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Geologic factors controlling producibility
of sorbed-gas reservoirs

Jeffrey R. Levine
Consultant Geologist
Richardson, TX
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of sorbed-gas reservoirs, in Fourth annual Oklahoma
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Survey, Open-File Report 9-2002, p. 1-33.
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Main Points — 1 of 3

1) Economic CBM production is influenced by
many factors acting in combination with
one another. No single factor will dictate
success or failure.

2) Production trends in established U.S. basins
indicate that overall, geology has a greater
impact than engineering in contolling
production rates.

Jeffrey R. Levine, Ph.D.mm?/ \m=

Consultant Geologist Ema\_/a=s
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Main Points — 2 of 3

3)Coal composition has an important impact
on many of the most significant
characteristics of sorbed gas reservoirs, yet
is usually inadequately characterized

4) Coal is comprised of a mixture of geochemical
constituents, many of which are free molecule:
that are physically bonded to other coal
constituents. Methane is one such
constituent. Also included are other gases
such as CO,, and liquids such as water and oil.

Main Points 3 of 3

5) To properly understand the behavior of
sorbed gas reservoirs, one must
understand how coal evolves geochemically
during its geologic history, and the nature
of the intra- and intermolecular forces that
bind coal together.

2 Jeffrey R. Levine, Ph.D. " "\
Consultant Geologist ga\_/o=n
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“Sorbed Gas Reservoirs”

3 Most of the producible gas in place exists in
a “sorbed” state, in association with organic
matter in the rocks

% Reservoir drainage depends (in most cases!)
upon a network of interconnected fractures

# Drilling-Completion-Production technologies
are similar

Sorbed Gas Reservoirs

I
L I

Gas Shales “Coalbed Methane”
| |

e Devonlan Antrim, Chattanooga
etc. of Appalachian basin

« Cretaceous Lewls, Plerre, etc.
of Rocky Mountain region

* Miss. Barnett of Ft. Worth Bas.

« Carbonlferous Coals of Eastern
& Mid-continent

* Cretaceous Coals
of Rocky Mt. Reglon

« Tertlary of Powder River Basin

Typically «<—OM Content— Typically
5-20% 70-95%
May be «—OM Composition— Usually
Type l or 1lI Type lll & IV
Joints <«—Fracturing— Cleat
(~10 ~ 100 cm) (~5 ~ 20 mm)
3 Jeffrey R. Levine, Ph.D. =7 "\

Consultant Geologist Ema\_/ass
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Shales & Coals are Already Important
Sources of Produced Gas in North America

% Together represent ~10% of U.S.
production (CBM: 7%; Shale Gas: 3%)

# Shale gas is an active emerging play

# Gas from shales and gas from coal are
typically co-mingled in “*CBM” production.
Shale component estimated at 30-40%
for BWB & Drunkard’s Wash CBM fields.

Geological Issues Bearing on the Economic
Producibility of CBM Reservoirs

Influenced by Coal Composition

1
[ |

Issues Bearing on the Issues Bearing on the
“Gas Resource Density”: “Gas Deliverability”:

» Cleat Permeability
« fracture spacing
» fracture openness

» Gas Content
» Gas Capacity
» Reservoir Dimensions

(Thickness & Lateral
Extent)
» Reservoir Temperature
* Reservoir Pressure
» Gas Composition

« fracture mineralization
« Matrix Shrinkage Effect
* Relative Permeability
» Reservoir Pressure
* Reservoir Continuity
* Gas Diffusivity

4

Jeffrey R. Levine, Ph.D.
Consultant Geologist
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Practical Applications of Coal Petrology
to CBM Exploration & Production

% Exploration - Assist in determining where to look
for good CBM prospects and what to look for

# Drilling & Completion - Helping to understand
reservoir behavior during drilling and determine the
best completion practices

% In Production Analysis & Remediation - Helping
to understand well performance, diagnose problems
& recommend appropriate solutions

“the power of science is to explain what we observe,
and to predict what we have not yet observed”

Overview of Coal Composition
& Coalification

=g

> Jeffrey R. Levine, Ph.D. v "\
Consultant Geologist T\ _/omm
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Some Keys to Understanding Coal Composition

The term “coal” refers to a diverse class of sedimentary rocks comprised mostly of
the organic remains of once-living plants. Coals vary widely in their composition
and characteristics.

Coal represents a heterogeneous mixture of constituents. Compositional
heterogeneity occurs at many different scales, ranging from centimeter-scale
banding, visible to the unaided eye, down to molecular scale.

Mineral matter is a natural constituent of all coals, the relative proportion of which
is an important parameter of coal composition. The term “coal” refers to the whole
rock, not solely to the organic fraction.

The composition of coal undergoes a continual evolution throughout its history, in
response changes in its chemical and biological environment, especially
temperature and pressure. These changes continue up to present day.

Petroleum substances (incl. oil and gas) are generated within coal during coal
formation. These products are partly retained and partly expelled into surrounding
strata. The retained portion becomes part of "molecular fraction” of coal.

On a molecular scale, coal is a loose aggregation of molecules of varying size and
complexity, bound together by several different types of forces, including: covalent
bonds (strong), hydrogen bonds (weak), and van der Waals bonds (very weak).
Coal has the bulk characteristics of a solid, but is actually comprised of a
multiphase mixture of substances in a variety of physical states.

2

% Grad e/ « represents the relative proportion of

# Rank « is the sole criterion by which coal is

xType « Other rocks may contain some

The Three Fundamental Variables
of Coal Composition

organic vs. inorganic constituents
distinguished from all other rocks

organic matter or no organic matter,
but “coal” is mostly organic matter

OM- Dirty or
Bearing |[OM-Rich| Shaley or High Ash Clean
Shale| Shale Shale | “Boney” Coal Coal Coal Coal
T.O.C. (wt-%) Ash (wt-%)
6 Jeffrey R. Levine, Ph.D. =

Consultant Geologist Em\
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Gas Content of a Suite of Fruitland Coals
as Related to Ash and Moisture Content
(from Mavor et al., 1991)
900 —
800 4 First Isotherm .
: _S_‘:—:f‘“‘“ Isotherm : _ Sidewall Cores at
E 70 +0 - Reservair Temperature (120° F)
17} . ’ -
o _
~ 600 - e
E \‘\ ,
3 s00 + S -
= . R
o . . ) ‘\
© awo i . LN
-3
O 30 ¢ \
o L J ~ 2
200 + PR R? = 0.84
. * \‘ .
160 + N
0 } ; } } } } " }
0 10 20 30 4 SO 6. 70 8 9
Ash + Moisture, wt-%

Gas Resource Density Calculation
Gas Resource Density = Gas Content x Density x Thickness

U.S. Metric

Parameter System System

Thickness ft cm,
Density tons/ac-ft g/em?
Gas Content ft>/ton cm,’/g,
7 Jeffrey R. Levine, Ph.D. 2

Consultant Geologist mmm\
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Example Summation of G.R.D. Values
Rock | Thickness | Gas Content | Density GRD %
Type cm cm/g g/cm® | em3/cm? | of Tot.
Carb
Shale 50 1.7 2.35 200 15
Coal 50 5.5 1.45 400 30
Shale 25 0.0 2.50 0 0

Shaley 80 35 1.79 500 37
Coal
Rich
S| 80 2.5 200 | 250 | 18
Total GRD = 1350 cm3/cm?2
= 1.23 BCF/mi2 = =

The Three Fundamental Variables
of Coal Composition
% Grade * represents the level of organic
| metamorphism
#%Rank « is the principal criterion by which
= Tvpe different varieties of coal are
M distinguished
I?eat Lignite | Subbituminous Bituminous Anthracite R
Parameters:
BTU Yield (wt-%)
Fixed Carbon (wt-%)

Ro,vit (%) ﬁ

8 Jeffrey R. Levine, Ph.D, =" " \um
Consultant Geologist mma\_/ams
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ASTM Coal Rank Classification System
(ASTM D-388)
Calorific Value
Fixed Carbon limits Volatile Matter Limits (moist,
Limits min. matter-free Agglom
basis -
wi-%, dry, mineral wt-%, dry, mineral Btw/lb, mgist,' crating
matter-free basis matter-free basis min. mat.-free
basis
Ab- Greater Less Greater Char-
brevi- than or Less Greater | thanor | thanor Less acter
Class Group ation equal to than than equal equal than
to to
1. Anthracite 1. Meta-anthracite ma 98 2 No
2. Anthracite an 92 98 2 8 No
3. Semianthracite® sa 86 92 8 14 No
11. Bituminous 1. Low volatile bituminous coal Ivb 78 86 14 22 Usually*
2. Medium volatile bituminous mvb 69 78 22 31 Usually*
coal
3. High volatile A bituminous coal | hvAb 69 3t 14,000° Usually*
4. High volatile B bituminous coal | hvBb 13,000° | 14,000 | Usually
5. High volatile C bituminous coal hvCb 11,500 13,000 Usually®
10,500 11,500 YES
II1. Subbitumi 1. Subbitumi A coal subA 10,500 11,500 NO
2. Subbituminous B coal subB 9,500 10,500 No
3. Subbituminous C coal subC 8,300 9,500 No
1V. Lignite 1. Lignite A ligA 6,300 | 8,300 No
2. Lignite B ligB 6,300 Non-
'Moist refers to coal containing its natural inherent moisture, but not including visible water on the surface of the coal.
2}f agglomerating, classify in low volatile group of the bituminous class.
3Coals having 69% or more fixed carbon on the dry, mineral matter-free basis shall be classified according to fixed carbon, regardless of calorific value.
“It is recognized that there may be nonagglomerating varieties in these groups of the bituminous class.

The Three Fundamental Variables
of Coal Composition

% Grade * represents the various kinds and

% Rank categories of organic constituents

« provides a secondary criterion by
which different varieties of coal are
distinguished

% Type

Examples:
Humic Coal vs. Sapropelic Coal

Vitrinite-Rich vs. Liptinite Rich
“Oily” Coal

Fe-

7 Jeffrey R. Levine, Ph.D. 2
Consultant Geologist g\



from Papp, A.R. et al., 1998, Atlas of Coal Geology, v. 2
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Coal Petrology: AAPG Studies in Geology #45, CD-ROM

The Three Principal Maceral Groups
Coal Kerogen Microscopic Characte.ristic
Maceral Tvpe | Appearance Atomic
Group P (Low Rank, Refl. Light) | Composition
T Type I Hydrogen-
Liptinite Type IT Dark Gray Rich
o s s Medium .
Vitrinite | Type III Gray Oxygen-Rich
. Light Gray to .
Inertinite | Type IV White Carbon-Rich
10 Jeffrey R. Levine, Ph.D. =" "\
Consultant Geologist T\_/amm
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Diagram Depicting Classification of
Organic Matter-Rich Rocks 2&5
{J.R. Levine, 1992)
) - .
L %ﬁ"o@ | : OM-bearing

e B 1 rocks are

e 2 classified
o.ﬁ%"'_’ BURIAL according to:

, . ENVIRONMENT TYPE

GRADE &

by being >50% .
organic matter K

Understanding the Chemical Composition
and Molecular Structure of
Sedimentary Organic Matter:

1.Atomic Composition
2.Chemical vs. Physical Bonds
3.Adsorption or Absorption?
4.Porosity vs. “Accessibility”
5.Energetics of Sorption
6.Dynamics of Sorption
7.Kinetics of Sorption

1 Jeffrey R. Levine, Ph.D. 2=
Consultant Geologist mmm\
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1.75 4
e Coal Maturation Pathway
. * from Levine (1993)
1.50 + * after Durand and Parratte (1983)

1.25 +

1.00

0.50 ~ Vitrinite

H/C Atomic Ratio
o
o

: I, . Reflectance
0.25 - '. ] ANTHRACITE AND METAANTHRACITE Contours
a (from Levine, 1993)
0 1} 1 ) L1 ]
0 0.1 0.2 03 0.4 0.5 0.6

O/C Atomic Ratio

Molecular Bonding Mechanisms

Chemical Bonds (Electrons are shared)
Covalent
lonic
Physical Bonds based on natural or induced
electrical potential: (Electrons not shared)
Coulombic forces (< 1/r)
“Hydrogen bonds”
van der Waals (o< 1/r)
Keesom interaction
Debye, induction interaction
London, dispersion interaction, etc?

-6~

12 Jeffrey R. Levine, Ph.D. =" "\
Consultant Geologist T\ _/a=s
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Nanometer-scale Variability:
Coal Molecular Composition

Cross-
linkages
provide

strength and
3-D
structure

“Free
Molecules”
are retained
by “physical

bonds”

Comparison of Vitrinite and Graphite Density

Vitrinite or “Type IlI” Kerogen: Graphite:
Densitv 1.3 Density 2.3

Lk Ceer;

"‘.mo&‘ifié-d from
Behar and Vandenbroucke, 1987

Feo-

13 Jeffrey R. Levine, Ph.D.Bmf Y\

Consultant Geologist T\ _ /==
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e’

Coal is best understood not as a ‘solid’, but as
a multiphase, multicomponent ‘mixture’

COAL =

.v/////
< Cross-L| mked

Coalification Through the
Bituminous Rank Series
is Principally a Process of

Depolymerization
==

Matrix =~

Changing Composition of the “Molecular Fraction”
of Coal during Coalification
ASTM Coalification Tissot
Rank Stages &
Classus: (“lhﬂlpﬂ‘) m
peat rtf_'::" '
i
subbiuminous
Ngh volatite & ] De o
bituminous | !
Mopsiie | ommemton  cuspeens
high volatiie A | .\ of
bituminous . Eﬂdﬂw
mgﬁ.‘g’m | Debituminkzation
Tow volatile It/ 1
cemiantorache [ 2wt ouan Hesgenesis
B cotnaded
anthrachs Glaphlmﬂnn .
% % m w @ & 7
Approximate waight percent ﬁl
14 Jeffrey R. Levine, Ph.D. 2=

Consultant Geologist T\
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The 3-Axis Diagram of Coal Composition, Showing
the Five Major Stages of Coalification

1 3 =
GRADE %
£
£
5
a
High { Med & Low RANK
volaliin ;'; Yotattie
e & anithraalte
N

Coal Composition:

Is coal a “solid”?

% Depends on .
“scale” of view Tanew

% Depends on word
usage & meaning

Evidence: I *ha 123
» Petrography (fluid macerals)

+ Organic Geochemistry (esp. thermal & solvent extraction)

« Mechanical behavior/Rhealogy
(vitrinite is a highly viscous fluid at some coal ranks)

15 Jeffrey R. Levine, Ph.D. 27
Consultant Geologist mmm\
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COMPRESSIVE STRERGTH (D (pel

Change in of mechanical strength of
coal vs. rank

40 ) .« 10 [ o 109
CARBON CONTENT {dat %)

Unconfined compressive strength Hardgrove Grindability Index
vs. wt-% carbon vs. wt-% volatile matter
{mod. from Pomeroy & Foote, 1960) (Berkowitz, 1979)
| 7,
=( )=

Microhardness increases, decreases, then increases again
with rank, possibly related to bituminization, debitumini-
zation, and graphitization of the molecular structure

50

g (after Robert, 1988) A
2

s 40

H

3

1]

£ 30

2

=

20 l ] ) ] |
0.5 1.0 15 20 25
Vitrinite Reflectance, in oil, %
e Jeffrey R. Levine, Ph.D. ==

Consultant Geologist
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Go What?

Mechanical strength influences coal’s
response to ambient stresses....

...which will impact the “style” of structural
deformation (brittle vs. ductile)

...and influences well bore stabllity
...and influences the openness of fractures
...and Influences “matrix shrinkage effect”

=&

Understanding the

Nature of “"Sorption”:

Sorption
1. )l{sorptlon VS. Msorptlon

o ¥
~__
8 B & @& es 4 £ & o
Be B LW G BY
e oo B ow W R 9
L3653
B
Solution But.. Which model is appropriate
Solvation for sedimentary organic matter???

Answer: Bothl... Together!! ﬁ

17 Jeffrey R. Levine, Ph.D. 27" "\
Consultant Geologist ma\_/asm
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Internal Surface Area??!!

Coal does not have an “internal surface
area” in the strict sense. Rather coal has
a certain “accessibility” to sorbates, that
is, in part, related to the open “cage-like”
structure of some of it’s molecular
constituents. But a substantial
proportion of coal does not have a fixed
structure, but rather is a liquid.
Accessibility to these regions of the coal
structure is via solvation.

Energetics of Sorption:
3.b. Heats of Sorption

Just as in the transition from gas to liquid, or
liquid to solid, sorption is, in general, an
exothermic process, and provides evidence of
the strength of the interaction between
sorbant and sorbate. The heat liberated is
termed “Heat of Sorption” (AH,) H

3%

8 Free —>  Sorbed

Methane — Methane

e~

18 Jeffrey R. Levine, Ph.D.mmf Y=

Consultant Geologist N\ /==
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Isothermal or Isosteric Heats of Sorption
of Methane with Coal

(data from various authors compiled by Yee, Amoco Production Company, 1993)

8 #CMinimum
M Maximum

Heat of Sorption, kcal/mole

Le Chatelier’s Principle is Applicable to
Methane Sorption in Coal

Free o Sorbed
Methane Methane

In chemistry we are dealing with reactions, and at equilibrium,
the forward and reverse reaction rates are equal.

"Any change in one of the variables that determines the state
of a system in equilibrium causes a shift in the position of
equilibrium in a direction that tends to counteract the change

in the variable under consideration.”

19 Jeffrey R. Levine, Ph.D. " "\

Consultant Geologist T\ _/a=a
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Understanding the Nature of Sorption:

Sorbates exist in dynamic equilibrium

Changes in pressure temporarily
disrupt the equilibrium

%
%
g w0 ¥

3k
P i 53

Understanding the Nature of Sorption:
“Sorption Time”

(de Boer, J.H., 1953)
T= TerlRT

T - average residence time on surface

T,- vibration period of molecule
(generally 10712 to 1013 sec)

Q- Heat or enthalpy of sorption

==

20 Jeffrey R. Levine, Ph.D. 2
Consultant Geologist mmm\
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“Sorption Time”
(Adamson & Gast, 1997)

Comments

Adsorption nil; specular reflection

Region of physical adsorption

Q |T@25c

kcal/mol sec
0.1 1013
1.5 10-12

3.5 4x10-11

9.0 4x10-7
20.0 100
40.0 1017

Region of chemisorption

COAL
MATRIX

Representation of Production of Water and Gas

from Coal Bed Reservoirs

FLUID—-FILLED
FRACTURE

.ROOF
ROCK:

COAL
SEAM

FLOOR
ROCK

MESO- AND
_ MACROPORES
amn OIL INTER- AND
°o WATER INTRAMOLECULAR
« METHANE MICROPORES = —
21 Jeffrey R. Levine, Ph.D. ==

Consultant Geologist
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-—- - Langmuir Best Fit
- - Model Predicted

0 200 400 600 800 1000 1200
Pressure, psi ﬁ

Heat of Vaporization
Boiling Points @ P;=1 atm
Solubility in Water @ P;=1 atm & 298°K
for Various Gases
Heat of
Vaporization |(Boiling Point)| Solubility
Gas kcal/mole T°K Mole Fraction
Helium He 44] 0.70x10”
Nitrogen N2 1.33 772 1.18x10”
Argon Ar 1.54 87.4| 2.52x10°
Methane CH, 1.95 111.5| 2.55x10°
Ethane CoHs 184.4| 3.401x10”
Carbon Dioxide |[CO, 6.02 194.8] 61.50x10”
Water H;0O 9.70 373.0
22 Jeffrey R. Levine, Ph.D. =" "\yum

\
Consultant Geologist T\ _/a=a
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Changing Methane
Sorption Capacity of
Coal as a Function of

Coal Rank

cm’® CH, (STP) per cm® Solvent

Pressure, MPa

= Ethanol

- lgopropanol
== Propane
—Butane

= Pgntane
—Hexane

= Qctane

=~ Haavy Naphtha

Measured
Solubility of
CH, in Various
Solvents
VS.
Pressure

(after Frolich et
al., 1931)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Pressure, psi

Jeffrey R. Levine, Ph.D. mat
Consultant Geologist mmm\
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Methane Sorption Isotherm of an Apparently Oily
Cretaceous Coal from Canada Plains Region

Methane Adsorbed, cm?* (8TP)perg

Langmuir Volums {ad): 24.3 cm%g Equil. Moisture fw1-%). 6.31
Operator. Langmuir Yolume (af): 33.1 Ash Yield fwt-%\: 265
Coal Seam) Langmuir Pressure; 11718 Ro5it (%) 0.62
Depth: 0 lsotherm Temperature; 43.3 °C Coaf Rank Class; haitfc
Pressure, psl
L] 500 1000 1500 2000 2500
309 . y—y . :
e A3 dolermined basis 960
- o ASh-freg basis
259 ; : 800
4 700
208
4 600
150 500
4 400
10.0 300
200
50
108
0

0.8 . : i . 4 i
. 2,000 4,000 6,000 8,000 10,000 12,000 14,900 15,000 18000 20,000
Pressure, kPa

1198 PBQIOSPY SUBLIOW

Two different Fruitland coal horizons from the same well
showed markedly different gas contents & diffusion rates
.(Levine, 1991b)

)
S

H.
0O R S D

b=

Desorbed Gas, mllg_,‘ash-free

T T o T o T e Taoe T T
10 30 50 70 90 O0110120130140150160

Time, hours ﬁ'
[\ .|

24 Jeffrey R. Levine, Ph.D.
Consultant Geologist




OKlahoma CBM Workshop — Oct. 10, 2002

Selected Compositional Variables and Reservoir Characteristics
of Fruitland Coals from the 13-CX and SUIT 15-4 (B/EA) Wells,
Northwestern San Juan Basin, Coloerado.(Levine, 1991b)
Parameter Description: Data:
Core hole name: 13-CX
Fruitland seam Upper
Sample ID # 1053
Depth to top (ft) 236
R, %o 0.68
Fix.Carb., wt-%, daf 57.1
“Relative Oilyness” Less oily
Rock-Eval S;, mg/g” 6.1
CH,CI, Extract, ppm” 16,431
Hydrocarbons, ppm’ 8,872
Equil. Moisture, wi-% 4.37
CO, Surface area, mz/g' 70.6
N; Surface area m%/g’ 3.05
Desorbed Gas ml/g n.d.
CH, capacity at 2000 psia,
30°C, (from isotherm), scf/t 542 =

25 Jeffrey R. Levine, Ph.D. ==
Consultant Geologist g\
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Matrix Shrinkage Effect

26 Jeffrey R. Levine, Ph.D. = "\
Consultant Geologist Ea\_/u=a
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=
Measured and Simulated Production Rates,
Valencia Canyon 32-1 Well, San Juan Basin
(Mavor & Vaughn, 1997)
. Comparison of Measured and Compisted VC 32-1 Production Rates.
7.000 — 400
— st Gas Rate
1 ~ ~ » Lompised Vsl Rate 3s0
8,000 $ | o iAasnumd \Vater Rate
i ° 300
5,000 | ; ;
ao000 {4 0 @
$ 2% mog
& 3000 fa | (s
ERNIEN | =
2.000 | 3K - 100
1,000 50
o 5" o
S 100 150 200 250 300
Elapsed Time, days =

27 Jeffrey R. Levine, Ph.D. 57" "\

W
Consultant Geologist Ea\_/i=s
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Change in Absolute Permeability with Time
for 3 Example CBM Wells in the San Juan Basin

(data from Mavor, 1998)

A Initial Perm Test
~3-4 Years Late!

Permeability, md

VC 324 '
=( =

Rock Mechanics Model of the
Effect of Matrix Shrinkage on Permeability
(Levine, 1996)

TURE
E

[
& O'VE COAL MATRIX E G.
£  BLOCK E v

28 Jeffrey R. Levine, Ph.D.maf \mm

Consultant Geologist B\ _/uss
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Values Selected for Matrix Shrinkage
Parameter Sensitivity Study (Levine, 1996)

Lower Base Upper
Parameter Symbol Case Case Case
Cleat Spacing s 5 mm 10 mm 20 mm
Initial
Permeability k 0.1 md 1 md 10 md
Young's 300,000 493,000 725,000
Modulus E psi psit psi-!
Poisson'’s Ratio v 0.22 0.32 0.42
Shrinkage 1995 3414 6647
Coefficient: gp,y Emex | Microstrains | microstrains | microstrains
Shrinkage
Coefficient: Py, Ps, 212 psi 697 psi 1407 psi

Matrix Elongation of Coal with Gas Sorption
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Dimensional Changes Due to Pressure Drawdown,
using Base Case Parameter Values (Levine, 1996)
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Sensitivity to Variation in Initial Permeability (Levine, 1996)

Sensitivity to Variation in Cleat Spacing (Levine, 1996)

31 Jeffrey R. Levine, Ph.D. m
Consultant Geologist mmm\



OKlahoma CBM Workshop — Oct. 10, 2002

Sensitivity to Variation in Shrinkage Coefficient €., (Levine, 1996)

o= §647 microstrains
=o=3414 microstrains
=== 4995 microstrains
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Introduction to Coal Geology of Oklahoma

Brian J. Cardott
Oklahoma Geological Survey

INTRODUCTION

The Oklahoma coalfield is in the eastern part of the State and occupies the
southern part of the Western Region of the Interior Coal Province of the United States
(Campbell, 1917; Friedman, 2002). The coal region continues northward into Kansas
and eastward into Arkansas (Tully, 1996). The Oklahoma coalfield is bounded on the
northeast, south, and southwest by the Ozark, Ouachita Mountain, and Arbuckle
Mountain Uplifts, respectively, and on the west by noncommercial coal-bearing strata of
Missourian to Wolfcampian age (Figure 1). Some noncommercial Pennsylvanian-age
coal resources occur in the Anadarko Basin (Wood and Bour, 1988) and Ardmore Basin
(Trumbull, 1957; Tomlinson, 1959), but these are not part of the Oklahoma coalfield.

Friedman (1974) divided the Oklahoma coalfield into the northeast Oklahoma
shelf and the Arkoma Basin based on physiographic and structural differences (Figure
2). The commercial coal belt contains coal beds 2 10 in. (25 cm) thick that are mineable
by surface methods at depths < 100 ft (30 m) and coal beds 2 14 in. (36 cm) thick that
are mineable by underground methods (Hemish, 1986). The noncommercial coal-
bearing region has limited information on coal thickness and quality or contains coals
that are too thin, of low quality, or too deep for surface mining. The western boundary
of the noncommercial coal-bearing region is uncertain. Coalbed methane (CBM)
production has been developed in both the commercial coal belt and the noncommerecial
coal-bearing region.

Figure 3 shows coal outcrop and potentially strippable areas in the Oklahoma
coalfield (Friedman, 1982b). Coal beds in the northeast Oklahoma shelf strike
northeast in outcrop and dip as much as 2° westward and northwestward from the
outcrop to depths > 2,500 ft (760 m; Figure 4). Coal beds in the Arkoma Basin are
present at the surface and to depths > 6,000 ft (1,830 m)(lannacchione and Puglio,
1979a); they are faulted and folded into narrow, northeastward-trending anticlines and
broad synclines (Figure 4). Coal beds in the Arkoma Basin dip from 3° to nearly vertical
(Friedman, 1982b, 2002). Major deformation of the Oklahoma coalfield occurred during
the peak of the Ouachita orogeny (Middle to Late Pennsylvanian)(McBee, 1995).

COAL STRATIGRAPHY

The age of commercial coal-bearing strata in the Oklahoma coalfield is
Desmoinesian (Middle Pennsylvanian). Thin, noncommercial coal beds occur in
Morrowan, Atokan, Missourian, Virgilian, and Wolfcampian strata (Cardott, 1989).
Figures 5 and 6 are generalized stratigraphic columns of the northeast Oklahoma shelf
and Arkoma Basin, showing about 40 named and several unnamed coal beds and their
range in thickness measured from outcrops, mines, and shallow core samples. Coal
beds are 0.1 to 6.2 ft (0.03 to 1.9 m) thick in the shelf and 0.1 to 7.0 ft (0.03 to 2.1 m)
thick in the basin. The thickest known occurrence of coal in the Oklahoma coalfield is
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an exposure of the Hartshorne coal (10 ft) in Latimer County (sec. 35, T.6 N, R. 18 E;
Wilson, 1970; Hemish, 1999). The thickest known occurrence of coal in the shelf is the
Weir-Pittsburg coal (6.2 ft) in a coal-company drill hole at a depth of 408 ft (124 m) in
Craig County (sec. 28, T. 29 N., R. 18 E.; Hemish, 1986, Plate 4; Hemish, 2002).

Hemish (2001, p. 78) described the following differences in the coal-bearing
strata between the Arkoma Basin and the northeast Oklahoma shelf: “1) Coal-bearing
rocks present above the Senora Formation in the shelf area are absent in the Arkoma
Basin; 2) Stratigraphic units are generally much thicker in the Arkoma Basin; 3)
Commercial coal beds in the northern shelf area pinch out to the south and are absent
in the basin; conversely, certain well-developed commercial coals in the Arkoma Basin,
such as the Hartshorne coal, pinch out to the north, or have no commercial value in the
shelf area, owing to thinness; 4) Quality of the same coal in the two regions often varies
because of different depositional environments. Additionally, strata in the Arkoma Basin
are much more deformed than they are in the shelf area. Beds have been folded into
broad, northeast-trending synclines and narrow anticlines, resulting in steep dips of the
beds in some areas. Faulting is also common throughout the Arkoma Basin.”

In ascending order, the coal beds yielding commercial methane in the northeast
Oklahoma shelf include the Riverton and McAlester (McAlester Formation), Rowe and
Drywood (Savanna Formation) and Bluejacket and Wainwright (Boggy Formation) in the
Krebs Group; Weir-Pittsburg, Tebo, Croweburg, Bevier, Iron Post, and Mulky (Senora
Formation) in the Cabaniss Group; and Dawson (Holdenville Formation) in the
Marmaton Group of Desmoinesian age. Hemish (2002) correlated coals from the

surface to subsurface in a 2,700-mi2 area in the northeast Oklahoma shelf to assist
operators in correctly identifying methane-producing coal beds. Two type logs were
designated in the northern and southern parts of the study area. The northern type log
is in Figure 7. Persistent marker beds are identified to correlate the coal beds.

The nomenclature of Oklahoma and Kansas coal-bearing strata and coal beds
differ slightly. The Kansas Geological Survey includes the Krebs and Cabaniss
Formations in the Cherokee Group (Brady, 1997), whereas the Oklahoma Geological
Survey assigns the Krebs and Cabaniss to group level in the Desmoinesian Series.
The Rowe coal of Kansas and Missouri is equivalent to the Keota coal of Oklahoma,
whereas the Drywood coal of Missouri and Dry Wood coal of Kansas are equivalent to
the Spaniard coal of Oklahoma (Hemish, 1990b).

The Mulky coal is one of the most important CBM reservoirs in the northeast
Oklahoma shelf (Cardott, 2002b). The Mulky, the uppermost coal in the Senora
Formation, occurs at the base of the Excello Shale Member and varies in composition
from pure to impure coal with increasing amounts of mineral matter. (As defined by
Schopf (1956), carbonaceous shale contains >50% mineral matter by weight or <30%
carbonaceous matter by volume. According to the ASTM (1994), impure coal contains
25 to 50 weight % mineral matter as ash.) Hemish (1986, p. 18) recognized the Mulky
coal in three drill holes in northern Craig County, where its maximum thickness is 10 in.
Hemish (2002, p. 3) indicated that “The occurrence of the Mulky coal downdip to the
west in Nowata, Washington, and Osage Counties has not been verified by the OGS
from coring. It seems probable that the methane is being produced from the Excello
black shale.”
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In ascending order, the methane-producing coal beds in the Arkoma Basin are
the Hartshorne (undivided), Lower Hartshorne, and Upper Hartshorne (Hartshorne
Formation), McAlester and “Savanna” (interpreted to be the McAlester coal, McAlester
Formation; a CBM completion in Coal County reported to be in the “Lehigh” coal is
equivalent to the McAlester coal), Secor (Boggy Formation), and unnamed coal in the
Krebs Group of Desmoinesian age. The McAlester coal and Stigler coal are correlative
(Friedman, 1974, p. 29).

The Hartshorne coals are the most important CBM reservoirs in the Arkoma
Basin (Cardott, 2002b). The Hartshorne coal contains a thin claystone parting and
splits into two beds (Upper and Lower Hartshorne coals) where the parting is thicker
than 1 ft (Friedman, 1982a). The coal is a single bed north and west of the coal split
line (Figure 8). South and east of the line, two beds are identifiable. The interval
between the upper and lower coal beds increases southeastward to a maximum of 120
ft (37 m)(Friedman, 1978, p. 48; lannacchione and Puglio, 1979a, p. 5). The top of the
Hartshorne coal or Upper Hartshorne coal, where present, marks the top of the
Hartshorne Formation in Oklahoma. The nomenclature of Oklahoma and Arkansas coal
beds differ slightly. The Arkansas Geological Commission includes the Upper and
Lower Hartshorne coals in the McAlester Formation (Prior and White, 2001), whereas
the Oklahoma Geological Survey includes the Hartshorne coals in the Hartshorne
Formation (Hemish and Suneson, 1997). The Paris and Charleston coals (Savanna
Formation; Prior and White, 2001) of Arkansas are not present in Oklahoma.

COAL RESOURCES, RESERVES, AND PRODUCTION

Remaining identified bituminous coal resources (using measured, indicated, and
inferred resource categories of reliability) in beds = 10 in. (25 cm) thick total 8.09 billion

short tons in 19 counties in eastern Oklahoma, an area of approximately 8,000 mi .
Approximately 76% of these resources are in the Arkoma Basin and 24% are in the
northeast Oklahoma shelf (Friedman, 2002).

Identified coal resources were determined by S.A. Friedman and L.A. Hemish of
the Oklahoma Geological Survey. Friedman (1982b) showed the distribution of
strippable coal resources to depths of 100 ft (30 m) or 150 ft (46 m), and areas where
coal has been mined by surface methods. Friedman (1974) summarized the coal
resources and reserves in 7 counties (Atoka, Coal, Haskell, Latimer, Le Flore, Pittsburg,
and Sequoyah) in the Arkoma Basin. County coal reports with updated estimates of
strippable coal resources and reserves in the northeast Oklahoma shelf are available for
the following 12 counties: Craig and Nowata (Hemish, 1986), Rogers and Mayes
(Hemish, 1989), Tulsa, Wagoner, Creek, and Washington (Hemish, 1990a), Okmulgee
and Okfuskee (Hemish, 1994), Muskogee (Hemish, 1998a), and MclIntosh (Hemish,
1998b).

The demonstrated reserve base (economically recoverable portion of identified
coal resource from measured and indicated resource categories for beds 2 28 in. (71
cm) thick at depths to 1,000 ft) for Oklahoma is 1.57 billion short tons of coal (Energy
Information Administration, 2002, table 33). Oklahoma ranks 19" of 32 coal-bearing
states in the U.S. demonstrated reserve base.
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From 1873-2001, 281.3 million short tons of coal were produced in Oklahoma
(Federal and State data). Peak annual coal production was 5.73 million short tons in
1981, with smaller production peaks during and immediately following World War | and
World War Il (Figure 9). Coal was mined in Oklahoma exclusively by underground
methods until 1915. The predominant mining method shifted from underground to
surface in 1943. Oklahoma produced 1.59 million short tons of coal from 11 mines in
2000 (Oklahoma Department of Mines, 2001). Oklahoma imported 18.0 million short
tons of low-sulfur, subbituminous coal from Wyoming in 2000 for electricity generation at
five Oklahoma public-utility power plants (Energy Information Administration, 2002,
tables 64, 65).

Abandoned underground coal mines are areas where coal has been removed by
room-and-pillar type mining in Oklahoma. Coal mine methane migrates to mine
workings and is vented to the atmosphere during mining (Diamond, 1994; Brunner,
2000). Mine and gob gas (in caved zone of mine) may be present in abandoned
underground mines. Maps showing the location of abandoned underground coal mines
in Oklahoma are in Hendricks (1937, 1939), Knechtel (1937, 1949), Dane and others
(1938), Oakes and Knechtel (1948), Hemish (1990a), and Friedman (1978, 1979, 1994,
1996).

COAL STRUCTURE AND THICKNESS

Maps showing structure, overburden (to depths >100 ft (30 m)), coal isopach,
and mined areas in the northeast Oklahoma shelf are in Hemish (1986, 1989, 1990a,
19094, 1998a, 1998b). Figure 10 shows the regional structure on the top of the
Hartshorne Formation. Additional structure and/or overburden maps of the Hartshorne
Formation are in Dane and others (1938), Hendricks (1939), Oakes and Knechtel
(1948), Knechtel (1949), Catalano (1978), Agbe-Davies (1978), Craney (1978), Donica
(1978), Williams (1978), lannacchione and Puglio (1979a, 1979b), lannacchione and
others (1983), and Gossling (1994). A structure map on the McAlester coal is in
Knechtel (1937).

Hartshorne coal isopach maps of limited coverage are in Catalano (1978), Agbe-
Davies (1978), Craney (1978), Donica (1978), Williams (1978), lannacchione and Puglio
(1979a, 1979b), lannacchione and others (1983), Brady (1981a-c; 1983a,b), and Brady
and Querry (1985a-i). Hartshorne coal isopach maps in parts of Haskell, Latimer, Le
Flore, Mclintosh, and Pittsburg Counties are in Gossling (1994). An isopach map of the
Stigler (McAlester) coal is in Karvelot (1973).

RANK

Coal rank, generalized for all coals at or near the surface, ranges from high-
volatile bituminous in the shelf and western Arkoma Basin to medium- and low-volatile
bituminous in the eastern Arkoma Basin in Oklahoma (Figure 11). Rank increases from
west to east and with depth in the Arkoma Basin, attaining semianthracite in Arkansas
(Prior and White, 2001). For example, the Hartshorne coal is medium-volatile
bituminous at 2,574 ft (785 m) in Continental Resources’ 1-3 Myers well in Pittsburg
County (sec. 3, T. 7 N, R. 16 E.) in the high-volatile bituminous area in Figure 11.
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CLEAT

Cleat is a miners’ term for the natural, opening-mode fractures in coal. Two
orthogonal cleat sets, perpendicular to bedding, are the face cleat (primary, well
developed; extends across bedding planes of the coal) and the butt cleat (secondary,
discontinuous; terminates against face cleat). Cleats control the directional permeability
of coal beds (Diamond and others, 1988). Vertical CBM wells drain gas from an
elliptical area elongated in the face-cleat direction. Horizontal coalbed-methane wells
drilled perpendicular to oblique to the face cleat drain more gas from a larger area than
would a vertical well. Cleat spacing is closest in medium- and low-volatile bituminous
coals (Close, 1993).

Coal beds in the northeast Oklahoma shelf exhibit average face-cleat directions
of N39°—47°W and butt-cleat directions of N46°-56°E (Andrews and others, 1998;
Hemish, 2002; Figure 12). Face and butt cleats in the Hartshorne coal beds in the
eastern Arkoma Basin trend N17°=32°W and N52°-77°E, respectively (Figure 13). In
general, face cleats are oriented parallel to the axis of compression and butt cleats are
oriented subparallel to the structural fold axes (McCulloch and others, 1974). Figure 14
is a map summarizing face-cleat direction in the Oklahoma coalfield.

Secondary mineralization (e.g., authigenic minerals) in cleats decrease the
permeability of coal. Clay, carbonate, quartz, and sulfide minerals are common cleat-
filling minerals (Close, 1993; Gamson and others, 1996). Figure 15 illustrates the
distribution of common cleat-filling minerals in Oklahoma coals.

CONCLUSIONS

The Oklahoma coalfield contains bituminous-coal resources in about 40 coal
beds of Middle Pennsylvanian age in 19 counties. Commercial coal beds range from 10
in. to 7 ft thick from the surface to depths > 6,000 ft in the Arkoma Basin. Coal beds in
the northeast Oklahoma shelf dip gently westward and northwestward, whereas coals in
the Arkoma Basin are folded and faulted. Coal and coalbed-methane resources in
Oklahoma are suitable and available for combustion, carbonization, and gasification.
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Figure 3. Map showing potentially strippable coal beds in eastern Oklahoma
(modified from Friedman, 1982b).
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Coalbed-Methane Activity in Oklahoma, 2002 Update

Brian J. Cardott
Oklahoma Geological Survey

ABSTRACT.— Nearly 1,900 wells in the Oklahoma coalfield have been drilled
exclusively for coalbed methane (CBM) since 1988, in part for the Federal Section 29
tax credit. A database of CBM completions records 1,167 completions in the northeast
Oklahoma shelf and 707 completions in the Arkoma Basin. Operators presently target
thirteen coal objectives in the shelf and five in the basin. The primary CBM objectives,
all Desmoinesian (Middle Pennsylvanian) in age, are the Mulky (380 wells) and Rowe
(433 wells) coals in the shelf and the Hartshorne coals (664 wells) in the basin.

In general, coals in the Arkoma Basin are deeper and thicker than those in the
northeast Oklahoma shelf and have higher initial gas rates and lower initial produced-
water rates. Many horizontal CBM wells have been drilled in the Arkoma Basin since
1998, the more successful wells following improvements in completion techniques.
Much is known about the coal geology of the Oklahoma coalfield (e.g., number of coals,
age, depth, thickness, rank, quality). The present emphasis is on finding permeable
sweet spots and matching coal characteristics to optimum completion techniques.

INTRODUCTION

Mine explosions from gas and dust caused more than 500 deaths in 19 major
coal-mining disasters in Indian Territory and Oklahoma from 1885 to 1945 (Oklahoma
Department of Mines, 2002). Gas explosions in underground coal mines and safety
studies of underground coal mines by the U.S. Bureau of Mines (Deul and Kim, 1988)
have demonstrated that Oklahoma coals contain large amounts of methane. Applied
research by the U.S. Bureau of Mines, U.S. Department of Energy, and Oklahoma
Geological Survey, advances in coalbed methane (CBM) completion technology
through studies of coals in the Black Warrior and San Juan Basins by the Gas Research
Institute, and Federal non-conventional fuel tax credit (Section 29 of the IRS Code;
Sanderson and Berggren, 1998) all promoted interest in development of the Oklahoma
CBM industry.

The CBM play in Oklahoma began in 1988 with the first completions in the
Arkoma Basin (Figure 1). Bear Productions reported initial-potential (IP) gas rates of
41 to 45 Mcfd (thousand cubic feet of gas per day) per well from seven wells in the
Hartshorne coal at depths ranging from 611 to 716 ft (186 to 218 m) in the Kinta gas
field (sec. 27, T.8N., R.20E., Indian Meridian) in Haskell County. Bear Productions was
the only CBM operator in Oklahoma from 1988—1990. Following a peak of 72
completions in 1992, activity declined for several years before rising to 180 completions
reported in the basin in 2001. CBM completions in the shelf began in 1992 with one
well. Shelf completions totaled 231 and 257 in 1998 and 2001, respectively. More
CBM wells per year have been drilled in the shelf than in the basin since 1995. Through
July 2002, 1,874 CBM completions have been reported in Oklahoma — 707 in the
Arkoma Basin and 1,167 in the northeast Oklahoma shelf. Figure 2 shows the
distribution of coalbed-methane fields in eastern Oklahoma.
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The Oklahoma coalfield is in the eastern part of the State and occupies the
southern part of the Western Region of the Interior Coal Province of the United States
(Campbell, 1929; Friedman, 2002). The coalfield is divided into the northeast
Oklahoma shelf and the Arkoma Basin (Friedman, 1974; Figure 3). Cardott (2002)
summarized the coal geology of Oklahoma. The remainder of this report will discuss
the coalbed methane activity of the northeast Oklahoma shelf and the Arkoma Basin.

SOURCE OF DATA

The following discussion of Oklahoma CBM activity is based on information
reported to the Oklahoma Corporation Commission and Osage Indian Agency. The
names of coal beds are as reported by the operator. For the most part, coal names
assigned by operators have not been verified with electric logs, and may not conform to
usage accepted by the Oklahoma Geological Survey. Since not all the wells are
reported as CBM wells, some interpretation or verification with the operator was
necessary. Dual completions in sandstone and coal beds, including perforations of
more than one coal bed, were made in some wells. Therefore, not all the wells are
exclusively CBM completions. Dual completions were included only if gas rates were
reported for the coal beds.

This summary is incomplete inasmuch as some wells were not known to be CBM
wells or were not reported as such at the time of this compilation. This evaluation is
based on reported CBM completions, which may or may not have been connected to a
gas pipeline. Likewise, some completions may have produced gas but have since been
plugged.

The Coalbed-Methane Completions table of the Oklahoma Coal Database was
used to summarize data in this report. Each record (well completion) in the table lists
operator, well name, APl number, completion date, location (county, gas field, township-
range-section, latitude-longitude), coal bed, production depth interval, initial gas
potential and water rates, pressure information, and comments. Incomplete copies of
Oklahoma Corporation Commission Form 1002A limited the data summaries for coal
depth, initial gas potential, and produced water in this report. The database is available
for viewing at or purchase from the Oklahoma Geological Survey. A searchable version
of the Coalbed-Methane Completions table is accessible on the Internet through a link
on the OGS web site, http://www.ou.edu/special/ogs-pttc.

COALBED METHANE ACTIVITY
Northeast Oklahoma Shelf

There have been 1,167 CBM well completions reported in the shelf by 54
operators through July 2002 (Figure 4). Completions are distributed across Craig,
Mclintosh, Nowata, Okfuskee, Okmulgee, Osage, Rogers, Tulsa, and Washington
Counties. About 38% of the wells are workovers or recompletions of older conventional
gas and oil wells and coalbed methane wells. In ascending order (with number of
completions with coal as uppermost bed in parentheses), the coal beds yielding
commercial methane include the Riverton (144) and McAlester (1) (McAlester
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Formation), Rowe (433) and Drywood (1) (Savanna Formation), and Bluejacket (15)
and Wainwright (1) (Boggy Formation) in the Krebs Group; Weir-Pittsburg (62), Tebo
(5), Croweburg (29), Bevier (15), Iron Post (43), and Mulky (380) (Senora Formation) in
the Cabaniss Group; and Dawson (34) (Holdenville Formation) in the Marmaton Group
of Desmoinesian age. Note that the Rowe coal of Kansas and Missouri is equivalent to
the Keota coal in Oklahoma, while the Drywood coal of Missouri and Dry Wood coal of
Kansas are equivalent to the Spaniard coal of Oklahoma (Hemish, 1990, p. 10).

Figure 5 shows the depth range of CBM completions in 1,162 wells in the shelf.
Coal beds were perforated at depths-to-top of coal of 256 to 2,459 ft (78 to 750 m), for
an average depth of 1,014 ft (309 m). Three modes are apparent. First, the shallower
mode represents the Mulky coal (380 wells; includes commingled wells with the Mulky
as the shallowest perforated coal) completed over a depth range of 256 to 1,733 ft (78
to 528 m); 292 of 380 wells that perforated the Mulky coal were completed in only the
Mulky coal.

The second mode represents the Rowe coal (433 wells), completed over a depth
range of 542 to 2,459 ft (165 to 750 m). The deepest coal completion (2,459 ft) is in the
Rowe coal in Osage County (Amvest West, 99 Drummond 1l well, sec. 23, T.21N.,
R.9E.).

The third mode represents the Riverton coal (144 wells), completed over a depth
range of 630 to 1,970 ft (192 to 600 m). Although two to seven coal beds were
perforated in 166 completions, only the shallowest coal depth was used in Figure 5.

Initial-potential gas rates from 1,040 wells range from a trace to 278 Mcfd and
average 30 Mcfd (Figure 6). However, as will be shown in production-decline curves
below, IP rates do not demonstrate the full potential of a CBM well because they refiect
only the first of the three stages of a typical CBM production-decline curve: dewatering,
followed by stable production and decline (Schraufnagel, 1993; Figure 7). Figure 8
shows the relationship of depth and initial-potential gas rate for CBM wells in the shelf.
The shallowest coals (256-322 ft; 78-98 m) had IP rates of 1-12 Mcfd. The shallowest
coal with a moderate IP rate of 28 Mcfd was at a depth of 326 ft (99 m). Coals with the
highest IP rates (>100 Mcfd) were from depths of 433 to 1,500 ft (132 to 457 m). The
maps in Figures 9 to 11 highlight the Mulky, Rowe, and Riverton CBM wells,
respectively, that exhibit the generally higher rates—34 (12%) of 292 Mulky-only wells
with initial gas rates of 50 to 145 Mcfd, 90 (21%) of 429 Rowe-only wells with initial gas
rates of 50 to 260 Mcfd, and 45 (31%) of 144 Riverton-only wells with initial gas rates of
50 to 150 Mcfd.

Monthly gas production by well is reported on Form 1004/1005 (Measured
Volume Report) by the Oklahoma Corporation Commission Oil & Gas Conservation
Division. The information will be available from the Oklahoma Corporation Commission
web site (hitp://www.occ.state.ok.us/) in September, 2002. Production-decline curves
for four CBM wells in Nowata and Washington Counties are illustrated in Figure 12.
Their IP rates range from 73 to 210 Mcfd and 30 to 90 bwpd. Depths-to-top of coal for
the four selected wells is 1,223 ft (Figure 12a), 1,172 ft (Figure 12b), 1,178 ft (Figure
12c), and 1,375 ft (Figure 12d). Gas content and composition data are unavailable for
coals on the northeast Oklahoma shelf.
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Initial water rates in the shelf range from 0 to 5,061 bwpd and average 63 bwpd
from 1,018 wells (Figure 13, excluding two wells with 1,201 and 5,061 bwpd). Most of
the water is believed to be formation water and not water from fracture stimulation.
Because of generally poor water quality, these wells require disposal wells for the
produced water. In general, water volumes are not metered; therefore, the volume of
disposed water and the effect of water production on gas rate are unknown. Data on
water quality is not available.

Arkoma Basin

Figure 14 shows the locations of 707 CBM completions in the basin reported by
50 operators through July 2002. Completions have been reported in Coal, Haskell,
Hughes, Latimer, Le Flore, Mcintosh, Muskogee, and Pittsburg Counties. In ascending
order, the methane-producing coals include the Hartshorne (undivided), Lower
Hartshorne, and Upper Hartshorne (Hartshorne Formation), McAlester and “Savanna”
(interpreted to be the McAlester coal, McAlester Formation; a completion in Coal County
reported to be in the “Lehigh” coal is equivalent to the McAlester coal), Secor (Boggy
Formation), and unnamed coal in the Krebs Group of Desmoinesian age. Most (664
completions) of the CBM completions in the Arkoma Basin are in Hartshorne coals.

Figure 15 shows the depth range of CBM completions in the basin. Coals in 676
wells were perforated at depths-to-top of coal of 347 to 3,726 ft (106 to 1,136 m), for an
average of 1,440 ft (439 m). Three of the four deepest completions, 3,632 to 3,726 ft
(1,107 to 1,136 m), were made in the Hartshorne coal in Hughes County (T.4N.,
R.11E.). Although 19 completions have perforated two to three coals, only the
shallowest coal depth was used in Figure 15.

IP gas rates from 592 wells range from a trace to 2,300 Mcfd (average 127
Mcfd)(Figure 16). Most (412 completions) wells produced 10 to 120 Mcfd. The highest
IP rates (> 330 Mcfd) were reported from 57 horizontal CBM wells in the Hartshorne
coal. Based on 563 completions with depth and initial potential pairs, Figure 17 shows
no relationship between initial-potential gas rate and depth in the Arkoma Basin (depth
of horizontal wells is based on vertical depth-to-top of coal). Low gas rates (<50 Mcfd)
span the entire depth range. The 160 wells (28% of 563) with the highest gas rates
(>99 Mcfd) are from depths of 636—3,031 ft (194-924 m), not associated with the
deepest completions. Theoretically, gas content increases with increasing rank, depth,
and reservoir pressure (Kim, 1977; Scott and others, 1995; Rice, 1996). However, gas
production depends on many variables, including gas content, coal thickness, water
volume, cleat mineralogy, permeability, porosity, and stimulation method.

The first horizontal CBM well in Oklahoma was completed by Bear Productions in
August 1998. By the end of July 2002, 108 horizontal CBM wells (15% of 707
completions) had been completed in Haskell, Le Flore, and Pittsburg Counties reported
by 6 operators—Bear Productions Inc., 5 wells; Brower Oil & Gas Co. Inc., 2 wells;
Continental Resources, one well; Mannix Oil Co. Inc., 91 wells; Questar Exploration &
Production Co., 7 wells; Williams Production Co., 2 wells (Figure 18). IP gas rates in
104 horizontal CBM wells were 15 to 2,300 Mcfd (average of 434 Mcfd) at true vertical
depths-to-top of coal of 752 to 3,031 ft (229 to 924 m). Higher gas rates are possible in
a horizontal well than in a single-bed vertical well by drilling at a high angle
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(perpendicular to oblique) to the face cleat to drain a larger area (Diamond and others,
1988). Horizontal CBM wells can drain as much as seven times the area of a vertical
CBM well, depending on the lateral length (Stayton, 2002). Vertical CBM wells exhibit
an elliptical drainage pattern, elongated parallel to the face cleat, as a result of the
directional (anisotropic) permeability of the cleat (Diamond and others, 1988).
Horizontal CBM wells are completed openhole. The lateral distance within the coal for
88 horizontal CBM wells ranged from 439 to 2,523 ft (134 to 769 m), with an average of
1,531 ft (467 m). Figure 19 shows that higher initial gas rates are related to longer
horizontal lateral lengths.

The map in Figure 20 shows Hartshorne CBM wells that have the highest initial
gas rates—163 (25%) of 664 Hartshorne (including Upper and Lower Hartshorne) CBM
wells with initial gas rates of 100 to 2,300 Mcfd. A comparison with Figure 18 shows
that many of the Hartshorne CBM wells with high gas rates are horizontal CBM wells.

Figure 21 illustrates gas-production-decline curves for three vertical and three
horizontal CBM wells in different areas in the Arkoma Basin, using monthly production
data. IP rates range from 43 to 513 Mcfd and 0 to 8 bwpd. Depths-to-top of coal for
five of the six selected wells is 2,271 ft (Figure 21a), 637 ft (Figure 21b), 1,351 ft (Figure
21c¢), 2,856 ft (Figure 21d), and 922 ft (Figure 21f). The lateral distance within the coal
for the horizontal CBM wells in Figures 21d-e is 1,876 ft and 1,636 ft, respectively.
Figure 21c extends the data presented in Andrews and others (1998, p. 57, Figure 45a).

Initial produced-water rates from 557 wells range from 0 to 320 bwpd (average
21 bwpd)(Figure 22). Most (382 completions) produced less than 20 bwpd. An
undisclosed amount of initial water production is frac water introduced during fracture
stimulation. Most Arkoma Basin CBM well completions are situated on the flanks of
anticlines (Figures 23-24) and tend to produce relatively little water.

Andrews and others (1998) summarized published information on gas resources,
gas content, gas composition, and cleating in Hartshorne coals. Measured gas
contents in the Arkoma Basin range from 70 to 560 cf/ton in high-volatile to low-volatile
bituminous coal cores from depths of 175 to 3,651 ft (563 to 1,113 m). Figure 25 shows
the location of available Oklahoma coal-core desorption samples. The gas-content data
are plotted against depth in Figure 26.

CONCLUSIONS

The Oklahoma CBM play began in the Arkoma Basin in 1988. The play then
spread to the northeast Oklahoma shelf in 1992. Through July 2002, 1,874 CBM
completions were reported in Oklahoma — 707 in the Arkoma Basin and 1,167 on the
northeast Oklahoma shelf. The primary objectives are Hartshorne coals in the basin
and the Mulky and Rowe coals in the shelf. Fourteen percent (166 of 1,167) of the CBM
completions in the shelf were multiple-coal completions with two to seven coal beds,
while most of the CBM completions in the basin were single-coal completions.

Coal completion depths range from 256 to 2,459 ft (78 to 750 m) and average
1,014 ft (309 m) in 1,162 wells in the shelf, and 347 to 3,726 ft (106 to 1,136 m),
averaging 1,440 ft (439 m) in 676 wells in the basin.

Initial-potential gas rates range from a trace to 278 Mcfd (average 30 Mcfd) from
1,040 wells in the shelf, and a trace to 2,300 Mcfd (average 127 Mcfd) from 592 wells in
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the basin. The maximum initial gas rate was reported in the Hartshorne coal at a true
vertical depth of 2,543 ft (775 m) from a horizontal well in Pittsburg County.

Produced-water rates range from 0 to 5,061 bwpd (average 63 bwpd) from 1,018
wells in the shelf, and 0 to 320 bwpd (average 21 bwpd) from 557 wells in the basin.

Low initial gas rates and minimal initial increase in gas production during
dewatering are often attributed to formation damage caused by well stimulation,
including the generation of coal fines that plug permeability. Present industry emphasis
is on matching the completion techniques to the specific coal.

Future development of CBM in Oklahoma is promising. Applications of horizontal
drilling and established completion practices have demonstrated the potential for CBM
in the Midcontinent USA.
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Figure 1. Histogram showing numbers of Oklahoma coalbed-methane well
completions, 1988 to 2001.
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Figure 5. Histogram of coalbed-methane well completion depths in the northeast
Oklahoma shelf.
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Figure 6. Histogram of initial-potential-gas rates in coalbed-methane well completions in the
northeast Oklahoma shelf.
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Figure 9. Distribution of well completions in the Mulky coal in the northeast Oklahoma shelf,
showing wells with relatively high IP gas rates.
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Figure 12. Gas-production-decline curves. (A) Patrick Exploration 12-2 Grover well;

(B) ECC Energy 2 Topping J well. Monthly gas production by well is from
Oklahoma Corporation Commission, operator, or IHS Energy Group.
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Figure 12. (cont.) Gas-production-decline curves. (C) Belport Oil 2 Douglass well;
(D) Eakin Exploration 1 Phillips East well. Monthly gas production by well
is from Oklahoma Corporation Commission, operator, or IHS Energy Group.
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Figure 13. Histogram of initial water production rates from coalbed-methane wells in the
northeast Oklahoma shelf (excluding two wells with 1,201 & 5,061 bwpd).
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Figure 15. Histogram of coalbed-methane well completion depths in the Arkoma basin.
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Figure 16. Histogram of initial-potential-gas rates in coalbed-methane well completions in
the Arkoma basin.
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Figure 21. Gas-production-decline curves. (A) SJM Inc. 2-6 Orbison well;
(B) Bear Productions 6 Scott well. Monthly gas production by well is from
Oklahoma Corporation Commission, operator, or IHS Energy Group.
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Figure 21. (cont.) Gas-production-decline curves. (C) OGP Operating 26-1 Rice-Carden well;
(D) Mannix QOil 3-22 Meadors well. Monthly gas production by well is from
Oklahoma Corporation Commission, operator, or IHS Energy Group.

78



E

Mannix 1-9 Fred (9-8N-19E; Haskell)
Hartshorne coal; IP 171 Mcfd, 1 bwpd

Horizontal CBM Well H
¥
T L] T L | ¥ L] L T L) T 1 L) L)
[<2] [=1] (=1 (=23 (= [=4 [~} (= - b - -
? s < < 4 ? < 9 ? < 4 '-':’
s 5 § 3 = 5 5 85 § 5 § 8
= S »n (o) = S n (= = S »n a
Date

Bear 2 Turner (22-6N-26E; Le FLore)
Hartshorne coal; IP 80 Mcfd, 0 bwpd

|Horizontal CBM Well

100,000
—>‘E 10,000
L
‘g £
=5
s S 1,000
o0
o =
= T
2 0
>
< O
100
10
100,000
[y
(%)
=
5
S 10,000
(5]
=
T
£
> 1,000
£
-
c
O
=
p 100
o)
©
-
S
<
10
[+1]
Yy
c
[1:]
-

L) 1] L] L L] L] L] T L] T 1 § 1 1] 1 L] L] L] 1 ¥ L] LJ 1} L] 1 L] L) L] ¥ L] 1 L]
=2 =2} [=2] [=4 o o o - -~ - -
P @ @ < 3 < < < ? < ot

=3 — b [ =y — L - e — il

o S 7] 5 a S 0 S o = 3]

< - o - < - o - < - o
Date

Figure 21. (cont.) Gas-production-decline curves. (E) Mannix Oil 1-9 Fred well;

(F) Bear Productions 2 Turner well. Monthly gas production by well is from
Oklahoma Corporation Commission, operator, or IHS Energy Group.
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Figure 22. Histogram of initial water production rates from coalbed-methane wells in
the Arkoma basin.
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INTRODUCTION

The purpose of this presentation is to provide an overview of the wireline logging
methods that have been used in coal exploration and coalbed gas exploration. | am not
a log analyst. For ten years early in my career, | explored for coal throughout the U.S. |
had the opportunity to describe many thousands of feet of core in coal-bearing
sequences, and routinely compared the core descriptions with wireline logs. My views
on well-log interpretation for coalbed gas reflect this experience.

A new cycle of coal exploration is taking place, this time with new criteria and
constraints. The natural gases contained within the coal matrix, referred to here as
CBM, are the resource of interest rather than the coal. However, most of the logging
methods now used for coalbed gas evaluation were developed many years ago in the
search for mineable coal resources.

My objectives are:

1. To provide an introduction to evaluating coal with geophysical well logs.
2. To raise some issues that should be considered in designing a logging
program and in interpreting logs.

3. To review some log examples from Tixier and Alger (1967), one of the
classic papers on interpreting wireline logs for coal evaluation.

4, To review examples of (slimhole) coal logging in the mining industry since
1972, with an emphasis on the benefits of core description for improving log
interpretations.

5. To review the logging methods most commonly used for CBM exploration.

The wireline log examples presented here are mostly logs of bituminous coals,
because these are the coals most commonly exploited for CBM. Examples of the
logging methods most commonly used for CBM exploration are provided.

More emphasis is given to the density log than other methods. Geophysics
entails the sensing of contrasts in rock properties. The density log is one of the most
commonly used methods in CBM exploration because the low density of coal contrasts
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markedly with the densities of other rock types that commonly occur in coal-bearing
sequences.

EARLY COAL LOGGING

Schlumberger was among the first to recognize the value of geophysical well
logs in mineral exploration (Tixier and Alger, 1967). Even though Schlumberger did not
pursue the mining market, their groundbreaking research did encourage the use of
wireline logs by the mining industry. Of particular importance to us are the observations
by Tixier and Alger that::

o “Coal beds are characterized by high resistivities, and by high apparent

porosities on sonic, neutron, and density logs.”

_ o “Density logs are particularly suited for evaluation of yield from oil shales.”
Both of these observations, and the excellent examples that Tixier and Alger provided,
led to the widespread use of geophysical well logging for coal exploration.

The examples from Tixier and Alger illustrate the responses of numerous logging
methods to coal:

o Slide 5 — normal resistivity, lateral log, caliper, sonic.

o Slide 6 — caliper, gamma ray, density, sonic, SP, induction, normal
resistivity.

° Slide 7 — gamma ray, density, sonic, neutron.

Additional examples from Tixier and Alger illustrate the good correlations between
organic matter, oil shale yield, and density (Slide 8).

Slimhole logging tools were widely available to the mineral industries by the late
1960s. Century Geophysical Corporation may have offered slimhole logging services
as early as the 1950’s. By the time that | began my career in the spring of 1973, service
companies that offered slimhole services were well established as the mainstay of coal
exploration, at least in the Rockies and Gulf Coast. Some mining companies, a few in
the west but especially the eastern mining companies, were reluctant to accept the
technology and continued to rely on coring for another decade.

Two of the key topics for improving well log interpretations during the early years
of coal logging were::

o Correlating the log responses to the rocks.

o Understanding some of the basic principles involved in logging for coal.
These remain important topics today.

LOG-ROCK CORRELATION

When you look at the well logs for a pay zone, your “mind’s eye” sees a rock, or
at least it should. You want to be able to recall the rocks that produced a log response
similar to the one you are viewing. The importance of experience comparing core to
well log responses cannot be overemphasized. (See Slide 9.)

Some generalized core-log comparisons are presented (Slides 10 and 11), not
to illustrate the details, but to illustrate how one can gain confidence in the interpretation
of log responses. These examples show generalized written or graphic descriptions of
coal sequences drawn directly on logs. This is how | learned to interpret the subtle
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inflections on coal logs, and | remain an advocate of such study to improve core
description and log interpretation skills.

Probably during the early 1970’s, mining companies and wireline companies
observed a correlation between log responses and the proximate analysis of coal.
Generally, the relationship between ash content and density was excellent for a specific
coal seam and area. By the late 1970’s, at least one wireline company was computing
ash content from density logs.

This may constitute preaching to the choir, but is too important to overlook. The
tight budgets in the CBM industry commonly do not permit coring for the purpose of
studying coal facies or log-rock relationships. But how else will we learn to recognize
the feather edge of an overbank splay in a coal seam, or the difference between a very
thin zone that may be carbonaceous shale or coal too thin for the density tool to fully
resolve, or the difference between coal lithotypes that may be more or less prone to
cleating? Such subtle changes may not be fully resolved by the logs, but important
clues may be present. If the gas-analysis team immediately removes all coal that is
cored, then lacking an opportunity to correlate a detailed description to the logs, we will
never see the rock in our mind’s eye.

VINTAGE SLIMHOLE LOGS

The slimhole log examples presented (Slides 10-14) have a purpose beyond the
illustration of the importance of log-rock correlation. Your company may one day
acquire vintage logs from a mining company. Such logs are often found in mining
company files, and commonly do not exist anywhere else. The log presentations are
not so standardized as those in the oil and gas industry. The units may not be the same
either, because the slimhole tools may differ.

Two logs that may not be familiar to some are the “gamma-gamma” density tool
and the single-point resistance tool. The gamma-gamma tool was commonly a free-
swinging omnidirectional tool that measured backscattered gamma rays from all
directions. This is sometimes referred to as a 4-11 (4 pi) tool. The units are counts per
second per inch of deflection. The curve may be plotted with counts increasing to the
left or right, depending on company conventions. As with modern density tools, the
gamma-gamma tool was sensitive to washouts.

The single-point resistance (not resistivity) tool measures an infinitely short-
spaced resistance in ohms (not ohnm-meters). The early designs used a button or ring
on the tool as one electrode and an electrode in the mud pit to complete the circuit.
Later designs used the sheath of the tool to complete the circuit. Bed boundary
resolution is excellent, provided that the borehole conditions are good. The tool is
extremely sensitive to hole rugosity.

Another example of a vintage slimhole log illustrates logging through pipe (Slide
12), and in the open-hole section, a gamma-gamma curve with counts increasing to the
right (Slide 13). Mining companies rarely employed a sophisticated mud program.
Where mud was used for circulation or to fill a hole to permit electrical logging, hole
caving and bridging off was common. Here, an oil-patch technique was sometimes
employed in lieu of tripping in to clean out the hole. If the comparatively small and
lightweight slimhole tools could not be spudded through a bridge, the drill stem was
circulated down past the bridge. Logs were then run through drill stem. Such logs may
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or may not be clearly marked, but the absence of the electric logs in the drill stem, and
the density spikes at the pipe joints clearly indicate the presence of drill pipe.

MODERN COAL LOGGING FOR CBM

Rank and Lithotype

As is the case with other rock types, the log responses to coal vary with the
different types of coal. Coal rank is one important factor (Slide 16). Both acoustic transit
time and density vary with coal rank. Higher rank coal exhibits a slower transit time, and
a higher density. Microporosity in coal is also rank dependent. Slide 17 presents typical
log responses for coals of varying rank. These data are from Davis (1976) and Tixier
and Alger (1967).

Coal lithotype is another important factor controlling log responses. Varied plant
communities produce material that is variably preserved and transformed by burial from
peat to coal, to produce the coal lithotypes we observe (Slide 18). Slide 20 is a table
taken from Stach (1975, Table 14, p. 133) that defines the lithotypes vitrain, clarain,
durain, fusain, cannel coal, and boghead coal. A wide variety of lithotypes exists that is
transitional between coal and other rocks, from coal to many impure coal types to coaly
and carbonaceous non-coal rocks. Coal lithotypes can provide clues to water depth
(see Slide 18 and references to Tasch, 1960 in Stach, 1975, p. 310-312). In turn, water
depth may have a bearing on the location of the margin of a coal deposit. Coal lithotype
can be related to cleat development and gas production.

Density Log Calibration

| have compiled the densities of selected materials and several log calibration
standards as reported by numerous sources in Slide 21. A good operational practice is
to expand this list with laboratory-determined specific gravities of core samples from
specific project areas. The density values shown can provide general guidelines for
bituminous coal evaluation.

A shale that consists of 60% mineral matter (mineral matter = 1.08 ash + 0.55
sulfur) and 40% organic matter was reported to have a density of 2.0. An impure
bituminous coal containing 20% mineral matter was reported to have a density of 1.5.
The 1.5 density value is commonly considered to be a practical division between clean
coal and impure coal. A relatively clean, bright, bituminous coal was reported to have a
density of 1.35. Pure kerogen is reported to have a density of 0.95. These reported
densities for coal, carbonaceous rocks, and kerogen, are lower than the densities of
most Midcontinent rock types.

Density logs are commonly calibrated to aluminum, density 2.59, and
magnesium, density 1.71. This calibration seems to be adequate for typical
Midcontinent rocks. However, coal is less dense than the lower density standard,
magnesium. Interpolation is generally better than extrapolation for estimating purposes.
For this reason, some service companies use fresh water, density 1.0, to better
calibrate for coal. Intuitively, this seems to me a good procedure to follow. Consider
discussing the merits of using water as one of the calibration standards with your
wireline services company.
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Volume of Investigation, Resolution, Precision, Accuracy

Each specific logging method and tool has its unique measurement
characteristics, including vertical resolution, volume of investigation, depth of
investigation, etc. These terms have various theoretical and practical definitions, as
discussed by Theys (1991, p. 47-52). Theys suggests the following definition of vertical
resolution: “The minimum bed thickness for which the instrument measures, possibly
on a limited portion of the bed, a value that gives the real value of the formation after the
suitable environmental corrections.” The volume of investigation has a theoretical shape
and size, which may vary with the subsurface environment. Hypothetical volumes of
investigation are shown in Slides 22 and 23. It is important to know a little about the
measuring characteristics of each type of log that is run. Slide 24 summarizes the
density logging and processing parameters provided by two wireline service companies.
These data have a bearing on the precision of bed boundary picks and the accuracy of
the measurements within a bed.

For thin Midcontinent coals, an error of several inches in thickness has a
significant impact on reserve calculations. The precision of bed boundary picks and the
ability to correctly identify the lithologies of thin beds within a coal seam are also
important for thick coals. Thin impermeable layers within a coal seam may affect fluid
flowpaths.

Depth of investigation affects relative proportions of the formation and borehole
environment in the measurement of interest. The usual tradeoff for tools that have a
spherical or ellipsoidal volume of investigation is as follows. The shallow-investigating
tools result in better bed boundary picks, but incorporate more borehole effects than the
deep-investigating tools. The deep-investigating tools result in better estimates of
formation properties, provided that the bed of interest is sufficiently thick that the
measurement reflects just the bed of interest, not the adjacent beds. For focused
resistivity logs such as the laterolog / guard log, a short array can provide good bed
resolution and, in combination with a neutron log, resolve a coal seam precisely even
with poor hole conditions. The disc-shaped volume of investigation of the laterolog /
guard log permits good precision and relatively deep investigation.

In some instances, the difference in the vertical resolutions of the gamma-ray log
and the density log can explain the apparent high gamma-ray in a thin coal seam. The
vertical resolutions for the gamma-ray log that | have seen in the literature range from
eight inches to three feet. If the gamma-ray measurement averages over a one to three
foot radius, then a hot shale overlying a one-foot coal can prevent a low gamma-ray
response from developing. Slide 25, an animated view of a logging tool passing through
a thin coal and overlying black shale, illustrates the hypothetical volumes of
investigation for a gamma-ray (large circle) and density (small circle) log.

High gamma-ray responses have been reported in coals from specific and
sometimes very limited areas in Montana, North Dakota, Texas, Wyoming and probably
other areas. In my experience, radioactive coals are uncommon. The most common
occurrence | have observed is at the margins of a deposit or associated with adjacent
sandstone beds in an area where uranium roll-fronts occur. In the southern
Midcontinent, phosphatic black shales overlie some coals. The associated marine
transgressions may introduce radioactive phosphate-bearing precipitates into the coal in
the same manner that iron sulfide (pyrite and marcasite) is formed in these coals. | have
not seen convincing evidence that this occurs, although | have not conducted a related

87



literature search. | am uncertain as to whether such coals with no apparent low gamma-
ray response contain some radioactive precipitates or whether this is an artifact of
averaging over the gamma-ray tool's volume of investigation. This question might be
answered with a series of gamma-ray core scans for a coal such as the Iron Post coal,
overlain by the Kinnison Shale, from an area where the coal appears to have a
moderately high gamma-ray response.

Consider the vertical resolution of your specific density tool when you interpret
logs. This information should be provided by your wireline service company. Ask how
your company defines vertical resolution. Source to detector spacing enters into the
equation, as does the configuration of shielding and windows around the source and
detector and other factors. Consider also that the resolution that is advertised for a
specific tool may apply only if the tool is run at the optimal logging speed and with the
maximum possible sampling rate.

What is a High-Resolution Density Log?

Modern slimhole density logging methods (for example Slide 26) and oilfield
density logging methods have seen marked improvements during the past 25 years.
High-resolution density logs are now available from many wireline service companies.
Three definitions of high-resolution density log are:

e An expanded scale density log, for example, having a scale of two or five feet

per inch.

e A density log run with a tool configured with an extremely near detector, for

example, having a source-detector spacing of 1%z inches.

¢ A density log run with a CDL or LDT tool, with a sampling time of short

duration, for example 50 to 250 milliseconds, run at a slow speed, and
computer enhanced to improve the resolution.

| do not consider an expanded-scale presentation of a conventional oilfield
density log to be a high-resolution density log. The logs produced by high-resolution
density tools and by carefully designed and tested computer-enhanced density methods
are legitimate high-resolution tools.

Slides 27 and 28 compare conventional density logs presented with an
expanded scale, and computed high-resolution density logs. The shoulders on the high-
resolution logs are noticably better defined. The thickness estimates from the high-
resolution logs will be much more reliable than the estimates from the conventional,
expanded scale logs.

Slide 29 compares a conventional density log and a density log acquired with a
high-resolution density tool. The coal and partings thickness estimates from the high-
resolution log are much more reliable than the estimates from the conventional
expanded scale log.

Slide 30 compares a computer-enhanced high-resolution density log and a
density log acquired with a high-resolution density tool. The two types of high-resolution
logs compare quite favorably in this example. This is the only such example | have
seen, and so | do not know whether this comparison is typical or the best example that
Schlumberger had available.

The real test of vertical resolution is the direct comparison with detailed core
descriptions. Without such a comparison, you must rely solely on the specifications
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provided by the various wireline companies, who may define vertical resolution
differently.

Other Logs used in CBM Exploitation

Volumes have been written on well logging. Many logging methods other than
the density log are used in CBM exploitation. The most important of these are illustrated
in the several slide examples in this paper. The caliper, gamma-ray, neutron, resistivity,
and microresistivity logs are valuable methods for CBM logging. The caliper indicates
the washouts that may invalidate shallow investigation logs such as the density log.
The caliper log may detect mudcake buildup at permeable zones. Washouts affect the
neutron log less than the density log, so the neutron log can serve as an alternative to
the density log for poor hole conditions. The microresistivity log detects mudcake
buildup at permeable zones where coal cleat is well developed. Slides 34 and 35
compare micrologs for coals with good permeability and poor permeability.

The acoustic/sonic log and televiewer log, the temperature log, and the
lithodensity photoelectric (pe) log also have potential uses. See Slides 31-35 for
examples of additional CBM logs. | have focused mostly on the density method in the
interest of time and brevity. The principles that apply to density logs can be applied to
other logging methods as well.

Slides 36 and 37 provide additional examples of density logs run in Oklahoma.
These provide additional reference log examples for your review.

Quantitative Methods for Gas Content and Producibility

Other authors have demonstrated the relationships between density and coal
ash, density and rank, rank and microporosity, lithotype and density, and lithotype and
cleat development. | have been able to correlate ash and Btu’s with log density using
simple regression analysis, after having numerous core samples analyzed. These
relationships suggest that gas content and producibility may be predicted with well logs,
as several consultants and wireline service contractors claim. The calibration of log
responses to local rocks and coals is likely to be required for valid quantitative log
analysis. Slide 38 is an example of the type of complex computed logs that
Schlumberger is attempting, from Scholes and Johnston (1993, Figure 2) is shown.
Logs that estimate coalbed gas content are available. | have no direct knowledge
regarding the reliablity or cost of this type of analysis.

CONCLUSIONS

The oil and gas geologist or engineer should be able to adapt readily to the
evaluation of coals with geophysical well logs. All the same principles and techniques
apply, especially with regard to the thin-bed issues. A familiarity with the physical
properties of the rocks you are evaluating is as important for CBM as it is for
conventional oil and gas. Similarly, a familiarity with the logging methods used is
important. Finally, the best way to gain an intimate feel for the log responses to coal-
bearing rocks in a given area is to describe lots of core and compare the detailed core
descriptions to the well logs.
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Slide 3

Summary

 Background — the origins of wireline logging for coal

— Early Schlumberger research, published in a groundbreaking
paper that illustrates most of the methods we use today

« Slimhole logging for the coal rning industry with
examples from the 1960’s and 1970’s. Log @xe
comparisons.

* Modern logging methods
— A few basic concepts to consider when interpreting logs
— Examples

« Examples of conventional oilfield logs

» Suggested reading

Slide 4
Background
Groundbreaking work by Tixier and Alger
(Schlumberger)

» Coal beds are characterized by high resistivities, and by
high apparent porosities on sonic, neutron, and density
logs.

+ Density logs are particularly suited for evaluation of
yield from oil shales.

From: Tixier and Alger (1967)
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Coal Responses
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Slide 9

Log-Rock Correlation Why?

* Why do we attend
these field trips?

* Neil’s jokes?

¢ Hunting Trilobites?

» Better exploration
models?

 Better understanding of
wireline log responses

and how they translate
to rock characteristics?

OGS Geologist Rick Andrews

Correlating GR scan of measured
section with nearby wireline log

Slide 10

Log Response Study

Core — Log Comparison

Analog log by Century Geophysical
Subbltummous A coal San Juan Basm NM 1973
- e [._. : -
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o= e - iy atma sbb -'.-.0.-14

SN tJl'-'..!' at"‘vk..m. e |_..
i
. S0chslin 25 Kedshn 290
GR y-y Density Single-Point Resistance
counts / sec counts/ sec ohms (not ohm-m)
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Coal Bed with Shale Partings

Analog log by i cadddes j% ;

Century TR A D _.})_.-: s H ERanxs

Geophysical : et H e B
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SR e
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Slide 12

Slimhole Logging
through
(2 7%” I.F.)
Drill Stem

Analog log by
Nuclear Logging Service

HVC or B bituminous coal,

S. Wasatch Plateau, UT,
1076

GR y-y Density
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Slide 13

Coal Logging
(deeper, openhole section
of well in Slide 12)

Analog log by
Nuclear Logging Service

HVC Bituminous coal,

S. Wasatch Plateau, UT,
1076

k=

GR y-y Density

Single-Point
Resistance

Slide 14

Log Response Study
Analysis — Log Comparison

Analog log by unknown contractor
Study by Helge Larsen
HVB Bituminous coal, Northern Wasatch Plateau, UT, NM, 1980

1
T
i
i

Y-y Density Single-Point Resistance

98




Slide 15

Modern Coal Logging
for
Coalbed Methane / Gas

Selected properties of coal and related rocks
Considerations for log interpretation

Examples

Slide 16
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UNITEG STATER, AND THE FCRMULA USED IN
PAAKING APPROXIMATE HANK DETERMINATIONS

Coal Rank
Classification
(USA)

Lignite HAB

MMMF BTU
(< 16000 BTU MMMF)

HVAB Adthracite

DMMF FC
(40 — 100 % FC DMMF)

U. S. Geological Survey
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Log Characteristics of Coal

LOG TYPE LIGNITE BITUMINOUS ANTHRACITE
Gamma Ray Low Low Low

(API Units)! 20-25 20-25 20-25
Resistivity High High High
(ohm-m)? 50-2000 50-2000 50-2000
Transit Time 130-150 110-140 120 or less
(u-secfft)®

Density 0.7-1.5 12-15 14-1.8
(g/ce)?

Neutron Very High Very High Very High
(Porosity Index) 55-70 55-70 55-70

From: Davis (1976) and Tixier and Alger (1967)

Slide 18

Environments & Lithotypes
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Slide 19

Sources for Figures

NN~

in Slide 18

White and Thiessen, 1913, Plate XV

Parks, B.C. and O’Donnell, H.J., 1956, Figure 11
Theissen, R., 1920, Plate X

Schopf, J.M., 1960, Plate 6

White and Thiessen, 1913, Plate VI

Parks, B.C. and O’'Donnell, 1956, Figure 21
Teichmuller, M., 1975, Figure 88

Slide 20

Types and Lithotypes of Bituminous Coals

Coal Type Lithotype Macroscopically Recognizable

Features

Humic Vitrain
Coal
Clarain
Durain
Fusain

Bright, black, usually brittle, frequently with
fissures

Semi-bright, black, very finely stratified
Dull, black or gray-black, hard, rough
surface

Of silky lustre, black, fibrous, soft, quite
friable

Sapropelic Cannel
Coal Coal

Boghead
Coal

Dull or of slight greasy lustre, black,
homogeneous, unstratified, very hard,
conchoidal fracture, black streak

Like cannel coal, but of somewhat brownish
appearance, brown streak

From: Stach (1975, Table 14)
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Densities of Selected Materials
and Log Calibration Standards

CaS04

(Ca,Mg)CO3

CaCo3

Si02

Al

NaCl ¢

S

Carb Shale (60/40 MM/OM)
KCI &

Mg

® Coal and Kerogen

Bitum Coal, 20% MM
Clean Bright Bitum Coal ma—1.35 B CarbiCoaly Shale
Brine (200 000 ppm ClI-)

H20 (fresh)
Pure Kerogen

Graln Densitites

Calibration
Standards

Values from numerous sources, all cited in References

Slide 22 L
Volumes of Investigation

Hypothetical Shapes

Tool Design, Volume, Resolution

SPHERICAL ELIPSOIDAL DisC CONICAL

From: Hoffman, Jordan, and Wallis (1982)
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Slide 23

Vertical Resolution, Depth of Investigation
Spherical Volume of Investigation
Improved Tool Resolution = Increased Borehole Contribution

VOLUME OF.
INVESTIGATION

‘DEPTH OF 4 S . H TS
INVESTIGATION : ;

VERT /!

1ICAL
RESOLUTION

"k CDEPTH OF
INVESTIGATION

From: Hoffman, Jordan, and Wallis (1982)

Slide 24
Density Logging / Processing Parameters

Company A — Computed High Rsfrom LDT
Company B - High Rs Tool & CDL

PARAMETER COMPANY A COMPANY B
Logging Speed (ft/min) 15-60 10-30
Sample Time (msec) 50 - 250 100

CDL / LDT Spacing 12”, 6%2" 12”, 6"
High-Res Spacing 1.5”
Resolution Advertised 8", 4 24", 3
Time Constant (sec) 05-20
Std Filter 15-pt (Gaussian)

High-Res Filter 5-pt (Gaussian)
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Slide 25
Tips
Consider the Effects
of

Measure Point(s)

Vertical Resolution
Volume of
Investigation
Logging Speed
Sample Time

Time Constant
& Filtering

Slide 26
Modern Slimhole Logs
Digital log by ANLINE
HVA Bituminous coal, Okmulgee Co., OK, 1999
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Courtesy of Don Andrews, ANLINE
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Slide 27 Expanded-Scale Density vs

Computed
High-Resolution Density

i -—‘-K--\l—-‘-'-"“‘v Lot :‘ —_> .
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0 i : 124 : 3 / ‘ ,3
Expanded Scale Hres

Courtesy of Jeff Formica

Slide 28

Oilfield Density vs
Computed High-Resolution Density
Showing Improved Resolution

Standard Buk Densiy (py)

Oilfield log by Schlumberger | . o [ Souwomesssownos
< 110 . o T
HVA bituminous coal, Greene s [T
Co., PA, before 1992 _ =
o e
] S

From: Olszewski and Schraufnagel (1992), Fig. 3
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CDL vs High-Resolution Density Tool
Showing Improved Resolution

DR o ” s o

e o
DENSITY

GICC
DENSITYH.

Certivuy.

) GrOPHYSICAL LoTP. Courtesy of Brian Peterson

Slide 30

Computer-Enhanced Oilfield Density vs
High-Resolution Density Tool

Oilfield log by Schlumberger

Slimhole log by Geological _ ‘ _
Logging Systems ‘ 1=

1110

HVA bituminous coal, Greene [}
Co., PA, before 1992

y T
Fai1k

130 [

3]
A

pe=t—

From: Olszewski and Schraufnagel (1992), Fig. 3
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Expanded CDL/Temp
with Short Spaced Density
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Slide 32
CDL and Temperature
Air Filled Hole
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Sonic / Acoustic 2
- e
Televiewer ‘
4 il
TR il
Digital log by ANLINE ¥ ¢
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HVA bituminous coal, . e Il _;1;’ i
Okmulgee Co., OK, 1999 e ST
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Courtesy of Don Andrews CAL GR Sonic  pensity
ANLINE Televiewer

Slide 34 Microlog Response to

Good Cleat Development
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Slide 35 Microlog Response to

Poor Cleat Development
DST 2200-2252 .004 md
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After: McBane and Mavor (1991), Fig. 2
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Reasonable Density ?
Parting ?
“Thick” Oklahoma Coal

I.

P 5 P tp o
R = SR
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Oilfield log by BPB et tr| ™ [

Bulk Density 1.3-1.5

.

1 1900

HVA bituminous coal, [==5=
Haskell Co., OK, 1996 _‘ ==E
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Slide 37

Example from
Hemish
(2002, in press)

Hot Shale
and Underlying
Coal

Oilfield log by GO

HVB bituminous coal,
Craig Co., OK, 1979

Slide 38

The
Future ?

The
Cost ?

From: Scholes and
Johnston (1993), Fig. 2
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Eastern Arkoma Basin coalbed-methane
completions—A different perspective

John A. Ringhisen
Halliburton
Oklahoma City, OK

Ringhisen, J.A., 2002, Eastern Arkoma Basin coalbed-
methane completions—A different perspective, in
Fourth annual Oklahoma coalbed-methane workshop:
Oklahoma Geological Survey, Open-File Report 9-
2002, p. 111-116.



CEMENTING CBM WELLS
CONSIDER THIS
John A. Ringhisen
Halliburton

The cementing of production casings in conventional oil and gas wells is a relatively easy
process when compared to CBM wells. Most conventional wells take advantage of being
drill with a fluid in the wellbore. The drilling fluid, water based or oil based, is designed
for the expected wellbore conditions during the drilling operation. One of the primary
functions of the drilling fluid is to develop a barrier, filter cake, between the wellbore and
any formations containing porosity and permeability. The filter cake minimizes damage
to the producing interval by preventing the drilling fluid from invading the formation
matrix. Conventional production wells produce from reservoirs containing both porosity
and permeability. Naturally fractured wells have primary and secondary fractures which
allow the formation matrix to produce reservoir hydrocarbons to the wellbore. The
cementing procedure for these wells requires a mechanical process to remove the drilling
mud and filter cake from the intervals of interest and successfully place the cement
slurry. After a period of time the cement slurry cures and develops compressive strength.
Successful zonal isolation will maximize the opportunity for trouble free completion
techniques.

The cementing of the production casing in coal-bed methane wells have inherent
characteristics to consider to obtain a successful cement job. The cleats, natural fractures
in the coal, provide an excellent location for the entry of contaminating fluid into the
producing matrix of the coal bed. Coal-bed methane wells are generally drilled with
compressed air as the “drilling fluid”. As a result, when the coal is penetrated by the bit,
there is minimal damage to the coal reservoir. Since the pressure differential is from the
coal to the wellbore, natural gas is produced to the surface and must be safely handled.
Prior to logging the well, a thin fluid is added to the wellbore. The thin fluid can be
“sucked” into the cleats of the coal through capillary action. The cleats act as small soda
straws to pull a thin wellbore fluid into the coal. An additional source of damage to the
coal reservoir may occur as the production casing is run into the well. The running speed
of the casing can create a piston effect across the coal interval exerting additional
pressure on the cleats and possibly force more wellbore fluid into the coal. The depth of
penetration of the wellbore fluid as a result of either of these phenomenons is a function
of the viscosity of the wellbore fluid and the height of the fluid in the wellbore above the
coal interval. The cementing slurry for the coal wells is preceded by a viscous water pill.
The viscous pill is designed to remove any cuttings left in the wellbore. The cement
slurry is placed across the desired intervals. Even the cement slurry can damage the coal
bed if the cement slurry is not correctly designed.

Improved technology and field experience have made horizontal coal-bed methane wells
more economical. The cementing process for a casing string placed around the curve
requires additional planning and design considerations. The cement sheath not only
forms a barrier to isolate the coal production from the shallower intervals, but must
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survive the drilling process of the horizontal interval. The additional stress placed on the
casing and cement sheath in the curvature of the casing are from the drill pipe movement
during the drilling process. Additional stresses are encountered when the drilling
assembly is run through the curve. This “banging around” can cause small cracks to
develop in the cement sheath. In most instances these cracks do not create any problems
for the operator during the life of the well. But, in a small number of wells, these cracks
might weaken the cement sheath’s ability to isolate the natural gas from the annulus.
Should this problem become severe, natural gas could migrate into the annulus outside
the production casing.

Additional design considerations will greatly improve the success of the primary
cementing procedure for the production casing in both a vertical or horizontal coal-bed
methane well. Here is a list of items to consider when planning the cementing of a coal-
bed methane production casing.

e Spacer/flush - The current use of a gel pill ahead of the cement for an air drilled
hole is sufficient to clean the wellbore of cuttings. The key is to remove the
cuttings and not cause any damage to the producing intervals.

e Cement slurry weight — The slurry weight, density, of the slurry should be heavy
enough to control the reservoir pressure from the production intervals, but light
enough to control the total hydrostatic pressure exerted on of the coal interval.
This total pressure must be lest than the bottom hole pressure required to initiate a
fracture in the coal. The cement slurry weight has a direct correlation on the
compressive strength of the set cement slurry.

e Compressive strength — The strength of set cement slurry is measured in pounds
per square inch. The value indicates the amount of force required to cause a crack
to develop in the cement. API standards require the compressive strength be
measured at set time intervals at bottom conditions. The higher the compressive
strength, the more brittle the cement sheath.

e Ductility — The set cement has sufficient compressive strength for zonal isolation.
When a delta pressure or delta temperature is placed and then removed from the
cement sheath, the cement sheath returns to its original position without
deformation or cracking of the cement sheath. The integrity of the cement sheath
of a horizontal well will greatly improve when ductility is designed into the
cement slurry. The cement sheath will have a greater chance of surviving the
additional stresses from the mechanical process of drilling the horizontal
wellbore.

e API Fluid Loss — An API standardized test (API Document 10) to measure the
amount of filtrate which is lost from the cement slurry when a specified
differential pressure is placed across the unset cement. The test conditions are for
30 minutes at 100 and 1000 psi. The higher the fluid loss, the greater the potential
to damage a formation.

e API Free Water — An API standardized test ( API Document 10) to measure the
percent of mixing water that does not stay in the cement slurry. The free water
can migrate into the formation or form “water pockets” in the set cement slurry.
This problem is magnified in high angle or horizontal wells where the free water
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can collect on the high side of the wellbore. In these wells the free water only
needs to travel a few inches rather than a few feet to collect in pockets. These
pockets are most certain form in the highly deviated or horizontal wellbore an
form a channel in the cement sheath.

Thixotropic — A property applied to a cement slurry that achieves high gel
strength during short periods of time when the cement slurry becomes static.
Thixotropic cement slurries assist in “preventing” cement fall back in the annulus
and minimize gas or fluid migration during the transition from a fluid to a set
cement sheath.
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STIMULATING CBM WELLS
EVOLUTION CONTINUES
John A. Ringhisen
Halliburton

The evolutionary process for stimulating coal bed methane wells is continuing. The
operators, consultants, and service providers are continually working together to-develop
the “cost effective silver bullet” to simplify and maximize the gas production and the
Rate of Return. The Oklahoma CBM Industry’s learning curve incorporates the best
ideas from other CBM areas plus some homegrown innovative procedures in the quest
for the “silver bullet”.

Here is a brief outline of some of the stimulation techniques employed in our area.

From Brad Wilkins, Wilkins Engineering Supervision, Oklahoma Geological Survey
Open-file Report 2-2000

e Brief History of Stimulation Techniques Imported from other CBM Areas

(0]

0o

Straight Nitrogen Fracs with fluid or proppant. The results were not that
impressive. The fracturing gradients were excessively high.

Gelled Water and Sand incorporated 20# or 30# and sand as the proppant.
Again the results were not that impressive. StimLab analysis of the coal
samples and materials indicated compatibility problems with foamers and
permeability damage from the gel residue.

High rate sand/water fracs. High injections rates (+/- 40 BPM) were used
to insure efficient proppant transport with the water system. The wells
required 5 to 7 days of de-watering before natural gas production started.
After a short period of time the wells suffered steep production decline.
Post job analysis by the engineers and service companies determined the
coals had fracturing gradients as high as 2 psi/ft and the treatments were
generating multiple fractures. Further analysis by StimLab found an
excessive amount of coal fines in the produced fluids. Their conclusion
was the coal fines were plugging the permeability of the sand pack in the
fracture system causing a decline in the gas production.

“Controlled Velocity Frac” — Eliminate the Fines, Eliminate the Problem -
Tagged proppant indicated extensive fracture height growth. StimLab
determined the coal fines were caused by high rate proppant eroding the
fines from the sides of the cleats. The CVF increased the efficiency of the
treating fluid, varied the injection rate to control the velocity of the
proppant in the fractures. Real-time monitoring and analysis during the
stimulation procedure were used to taylor the treatment to fit the well.
CVF treatments generated initial production rates up to 2 2 times greater
than straight nitrogen fracs and water fracs. Results from the VF were up
to 10 times greater than gelled water treatments. Maximum reported IP
100 to 130 MCFD.
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From William T. Stoeckinger, Consulting Geologist, Oklahoma Geological Survey Open-
file Report 2-2000

e Further Analysis to Find Area Specific Stimulation Guidelines

o Near wellbore tortuosity is the source of high treating pressures and
multiple fractures. The operator should incorporate real-time monitoring
and analysis to make adjustments in the treatment to maximize the
opportunity for success. Each CBM area is different.

o Coals are friable. Consider the reservoir when designing the stimulation
treatment, especially the completion costs and the ROR.

o Damage to the coal reservoir can be caused during the cementing process.
Calculate the hydrostatics of the cement column.

From Anthony Carpenter; Consolidated Oil Well Services, Inc; Oklahoma Geological
Survey Open-file Report 3-2001

e Oklahoma Shelf Success
o Acid ball-off treatment with mini-frac analysis to determine treatment
design parameters specific to the individual well.
Frac treatments incorporating 2% KCL water and proppant.
Nitrogen fracs with water and proppant.
Hartshorne Coal Fracs — 2% KCL water and proppant.
Acid / water fracs — weak acid system in KCl water.

O O O O

From Roger Marshall, Cudd Pumping Services, Oklahoma Geological Survey, Open-file
Report 2-2001

e Follow the Learning Curve
o “Eliminate the Fines, Eliminate the Problem”
o Design your completion to fit your well.
o Economics of CBM drilling and completion is the key to success
o Oklahoma Shelf coals survive acid treatments

From John A. Ringhisen, Halliburton

e Paradigm Shift for the Eastern Arkoma Basin
o Real-time monitoring and analysis of the treatment
Spearhead the treatment with hydrochloric acid to clean the cleats
Base fluid — water with clay control material
Gel system — low polymer loaded crosslinked gel
Bactericides
Surfactant
Proppant — 12/20 Brady Sand — maximum concentration 6 ppg
Conductivity enhancer — control fines migration and sand pack migration
Injection Rate — matched to coal interval height
Multiple stages, treat each productive interval by itself

O O O 0O 0O O 0 0O
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e Results from the Paradigm Shift

Initial Production 30 Day 60 Day
Well 1 104 MCFD 330 MCFD 250 MCFD
Well 2 52 MCFD 232 MCFD 307 MCFD
Well 3 16 MCFD 277 MCFD
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Coalbed gas content: Insights

Chris Hoffman
TICORA
Arvada, CO

Hoffman, C., 2002, Coalbed gas content: insights, in Fourth
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Coalbed Reservoir Gas Content

Gas Storage Mechanisms:

Free gas within natural fractures.
Dissolved gas in water within natural fractures.
Adsorbed gas within the coal matrix.

Total Gas
Volume

Free Gas
Volume

Dissolved
Gas Volume

Adsorbed
Gas Volume

i

I Typically > 95%J
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Long Term Desorption: Best Practice
Analysis Protocols
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Gas Sorption Knowledge — It’s a Good Thing

Maximum gas content (0% moisture + ash): 837 scffton

Gas content is 0 scf/ton at 0.9663 moisture + ash
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Gas Sorption Knowledge — It’s a Good Thing
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Gas Resource - What We Get From Core

Coalbed Gas Reservoirs
Evaluate:

* In-situ Gas Content & Bulk Density

% Gas Saturation
* Gas Composition

° Reservoir Pressure & Temperature

* Reservoir Volume (Area & Thickness)

=1

gti

Data Confidence

GIP = Ahp,G,

DRAINAGE IN-SITU
UNCERTA AREA THICKNESS DENSITY

1 Commonly Used Protocols
[ Very High Sampling Density
|:> 1 Best Practice Protocols
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Typ
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Methane Storage Capacity (scf/ton)
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Coal Gas Analyses Flow Chart
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Residual Gas vs. Crushed Gas vs. RapidGas s
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Sorbed Phase Gas Composition

Twenty Mile #21C-3523

100 B
8927 80.37 88.77 ECH4

Mole %

Upper Intarval, Middle Intarval, Lower Interval, Lower intarval,
Preserved Preserved Preserved Non-Preserved

Natural Fracture Development (Tectonic)
vs. Rank

I

High Volatile

A Bituminouus

Hardgrove Grindability Index
(Fracture Development)

Coal Rank

Generallzed Graphic

S dry €

124



Coal Gas Reservoir Systems
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Storage Capacity Versus Moisture Content
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The Analytical Goal is to Construct
Comprehensive and Critical Information...
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Gas Content Versus Coal Composition

E> | Rule-of-thumb upper density limit: 1.75 g/cm? |
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L INTRODUCTION

1. Introduce self and background
a. Roughneck, roustabout
b. BA degree in psychology
c. Landman
d. Operator of shallow wells in northeast Oklahoma
e. BS geology
f. Drilled, completed or plugged about 250 coal seam wells

2. “Resolution of some engineering and geological difficulties requires
techniqgues not commonly found in textbooks.” (Quote by Larry
Connor, P.E., Ryder Scott Co., as a concluding statement on his
technical paper presented at Mid-Continent Coalbed Methane Forum,
August 2001.) Will attempt to present my understanding, or lack of
understanding, of the coal seam gas business from an experience-
based point of view.

a. Looking for cookie cutter formula
i. low-cost method
ii. repeatable positive results
b. Rule of thumb analysis
c. Experience-based theory

II. HISTORY

1. Ancient — 1921 AAPG

a. First shale well produced in southeast Kansas near Chanute about
1910
By 1921, the shale gas industry had developed in eastern Kansas
Coal producing area (picture of 1921 map)
Coal seam industry declines with little knowledge of its existence

o

oo

2. Recent

a. In mid 1980’'s, some production reestablished in Montgomery
County, Kansas

b. In early 1990’s, there were some recompletions of old wells, mostly
Mulky coal

c. By mid 1990, drilling of new wells occurred, mostly Riverton/Rowe
coals

d. By late 1990, many new operators, including large independents

III. PROSPECTS
1. Things to consider

a. Acreage - 5,000 + acres
b. Pipelines
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c. Target coal with gas potential — e-logs and old driller’s logs
i. Weir-Pittsburg coal

Rowe coal
Riverton coal

d. Gas volume: average production 50 mcf/day or above
e. Structure
f

Depth

Quick economic analysis
a. Parameters

i.

ii.
iii.
iv.

V.

Vi.
vii.

5000 acres/80 acre spacing = 62 drill sites

1500 ft wells

$40,000 well cost

$15,000 proportionate share of gathering and water disposal
and acreage

$800 per month operating cost including water disposal and
gathering

$3.00 gas price - $2.40 to producer and gathering

8 test wells

Quick payout analysis

a. Cost:

$55,000 per well

b. Expenses: $800 per well per month
c. Income: (50 mcf x $2.40 x 30.4 day/month)

= $3,648 income - $800 month expenses
= $2,848 net per well

d. Payout: $55,000 well cost / $2,848 net monthly income

= 19 month payout per well

Spacing and location orientation

a. 80 to 160 acre spacing — larger wells, larger spacing

b. Fracture orientation and elliptical drainage should be considered in
well spot:  face cleat N47°W primary, butt cleat N53°E, football
shaped drainage orientation N47°W (diagrams)

IV. DRILLING & COMPLETION

1.

Drilling

a. Rig (photos)

b. Samples

c. Gas tests (photos)
d. E-logs with gas tests
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2. Completion
a. Casing and cement

cased hole vs. open hole
cement
a. best coal most likely to take cement
b. discuss cement
i cement in zone
ii. gilsonite and flow seal

b. Perfs and fracs — discussion and description of how we treat our

wells
i.
ii.

photo of frac jobs
scoured tunnel theory

c. Problems and Solutions

cement invasion into coal — use lightweight cement and
plenty of flow seal or gilsonite

frac out of zone — results from cement invasion into zone
which was discussed above, or trying to force with too much
rate and horsepower; be gentle to coals — they are
unforgiving; use more water and less sand, particularly at
beginning

V. PRODUCTION & GATHERING

1. Production (photos)
a. Water disposal

quote 1921 AAPG bulletin: “see page 378"
one central disposal — Arbuckle or recompletion of old well

b. Gas volumes

10 to 400 mcf
(charts and decline curves)
cumulative gas and average decline

c. Problems and solutions

well produces black paraffin-looking substance — probably
mixture of frac gel and coal fines; we have eliminated using
gel in frac fluid

. well that makes gas while drilling makes no gas or fluid after

frac — probably cement in coal; trying to refrac well has never
solved problem, just $10,000 poorer

well gas and water volumes decline rapidly; if no drainage
from other wells, probably result of coal fine migration —
pump into well with 200 bbls water then pump back slowly;
may need to repeat process several times

when you think you have something figured out you're
probably about to find out you're wrong
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d. Gathering (photos)
i. need major pipeline connection — too costly to move gas
through small privately owned gathering
ii. private gathering systems are used to control areas
iii. low pressure — large pipe
iv. gathering deals — between 25% and 35% of adjusted net
revenue (line loss and fuel)

VI. CONCLUSION & QUESTIONS
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APPENDIX 1
Selected Coalbed Methane References
Brian J. Cardott
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IZDAT P)ublishers, Office of Technical Services, Washington, D.C., 112 p. (cleat
vs. rank

Arri, L.E., D. Yee, W.D. Morgan, and M.W. Jeansonne, 1992, Modeling coalbed
methane production with binary gas sorption: Society of Petroleum Engineers,
Rocky Mountain Regional Meeting, SPE Paper 24363, p. 459-472. (use of
Nitrogen or CO injection to desorb methane)

Attanasi, E.D., 1998, Relative importance of physical and economic factors in
Appalachian coalbed gas assessment, in P.C. Lyons, ed., Special issue:
ﬁ\p%alachian coalbed methane: International Journal of Coal Geology, v. 38, p.

7-59.

Ayers, W.B., Jr., W.R. Kaiser, and J.R. Levine, 1993, Coal as source rock and gas
reservoir: Birmingham, Alabama, 1993 Coalbed Methane Symposium, Short
Course 1, 257 p.
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producibility, in W.B. Ayers, Jr., W.R. Kaiser, and J.R. Levine, Coal as source
rock and gas reservoir: Birmingham, Alabama, 1993 Coalbed Methane
Symposium, Short Course 1, p. 121-187.

Barker, C.E., R.C. Johnson, B.L. Crysdale, and A.C. Clark, 1991, A field and laboratory
procedure for desorbing coal gases: USGS Open-File Report 91-0563, 14 p.

Berggren, L.W., and G.A. Sanderson, 2001, Recent developments in the application of
the §29 tax credit to coal seam gas: Tuscaloosa, Alabama, Proceedings,
International Coalbed Methane Symposium, Paper 104, p. 257-269.

Boardman, E.L., and J.H. Rippon, 1997, Coalbed methane migration in and around
fault zones, in R. Gayer and J. Pesek, eds., European coal geology and
technology: London, Geological Society Special Publication 125, p. 391-408.

Bodden, W.R.,, I, and R. Ehrlich, 1998, Permeability of coals and characteristics of
desorption tests: implications for coalbed methane production, in R.M. Flores,
ed., Coalbed methane: from coal-mine outbursts to a gas resource: International
Journal of Coal Geology, v. 35, p. 333-347.

Boyer, C.M., 1I, 1989, The coalbed methane resource and the mechanisms of gas
production: GRI Topical Report, GRI-89/0266, 115 p.

Bustin, R.M., 1997, Importance of fabric and composition on the stress sensitivity of
permeability in some coals, northern Sydney basin, Australia: relevance to
coalbed methane exploitation: AAPG Bulletin, v. 81, p. 1894-1908.

Bustin, R.M., and C.R. Clarkson, 1998, Geological controls on coalbed methane
reséervoir capacity and gas content: International Journal of Coal Geology, v. 38,
p. 3-26.

Bustin, R.M., 2001, Hydrogen sulphide sorption on coal with comparisons to methane,
carbon dioxide, nitrogen and hydrogen: implications for acid gas sequestration
and co-production of methane: Tuscaloosa, Alabama, Proceedings, International
Coalbed Methane Symposium, Paper 112, p. 343-350.

Byrer, C.W., T.H. Mroz, and G.L. Covatch, 1987, Coalbed methane production potential
in U.S. basins: Journal of Petroleum Technology, v. 39, no. 7, p. 821-834.

Carter, R.H., S.A. Holditch, J. Hinkel, and R. Jeffrey, 1989, Enhanced gas production
through hydraulic fracturing of coal seams: Gas Research Institute, Final Report,
GRI-90/0061, 71 p.

Clark, W.F., and T. Hemler, 1988, Completing, equipping, and operating Fruitland
Formation coal-bed methane wells in the San Juan basin, New Mexico and
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Colorado, in J.E. Fassett, ed., Geology and coal-bed methane resources of the
northern San Juan basin, Colorado and New Mexico: Denver, Rocky Mountain
Association of Geologists Guidebook, p. 125-132.

Clarkson, C.R., and R.M. Bustin, 1996, Variation in micropore capacity and size
distribution with composition in bituminous coal of the western Canadian
sedimentary basin: Fuel, v. 75, p. 1483-1498.

Clarkson, C.R., and R.M. Bustin, 1997, Variation in permeability with lithotype and
maceral composition of Cretaceous coals of the Canadian Cordillera:
International Journal of Coal Geology, v. 33, p. 135-151.

Clarkson, C.R., and R.M. Busin, 1999, The effect of pore structure and gas pressure
upon the transport properties of coal: a laboratory and modelling study: 1.
Isotherms and pore volume distributions: Fuel, v. 78, p. 1333-1344.

Clayton, J.L., 1998, Geochemistry of coalbed gas — a review, in R.M. Flores, ed.,
Coalbed methane: from coal-mine outbursts to a gas resource: International
Journal of Coal Geology, v. 35, p. 159-173.

Close, J.C., 1993, Natural fractures in coal, in B.E. Law and D.D. Rice, eds.,
Hydrocarbons from coal: AAPG Studies in Geology 38, p. 119-132.

Crosdale, P.J., B.B. Beamish, and M. Valix, 1998, Coalbed methane sorption related to
coal composition, in R.M. Flores, ed., Coalbed methane: from coal-mine
?g’ébursts to a gas resource: International Journal of Coal Geology, v. 35, p. 147-

D’Amico, J.S., 2000, Processing key to CBM economics: American Oil & Gas Reporter,
v. 43, no. 8, p. 118-124.

Das, B.M., D.J. Nikols, Z.U. Das, and V.J. Hucka, 1991, Factors affecting rate and total
volume of methane desorption from coalbeds, in S.D. Schwochow, D.K. Murray,
and M.F. Fahy, eds., Coalbed methane of western North America: Denver,
Rocky Mountain Association of Geologists Guidebook, p. 69-76.

Davidson, R.M., L.L. Sloss, and L.B. Clarke, 1995, Coalbed methane extraction:
London, IEA Coal Research, IEACR/76, 67 p.

Dawson, F.M., 1999, Coalbed methane exploration in structurally complex terrain, in M.
Mastalerz, M. Glikson, and S.D. Golding, eds., Coalbed methane: scientific,
en\1/i1rc1>n{nental and economic evaluation: Boston, Kluwer Academic Publishers,
p. -121.

Deul, M., and A.G. Kim, 1988, Methane control research: summary of results, 1964-
1980: U.S. Bureau of Mines Bulletin 687, 174 p.

Diamond, W.P., 1979, Evaluation of the methane gas content of coalbeds: part of a
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evaluation, in G.O. Argall, Jr., ed., Coal exploration, v. 2: Denver, Proceedings of
the second International Coal Exploration Symposium, p. 211-227.

Diamond, W.P., and J.R. Levine, 1981, Direct method determination of the gas content
gf ?gal: procedures and results: U.S. Bureau of Mines Report of Investigations

515, 36 p.
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gas drainage: U.S. Bureau of Mines Information Circular 8898, 24 p.

Diamond, W.P., J.C. LaScola, and D.M. Hyman, 1986, Results of direct-method
determination of the gas content of U.S. coalbeds: U.S. Bureau of Mines
Information Circular 9067, 95 p.

Diamond, W.P., C.H. Elder, and P.W. Jeran, 1988, Influence of geology on methane
emission from coal, in M. Deul and A.G. Kim, Methane control research:
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Golding, S.D., K.A. Baublys, M. Glikson, I.T. Uysal, and C.J. Boreham, 1999, Source
and timing of coal seam gas generation in Bowen basin coals, in M. Mastalerz,
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