Murray, Raymond C., 1967, Origin and dis-
Lumsden, David N., see Pittman, E. D., and Lumsden, D. N. (120).

MacClintock, Copeland, see Pannella, Giorgio, MacClintock, Copeland, and Thompson, M. N. (117).

110. Murray, Raymond C., see Lucia, F. J., and Murray, R. C. (90).

111. Nitecki, Matthew H., and Richardson, Eugene S., Jr., 1967, Catalog of type specimens of conodonts in the Field Museum of Natural History: Fieldiana: Geology, vol. 17, p. 3-101 (Mississippian and Pennsylvanian specimens from Pontotoc and Tulsas Cos.).

112. Norris, G., see Hedlund, R. W., and Norris, G. (76).

118. Oriel, Steven S., see McKee, E. D., Oriel, S. S., and others (103).

120. Ormiston, Allen R., see Amsden, T. W., Klapper, Gilbert, and Ormiston, A. R. (6).

141. Snyder, Frank G., 1968, Tectonic history of Midcontinental

149. Stripple, Melba L., see Stripple, H. L., and Stripple, M. L. (147).

154. Thompson, Maxwell N., see Parnella, Giorgio; MacClintock, Copeland, and Thompson, M. N. (117).

160. Trumbly, W. D., see Berry, R. M., and Trumbly, W. D. (17).

174. Waters, K. H., see Cherry, J. T., and Waters, K. H. (43); see also Erickson, E. L., Miller, D. E., and Waters, K. H. (61).

[39] [40]
INDEX

aerial photographs, 55
Altamont Limestone: facies study, 128
ANADARKO BASIN:
depth drilling, 33
depositional environment of Red Fork Sandstone, 172
gas potential, 33
gravity study, 132
Permian stratigraphy, 122
petroleum exploration (1967), 148
regional geology, 153
structure, 155
anorthosite in Wichita Mountains, 157
Arbuckle Group: conodonts, 109; subsurface geology in Healdton field, 87
Arbuckle Mountains: Ordovician conodonts, 109; paleomagnetism of granites, 142; spherulites in Woodford Formation, 134
archeology: paleosol study, 72; radiocarbon dates, 14, 15, 50
Ardmore basin: contemporaneous faulting, 135
Arkansas River: clay load in Kay County, 167; index to surface-water data, 60
ARKOMA BASIN:
Bonanza gas field, 32
Brazil anticline, 139
cinder cone, 71
faults, 32
groundwater geology, 44, 45, 71
guidebook, 45
migration of reservoir fluids, 56, 69
natural gas, 22, 71, 139
petroleum exploration (1967), 148
road log, 46
Wilburton gas field, 17
Barnes Formation: chitinozoans from Fort Riley Member, 62
Barnsdall Formation: crinoid, 147
Bartlesville sand: core description, 162; depositional environment, 127, 162; guidebook and road log, 163, 164; history of development, 169
Beavers Bend illite, 49
bibliographies: Chester A. Reed, 24; Oklahoma geology (1967), 175
Black Knob Ridge: aerial photographs, 55
Blaylock Formation: Beavers Bend illite, 49
Bloyd Formation: diagenesis, 77; cephalopods, 98
Bluejack Sandstone: core description, 162; depositional environment, 127, 162; guidebook and road log, 163, 164
Boggy Formation: soil study, 144
boron fixation by illites, 49
Brazil anticline, 139
Bromide Formation: luminescence petrography, 138; Nuia (Problematica), 152; ostracode, 88; porosity, 107
Buckhorn asphalt: cephalopods, 67, 68
Cabens Group: stratigraphy, 23
Caddo County buttes, 133
CAMBRIAN:
Navajo Mountain Basalt-Spilite Group: paleomagnetism, 142
paleomagnetism, 142
radiometric dates, 94
Raggedy Mountain Gabbro Group: paleomagnetism, 142
southern Midcontinent, 41, 42
Wichita Granite Group: paleomagnetism, 142
Wichita Mountains, 81
Canadian River: gradient study, 63
Carpenter, Everett: memorial, 26, 104
catalogs: cephalopod types in U. S. National Museum, 121; conodont types in Field Museum, 110
Charons Gardens unit of Wichita Mountains: geology and mineral resources, 81
Cherokee Group: stratigraphy, 23
Cimarron River: gradient study, 63
Cisco Group: Stephens County, 93
Clarita Formation: brachiopods, 4
clay load in Arkansas River, 167
clay mineralogy: boron fixation by illites, 49
coal: palynology of Iron Post and Secor coals, 65; strip mining, 10
computer application: trend analysis of Hugoton embayment, 130
Cool Creek Formation: conodonts, 109
copper: Flowerpot Shale in Jackson County, 140

COUNTIES:
Adair: Pennsylvanian cephalopods, 98
Alfalfa: soil study, 136
Atoka: aerial photographs, 55
Beaver: Camrick gas area, 153; Hugoton-Panhandle gas field, 96;
Laverne gas area, 118, 153; Pliocene diatomics, 170; Pliocene fresh-water sponges, 27; trend analysis of pre-Morrowan surface, 130
Beckham: stream piracy, 36
Blaine: seismic recording, 61
Bryan: East Durant field, 84; palynology of Woodbine Formation, 75; seismic and electrical properties of Troy Granite, 137
Caddo: Apache field, 155; Caddo County buttes, 133; East Cement field, 155; economic and general geology, 113; Holocene diatoms, 19; hydrology, 113; Northwest Cement field, 155; sediment transport, 2; West Cement field, 155
Canadian: subsurface geology, 1, 11
Carter: Arbuckle Group, 87; Devonian ostracodes, 91; economic and general geology, 113; hydrology, 113; Nuia (Problematica) in Bromide Formation, 152; Ordovician conodonts, 109; Pennsylvanian bivalves, 97; Pennsylvanian cephalopods, 98; Silurian brachiopods, 4; waterflood, 35
Cimarron: petroleum-exploration analysis, 59
Cleveland: ground water, 174; Permian reptiles, 114; porosity data on McLish sand, 107; post-Wisconsin paleosol, 72; seismic recording, 61; subsurface geology, 1
Coal: aerial photographs, 55; Cromwell sand in Franks graben area, 171; Devonian acritarchs, 89; Devonian ostracodes, 91; East Oconeey field, 108; Pennsylvanian cephalopods, 98; Silurian brachiopods, 4
Comanche: aluminum resources, 157; economic and general geology, 113; geology and mineral resources of Charons Gardens unit, 81; hydrology, 113; Permian reptile, 38; water data for Lawton, 161
Cotton: economic and general geology, 113; hydrology, 113
Custer: Weatherford meteorite, 95
Delaware: radiocarbon dating, 15
Grady: Carter-Knox field, 123; Chickasha field, 155; porosity data on First Bromide sand, 107; sediment transport, 2; subsurface geology, 1
Grant: seismic recordings, 43, 61; Southwest Wakita field, 172; Wakita trend, 172
Greer: stream piracy, 36
Harmon: stream piracy, 36
Harper: Laverne gas area, 118, 153; Mississippian crinoidal rocks, 90; Mocane gas area, 153; Pleistocene fresh-water sponges, 27
Haskell: guidebook and road log, 163, 165; Kinta gas field, 173
Hughes: Pennsylvanian bivalves, 97
Jackson: copper in Flowerpot Shale, 140; stream piracy, 36
Jefferson: economic and general geology, 113; hydrology, 113
Johnston: Devonian ostracodes, 91; Pennsylvanian cephalopods, 98; Silurian brachiopods, 4
Kay: clay load in Arkansas River, 167; palynology of Wellington Formation, 18; seismic recording, 61; soil study, 51
Kingfisher: Permian reptiles, 114; seismic recordings, 43, 61
Kiowa: aluminum resources, 157; economic and general geology, 113; hydrology, 113; stream piracy, 36; subsurface geology of North Gotebo area, 150
Lake: Brazil anticline, 139; guidebook and road log, 162, 164; Hartshorne Formation, 99, 100; petrography of Spiro sand, 120; Potato Hills structure, 8; Red Oak-Norris gas field, 139; road log, 2; Wilburton gas field, 17
Le Flore: aerial photographs, 55; Bonanza gas field, 32; Brazil anticline, 139; coal, 71; Hartshorne Formation, 99, 100; natural gas, 32, 71; petrography of Spiro sand, 120; radiocarbon dates, 50; Red Oak-Norris gas field, 139; road log, 46; surface geology, 71
Logan: Permian reptile, 114; seismic recording, 43
Love: economic and general geology, 113; hydrology, 113; Marietta basin development (1958-1968), 78
Marshall: Devonian trilobites, 115; Devonian Turkey Creek infier, 6; Marietta basin development (1958-1968), 78; palynology of Antlers Sand and Walnut Clay, 76
Mayes: diagenesis of Bloyd Limestone, 77
McClain: seismic recording, 61; subsurface geology, 1
McCurtain: Beavers Bend illite, 49; Pleistocene fresh-water sponges, 27
McIntosh: guidebook and road log, 163, 164
Murray: Devonian ostracodes, 91; Ordovician conodonts, 109; Pennsylvanian cephalopods, 88; Silurian brachiopods, 4
DEVIAN:*
- Haragan Formation: acritarchs, 89, ostracodes, 91
- Hunton Group: Canadian County, 11; central Oklahoma, 1; Major County, 73; southern Midcontinent, 5; stratigraphy, 7; Woodward County, 73
- Sallisaw Formation: brachiopods, 20
- stratigraphy, 5, 7
- Turkey Creek inlier: stratigraphy, 6; trilobites, 115
- Woodford Formation: spherulites, 134
- Dewey Limestone: tabulate coral, 47
diagenesis: Bloyd Limestone, 77
dickite in Pennsylvania limestones, 131
differential weathering in Morrowan sandstones, 149
earth science education: secondary schools, 145

ECONOMIC GEOLOGY:*
- aluminum resources in Comanche and Kiowa Counties, 157
- Caddo County, 113
- Carter County, 113
- Comanche County, 113, 157
- copper, 140
- Cotton County, 113
- Jeffers County, 113
- Kiowa County, 113, 157
- lead in Tri-State district, 31
- Love County, 113
- mines and mining, 116
- statistics, 101, 102, 113, 116
- Stephens County, 113
- Tillman County, 113
- zinc in Tri-State district, 31

education: earth science in secondary schools, 145
erratics: John's Valley Shale, 136
Excelle Shale: depositional environment and reefs, 39, 40, 154
faults: contemporaneous, 135; growth, 32
- First Brodine Shale: porosity, 107
- Flowerpot Shale: caesid reptiles, 114; copper, 140
- Foraker Formation: trace elements, 105
- Fort Riley Limestone: chitonoozoans, 62
- Fort Sill fossil site: diapsid reptile, 38
- Franks graben area: Cromwell sand, 171
- Garber Formation: ground water, 174
- Gene Autry Formation: cephalopods, 98
- geographic names: Caddo County buttes, 133
- geologic history: southern Midcontinent, 41, 42
- geomorphology: Caddo County buttes, 133; gradient study of Canadian, Cimarron, and North Canadian Rivers, 63

GEOGRAPHY:*
- electrical properties of Troy Granite, 137
- geothermal gradient, 129
- gravity: Anadarko basin, 132; northern Oklahoma, 159, 160
heat flow: northeastern Oklahoma, 125
magnetics: northern Oklahoma, 176, 177; paleomagnetism of basement granites in southern Oklahoma, 142
radiometric dating: Cambrian and Precambrian, 94
seisimcs: Blaine County, 61; Cleveland County, 61; Grant County, 43, 61; Kay County, 61; Kingfisher County, 43, 61; Logan County, 43; McClain County, 61; Pottawatomie County, 61; properties of Troy Granite, 137; Seminole County, 61
Great Salt Plains: hydrology and meteorology, 53; soil study, 156
growth faults: Arkoma basin, 32
guidebooks: Arkoma basin, 45; Bluejacket-Bartlesville Sandstone, 163; Haskell County, 163; Latimer County, 163; McIntosh County, 163; Muskogee County, 163; Osage County, 45; Pittsburg County, 163
Haragan Formation: acritarchs, 89; ostracodes, 91
Hartshorne Formation: depositional environment, 99, 100
Henryetta district: strip coal mining, 10
history: Oklahoma City field, 52

HOLOCENE:
diatoms, 19
radiocarbon dates, 14, 15, 50
soils: Alfalfa County, 156; Boggy Formation in Muskogee County, 144; Okmulgee County, 143; Wellington Formation in Kay and Noble Counties, 51
Hugoton embayment: hydrodynamic emplacement of oil and gas, 80; migration of reservoir fluids, 56, 69; trend analysis, 130
Hunton Group: Canadian County, 11; central Oklahoma, 1; Major County, 73; stratigraphy, 5, 7; Woodward County, 73

HYDROLOGY:
Caddo County, 113
Carter County, 113
clay load in Arkansas River, 167
Comanche County, 113
Cotton County, 113
evaporation: Lake Hefner, 85
Great Salt Plains, 53
ground water: Cleveland County, 174; Great Salt Plains, 53; Oklahoma, 58; Oklahoma County, 174
hydrodynamic emplacement of oil and gas, 80
Jefferson County, 113
Kiowa County, 113
Lawton water data, 161
Love County, 113
Oklahoma City water data, 161
sediment transport in Washita River basin, 2
Stephens County, 113
surface water: chemical analysis, 158; index to records, 60; Oklahoma, 58
Tillman County, 113
Tulsa water data, 161

water resources: Oklahoma, 58
Johns Valley Shale: erratics, 136
joint patterns: Midcontinent, 165
kaolin: Pennsylvanian limestones, 131; Wichita Mountains, 157
Krebs Group, 23
Lake Hefner: evaporation, 85
Laverne area: porosity of Mississippian crinoidal rocks, 90
Laverne Formation: diatoms, 170; fresh-water sponges, 27
Lawton water data, 161
lead: Tri-State district, 31, 140
limestone diagenesis, 77
Lowman, S. W.: memorial, 25
luminescence petrography: Bromide, McLish, and Tulip Creek sandstones, 138
manganese: trace element in Foraker Formation, 105
maps: Cleveland County, 174; gravity, 159, 160; magnetic, 176, 177; Oklahoma County, 174; Permian paleotectonic, 103; radiometric, 94; topographic, 28, 29, 30
Marietta basin (syncline): developments (1958-1968), 78; natural gas, 12
McKenzie Hill Formation: conodonts, 109
McLish Formation: luminescence petrography, 138; porosity, 107
memorials: Carpenter, Everett, 26, 104; Lowman, S. W., 25; Reeds, Chester A., 24; Shead, Arthur Curtis, 112
meteorite: Custer County, 95
meteorology: evaporation from Lake Hefner, 85; humidity and temperature on Great Salt Plains, 53
Midcontinent: joint patterns, 165; tectonic history, 141
mines and mining, 116

MISSISSIPPIAN:
conodont study, 86
crinoidal rocks in Harper County, 90
Johns Valley Shale: erratics, 136
Moorefield Formation: stratigraphy, 64
Stanley Group, 82
stratigraphy in northern Arkansas, 111
Welden Limestone: foraminifers, 48
Woodford Formation: conodonts, 110; spherulites, 134
Moorefield Formation: stratigraphy, 64
Morrocan sandstones: differential weathering, 149; structure in Woodward County, 168
Navajo Mountain Basalt-Splinite Group: palaeomagnetism, 142
Nemaha uplift: tectonic history, 141
North Canadian River: gradient study, 63
Oklahoma: geologic bibliography (1967), 175
Oklahoma City water data, 161
Oklahoma Geological Survey: annual report, 92
ORDOVICIAN:
Arbuckle Group: conodonts, 109; geology, 87
Bromide Formation: luminescence petrography, 138; Nuia (Problematica), 152; ostracode, 88; porosity, 107
Bryan County, 84
Cool Creek Formation: conodonts, 109
McKenzie Hill Formation: conodonts, 109
McLish Formation: luminescence petrography, 138; porosity, 107
Oil Creek Sandstone: structure, 108
Simpson Group: porosity, 107
southern Midcontinent, 41, 42
Sylvan Shale: Major and Woodward Counties, 73
Tulip Creek Formation: luminescence petrography, 138
Viola Limestone: central Oklahoma, 1

OUACHITA MOUNTAINS:
contemporaneous faulting, 135
erratics in Johns Valley Shale, 136
geologic review, 44, 45
guidebook, 45
oil and gas potential, 22
Potato Hills structure, 8
road logs, 21, 46
Stanley Group: depositional environment, 82
structure, 8, 79
Ozark uplift: tectonic history, 141

PALEOBOTANY:
diatoms: Holocene in Caddo County, 19; Pliocene in Beaver County, 170
Iron Post coal: palynology, 65
Problematica: Nuita in Bromide Formation, 152
Secor coal: palynology, 65
taxonomy: Cenomanian spores, 75
Wellington Formation: palynology, 18
Woodbine Formation: palynology of Red Branch Member, 75
paleocurrent analysis: Stanley Group, 82
paleosol: post-Wisconsin in Cleveland and Pottawatomie Counties, 72
paleontologic investigation: Permian System, 57, 103

PALEOZOLOGY:
acritarchs: Haragan Formation, 89
bivalves: growth data, 117; Pennsylvanian from Carter and Hughes Counties, 97
brachiopods: Clarita Formation, 4; Devonian, 90; Sallisaw Formation, 20; Silurian, 4, 20
cephalopods: Floyd Formation, 98; Buckhorn asphalt, 67, 68; Gene Autry Formation, 98; types in U. S. National Museum, 121;
Union Valley Formation, 98; Wapanucka Formation, 98
chitinozoans: Fort Riley Limestone, 62
Conocardiurn: growth data, 117
conodonts: Mississippian in Tri-State district, 66; Ordovician in Arbuckle Mountains, 109; Seminole Formation, 110; symmetry study, 86; types in Field Museum, 110; Woodford Formation, 110
corals: Pennsylvanian tabulates, 47
crinoids: Paracromyocrinus marquis from Savanna Formation,
146; Synbathoocrinus from Barnsdall (Wann?) Forma.
147
Diplosis: Bromide Formation, 88
Eooaquaplex: Bromide Formation, 88
foraminifers: Welden Limestone, 48
Gnathorhiza serratia: Wellington Formation, 37
lungfish: Wellington Formation, 37
Nuita: Bromide Formation, 152
ostracodes: Eooaquaplex (Diplosis) from Bromide Formation, 88; Haragan Formation, 91
pelopods, see bivalves
Problematica: Nuita in Bromide Formation, 152
reptiles, Permian, 38, 114
sponges: Cenozoic fresh-water, 27
Sutherlandia: Dewey Limestone and Seminole Formation, 47
trilobites: Devonian in Marshall County, 115

PENNSYLVANIAN:
Altamont Limestone: facies study, 128
Atokan, 32
Barnsdall Formation: crinoid, 147
Bartlesville sand: depositional environment, 127, 162; guidebook and road logs, 163, 164
Bloyd Formation: cephalopods, 98; diagenesis, 77
Bluejacket Sandstone: depositional environment, 127, 162; guidebook and road log, 163, 164
Boggy Formation: soil study, 144
Buckhorn asphalt: cephalopods, 67, 68
Cabaniss Group, 23
Cherokee Group, 23
Cisco Group: Stephens County, 93
Cromwell sand: Franks graben area, 171
Dewey Limestone: tabulate coral, 47
dickite in limestones, 131
Excels Lhale: depositional environment and reefs, 39, 40, 154
Gene Autry Formation: cephalopods, 98
Hartshorne Formation: depositional environment, 99, 100
Iron Post coal: palynology, 65
Johns Valley Shale: erratics, 136
kaolinite in limestones, 131
Krebs Group, 23
Le Flore County, 71
Morrowan sandstone: differential weathering, 149
Otterville Limestone: bivalves, 97
Red Fork Sandstone: depositional environment, 172
Savanna Formation: crinoid from Sam Creek Member, 146
Secor coal: palynology, 65
Seminole Formation: conodonts, 110; tabulate coral, 47
Senora Formation: depositional environment and reefs of Excels Lhale, 39, 40, 154
Spiro sand: Latimer County, 17, 139; Le Flore County, 139; petro-
graphy, 120; petroleum, 17
thick in central Oklahoma, 1
trend analysis of pre-Morrow surface, 130
Tulsa County, 16
Union Valley Formation: cephalopods, 98; Cromwell sand in
Franks graben area, 171
Verdigris Limestone: central Oklahoma, 1
Vilas Shale: growth data for Conocardiun, 117
Wann? Formation: crinoid, 147
Wapanucka Limestone: cephalopods, 98
Wewoka Formation: bivalves, 97

PERMIAN:
 Anadarko basin: stratigraphy, 122
 Barneston Formation: chitinozoans from Fort Riley Member, 62
 Flowerpot Formation: caesid reptiles, 114; copper, 140
 Foraker Formation: trace elements, 105
 Fort Riley Limestone: chitinozoans, 62
 Fort Sill fossil site: diapsid? reptile, 38
 Garber Formation: ground water, 174
 Hennessey Formation: caesid reptile, 114
 Hutchinson salt: depositional environment, 54
 paleoecologic investigation, 57, 103
 stratigraphy, 57, 103, 122
 Weatherford Dolomite: Caddo County buttes, 133
 Wellington Formation: ground water, 174; lungfish, 37; palynology,
 18; soil study, 51
 Whitehorse Group: Caddo County buttes, 133
 Wichita Mountains, 81
petrology: Spiro sand, 120

PETROLEUM:
 Anadarko basin: gas potential, 33
 Apache field, 155
 Avant W field: reservoir study, 83
 Bartlesville sand: history of development, 169; reservoir study,
 83
 Bonanza gas field, 32
 Burbank E field: waterflood,
 Campbell W field, 73
 Camrck field, 73
 carbon isotopes in methane, 126
 Carter-Knox gas field, 123
 Cement E field, 155
 Cement NW field, 155
 Cement W field, 155
 Cheyenne Valley field: Red Fork Sandstone, 172
 Chickasha gas field, 155
 deep drilling in Anadarko basin, 33
 Durant E field, 84
 exploration: activity (1967), 148; analysis, 59; gravity, 132
 gas, 33
 gas fields and regional geology of western Anadarko basin, 153
 giant oil and gas fields, 70, 151
 Gotebo N area, 150
 Handy field, 73
 Handy SE field, 78
 Headlight field: geology, 87; waterflood, 35
 Hewitt field: waterflood, 35
 high-wax oils, 74
 Hugoton-Panhandle field, 96
 hydrodynamic emplacement of oil and gas, 80
 Keyes field: carbon isotopes in methane, 126
 Kinta gas field, 173
 Laverne area: carbon isotopes in methane, 126; porosity in cri-
 noidal rocks, 90; subsurface geology, 118, 153
 Loco field: hot waterflood, 93
 Marietta basin: developments (1958-1968), 78
 Marietta SE field, 74
 migration of reservoir fluids, 56, 69
 Moxanc field: carbon isotopes in methane, 126; subsurface geol-
 ogy, 153
 Mustang N field, 11
 natural gas: Arkoma basin, 22, 71; hydrodynamic emplacement,
 80; Le Flore County, 71; Marietta syncline, 12; occurrence
 in pre-Silurian rocks, 13
 Newman field, 73
 Oakdale field: Red Fork Sandstone, 172
 occurrence in pre-Silurian rocks, 13
 Oconee E field, 108
 oil-water interface, 80
 Oklahoma City field: history, 52, 151; subsurface geology, 151
 Pine Hollow S field, 99, 100
 porosity of Simpson Group, 107
 Powell S field, 78
 Red Oak-Norris gas field, 139
 secondary recovery, 34, 35, 166
 stratigraphic traps, 100
 tertiary recovery: hot waterflood in Loco field, 93
 Wakita SW field and Wakita trend: Red Fork Sandstone, 172
 waterflood, 34, 35, 93, 119
 Wilburton gas field, 17
 Woodward County, 73
 Woodward SE gas field, 168
 Yukon S field, 11
 Pine Mountain syncline: aerial photographs, 55
 Pleistocene: fresh-water sponges, 27; post-Wisconsin paleosol, 72
 Pliocene: fresh-water sponges, 27; Laverne Formation diatoms, 170
 Potato Hills: structure, 8
PRESERVATIVE:
 radiometric dates, 94
Tishomingo Granite: paleomagnetism, 142
Troy Granite: electrical and seismic properties, 137; paleomagnetism, 142
Prue sand: Canadian County, 11
radiocarbon dating, 14, 15, 50
radiometric dating, 94
Raggedy Mountain Gabbro Group: paleomagnetism, 142
Recent, see Holocene
Red Branch Member: palynology, 75
Red Fork Sandstone: depositional environment, 172
Red Oak sand: Latimer and Le Flore Counties, 139
Red River Basin: index to surface-water records, 60
Reeds, Chester A.: memorial and bibliography, 24
reefs, 39, 40, 154
Rich Mountain syncline: aerial photographs, 55
road logs: Arkoma basin, 46; Latimer County, 21; Le Flore County, 46; Ouachita Mountains, 21, 46
Sallisaw Formation: brachiopods, 20
salt: depositional environment, 54
Sam Creek Member: crinoid, 146
Savanna Formation: crinoid from Sam Creek Member, 146
sediment transport: Washita River basin, 2
Seminole Formation: conodonts, 110; tabulate coral, 47
Senora Formation: depositional environment and reefs of Excello
Shale, 39, 40, 154
Shead, Arthur Curtis: memorial, 112
SILURIAN:
Blaylock Formation: Beavers Bend illite, 49
Clarita Formation: brachiopods, 4
Hunton Group: Canadian County, 11; central Oklahoma, 1;
Major County, 73; southern Midcontinent, 5; stratigraphy, 7;
Woodward County, 73
stratigraphy, 7
Simpson Group: porosity study, 107
soil studies: Alfalfa County, 156; Boggy Formation, 144; Okmulgee
County, 143; Wellington Formation, 51
Spiro sand: Latimer County, 17, 139; Le Flore County, 139; petro-
graphy, 120; Pittsburg County, 17
Stanley Group: depositional environment, 81
STRATIGRAPHY:
Devonian: Midcontinent, 5; Oklahoma, 7
Hunton Group: Oklahoma, 7; southern Midcontinent, 5
Mississippian in northern Arkanss, 111
Permian: Anadarko basin, 122; Panhandle, 57; United States, 103
Silurian: Midcontinent, 5; Oklahoma, 7
stream piracy: southwestern Oklahoma, 36
strip mining: aerial photographs, 55; coal resources, 10
strontium: trace element in Foraker Formation, 105
structure: Anadarko basin, 155; contemporaneous faulting and basin
filling, 135; Ouachita Mountains, 79, 135; Potato Hills, 8

Sylvan Shale: Major and Woodward Counties, 73
tectonic history: Midcontinent, 141
terraces: southwestern Oklahoma, 36
Tishomingo Granite: paleomagnetism, 142
topographic maps, 28, 29, 30
Tri-State district: Mississippian conodonts, 66; ore deposits, 31, 140
Troy Granite: electrical and seismic properties, 137; paleomagnetism, 142
Tulip Creek Formation: luminescence petrography, 138
Tulsa: urban geology, 16; water data, 161
Turkey Creek inlier: stratigraphy, 6; trilobites, 115
Union Valley Formation: cephalopods, 98; Cromwell sand in Franks
graben area, 171
urban geology: Tulsa area, 16
Vilas Shale: growth data for Conocardium, 117
Wann Formation: crinoids, 147
Wapanucka Formation: cephalopods, 98
Washita River basin: sediment transport, 2
waterfloods: 34, 35, 93, 119, 166
Weatherford meteorite, 95
Welden Limestone: foraminifers, 48
Wellington Formation: ground water, 174; lungfish, 37; palynology,
18; soil study, 51
Wewoka Formation: bivalves, 97
Wheatland area: subsurface geology, 1
Wichita Granite Group: paleomagnetism, 142
Wichita MOUNTAINS:
- aluminum resources, 157
- geology and mineral resources of Charons Gardens unit, 81
- paleomagnetism of granites, 142
Woodford Formation: conodonts, 110; spherulites, 134
zinc: Tri-State district, 31, 140
zirconium: trace element in Foraker Formation, 105
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY

1969

Prepared by KENNETH S. JOHNSON and ALEX. NICHOLSON

Bibliography—pages 19-32
Index—pages 32-39

BIBLIOGRAPHY

Andrew, B. O., see Disney, R. W., Andress, B. O., Chenoweth, P. A., and Schramm, M. W., Jr.

Baker, N. M., see Randolph, J. R., Baker, N. M., and Deike, R. G.

Bartolina, Donald G., see Fisher, C. F., Bartolina, D. G., and Rieke, D. L.

Brinlee, R. C., see Allgood, F. P., Conradi, A. J., Rhoads, C. E., and Brinlee, R. C.

23. Byars, Carlos, 1969, Technology, steel stretched to limit in drilling world’s second deepest hole: Oil and Gas Jour., vol. 67, no. 18 (May 5), p. 108-114, 5 figs., 1 table. (Drilling of Glover-Hefner-Kennedy 1-1 Green, Beckham County.)

Chelof, John V., see Fisher, C. F., and Chelof, J. V.

Clabaugh, Patricia S., see Muehlberger, W. R., and Clabaugh, P. S.

Cocke, J. M., see Heckel, P. H., and Cocke, J. M., see.

Conradi, Arlin J., see Allgood, F. P., Conradi, A. J., Rhoads, C. E., and Brineley, R. C.

Deike, R. G., see Randolph, J. R., Baker, N. M., and Deike, R. G.

38. Dickey, Parke W., 1969, Increasing concentration of subsurface brines with depth: Chemical Geology, vol. 4, p. 361-370, 7 figs. (Includes data on Oklahoma brines in Pennsylvania and Ordovician strata.)

Faul, H., see Naesser, C. W., and Faul, H.

Feemster, W. E., see Van Hook, W. A., and Feemster, W. E.

Frey, Robert W., see Hattin, D. E., and Frey, R. W., Friedman, Irving, see Hall, W. E., and Friedman, Irving, Fulton, Robert B., III, see Rittenhouse, Gordon, Fulton, R. B., III, Grabowski, R. J., and Bernard, J. L.

Gibson, A. M., see Meyers, A. J., Gibson, A. M., Glass, B. P., and Patrick, C. R.

Glass, Bryan P., see Myers, A. J., Gibson, A. M., Glass, B. P., and Patrick, C. R.

Grabowski, Robert J., see Rittenhouse, Gordon, Fulton, R. B., III, Grabowski, R. J., and Bernard, J. L.

Graffham, A. Allen, see Fay, R. O., and Graffham, A. A.

61. Hattin, Donald E., and Frey, Robert W., 1969, Facies relations of Crossopodia sp., a trace fossil from the Upper Cretaceous of Kansas, Iowa, and Oklahoma: Jour. Paleontology, vol. 43, p. 1435-1440, 2 figs., 1 table. (Includes four specimens from Cimarron County.)

Hmy. Dept., Research and Devel. Div., 302 p., 10 figs., 7 charts. (Includes parts of south-central and southwestern Oklahoma.)

Hetherington, E. A., Jr., see Denison, R. E., Hetherington, E. A., Jr., and Otto, J. B.

Keith, John R., see Vine, J. D., Tourtelot, E. B., and Keith, J. R.

Kidson, Evan, see Tasch, Paul, and Kidson, Evan.

73. King, Philip B., 1969, Tectonic map of North America: U. S. Geol. Survey, scale 1:5,000,000 (1 inch equals 80 miles).

Kirk, J. Norman, see Dellwig, L. F., MacDonald, H. C., and Kirk, J. N.

78. MacDonald, Harold C., 1969, Remote sensing will refine exploration science: World Oil, vol. 169, no. 2 (August 1), p. 48-52, 7 figs. (Includes radar imagery of Tuskahoma syncline, Pushmataha County, Ouachita Mountains.)

MacDonald, Harold C., see Dellwig, L. F., MacDonald, H. C., and Kirk, J. N.

Mccasland, W., see Hayes, C. J., and McCasland, W.

Morrison, Jack L., see Blackwell, P. W., Morrison, J. L., and Smith, W. E., Jr.
Morrison, Jack L., see Wilson, L. R., Morrison, J. L., and Reid, W. E.
Morton, Robert B., see Irwin, J. H., and Morton, R. B.

the lower Red River watershed in southeastern Oklahoma below Lake Texoma and Washita River.)
Ott, J. B., see Burke, W. H., Otto, J. B., and Denison, R. E.
Ott, J. B., see Denison, R. E., Hetherington, E. A., Jr., and Otto, J. B.
Patrick, Carol R., see Myers, A. J., Gibson, A. M., Glass, B. P., and Patrick, C. R.
Pierce, Arthur P., see Cannon, R. S., Jr., and Pierce, A. P.
Pojeta, John, Jr., see Gordon, Mackenzie, Jr., et al.
Reid, William E., see Wilson, L. R., Morrison, J. L., and Reid, W. E.
Rhoads, Clifford E., see Allgood, F. P., Conradi, A. J., Rhoads, C. E., and Brinlee, R. C.
Rieke, Duane L., see Fisher, C. F., Bartolina, D. G., and Rieke, D. L.
Rowland, T. L., see Ham, W. E., and Rowland, T. L.
Saadallah, Adnan A., see Hagni, R. D. and Saadallah, A. A.

Sando, William J., see Gordon, MacKenzie, Jr., et al.

Smith, Wayne E., Jr., see Blackwell, P. W., Morrison, J. L., and Smith, W. E., Jr.
Sohn, I. G., see Gordon, MacKenzie, Jr., et al.

Strimple, H. L., see Burdick, D. W., and Strimple, H. L.
Strimple, Harrell L., see Moore, R. C., and Strimple, H. L.

Teichert, Curt, see Fischer, A. G., and Teichert, Curt.

121. Toomey, Donald F., 1969, Stratigraphy, palynology, and sediment facies relationships, part I of The biota of the Pennsylvanian (Virgilian) Leavenworth Limestone, Midcontinent region: Jour. Paleontology, vol. 43, p. 1001-1018, 5 figs., 3 pls., 3 tables. (Study extends south to Osage County, Oklahoma.)

122. Toomey, Donald Francis, 1969, Distribution of algae, part 2 of The biota of the Pennsylvanian (Virgilian) Leavenworth Limestone, Midcontinent region: Jour. Palentology, vol. 43, p. 1313-1330, 1 fig., 4 pls., 2 tables. (Includes specimens from Osage County.)

Tourtelot, Elizabeth B., see Vine, J. D., Tourtelot, E. B., and Keith, J. R.

132. Vine, James D., 1969, Element distribution in some Paleozoic

136. Visher, Glenn S., 1969, How to distinguish barrier bar and channel sands: World Oil, vol. 168, no. 6 (May), p. 106-113 (incl. ads), 2 figs. (Includes Pennsylvanian sandstone from Oklahoma as fluvial example.)

Wood, Patricia W., see Nicholson, Alex., and Wood, P. W.

Yochelson, Ellis L., see Gordon, MacKenzie, Jr., et al.

INDEX

Alabaster Cavern, Woodward County, 91
algal-mound complexes, 66
algal stromatolites, Permian, 70, 119

ANADARKO BASIN:
aeromagnetic study, Custer City N field, 7
brines, 32, 108
drilling for petroleum, 107
Green 1-1 gas test, 23, 76
Huntun Group, 60
Marmaton Group, oil production, 24
Morrow sandstones, 46
new well-completion methods, 131
north flank, Cherokee Group, 10
western part, pre-Pennsylvanian geology, 105
world's second deepest hole, 23
annual report: Oklahoma Department of Mines, 101; Oklahoma Geological Survey, 80
Arbuckle Group: early Paleozoic overlap, 27, 86; geology, 50; Hoover SE field, 144

ARBUCKLE MOUNTAINS:
Bromide Formation, 41
cephalopods, 43
dating apatite and sphene, 92
fault systems and oil accumulation, 59
field trips, 40, 47, 56
g eo l ogy along I-35, guidebook, 40
Ordovician boundaries, 37
radar imagery, 42
regional geology, 56
tectonic evolution, 138
trilobites, 115
Viola Formation, 51
archaeology: bibliography, 9; petroglyphs, Black Mesa area, 28
Arkansas novaculite, 102
Arkansas River sands, grain size, 135
Arkoma basin, Hunton stratigraphy, 20
barium, geochemical prospecting, 19
basement rocks: electrical and seismic properties, 100; radiometric
dating, 22, 36, 92
bibliographies: computer applications, 13; hydrology, 106; North
American geology, 127; Oklahoma archaeology, 9; Oklahoma
geology, 93; uranium in Oklahoma, 103
Black Mesa area, petroglyphs, 28
black shales, geochemistry, 132, 133
Bluejacket Formation, depositional environment, 11
brines: Anadarko basin, 32, 108; concentration increases with depth, 38
Cambrian:
Arbuckle Group, 50
trilobites, 115
chemical industries, mineral raw materials, 72
Cherokee Group, subsurface geology, 10, 30, 31
coal: Kerr-McGee mine near Stigler, 96; resources, 8
computer applications, 13, 111, 140
copper deposits, 87
Counties:
Adair: invertebrate fossils, 53
Atoka: fault systems and oil accumulation, 59
Beaver: hydrogeology, 69; salt, 90
Beckham: world's second deepest hole, 23, 76
Blaine: soil survey, 44; Star-Lacey field, 143
Caddo: diatoms, 15
Carter: fusulinids, 113; geology along I-35, guidebook, 40;
subsurface facies maps, 82
Cherokee: invertebrate fossils, 53
Cimarron: Greenwood gas field, 141; hydrogeology, 69; pet-
roglyphs from Black Mesa area, 28; trace fossil, 61
Coal: Cromwell Sandstone, 142; fault systems and oil accumu-
lation, 59
Comanche: dating basaltic rocks, 22; vertebrate fossils, 14
Creek: Pleasanton Group, 112
Custer: aeromagnetic study, Custer City N field, 7
Garfield: coke plant, 71
Haskell: coal production, 96
Hughes: soil survey, 77
Johnston: fault systems and oil accumulation, 59
Kay: algal stromatolites, 70, 119
Kingfisher: Star-Lacey field, 143
Kiowa: dating basaltic rocks, 22
Love: crinoids, 117
Major: Campbell W field, 60; soil survey, 2
Mayes: invertebrate fossils, 53
McCurtain: barium prospecting, 19
Murray: cephalopods, 43; geology along I-35, guidebook, 40;
Hoover SE field, 144; trilobites, 115
Muskogee: soils, 68
Noble: algal stromatolites, 70, 119; soils, 68
Nowata: algal mounds, 66
Okfuskee: subsurface geology, 33
Oklahoma: flood-prone areas, 55; soil survey, 45
Okmulgee: arachnid, 75
Osage: algal mounds, 66; Leavenworth Limestone, biota, 121, 122;
Pennsylvanian correlations, 111; Toronto Limestone, deposi-
tional facies, 123
Ottawa: lead-zinc, 26, 54, 55
Pittsburg: Wapanucka Limestone, 57
Pontotoc: Cromwell Sandstone, 142; fault systems and oil accumu-
lation, 59
Pottawatomie: subsurface geology, 33
Pushmataha: radar imagery, 78
Seminole: Pleasanton Group, 112; subsurface geology, 33
Sequoyah: Wilson Rock, 16
Texas: Greenwood gas field, 141; hydrogeology, 69
Tillman: Permian reptile, 34
Tulsa: algal mounds, 66; crinoids, 116; flood-prone areas, 95;
Pleasanton Group, 112
Washington: algal mounds, 66; corals, 29; soil survey, 104
Woods: Oakdale field, 52
Woodward: Alabaster Cavern, guidebook, 91
Cretaceous:
Trinity Group, barium prospecting, 19
Upper, trace fossil, 61
Criner Hills, scolecodont, 120
Cromwell Sandstone, Franke Graben area, 142
delta environment, Bluejacket Formation, 11
depositional processes, grain-size distribution, 135
Devonian:
Arkansas novaculite, 102
brachiopods, 139
Hunton stratigraphy, 20, 60
Star-Lacey field, 143
Dewey Formation, corals, 29
directory of mineral producers in Oklahoma, 109
early Paleozoic overlap, 27, 86
east-central Oklahoma, geology and water resources, 81
Economic Geology:
barium prospecting, 19
coal, 8, 96
coke plant, 71
construction materials, 62, 63, 64, 65, 83
copper deposits, 67
lead-zinc, 26, 54, 55, 57
mineral producers in Oklahoma, directory, 109
mineral statistics, 39, 84, 85, 101
pozzolanic raw materials, 124
raw materials for chemical industries, 72
lead isotopes, guide in lead-zinc exploration, 26
lead-zinc, isotopic composition of ore and host rock, 55
lead-zinc deposits, 67
Leavenworth Limestone, biota, 121, 122
limestone alteration, lead-zinc ores, 54
limestone cementation, Wapanucka Limestone, 57
maps: geology and hydrology. Fort Smith quadrangle, 81; tectonic, North America, 73, 74; topographic, 17, 18
Marathon Group, oil production, Anadarko basin, 24
memorial, Hugh Dinsmore Miser, 94
mineral industries: coal, 8, 96; coke plant, 71; directory of producers, 109; raw material for chemical industries, 72; statistics, 39, 84, 85, 101, 110
Miser, Hugh Dinsmore, memorial, 94
MISSISSIPPIAN:
 Arkansas novaculite, 102
 crinoids, 21
 invertebrate fossils, 53
 Stanly Shale, barium prospecting, 19
 strata of south-central Oklahoma, 48
Morrow sandstones, occurrence and production, Anadarko basin, 46
Nemaha ridge: east flank, 30, 31; west flank, 10
north-central Oklahoma, Cherokee Group, 30, 31
northeastern Oklahoma: basement rocks, age, 36; springs, 12
Ogallala Formation, hydrogeology, 69
Oklahoma Geological Survey, annual report, 80
Oklahoma geology, bibliography, 93
opaline phyloliths, Oklahoma soils, 145
ORDOVICIAN:
 Arbuckle Group, 50
 boundaries in Arbuckle Mountains, 37
 brachiopods, 139
 Bromide Formation, 41
 “Fernvale” Formation, 1
 scolocodont, 120
 Simpson Group, 49
 trilobites, 115
 Viola Formation, 1, 51
OUACHITA MOUNTAINS:
 age of Hatton Tuff, 89
 Arkansas novaculite, 102
 Potato Hills, radar imagery, 35
 Tuskhahoma syncline, radar imagery, 78
 Wapanucka Limestone, 57
Ozark region, springs, 12
PALEOBOTANY:
 algal mounds, 66
 algal stromatolites, 70, 119
 biota of Leavenworth Limestone, 121, 122
 computer applications, 13, 140
 diatoms, 15
Permian cycads, 79
Permian palynology of North America, 140
Paleozoic, early, overlap, 27, 86

PALEONTOLOGY:
arachnid, 75
biota of Leavenworth Limestone, 121, 122
brachiopods, 5, 139
cephalopods, Buckhorn asphalt deposit, 43
corals, 29, 53
crinoids, 21, 88, 116, 117
Crossopodia sp., 61
Eowaeringella, 113
fusulinids, 113
gastropods, 53
Gery's fossils, revision, 53
ostracodes, 53
pelecypods, 53
Polychetaspis oklahomensis n. sp., 120
Protolissamphibian, 14
reptile, Lower Permian, 34
scolecodont, 120
trilobites, 53, 115
vertebrate fossils, 14

Panhandle: hydrogeology of Glorieta Sandstone and Ogallala Formation, 69; natural gas, 87

Pennsylvanian:
algal mounds, 66
arachnid, 75
black shales, geochemistry, 132, 133
Bluejacket Formation, 11
Carter County, subsurface facies maps, 82
cephalopods, 43
Cherokee Group, 10, 30, 31
corals, 29
crinoids, 88, 116, 117
Cromwell Sandstone, 142
fluvial deposits, 134, 136
fusulinids, 113
Greenwood gas field, 141
Hattan Tuff, radiometric age, 89
Keota Sandstone, 16
Leavenworth Limestone, biota, 121, 122
Marmaton Group, oil production, 24
Morrow sandstones, occurrence and production, 46
natural gas, Panhandle, 87
Osage County, correlations, 111
paleocurrent directions, 58
Pleasanton Group, 112
Red Oak Sandstone, reservoir study, 52
sandstones, grain size, 135
Toronto Limestone, depositional facies, 123

Wapanucka Limestone, burial cementation, 57

PERMIAN:
algal stromatolites, 70, 119
cycads, 79
Glorieta Formation, hydrogeology, 69
palynology, North America, 140
reptile, 34
salt, 90
vertebrate fossils, 14
Woodward County and Alabaster Cavern, 91

PETROLEUM:
Anadarko basin: drilling, 107; Green 1-1 gas test, 23, 76; pre-Pennsylvanian geology, 105
brines, 32, 38, 108
calcined petroleum coke, 71
Campbell W field, 60
Cherokee Group, 10, 30, 31
Cromwell Sandstone, Franks Graben area, 142
Custer City N field, aeromagnetics, 7
fault systems and oil accumulation, 59
Greenwood gas field, 141
Hoover SE field, 144
Marmaton Group, Anadarko basin, 24
Morrow sandstones, occurrence and production, 46
natural gas in Panhandle, 87
new well-completion methods, Anadarko basin, 131
Oakdale field, Red Oak Sandstone, 52
Panhandle, natural gas, 87
Seminole area, 33
Star-Lacey field, 143
statistics, 3, 4, 6, 84, 85, 110, 114, 118
subsurface facies maps, Carter County, 82
underground waste disposal, Panhandle, 69
world's second deepest hole, 23
physiography, southwestern Oklahoma, 25
pozzolanic raw materials, 124

PRECAMBRIAN:
northeastern Oklahoma, isotopic age, 36
Trey Granite, electrical and seismic properties, 100
radar imagery: Arbuckle Mountains, 42; Ouachita Mountains, 35, 78
radiometric dating, 22, 36, 89, 92
Red Oak Sandstone, reservoir study, 52
salt, Beaver County, 90

SEDIMENTATION:
Bluejacket Formation, 11
depositional facies of Toronto Limestone, 123
fluvial deposits, 134, 136
grain size and depositional processes, 135
paleocurrent directions, Kansas City Group, 58

SILURIAN:
brachiopods, 5
Hunton stratigraphy, 20, 60
Star-Lacey field, 143
Simpson Group, stratigraphy, 49
soil surveys: Blaine County, 44; Hughes County, 77; Major County, 2;
 Oklahoma County, 45; Washington County, 104
soils: engineering classification, 62, 63, 64, 65; moisture tension, 68;
 opaline phytoliths, 145
southwestern Oklahoma, physiography, 25
springs, Ozark region of northeastern Oklahoma, 12
Stratigraphy:
 Arbuckle Group, 50
 Arkansas novaculite, 102
 Bromide Formation, Arbuckle Mountains, 41
 "Fernvale" Formation, 1
 Hunton, 20, 60
 Leavenworth Limestone, 121
 Mississippian strata, south-central Oklahoma, 48
 Ordovician: Arbuckle Mountains, 37; Seminole area, 33
 Paleozoic, Arbuckle Mountains, 40, 56
 Pennsylvanian, Seminole area, 33
 Pleasanton Group, 112
 pre-Pennsylvanian, western Anadarko basin, 105
 Simpson Group, 49
 Viola Formation, 1, 51
structural evolution, southern Oklahoma, 137
structure, Potato Hills, radar imagery, 35
tectonic map, North America, 73, 74
tectonics: Arbuckle area, 138; southern Oklahoma, 137
 Tertiary, Ogallala Formation, hydrogeology, 69
topographic maps, 17, 18
Tri-State district, lead-zinc, 26, 54, 55
uranium in Oklahoma, 103
Viola Formation, 1, 51
Wapanucka Limestone, burial cementation, 57
Wichita Mountains: dating basaltic rocks, 22; Lower Permian
 vertebrate fossils, 14
Vol. 31, no. 2, April 1971
BIBLIOGRAPHY

Andrew, B. F., see Batty, J. V., and Andrew, B. F.

1 Includes some 1969 listings.

Black, B. A., see Rigby, J. K., Chamberlain, C. K., and Black, B. A.

Bryson, R. A., see Bender, M. M., Bryson, R. A., and Baerreis, D. A.

Cannon, P. J., see Rowan, L. C., and Cannon, P. J.

17. Cannon, P. J., see Rowan, L. C., Offield, T. W., Watson, Kenneth, Cannon, P. J., and Watson, R. D.

Carter, M. D., see Averitt, Paul, and Carter, M. D.

Chamberlain, C. K., see Rigby, J. K., Chamberlain, C. K., and Black, B. A.

Claypool, G. E., see Baker, D. R., and Claypool, G. E.

ology, v. 44, p. 1122-1124, 1 fig., 1 pl. (Mentions Oklahoma chitinosa.)

Davis, E. M., see Valastro, S., Jr., and Davis, E. M.

Dickey, P. A., see Cartmill, J. C., and Dickey, P. A.

Duschatko, R. W., see Pittman, E. D., and Duschatko, R. W.

Fellows, L. D., see Thompson, T. L., and Fellows, L. D.

Frederiksen, N. O., see Kirkland, D. W., and Frederiksen, N. O.

Golden, Julia, see Nitecki, M. H., and Golden, Julia.

Ham, W. E., see McMahan, A. B., and Ham, W. E.

33. Harris, S. A., 1970, Bends of the South Canadian: Shale Shaker, v. 20, p. 80-95, 12 figs. (Covers part of Oklahoma.)

35. Hayes, C. J., see Hartonft, B. C., Smith, M. D., Hayes, C. J., and McCasland, W.

37. Helander, D. P., see Graves, R. C., Helander, D. P., and Martinez, S. J.

Hibshman, M. H., see Stroud, R. B., McMahan, A. B., Stroup, R. K., and Hibshman, M. H.

Hille, J. B., see Howell, W. D., and Hille, J. B.

Ingham, D. L., see Ross, R. J., Jr., and Ingham, J. K.

40. Iranpanah, Assad, 1970, Trace-element analyses of the ADA shales and sandstones, Seminole and Pontotoc Counties, Oklahoma: Oklahoma Geology Notes, v. 30, p. 5-10, 2 figs., 1 table.

Jackson, M. L., see Dolcater, D. L., Syers, J. K., and Jackson, M. L.

49. Kornfeld, J. A., 1970, Drilling will center in three areas: World Oil, v. 170, no. 6 (May), p. 64-66, 3 figs. (Includes Anadarko basin.)
Landisman, M., see Mitchell, B. J., and Landisman, M.
Lane, H. R., see Straka, J. J., II, and Lane, H. R.
Lane, G. N., see Webster, G. D., and Lane, G. N.

Martinez, S. J., see Graves, R. C., Helander, D. P., and Martinez, S. J.

55. McCasland, W., see McMillion, L. G., Sr., and Maxwell, B. W.
McCaw, B. W., see Hartonft, B. C., Smith, M. D., Hayes, C. J., and McCasland, W.
McCasland, J. C., 1970, Journal's survey of active fields: Oil and Gas Jour., v. 68, no. 35 (Sept. 21), p. 105-134 (incl. ads. (Includes Oklahoma.)

McManus, A. B., see Strait, R. B., McManus, A. B., Strait, R. K., and Hibbsman, M. H.

Morrison, J. L., see Wilson, L. R., Morrison, J. L., and Reid, W. E.
Muehlerger, W. R., see Flawn, P. T., and Muehlerger, W. R.

Nicholson, Alex., see Johnson, K. S., and Nicholson, Alex.

64. Offield, T. W., see Rowan, L. C., Offield, T. W., Watson, Kenneth, Cannon, P. J., and Watson, R. D.

71. Qualls, B. R., see Tryggsvason, F., and Qualls, B. R.
Reed, J. E., see Bedinger, M. S., Reed, J. E., Wells, C. J., and Swofford, B. F.
Reid, W. E., see Wilson, L. R., Morrison, J. L., and Reid, W. E.

74. Roberts, J. F. (comp.), 1970, Complete list of cores acquired by The University of Oklahoma Core and Sample Library
through March 1970: Oklahoma Geol. Survey Core Catalog 4, 34 p. (Multilith.)

76. Ross, R. J., Jr., and Ingham, J. K., 1970, Distribution of the Toquima-Table-Head (Middle Ordovician Whiterock) Faunal Realm in the Northern Hemisphere: Geol. Soc. America Bull., v. 81, p. 393-408, 5 figs. (Takes in Arbuckle Mountains.)

88. Strimple, H. L., see Burdick, D. W., and Strimple, H. L.

91. Swafford, B. F., see Bedinger, M. S., Reed, J. E., Wells, C. J., and Swafford, B. F.

92. Syers, J. K., see Dolcater, D. L., Syers, J. K., and Jackson, M. L.

95. Tourtelot, E. B., see Vine, J. D., and Tourtelot, E. B.

105. Watson, Kenneth, see Rowan, L. C., Offield, T. W., Watson, Kenneth, Cannon, P. J., and Watson, R. D.

106. Watson, R. D., see Rowan, L. C., Offield, T. W., Watson, Kenneth, Cannon, P. J., and Watson, R. D.

107. Webster, G. D., and Lane, N. G., 1970, Carboniferous echinoderms from the southwestern United States: Jour. Paleon-
ology, v. 44, p. 276-296, 3 figs., 4 pls. (Comparisons with Oklahoma echinoderms.)
Wells, C. J., see Bedinger, M. S., Reed, J. E., Wells, C. J., and Swafford, B. F.
Woods, E. W., see Louden, L. R., and Woods, E. W.

INDEX

ANADARKO BASIN:
- deep drilling, 55
- deep potential, 105
- flow tests on gas wells, 72
- Mill Creek synline, 7
- petroleum geology, 48
- petroleum potential, 47, 48, 105
- pollen, Cordaitina, 46
- subsurface geology, 47, 48, 105
- annual reports: Oklahoma Department of Mines, 68; Oklahoma Geological Survey, 54

ARBuckle MOUNTAINS:
- chitinozoans, 40, 41
- conodonts, 29
- infrared investigations, 77, 78
- paleomagnetism of basement granites, 85
- petroleum geology and potential, 48
- Precambrian rocks, 30
- radar imagery, 77
- Toquima-Table Head Faunal Realm, 76
- trilobites, Cambrian, 51
- wrench faulting, 100
- archaeology, radiocarbon dates, 13, 98

Ardmore basin: Pennsylvanian conodonts, 86; petroleum geology and potential, 48
- areal geology: mapping by remote sensing, 65, 77, 78; Panhandle, 10
- Arkansas River valley, ground-water studies, 12
- Arkoma basin: petroleum geology and potential, 48; programed drilling, 89
- atlas, national, 94
- basement rocks, 30, 85
- bibliographies: energy resources, 8; Fusulinidae, 79; generic names of fossil plants, 6; North American geology, 95, 96; Oklahoma geology, 45

boulders, Johns Valley, 82, 83

CAMBRIAN:
- Carlton Rhyolite, welded tuff, 3
- diabase dikes, 63
- faunal patterns, 49
- trilobites, Arbuckle Mountains, 51

Canadian River, flood-hazard information, 92

CARBONIFEROUS:
- conodonts, 26
- correlation, 27
- echinoderms, 101
- catalogs: core and sample, 73; trilobites, 64

CLAY MINERALOGY:
- Atoka shale analyses, 52
- black shales, geochemistry, 99
- chlorite, Morrow Series, 35
- diabase argillation, 63
- illite analyses, 24
- code map, geologic provinces, 61
- computer information, palynological, 103
- correlation, Carboniferous, 27
- copper deposits, 11, 88

COUNTIES:
- Beaver: areal geology, 10
- Blaine: flow tests on gas wells, 72
- Cimarron: Cretaceous outcrops, 80
- Comanche: gypsum production, 43
- Craig: ophiolite, 87; shale analyses, 9
- Ellis: areal geology, 10; flow tests on gas wells, 72
- Harper: areal geology, 10
- Kiowa: diabase argillation, 63
- Lincoln: soil survey, 102
- Logan: Lower Permian reptile, 53
- Osage: gas wells, WYNona field, 36
- Payne: Ramsey pool, structure, 39
- Pontotoc: trace-element analyses, 38
- Seminole: trace-element analyses, 38
- Sequoyah: soil survey, 1
- Texas: areal geology, 10; Ogallala Aquifer pollution tests, 60
- Tulsa: Bird Creek field, 17
- Woods: salt, solar-produced, 44
- Woodward: flow tests on gas wells, 72

craton, Late Cambrian faunal patterns on, 49

Cretaceous:
- Cheyenne Sandstone, 80
- Kiowa Formation, 80
- Lower, northwestern Oklahoma, 80
- crustal section across Oklahoma, 62
- CSD, code map of geologic provinces, 61
- dating, radiocarbon, archaeological samples, 13, 98
- directory, mineral producers in Oklahoma, 74

ECONOMIC GEOLOGY:
- black shales, metal-rich, 99
- central eastern Oklahoma, 86
- construction materials, 34
- copper deposits, 11, 88
core and sample catalog, 73
department, 8
gypsum production, 43
lead, Picher field, 57
mineral map, 42
mineral producers in Oklahoma, directory, 74
mineral statistics, 58, 59, 68
petroleum, see Petroleum
Picher field, 57
salt, solar-produced, 44
sample and core catalog, 73
zinc, Picher field, 57
education, secondary-teacher training, 28
electron microscope, pore-geometry study, 70
engineering classification, rocks and soils, 34
excavation, acritarch, 50
flood-hazard information, Norman area, 92
general geology: areal map, Perryton sheet, 10; central eastern
Oklahoma, 66; Panhandle, 93
geochemistry: black shales, 99; trace-element analyses, Ada
Formation, 58
geologic provinces, CSD code map, 61
geomorphology, river patterns, 33
Geophysics:
aeromagnetic profile, Mill Creek syncline, 7
crustal section across Oklahoma, 62
infrared investigations, 77, 78
paleomagnetism, basement granites, 85
radar imagery, 65, 77, 84
seismic profile, 91
GIPSY, palynological computer information, 103
granites, paleomagnetism, 85
highway materials, engineering classification, 34
Hydrology:
Arkansas River valley, ground water, 12
central eastern Oklahoma, 66
flood-hazard information, Norman area, 92
Glorieta Sandstone, salt-water injection, 60
ground water, 12, 67
Ogallala Aquifer, pollution tests, 60
Panhandle, 93
Platt National Park area, 93
pollution, Ogallala Aquifer, 60
surface water, 67, 97
Tulsa quadrangle, 93
Verdigris River valley, ground water, 12
water quality, 60, 67, 97
water resources, 67
indexes: generic names of fossil plants, 5; Oklahoma geology, 45;
petroleum information, 31
information retrieval, 31, 61, 103
infrared investigations, Arbuckle Mountains, 77, 78
King Mountain, diabase argillation, 63
map atlas, national, 94
maps: areal geologic, 10; mineral resources, 42; topographic, 14
mineral industries: directory of mineral producers, 74; gypsum pro-
duction, 43; mineral map, 42; statistics, 2, 6, 58, 59, 68, 75
Mississippian:
conodont zonation, 25
conodonts, eastern Oklahoma, 90
Fayetteville Formation: crinoid, 16; ophiuroid, 87
grain orientation, sandstones, 81
Johns Valley Formation, 82, 83
sponges, Ouachita Mountains, 71
national atlas, 94
Nemaha ridge: east flank, 21, 37; petroleum geology and potential, 48
Oklahoma Department of Mines, annual report, 68
Oklahoma Geological Survey, annual report, 54
Oklahoma geology, bibliography and index, 45
Ordovician:
acritarch excetration and taxa, 50
Bromide Formation, brachiopods, 104
chitinozoans: Fernvale Limestone, 40; Sylvan Shale, 22, 41; Viola
Limestone, 40
Joins Formation, conodonts, 29
pleurocystitids, 69
Toquima-Table Head Faunal Realm, Arbuckle Mountains, 76
organic analyses, 9
Ouachita Mountains:
fossils, Jackfork Group, 93
Johns Valley boulders, 82, 83
petroleum potential, 48
radar imagery, 65
sponges, 71
wrench faulting, 100
outcrop patterns, relation to drainage, 33
Paleobotany:
biography of generic names of fossil plants, 5
floras, Middle Permian, 18
index of generic names of fossil plants, 5
palynology, see Palynology
paleogeography, Middle Permian, 18
Paleozoology:
brachiopods, triassiacan, 104
conodonts, 25, 26, 29, 86, 90
corals, rugose, 20
echinoderms, Carboniferous, 101
faunal patterns, Late Cambrian, 49
Fusulinidae, bibliography, 79
goniatite, 27
Jackfork Group fauna, 93
Labidosaurkos, 53
Oncychestor strimplei, 87
pleurocystitids, 69
Pterotocinus, 16
sponges, Ouachita Mountains, 71
Toquima-Table Head Faunal Realm, 76
trilobites: catalog, 64; Late Cambrian, 49, 51
Palynology:
acritarch excetration and taxa, 50
chitinozoans, 22, 40, 41
Cordaita pollen, 46
paleogeography, 18
spores, Upper Permian, 19

Pennsylvanian:
Ada Formation, trace-element analyses, 38
Atoka shale, analyses, 52
Burbank sandstone, petroleum, 17, 37
conodonts, 25, 86
correlations, Missourian, 20
Des Moines stratigraphy, 23
Golf Course Formation, conodonts, 86
grain orientation, sandstones, 81
Jackfork Group, fossils, 93
Johns Valley Formation, 82, 83
Labette Formation, 9
Marmaton Group, 9, 21
Morrow Series, chlorite in, 35
pollen, Cordaitina, 46
Red Fork sandstone, 37
sponges, Ouachita Mountains, 71

Permian:
Flowerpot Formation, palynology, 18, 19
grain orientation, sandstones, 81
red-bed copper deposits, 11, 88
reptiles, 53
petrography, Johns Valley boulders, 82

Petroleum:
Aledo field, 105
Anadarko basin: deep drilling, 55; flow tests on gas wells, 72; exploration, 15; potential, 47, 105; stratigraphy, 105; structure, 105
Arkoma basin, 48, 89
Bird Creek field, 17
Buffalo Wallow field, 105
Burbank field, 37
Burbank sandstone, 37
Burgess sandstone, oil movement, 17
Buzzard sandstone, fracturing, 36
Carter-Knox field, 105
Central Oklahoma platform, 48
Chitwood-Alex field, 105
core and sample catalog, 73
CSD code map, geologic provinces, 61
Custer City N field, 105
Elk City E field, 105
explosives, used in fracturing, 36
flow tests, gas wells, 72
formation damage by shale remineralization, 52
Gageby Creek field, 105
gas wells: flow tests, 72; fractured by explosives, 36
geologic provinces, CSD code map, 61
geology, 48
Griggs SE field, 56
information retrieval, 31, 61
Lauderdale field, 37
Marmaton Group, 21
Mocane field, 56

Nemaha ridge, 48
Pauls Valley uplift, 48
potential, 48
Putnam SW field, 56
Ramsey pool, 39
Red Fork field, 37
Red Fork sandstone, 37
sample and core catalog, 73
Short Junction field, 56
southern Oklahoma, 48
statistics, 2, 6, 15, 59, 75
technology: programmed drilling in Arkoma basin, 89
Washita Creek field, 105
Wynoma field, fracturing, 36
petrology: diabase dikes, 63; Precambrian rocks, 30; welded tuff, 3, 4, 32
Picher field, 57
pore geometry, 70

Precambrian:
Arbuckle Mountains, 30
Spavinaw area, 30
Wichita Mountains, 30

radar imagery: Arbuckle Mountains, 77; Ouachita Mountains, 65;
Tuskahoma syncline, 84
radiocarbon dates, archaeological samples, 13, 98
regression models, faulted structural surfaces, 39
remote sensing: Arbuckle Mountains, 77, 78; Ouachita Mountains, 65;
Tuskahoma syncline, 84
sandstone, grain orientation, 81
sedimentary environments, Lower Cretaceous, 80
sedimentary rocks, chlorite in, 35
Sedimentation:
depositional environments, 37
grain orientation, 81
Johns Valley Formation, 83
palaeocurrents, 81
sandstone trends, 81
soil surveys: Lincoln County, 102; Sequoyah County, 1
soils, engineering classification, 34
solar evaporation, salt produced by, 44
South Canadian River, geomorphology, 33
Spavinaw area, Precambrian rocks, 30

Stratigraphy:
Anadarko basin, 105
black shales, geochemistry, 99
correlations, Missourian, 20
Des Moines, 23
Johns Valley Formation, 82, 83
Lower Cretaceous, northwestern Oklahoma, 80
Lower Mississippian, eastern Oklahoma, 90
Marmaton Group, 21
Mississippian-Pennsylvanian, 25
Red Fork sandstone, 37
subsurface geology, Des Moines, 23
stream piracy, 33
STRUCTURAL GEOLOGY:
Anadarko basin, 47, 105
 crustal section across Oklahoma, 62
 crustal structure, 91
 en-echelon faulting, 100
 faulted structural surfaces, 39
 megashears, 100
 Mill Creek syncline, 7
 Tuskahoma syncline, 84
 wrench faulting, 100
titanium in illite, 24
topographic maps, 14
United States, national atlas, 94
Verdigris River valley, ground-water studies, 12
water resources, 67
WICHITA MOUNTAINS:
 paleomagnetism of basement granites, 85
 petroleum geology and potential, 48
 Precambrian rocks, 30
 welded tuff, 3, 4, 32
 wrench faulting, 100