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Ficure 3.—Comparison on moist, mineral-matter-free basis of heat values and proximate

analyses of coal of different ranks.

From Averitt, Paul, 1975, Coal resources of the United States, January 1,

1974: USGS Bulletin 1412, p. 17.



MOISTURE AND COAL RANK
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From Scott, A.R., 2000, H drpgeolo%ic controls affecting gas content
variability in coal beds, in Coalbed methane: from prospect to

production: Short course for Opportunities in Alaska coalbed methane

workshop.
MACERAL GROUP ORIGIN REFLECTANCE
VITRINITE Cell wall material or Intermediate
woody tissue of plants.
LIPTINITE Waxy and resinous parts Lowest
(EXINITE) of plants (spores,
cuticles, wound resin)
INERTINITE Plant material strongly Highest

altered and degraded
in peat stage of coal
formation.

Adapted from Crelling, J.C., and R.R. Dutcher, 1980, Principles and
applications of coal petrology: SEPM Short Course No. 8, 127 p.
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Figure 3. Maceral composition of selected high-volatile bituminous Oklahoma coals, ex-
pressed as percentage by volume on a mineral-free basis.

From Cardott, B.J., 1989, A Setrographic survey of high-volatile bituminous
Oklahoma coal beds: Oklahoma Geology Notes, v. 49, p. 119.
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Figure 4—Rank dependence of gas content with increasing pressure. (a) Gas content is assumed to progrt.ss‘ively
increase with increasing rank (Kim, 1977). (b) However, many factors affect gas content in coal beds, and similarly
ranked coals commonly exhibit a wide range of gas contents (Scott, 1993a).

From Scott, A.R., N. Zhou, and J.R. Levine, 1995, A modified approach to
estimating coal and coal gas resources: example from the Sand
Wash basin, Colorado: AAPG Bulletin, v. 79, p. 1325.
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Variatlon of sorption capacity with moisture content. Gas sor{)tlon capacity
decreases s fgmfncantl y with mcreasm%mousture content until an
upper limit of moisture content is reac ed. At this point, additional
monsture has no effect on sorption capacity. From Joubert, .
Grein, and D. Bienstock, 1974, Effect of moisture on the methane
capacity of American coals: Fuel, v. 53, p. 186-191
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Figure 2-9
Estimated Maximum Producible Methane Content
by Depth and Rank (Adapted from Eddy, 1982)
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From Saulsberry, J.L., P.S. Schafer, and R.A. Schraufnagel, eds., 1996, A
guide to coalbed methane reservoir engineering: Chicago, Gas
Research Institute, page 2.9.
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TSOP Abstracts and Program, v. 14, p. 44.
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CLEAT ORIGIN AND IMPORTANCE

e Miners’ term for natural fractures in coal.
Coal breaks along cleat planes.

e Control the directional permeability of coal.

Important for planning CBM well placement
and spacing.

e Result of dehydration, devolatilization,
tectonic stress during coalification, and
unloading of overburden during uplift and
erosion.

References on cleat:

Close, J.C., 1993, Natural fractures in coal, in B.E. Law and D.D. Rice,
eds., Hydrocarbons from coal: AAPG Studies in Geology 38, p.
119-132.

Laubach, S.E., R.A. Marrett, J.E. Olson, and A.R. Scott, 1998,
Characteristics and origins of coal cleat: a review, in R.M. Flores,
ed., Coalbed methane: from coal-mine outbursts to a gas resource:
International Journal of Coal Geology, v. 35, p. 175-207.

Law, B.E., 1993, The relationship between coal rank and cleat spacing:
implications for the prediction of permeability in coal: Proceedings
of the 1993 International CBM Symposium, paper 9341, p. 435-
442.

McCulloch, C.M., M. Deul, and P.W. Jeran, 1974, Cleat in bituminous
coalbeds: U.S. Bureau of Mines Report of Investigations 7910, 25

p.

Su, X., Y. Feng, J. Chen, and J. Pan, 2001, The characteristics and
origins of cleat in coal from western North China: International
Journal of Coal Geology, v. 47, p. 51-62.

Ting, F.T.C., 1977, Origin and spacing of cleats in coal beds: Journal of
Pressure Vessel Technology, v. 99, p. 624-626.
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CLEAT ORIENTATION

o Two orthogonal sets, perpendicular to
bedding. Complicated by local disturbances
such as faults and folds.

Face Cleat—dominant, well developed,
extend across bedding planes of the coal.
Extension fractures formed parallel to
maximum compressive stress.

Butt Cleat—secondary, discontinuous,
terminate against face cleat. Strain-
release fractures formed parallel to fold
axes.

Butt cleat Face cleat
l/ | 1 / 1

L 1
T > 1
[ l A 1
I i l .Deggznlfencoh \

/ 1. |
l/./Droinoqeellipse

I
N _\_\_J..__;____,L.L/ ! l
| I |

|
| |

Figure 4-1.—Plan view of directional permeability due to
cleat orientation,

From Diamond, W.P., C.H. Elder, and P.W. Jeran, 1988, Influence of
geology on methane emission from coal, in M. Deul and A.G. Kim,
Methane control research: summary of results, 1964-80: U.S. Bureau
of Mines Bulletin 687, p. 26.
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Coal Bed Gas Production

Gas + water out
1. Gas sorbed in microporous soli
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3. Gas flows alo \
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2.Gas di}uses from
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solid coal to cleat

e

Production Rate

Time

From Barker, C.E., A.R. Scott, and R.A. Downey, 2000, Coalbed methane:
from prospect to productlon Opportunities in Alaska coalbed
methane workshop, p. 7.
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~=~ Outcrop lne of Hartshorne Formation 4 Rock island No. | strip mine
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FIGURE 9. - Coal cleat orientations of the Hartshorne
coalbed in Le Flore County.

From lannacchione, A.T., and D.G. Puglio, 1979, Methane content and
eology of the Hartshorne coalbed in Haskell and Le Flore Counties,
klahoma: U.S. Bureau of Mines Report of Investigations 8407, p. 9.
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CLEAT SPACING

o Related to rank, bed thickness, and
composition. Coal with well-developed cleat
is brittle.

Rank—more frequent with increasing rank
from lignite to low-volatile bituminous.

Subbituminous: 2-15 cm

High-volatile bituminous: 0.3—2 cm

Medium- to Low-volatile bituminous: <1 cm.

14



Cross-plot of Coal Rank and Cleat Frequency
(Adapted from Ammosov and Eremin, 1960)
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From Saulsberry, J.L., P.S. Schafer, and R.A. Schraufnagel, eds., 1996, A
guide to coalbed methane reservoir engineering: Chicago, Gas

Hv = High-Volatile Bituminous
Mv = Medium-Volatile Bituminous
— Lv = Low-Volatile Bituminous
SA = Semi-Anthracite

— Anth = Anthracite
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Research Institute, page 2.7.

CLEAT SPACING AND COAL RANK

14

Cleat spacing (cm)
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Proceedings of
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CLEAT SPACING (continued)

Bed Thickness—more frequent in thinner
coals.

Composition—
Coal type: more frequent in banded than
nonbanded coals.
Coal lithotype: more frequent in bright,
vitrinite-rich lithotypes than in dull,
inertinite- and liptinite-rich lithotypes.
Coal grade: more frequent in low-ash
(mineral matter) coals.

16
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CLEAT MINERALIZATION

e Secondary mineralization of cleat will lower
porosity and permeability of coal:
Clay (kaolinite)
Calcite
Gypsum
Quartz
Sulfide (e.g., pyrite)

References on cleat mineralization:

Close, J.C., 1993, Natural fractures in coal, in B.E. Law and D.D. Rice,
eds., Hydrocarbons from coal: AAPG Studies in Geology 38, p.
119-132.

Gamson, P., B. Beamish, and D. Johnson, 1996, Coal microstructure and
secondary mineralization: their effect on methane recovery, in R.
Gayer and I. Harris, eds., Coalbed methane and coal geology:
London, Geological Society Special Publication 109, p. 165-179.

Laubach, S.E., R.A. Marrett, J.E. Olson, and A.R. Scott, 1998,
Characteristics and origins of coal cleat: a review, in R.M. Flores,
ed., Coalbed methane: from coal-mine outbursts to a gas resource:
International Journal of Coal Geology, v. 35, p. 175-207.

Spears, D.A., and S.A. Caswell, 1986, Mineral matter in coals: cleat
minerals and their origin in some coals from the English Midlands:
International Journal of Coal Geology, v. 6, p. 107-125.
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Figure 6. Schematic plan view of (A) desorption of
methane from coal micropore, (B) diffusion through coal
matrix, and (C) darcy flow through cleat.

From Diamond, W.P., 1993, Methane control for underground coal mines,
in B.E. Law and D.D. Rice, eds., Hydrocarbons from coal: AAPG

Studies in Geology 38, p. 242.

Free Gas Sorbed Gas

From Barker, C.E., A.R. Scott, and R.A. Downey, 2000, Coalbed methane:
from prospect to production: Opportunities in Alaska coalbed
methane workshop, p. 7.
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Figure 5. Plot showing volumes of methane generated
and stored per gram of coal with increasing rank.

Modified from Meissner (1984) and P.D. Jenden (personal
communication, 1992).

From Rice, D.D., 1993, Composition and origins of coalbed gas, in B.E.

Law and D.D. Rice, eds., Hydrocarbons from coal: AAPG Studies in
Geology 38, p. 162.
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From Boyer, C.M., il, 1989, The coalbed methane resource and the
mechanisms of gas production: GRI Topical Report, GRI-89-0266, p.
64.
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Figure 2. A typical production
profile for a coalbed methane

well.
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From Schraufnelagel R.A., 1993, Coalbed methane production, in B.E. Law
ice, eds , Hydrocarbons from coal: AAPG Studies in
Geology 38, p. 3
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From Scott, A.R., 1995, Factors affecting gas-content distribution in coal
beds, in Geology and hydrolog%o coalbed methane producibility in
the United States: analogs for the world: Gas Research Institute,
Intergas '95 short course, p. 232.
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From Mavor, M., and C.R. Nelson, 1997, Coalbed reservoir gas-in-place
analysis: Chicago, Gas Research Institute, GRI-97/0263, p. 6.2.
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A coalbed methane exploration model:
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ABSTRACT

Coalbed methane has recently developed into one of the most active gas
plays of the United States. Geologic and hydrologic comparisons of coal basins
worldwide, indicate that depositional systems and coal distribution, coal rank,
gas content, permeability, hydrodynamics, and tectonic/structural setting are
critical controls on coalbed methane producibility. A dynamic interplay among
these controls determines high coalbed methane productivity. This paper
reviews a basin-scale exploration model for the prolific and marginal gas
production in two basins that can be applied to evaluation of coalbed methane
potential in coal basins worldwide. High productivity is governed by (1) thick,
laterally continuous coals of high thermal maturity; (2) moderate to high
permeability; (3) basinward flow of ground water through coals of high rank
orthogonally toward no-flow boundaries (permeability barriers, regional
structural hingelines, fault systems, facies changes, and/or discharge areas); (4)
generation of secondary biogenic gases; and (5) conventional trapping of
migrated thermogenic and secondary biogenic gases at permeability barriers to
provide additional gas beyond that generated during coalification.
Understanding the dynamic interaction among geologic and hydrologic factors is
important for delineating areas within basins that potentially have higher
coalbed methane productivity. Correct application of a coalbed methane
exploration model can delineate areas of potentially higher coalbed methane,
provide more accurate resource assessment, and determine which areas have
significantly lower coalbed methane potential.
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INTRODUCTION

Coalbed methane is an important part of the natural gas supply for the
United States and now represents more than 7 percent of total gas production
and 7 percent of dry gas proved reserves (Energy Information Association; 2000).
Although initial coal gas exploration and development was performed initially
by major oil companies and larger independents, smaller operators have played
a progressively more important role in developing this natural resource. Coal
gas resources for the contiguous United States are estimated to be more than 755
Tef (21.38 Tm3) and more than 80 percent is located in the western United States
(Figure 1). Coalbed methane resources in Alaska probably exceed 1,037 Tcf
(29.36 Tm3) (Clough and others, 2001).

Annual coal gas production has increased from less than 10 Bcf in 1986 to
more than 1,249 Bef (35.36 Bm?) in 1996 (Figure 2). Although over 80 percent of
current coal gas production is derived from the San Juan Basin, coal gas
production from other western basins continues to increase, particularly from
the Powder River Basin. Coal gas proved reserves remained relatively constant,
increasing slightly over the past 4 years, and are current;ly estimated to be
approximately 13.23 Tcf (375 Bm®)(Energy Information Association; 2000). The
increase in proved coal gas reserves despite the significant increase in
production is attributed to the efforts of smaller operators and independents in
finding new reserves. Coal gas production and reserves are expected to increase
as exploration continues in unexplored areas and as secondary recovery
techniques using nitrogen or carbon dioxide are employed.

The traditional view of production from coalbed methane reservoirs is
inadequate to explain the contrasts in methane producibility of coal basins. This
paper presents our explanation of the geological and hydrological controls that
are critical to coalbed methane producibility. In the traditional view, coal gases
are generated in situ during coalification and are stored primarily in micropores
on the coal matrix’s large internal surface area by sorption (Thimons and Kissell,
1973). The sorption process is pressure dependent, and the gas is held in coal
micropores by the pressure of water in the coal’s natural fracture network, or
cleat system (Kolesar and others, 1990). Gas production is achieved by reducing
the reservoir pressure through dewatering and thus liberating the gases from the
coal matrix into the cleat system for flow to the well bore. The traditional view is
oversimplified because it fails to recognize the need for additional sources of
gas beyond that generated initially during coalification to achieve high gas
content following basinal uplift and cooling. Migrated conventionally and
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Figure 2. Coal gas production trends in the United States (Bryer and Guthrie, 1999).
Total coal gas production has increased significantly since 1985 and currently exceeds
7% of the total dry gas production in the U.S.

Coalbed Methane

Producibility

Figure 3. Geologic and hydrologic controls critical to coal gas producibility. A dynamic
interaction among these key factors and their spacial relations governs producibility.
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hydrodynamically trapped gases, in-situ-generated secondary biogenic gases,
and solution gases are required to achieve high gas contents or fully gas
saturated coals for consequent high productivity. To delineate the presence and
origin of these additional sources of gas requires an understanding of the
interplay among coal distribution, coal rank, gas content, hydrodynamics,
depositional fabric, and structural setting (Kaiser and others, 1994; 1995).

Controls Critical to Coal Gas Producibility

Coalbed methane exploration strategies are often based only on the location
of the greatest net coal thickness and ignore other hydrologic and geologic
factors affecting coalbed methane producibility. Coalbed methane producibility
is determined by the complex interplay among six critical controls: depositional
systems and coal distribution, coal rank, gas content, permeability,
hydrodynamics, and tectonic/ structural setting (Figures 3 and 4)(Scott, 1999). If
one or more of these key hydrogeologic factors is missing, then the potential for
higher coalbed methane producibility will be reduced. However, the coalbed
methane play may remain economically viable. For example, the Piceance Basin
is characterized by exceptionally high gas content values (more than 700 scf/ ton;
21.8 cm3/ g), but coalbed methane production has been limited because of low
permeability. However, the Powder River Basin remains economically
successful with gas contents generally less than 30 scf/ton (0.9 cm?/ g), because
thick (more than 100 ft; 30 m) coal beds are present at shallow depths. A review
of each hydrogeologic factor will be followed by examples from the San Juan
and Greater Green River Basin.

Depositional Setting and Coal Distribution
Coal beds are the source and reservoir for methane, indicating that their

widespread distribution within a basin is critical to establishing a significant
coalbed methane resource. Coal distribution is closely tied to the tectonic,
structural, and depositional settings (Figure 4a), because peat accumulation and
preservation as coal require a delicately balanced subsidence rate that maintains
optimum water-table levels but excludes disruptive clastic sediment influx. The
depositional systems define the substrate upon which peat growth is initiated
and within which the peat swamps proliferate. Net coal thickness trends and
depositional fabric strongly influence migration pathways and the distribution
of gas content. The depositional setting also controls the types of organic matter
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(macerals) which affect sorption characteristics and the quantity of hydrocarbons
produced from the coal. Knowledge of depositional framework enables
predication of coalbed thickness, geometry, and continuity and, therefore, which
potential coalbed methane resources.

Tectonic and Structural Setting
The tectonic and structural setting control of a basin control the distribution

and geometry of coal beds in the basin during deposition, and therefore, exert a
strong control on the lateral variability of maceral (Figure 4b). Both the burial
history and stress direction control the timing of cleat development in various
parts of the basin and the final orientation of face cleats. The basin burial history
and variability of regional heat flow control coalification and the types and
quantities of thermogenic gases generated from the coals. Additionally, present-
day insitu stress directions may significantly affect coalbed methane
producibility. Stress directions orthogonal to face cleats will lower permeabiliy,
whereas stress directions parallel to face cleat orientation may enhance
permeability. Uplift and basinal cooling often result in undersaturation with
respect to methane in the coals and possible degassing of coal beds. Finally, the
location and geometry of faults may strongly influence the recharge of meteoric
water, and therefore, the generation of biogenic gases.

Coal Rank and Gas Generation

Coals must reach a certain threshold of thermal maturity (vitrinite
reflectance values between 0.8 and 1.0 percent; high-volatile A bituminous)
before large volumes of thermogenic gases are generated. The amount and

types of coal gases generated during coalification are a function of burial history,
geothermal gradient, maceral composition, and coal distribution within the
thermally mature parts of a basin (Figure 4c). Gases in coal beds may also be
formed through the process of secondary biogenic gas generation. Secondary
biogenic gases are generated through the metabolic activity of bacteria,
introduced by meteoric waters moving through permeable coal beds or other
organic-rich rocks. Thus, secondary biogenic gases differ from primary biogenic
gases because the bacteria are introduced into the coal beds after burial,
coalification, and subsequent uplift and erosion of basin margins. The bacteria
metabolize wet gas components, n-alkanes, and other organic compounds at
relatively low temperatures (generally less than 150°F; 56°C) to generate
methane and carbon dioxide. Secondary biogenic gases are known to occur in
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subbituminous through low-volatile bituminous and higher-rank coals (Scott,
1993; 1994).

Gas Content

Gas content, is one of the more important controls of coalbed methane
producibility, yet often is one of the more difficult parameters to accurately
assess. Gas content is not fixed, but changes when equilibrium conditions
within the reservoir are disrupted and is strongly dependent upon other
hydrogeologic factors and reservoir conditions (Scott and Kaiser, 1996) (Figures
4d and 5). The distribution of gas content varies laterally within individual coal
beds, vertically among coals within a single well, and laterally and vertically
within thicker coal beds (Figure 6). In general, gas content increases with depth
and coal rank, but is often highly variable due to geological heterogeneities, the
type of samples taken, and/ or the analytical laboratory. The gas content of coals
can be enhanced, either locally or regionally, by generation of secondary
biogenic gases or by diffusion and long-distance migration of thermogenic and
secondary biogenic gases to no-flow boundaries such as structural hingelines or
faults for eventual resorption and conventional trapping (Figure 7). Therefore,
determination of migration direction through isotopic and hydrogeologic
studies is critical for determining migration direction and the areas of higher gas

content.

Permeability

Permeability in coal beds is determined by its fracture (cleat) system, which
is in turn largely controlled by the tectonic/structural regime as mentioned
previously (Figure 4e). Cleats are the permeability pathways for migration of gas
and water to the producing well head, and cleats may either enhance or retard
the success of the coalbed methane completion. Permeability will decrease with
increasing depth, suggesting that in the absence of structurally enhanced
permeability at depth, coalbed methane production may be limited to depths
less than 5,000 to 6,000 ft (1,524 to 1,829 m). Permeability is highly variable in
coal beds ranging from darcies to microdarcies, but the most highly productive
wells have permeability ranging between 0.5 to 100 md (Figure 8). Higher
permeability will result in recovery of more sorbed coal gases, because lower
reservoir pressures and, therefore, more coal gas desorption will occur in higher
permeability reservoirs. However, permeability that is too high results in high
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Gas Generation

Coal rank
Maceral composition
Hydrogeology

Coal Properties Reservoir Conditions
Ash content Reservoir pressure
Moisture content Reservoir temperature
Maceral composition Coal geometry
__Permeability Hydrogeology
Diffusion coefficient Conventional trappin

Figure 5. Primary factors affecting gas content distribution in coal beds (Scott and Kaiser, 1996).
Gas content is not fixed, but changes when equilibrium conditions in the reservoir change.
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UNUSUALLY LOW GAS CONTENTS

Low gas contents due to meteoric
recharge flushing.

flow without trapping.

Low gas contents associated with
diffusion over geologic time.

Low gas contents due to convergent

MR

UNUSUALLY HIGH GAS CONTENTS

Secondary biogenic gas generation and
hydrodynamic trapping.

Conventional and hydrodynamic
trapping of migrating coal gases

Figure 7. Fluid migration and the distribution of lower and higher gas contents.
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Figure 8. Relation among face cleat spacing, permeability, and face cleat aperture sizes
based on cubic law equations from Lucia (1983) designed for fracture carbonate reservoirs.
The stippled area represents the ranges of cleat spacing and permeability for highly
productive coalbed methane wells in the San Juan and Black Warrior Basins. Modified
from Scott (1995).
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water production and may be as detrimental to the economic production of
coalbed gas as extremely low permeability.

Hydrodynamics

Hydrodynamics strongly affects coalbed methane producibility and
includes both the movement of meteoric water basinward as well as the
migration of fluids from deeper in the basin. Basinward migration of ground
water is intimately related to coal distribution and depositional and
tectonic/ structural setting because ground water movement through coal beds
requires recharge of laterally continuous permeable coals at the structurally
defined basin margins (Figure 4f). Coal beds act not only as conduits for gas
migration but also are commonly ground-water aquifers having permeabilities
that are orders of magnitude larger than associated sandstones. The presence of
appreciable secondary biogenic gas indicates an active dynamic flow system
with overall permeability sufficient for high productivity. Migration of
thermogenic may result in abnormally high gas contents in lower rank coals or
coals that are saturated or oversaturated with respect to methane.

Basin hydrogeology, reservoir heterogeneity, location of permeability barriers
(no-flow boundaries), and the timing of biogenic gas generation and trap
development are critical for exploration and development of unconventional gas
resources in organic-rich rocks.

Resource Assessment

Accurately assessing coal and coalbed methane resources and delineating
areas within basins that contain the largest resources are important aspects of
resource development. The coalbed methane producibility model can be used to
predict areas within basins that may have higher than expected gas contents. Gas
content variability is one of the more difficult parameters to constrain during
resource calculations (Scott and others, 1995). However, ash-free gas content
data in addition to net coal thickness, coal rank, ash content, and ash-free and
bulk coal density values can be contoured, digitized, and converted into a grid
and note system for coal and coalbed methane resource calculations if sufficient
data are available. Modified approaches to coal and coalbed methane resource
calculations are required in the absence of sufficient data or well control.18
Accurate assessment of resources and application of the producibility model
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may provide a basis for economic evaluation of coal and coalbed methane
resources based on incremental increases in drilling depth. Additionally, specific
areas in the basin having large gas resources can be delineated, providing a basis
for future exploration efforts. Therefore, accurate determination of coalbed
methane resources is important in assessing the potential of future coalbed
methane production.

CONCLUSIONS

The complex interplay and spatial relationship among coal distribution, coal
rank, gas content, permeability, hydrodynamics, and depositional and
tectonic/ structural setting govern the occurrence and production of coalbed
methane. High productivity requires that these controls be synergistically
combined. In the San Juan Basin, they are combined synergistically, resulting in
prolific production because ground water flows through thick coals of high
thermal maturity toward a structural hingeline (no-flow boundary). The
relatively large volume of gas available in thermally mature coals and secondary
biogenic gases generated by bacteria after uplift and basinal cooling are swept
basinward for conventional trapping along the hingeline, providing additional
sources of gas beyond that sorbed initially on the coal surface. Conventional
trapping plays a much more important role in coalbed methane production than
is generally recognized.

Pennsylvanian-age coals in Cherokee, Forrest City, and Arkoma basins have
generally reached the thermal maturity level required to generate significant
quantities of methane. Secondary biogenic methane generation may have
occurred near the outcrop, but the apparent presence of predominantly saline
waters in the Cherokee and Arkoma Basin coupled with relatively low water
production suggests that secondary biogenic methane generation may be limited.
The presence of wells with exceptionally high production is encouraging and
suggests that adequate permeability exists at depth. The biggest limiting factor
for coalbed methane development appears to be net coal thickness. However,
gas production from carbonaceous shales and/or adjacent sandstones may
enhance the economic viability of coalbed methane wells.
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Arkansas Coal Geology and Potential for Coalbed Methane

William L. Prior and Bekki White
Arkansas Geological Commission

INTRODUCTION

Coal is a solid fossil fuel, which was first discovered and utilized in Arkansas in
the early 19" century. Because of its solid nature, coal has traditionally been mined in
order to be used. Coal is classified according to the percentage of fixed carbon it
contains on a dry mineral-matter-free basis and the amount of heat it gives off when
completely burned, measured in British Thermal Units (Btu's; Table 1).

The Arkansas coalfields lie within the Arkansas Valley physiographic province of
northwestern and north-central Arkansas (Figure 1). Coal rank increases from low-
volatile bituminous to semianthracite from west to east. This coal has been used to
produce steam for electric power generation, steam locomotives, heating of homes,
coking or metallurgical coal for making steel, and as chemical feedstock in making
chemicals. As of 1999. over 106 million short tons of coal have been mined in Arkansas
for these various uses. During the last two decades of the 20™ century, only small
locally owned mines have produced coal for use in charcoal briquettes, in pipeline
coatings, and by blacksmiths. During the 1990s, yearly coal production in Arkansas
was less than 100,000 tons per year (Bush, 2000). Recoverable reserves are estimated

to be about 1 billion tons.

Sources of Information
The information for this report was obtained from reports of previous workers.
Especially important reports were by Haley, Hendricks, and Mereweather of the u.sS.
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Geological Survey, and Bush, Colton, and Gilbreath of the Arkansas Geological
Commission. Early 20"-century coal reports by Steel (1910) of the University of

Arkansas have also provided useful information.

STRATIGRAPHY

The coal-bearing formations are in the Arkoma basin in western Arkansas. This
sedimentary basin trends east-west and occupies the same area as the Arkansas
Valley physiographic province.

The basin contains sedimentary rocks ranging in age from Upper Cambrian to
Middle Pennsylvanian (Haley, 1982). The basin is located between the Ozark Plateaus
on the north and the Ouachita Mountains on the south. The sedimentary sequence
thickens to the south where it reaches a maximum thickness of over 25,000 feet.
Deposition was, for the most part, in a marine environment (Haley, 1982). The coal-
bearing formations are, in ascending order: Atoka, Hartshorne, McAlester, and Savanna
(Figure 2). The Atoka Formation is part of the Atokan Series; the Hartshorne,

McAlester, and Savanna Formations are of the Desmoinesian Series.

Atoka Formation

The Atokan rocks consist lithologically of about 70% shale, 20% sandstone, and
10% siltstone. These rock types typically occur as repetitive coarsening-upward
sequences of shale to siltstone to sandstone. This sequence is generally recognized as
belonging to deltas prograding into a marine environment. The Atoka Formation has

been subdivided into upper, middle, and lower units based on mappable lithologies of
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shale and sandstone (Haley, 1982). At the top of some sandstones in the upper Atoka
Formation are thin discontinuous coals, which indicate that some areas were above sea
level by upper Atoka time. The Atoka Formation ranges from 4,000 to an estimated

22,000 feet thick.

Hartshorne Sandstone

The Hartshorne Sandstone unconformably overlies the Atoka Formation (Haley,
1982). The Hartshorne is largely composed of massive medium-grained sandstone. It
is the most continuous and widespread of all Desmoinesian sandstones. The
Hartshorne Sandstone was deposited as part of a westward-flowing meandering river
(Haley, 1982). In some areas, the Hartshorne contains thin shales that may contain thin

coals (less than 1 foot thick). The Hartshorne ranges from 10 to 300 feet thick.

McAlester Formation

Conformably overlying the Hartshorne Sandstone, the McAlester Formation
contains several coal beds. The Lower Hartshorne coal, the most important coal bed in
Arkansas, is the most continuous and thickest of the Arkansas Valley coals and
therefore the one most mined. The Lower Hartshorne coal occurs near the base of the
McAlester Formation, 1 to 5 feet above the Hartshorne Sandstone. The McAlester
Formation is composed primarily of shale with a few thin sandstone beds (Haley, 1982).
The Upper Hartshorne coal occurs 40 to 90 feet above the Lower Hartshorne coal. The
two coals are not known to wedge together in Arkansas as they do in Oklahoma. The

McAlester Formation ranges from 500 to 2,300 feet thick (Haley, 1982).
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Savanna Formation

The Savanna Formation contains several thin coals, but only two coals have
been of minable importance. The Charleston coal is near the base of the formation, and
the Paris coal is in the upper part. The Savanna Formation encompasses primarily dark
gray shale and silty shale. Minor amounts of siltstone and sandstone occur throughout
the section. The Savanna Formation may be as thick as 1,600 feet in Arkansas (Haley,

1982).

Boggy Formation
The Boggy Formation contains no coal and only 225 feet of the lowermost part of
the formation occurs in Arkansas. Occurring in isolated remnants, the Boggy Formation

is composed of silty sandstones and thin beds of siltstone and shale.

STRUCTURE
The Arkansas Valley coalfields within the Arkoma basin contain anticlines,

synclines, and normal and thrust faults. All trend generally east-west (Haley, 1982).

Folds

Numerous anticlines and synclines exist within the basin (Figure 3). Dips of the
rocks can be as low as 10 degrees along the flank of these folds in the northern part.
However, dips may increase to 35 degrees close to normal faults. In the more
structurally complex southern areas of the basin, north-side dips of anticlines may reach

15 degrees beyond vertical (Haley, 1982). These structures have played a major role in
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the distribution of the coals within the basin. Along the hinge lines or centers of the
anticlines, the coal beds may have been removed by erosion, while the coal beds may

be hundreds to as much as 3,000 feet deep in the axis of synclines (Haley, 1960).

Faults

Parts of the northern boundary of the Arkoma basin are marked by the Mulberry
fault, which has as much as 2,500 feet of displacement along townships 9 north and 10
north (Figure 4).

The faults in the northern and central parts of the basin are normal “growth” faults
(Figure 4), which formed during the deposition of the sediments. The downthrown side
of these faults are generally on the south side; dips range from 30 to 65 degrees to the
south (Haley, 1982). North-dipping normal faults also are present, but are thought to be
antithetic to the south-dipping faults. North-dipping faults do not appear to have the
same amount of displacement (Haley, 1982).

Near the frontal Ouachita Mountains along the southern margin of the basin, low-
and high-angle thrust faults exist, many along the crest of anticlines. These thrust

plates have been moved to the north (Haley, 1982).

ARKANSAS VALLEY COAL BEDS
Coal reserve and resource estimates have been made only for the four major
coal beds which have been mined. These beds are the Lower and Upper Hartshorne
coal, Charleston coal, and Paris coal (Haley, 1987). As previously mentioned, there are

coal beds in the upper Atoka Formation, but these coals seem to be thin and
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discontinuous. One coal in the Atoka Formation was mined near Centerville in Yell

County for local use only (Haley, 1960).

Lower Hartshorne Coal

The Lower Hartshorne coal is the most widespread and most produced coal in
Arkansas, containing about 94% of the total coal resource (Haley, 1987). It extends
over an area of 1,300 square miles (Figure 5). Coal thickness varies, with areas of 14
inches or thicker covering an area of about 740 square miles (Figure 5; Haley, 1960). It
is reported to be more than 8 feet thick near Huntington in Sebastian County (Haley,
1960).

Overburden has largely been controlled by structure (Figure 5), with some of the
greatest depths occurring in the axis of synclines. Coal is present at the surface where

younger overlying sedimentary strata has been eroded.

Upper Hartshorne Coal

The Upper Hartshorne coal occurs over an area of approximately 28 square
miles. Itis 14 inches or more thick in an area of 16 square miles (Figure 6; Haley,
1960) and has a maximum thickness of 34 inches. Figure 6 also shows the estimated

thickness of overburden for the Upper Hartshorne coal in southern Sebastian County.

Charleston Coal
The Charleston coal extends about 120 square miles (Figure 7) in parts of

northern Sebastian and Logan Counties and is more than 14 inches thick over an area
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of 52 square miles (Haley, 1960). The Charleston coal has a maximum thickness of 23
inches (Haley, 1960). Overburden thickness is, in large part, controlled by local

structure.

Paris Coal
The Paris coal occurs in three small areas in Franklin and Logan Counties
(Figure 8; Haley, 1960). In the largest area in Logan County, the Paris coal ranges from

14 to 32 inches thick.

Coal Quality and Rank

As in Oklahoma, coal rank in the Arkansas Valley coalfields increases from west
to east. There have been various explanations as to why this occurs, but none seem
totally conclusive.

About 80% of Arkansas Valley coal are low-volatile bituminous rank. The rank
line, drawn on the basis of coal sample testing, runs across central Logan County
through western and central Johnson County (Figures 5 to 8). This line divides coal
beds based on greater than or less than 86% fixed carbon.

Table 2 shows proximate analyses of the various coal beds that occur in the

Arkansas Valley coalfields (Howard and others, 1997).

COALBED METHANE: “FIREDAMP”
Firedamp was the term used for methane gas (CH4) which occurred in

underground coal mines in the early 20" century. It was reported to have been
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encountered in small pockets. In 1906—1908, firedamp caused the deaths of at least 3
miners in Arkansas (Steel, 1910). Today, coalbed methane is viewed as a new source
of energy from deeply buried coal beds.

Unfortunately, little modern work has been done on the coalbed-methane
potential of the Arkansas Valley coalfields. Rieke and Kirr (1984) gave a geologic
overview on the coalbed-methane potential for the Arkoma basin in Oklahoma and
Arkansas. However, the information about the gas-producing potential of individual coal
beds in Arkansas is unknown. Such factors as gas content, cleat direction and spacing,
and water content have not been reported for Arkansas as has been done in Oklahoma.
The early 20" century reports of A.A. Steel about underground coal mining may offer
some insight into some of these factors.

One factor in coalbed-methane production is cleating or fracturing within the coal
bed. Old-time miners used to refer to these as “slips.” Cleats or slips are important
pathways to allow gas released from the coal to migrate and be collected at the well.
Steel (1910) reported, “All slips have a direction of strike between north and northwest.”
Figure 9 shows the cleats relative to the mining front. Figure 10 shows the “two sets not
equally marked dipping in opposite directions.” These “slips” were reported on because
of their effects on the blasting needed to loosen the coal before it could be mined. Steel
(1910) also reported that the Lower Hartshorne coal was like “woody coal” which did not
always blast apart well.

Another factor, which Steel reported, was that the coal mines contained
methane. No quantitative measurements were done but gas was reported to have

occurred in small pockets. Also, not as much gas was encountered compared to some
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other United States coalfields possibly because the Arkansas underground coal mines
generally were not as deep as in many other coal-mining regions.

Also affecting coalbed-methane production is the condition of the surrounding
rock layers above and below the coal beds. Steel (1910) reported that, in most cases,
the roof was solid, but in some areas the roof was crumbly. Between 1906 and 1908,
62% of the miners were killed by rockfalls in Arkansas.

The last factor controlling gas production is the amount of water present in the
coal bed. An estimated 39,000 to 46,000 acre-feet of water was calculated to exist
within the abandoned underground coal mines (Potts, 1987). Some sites produced
surface flowage of 75 to 460 gallons per minute (Potts, 1987).

Water quality was variable; dissolved solids range from 70 to 1,550 mg/liter and
pH is 3.2 to 7.9 with a medium of 6.5 Dissolved solids such as sulfate, calcium, sodium,
and magnesium affect the water quality the most (Potts, 1987). Some water was good
for all uses while others were only good for restricted use (Potts, 1987). Depths to salt
water range from 500 to 2,000 feet with an average depth of 1,000 feet based on

information from gas well logs (Cordova, 1963).

LIGNITE: “ARKANSAS’ OTHER COAL"
In the Gulf Coastal Plain of eastern and southern Arkansas (Figure 11) there are
lignite coal deposits. Lignite is the next to lowest rank of coal (Table 1). Arkansas
lignite averages 6,932 Btu/lb on a moist, mineral-matter-free basis (Prior and others,

1985).
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Arkansas lignite occurs in large deposits in two units. The Wilcox Group is
Eocene in age, is composed of sand, clay, and silt, and is about 800 feet thick. Lignite
beds tend to be lenticular with some beds up to 10 feet thick (Prior and others, 1985).
Lying above the Wilcox Group, the Claiborne Group is also of Eocene age, is composed
of sand, silt, and clay, and is about 1,200 feet thick. Lignite beds of up to 10 feet thick
are also reported to occur in the Claiborne Group (Prior and others, 1985).

A total of 9 billion tons of lignite resources is estimated to exist within 156 feet of

the surface. The distribution and quantity of lignite at greater depths is unknown.
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CLASS GROUP

Limits of fixed carbon or
Btu mineral-matter-free
basis

Requisite physical
properties

i. Anthracitic 1. Meta-anthracite

2. Anthracite

3. Semianthracite

li. Bituminous 1. Low-volatile bituminous
coal.

2. Low-volatile bituminous
coal.

3. Medium-volatile A bi-
tuminous coal.

4. High-volatile B bi-
tuminous coal

5. High-volatile C bi-
tuminous coal.

ill. Subbituminous | 1. Subbituminous A
coal.

2. Subbituminous B
coal.

3. Subbituminous C
coal.

IV. Lignite . Lignite

. Brown coal.

N —=

Dry FC 98 percent or more
(dry VM, 2 percent or less).

Dry FC, 92 percent or more
and less than 98 percent
(dry VM, 8 percent or less
and more than 2 percent).

Dry FC, 86 percent or more
and less than 98 percent
(dry VM, 14 percent or less
and more than 8 percent).

Dry FC, 78 percent or more
and less than 86 percent
(dry VM, 22 percent or less
and more than 22 percent).

Dry FC, 69 percent or more
and less than 78 percent
(dry VM, 31 percent or less
and more than 22 percent).

Dry FC, less than 69 percent
(dry VM, more than 31
percent); and moist Btu,
14,000 or more.

Moist Btu, 13,000 or more
and less than 14,000.

Moist Btu, 11,000 or more
and less than 13,000.

Moist Btu, 11,000 or more
and less than 13,000.

Moist Btu, 9,500 or more
and less than 11,000.

Moist Btu, 8,300 or more
and less than 9,500.

Moist Btu, less than 8,300.
Moist Btu, less than 8,300.

Nonagglomerating.

Either agglomerating or
non-weathering.

Both weathering and
nonaggiomerating.

Consolidated.
Unconsolidated.

Table 1. Classification of coals by rank. (Symbols FC - fixed carbon; VM - volatile matter; Btu - British

thermal units. From American Society of Testing and Material

55

s, 1939,p2)



“(J661 'SI9YI0 PUB PJEMOH) "SSUI By} WOJ} PaAIeoal se ‘Juadlad Jublam uj 's|eod sesue)y Jo sashjeue abeseay g djqel

66V'€l
yS8'El
bLL'E)
0.0'%L
s9l'el

€9E'YL

$,mg U1 Uonsnquios jo 1eay  Tmng

L'l

8’1

1

ve

ve

9¢

96
9/
Ll
9L
8'6
§'s

usv

L'GL

66

(A

(A

90,

ovs

UOGIED poxigj IeNEW o|jejo/, 8JnSIoN

adod

0cl 8'¢C ‘uebo]

uosuyof

gel o¢ ‘uipjue.

uenseqss

vl 6¢ ‘NOog

adod

g8¢cEl P ‘uosuyofp

uebo

6'L1 8’} ‘uipjuet4

uenseqes

28l v'e ‘uipjuesd
Aunon

vi

89

scl

SO[dWIES JO JOGWNN

SuJOYSUBH JomoT

suioysueH Jamo

suloysHeH Jemon

X0y

sued

uojsajeyn

paq je0d

56



NOISSINIWOD TYOIDOTOED SYSNYNEY

_-——T - St verkededenai bt 4|||ll|Mll|

SN oF or oz ol 0 ot | H. \ -_ ! Iﬁ
: \ ; _ | »H\-N H
_ AE81E8Y Ml,-) uorwa m ¥YIGNN10D L H m

N\ toaig> |} .l...l..\. : 2
Plotd [800 AolfeA FeswedTy | | | ¥ j L K ! S ws1rim 1
e e = . N J foizavav t

,J IAJ 1-\!‘\-
_ ?n._n::_\ .fW '-*l.ll:ic.
prRyfe 103[em Aq uonepidwod EIBIQ : _ i 4 it -

, NNOHTYD

w
L v IVISVGO
_.l |||||* e.l.nll..r vitmave ./\_. vavaza <:.n._lun—| /

0961 ‘dereH ¥y "g £q ABojoaD

SVSNVIAIV _
40

dVW SEONIAO¥d C
JDIHdVIDOISAH
dOrvVN

L.

N105M1T L JJ sv11va .Mw /.:/\_))/..m F. VEIARS

._ f

...!.. .!)..._ 1 - 1uv10 o sxld -
’:\flllg- -u LHNYE O ~ \I\{Irlj u .Jﬂ.<i°ﬁ -’

ourgds 1049 —— —— llL
T N I g T sNvINhON
r T & | _
: Ty [ \. '
A\ — Z%unﬂ M. r. -l.—.- H.y v H::.N.w“—u:o Do
,-, doNNON _IL lm \ amrave . akviuvo

T

qs v revias ] e T IWL. u!q.t
. Z1AIVES —-

A / _
....... 2 — - Aaaa
SI1ONYSEd LE m&\fﬁml_/.\w\. -

X104

[ N3y

TV v o o

11008

_mn:x._=<n J

_ AATIVA

1136M104 =0nxo<_. . @Munazi> ) NIANANYVA V' md04 _L _-:.;.:x._ '

B g BN ACER K KR Sl

_\-u._un..n..un.: ‘ FROLS H
- A _mp<m§3n1 MJVZO \
|ln4|\ -

m _.. L ﬁ..# A2H¥VEE oLmaK N NoBlaQVR [

A
A —|!I_ , - ..|%|—_..|\l-|l-.|’
_

P e Gl S AN T
|

57



El w18 LITHOLOGY
2le ‘g THICKNESS DESCRIPTION
al &1 5 |(WESTERN) (CENTRAL) | (EASTERN)| METERS OF ROCKS
[N
o 0
s Shale, limy shale, sittstone, and
Q to sandstone. No coal presentinthe
61 Boggy in Arkansas.
<
Z 230 Shale, siistone, sandstone. coal
g and a few thin beds of limestone.
(<;:> to Coal beds include the Charleston,
Z 490 Cavanal, Paris and five unnamed
g coalbeds.
i
Charleston
E Z coal bed
=0} | k&3 . E= T 7777
Z|2
L 0] 8 Sandstone, siltstone, shale and
Slwpe = coal. Coal beds include the Lower
Al0le 8 152 Hartshorne, and six unnamed coal
> w © to beds. The Lower Hartshorne is
) S 5 near the base of the McAlester and
= < 550 the Upper Hartshome is 18-27
2 5 meters.
4 T
i
ﬂ_ ! Continuous sandstone below the
w 6 Lower Hartshome coal bed. Con-
Zu A sists of sandstone or clayey
o¥e) PR to sandstone or several quartzose
=0 - sandstone beds interbedded with thin
2 90 beds of shale. Lenticular coal beds
i3 may be presentinthe shale.
Z Sandstone, siltstone, shale, and
< 460 thin beds of coal. The coal bedsin
Y % t the Atoka have not been mined on
olEe o a large scale. This is the oldest
= < 2750 formation containing coal in the
g Arkansas Valley.

E:I Sandstone
Silty Sandstone

Shale
Sitty Shale

E Coal Bed

E Unconformity

Figure 2. Generaliz

(Modified

ed stratigraphic sections in the Arkansas Valley coal field.
from Bush &&olton, 1983).




RI3W R3I2ZW  RIIW  RIOW  ROW  R28W  R27W R26W  R25W  R24W  R23W  R22W  R21W R20W RIow RIBW RI7W RI6W RISW RI4W  RIaW  RI12W  RIIW  RIOW  ROW RBW  R7W R6W R5W RAW  R3W R2W w

T ‘ H l l 1 TS ————— . —— —f—T-— -‘
14 | - i 1 [ 1 I [ Y NC 1
N \ ! f‘/L?DJS(PN " l ‘ : S_F‘ARS:Y : STONE 1‘ ]NDEPENPEJ ]TE N

Ly I REEE + F==F—==t '\ ESVILLE ':

! !

AR O I SO IR ot ot T Y IS St | i ! A <!
1 ‘:—f‘/ — i T - ___,,____J___ e g o o = ’ ! —-—.*—...———.—.__ —— — oy ___|~ > q—j
o *A\ i 4"\5\'&'/ S i ! / ' o =

1 4 h pr— t —~—— .‘._—-
CRAWS — | - ! £ N [ -
T /t/ T JOHNSON™ = ~ ; o %e = — !
N /“ ] 1
L 7 J ”\_L ™ Y} i | - ——
1 A AN T R ANS A S e T - e S B

P T R v =Nl N B S A S S 20 o 31 97 5 et e R 1

N SMTHpEE P L <Thr —T = A i T - ! P ¢ |

Ry :‘cf S Ny ““‘;L:\\ POPE | "IN colway T | 1 o\l '

7 })( ) ™ Sy | 4 3 { — ‘-'o 1

I I U— N | N — B I
" T T L I VALLEY T 1 WHITE O% | WOODRUFF |
7 ~ o o T —— o, p_ \; A 1 ? A d CJ (4 1 1 s
6 " SEBAS 1A] b — N— s /,/ﬁ\r t < [ i / i ] ] B
' O IO Ll

N ~ . LOGAN | __|__ (o S~ T .

1 T—- - Vi ] >3

5 "\-/_J;_,.r-;' e _—T" Ve T = EXPLANATION

[ 1 — et i pd
Il " H - - ---"'-—"‘P—"'!l' ,"_‘\ '_.Fr \—/ A imate North Outorop Limits of
:’2"—‘ .- roximate rihern

" / ! : U g et ul < 22 ugilferemiohd Ouvachita Type Rocks.

1 V77—~ } ] 0\4;__
3 ¥ — £ PERRY ~ ©
N \_') ! u.-' - 0 eq i

T '/\' e ol LAY @ Western Limit of the Guif Coostal Plain.
N SCOTT A
Al B ;:;:;:;:: SR Moditied Afte
N TR 23 ’&:. A ¥ A SR At pAvAns S LONO'I<E Geologic Map ;f Arka:\uat (1929)
s S s A SRR B Arris, WAV s, A oo a0 l and Garey Croneis {1930)

Figure 3
ANTICLINE AXES IN THE ARKANSAS VALLEY

>— 2 —»



R1W RIE R2E R3E R4E RSE RGE R7E RSE R9E RI10E RI1E RI2E

RI3W  R32W  R3IW  R3ow
: L //, o R29W 7w R7W R26W R25W  R24W R23W  RooW ’Ew ROW RIGW  RIBW RITW RISW  RISW RUW RIBW  RIZW  RIW  RIOW  ROW e RTW R6W RSW ReW R3W  R2W
N ~— H _: = - - . i
! i ~J J 3 -/:/_\ - 1 | N ':,
. ™ " ~ I1 ! [T \\ —— — :/ e
T f7—‘_ A N b SRR ] S | = I~ DR . \ S -\ ,/"\,/ 'l_.{'
¥ —— e L e | ;
N § ? T _i‘_\y( ™ : J —
1:3 'Q g N~ P / N % ] = — \\
T 1
: NN o A )
: —— T e e — Cj
; =% \<<</ = 4‘% N\/ z4 F—1 4
"\———:'\ | = s — 4;,,‘ ;
E "\‘\‘ : i B I:— o fo—— afe— -——[—'— - _|":::
h ‘,} H i :’" /7 |_J ___________________________________ R
5 = e g M AP o
L5 3
T : R - N |
: A N ) A — - ; ] . _ 3 L__ T
N | = =nS iy - : —
N /4? ] // iV .':_ o \\/ : — 3 H N
> L= = =
" {% = x| 2| |
T % § /‘ - P = - W \ ]
Lo = = / T

Figure 4
ARKANSAS BASE FAULTS MAP

EXPLANATION

,___\_*/’_— ‘ e e es = he e e ve e -

County Boundies

Fault Lines
- — — - p— = Wﬂ\
Boundary between Arkansas Valley Region Physiographic Fault Line
normal faults to the north and thrust faults
to the south.

Geology Taken From Arkansas State Geologic Map 1993
Digital compilation by Jerry Clark



R33W  R32W

R31W R30W R29W R28W R27W R26W

R25W R24W R23W R22W R21W R20W

R19W RI8W RI17W R16W RI5W RI14W

T ¥
14 ! : T i
N | - 1 '
T ; g_ | i
' - —
13 ' ‘! .r ’-——'—"-—' _!
N I ___.-.--L-J:‘--—---—- --—-1--_' I 3 l
T ‘ s —- - Ln_-—b“—ﬂ - EES A o - -“-dl - TR . - GRS e june BN an :
i i B R e
MY : ' JOHNSON | |
T |‘ - — -—L l ] M
N CRAWFQRD B i ! 1
Ny i FRANKLIN i | VAN [BUREN
+ 1
1
|
M N S S
i '
! !
+ +-
| |
T | 3
7 y  CONway ’
N | R,
]
T — !
g C — }
’ 4
¢
T —JMA " y- %___.
5 _2 ;NL VA T d
N = ek innioyt i
; 1 7 PERRY ;/l.
4 ' EXPLANATION
N | YELL 60
] . %ver_bl;;den—tl:lifl:klnws line .
T ' umber indicates thi ess, in feet
I%I i Categories of coal reserves
d
T
2 ! Measured and indicated
N SCOTT i
]
T T
1 r__'_ —-—'r—-_-‘—-_ll Inferred
N e _ ——i= }M@NT@ MERY N
Figure S_A Coal less than 14 inches thick, or data insufficient to

GENERALIZED MAP OF THE LOWER HARTSHORNE COAL BED IN
ARKANSAS VALLEY COAL FIELD, ARKANSAS

estimate reserves

Geology by B. R. Haley, 1960
Digital compilation by Jerry Clark



R33W
Ty R32W  R31W R30W R29W R28W R27W R26W R25W R24W R23W R22W R21W R20W RI9W RI8W RI7W R16W RI5W R14W

[ 1 i
l = ; |
]
T 1 ! ! 1
[ ' = -
13 ' T ! r— o A- - g = 1
N _ - — —-L-J::'_------ -___“___IL ! ) !
h —--1'-_- . P owen po s—— i o - e W - - e .- - P g e N S
£1‘2 \‘ F =1 i : - sl —-‘, -1 — -—dr —= '
-
Nt : t JOHNSON |
T ‘| —l oy g = L l A
i -
11 a
CRAWFQRD ' |
N | | FRANKUN ! | VAN [BUREN
T - ; | R
10‘ '
N { [QAPE !
T !—w-— it quy BERegy e PN wm —-I—-T———-v
9 i 1
N
BmiNou s CLAL i !
’EI;‘ —SEMIANTHRACTTE = : 4']_—_ -
: | |
" ! i
7 y  CONWAY ’
N I R
]
T | f
6 J >
N M adad 3
T 8 | R = 1 \ d -4
5 ! l ‘ /’
N ................. J’rl . ——d——_-J‘ﬂ/ -”
,,,,,,, = . | PERRY 7
T 1
4 WA
N ! VELL EXPLANATION
T I ool Outerop Ca&egories of'coal Teserves
3 ] b
N U au
! D, downthrowxf sié:; U, upthrown Measured and indicated
T | side
2
N scor | 32 !
T ;7 Reported or obsix;r:‘i ﬂﬂﬂzﬁ::, tlrne Iilxcllches; selected to Inferred N
1 -P S W b 8 ' . . :
N ~ e = — i- - F MER Generalized boat;nd::ym }aaentwerear;ib;tummous coal
POILK ! - ...IL - om—n Jb.. ——— ) ‘ﬂQNTG? V J Fixed-cargon contet:t, 86t percent Coal less than 14 inches thick data insufficient ¢
Fi gure S_B - al—th.zk?l — estimate reserves
Go ickness hne Geology by B. R. Haley, 1960
GENERALIZED MAP OF THE LOWER HARTSHORNE COAL BED IN Number indicates thickness, in inches Digital compilation by Jerry Clark

ARKANSAS VALLEY COAL FIELD, ARKANSAS
(Modified from Haley, 1978 Plate 1)



R32W R31W R30W

R29W R28W R27W

Z N A

Z O3

i r—---
| I
|
|
SEBASTIAN X

LOGAN

Z W
7 -

SCOTT

Z N -]

Figure 6-A

EXPLANATION

60
Overburden-thickness line
Number indicates thickness, in feet

Categories of coal reserves

2
Measured and indicated T
N
Inferred

Coal less than 14 inches thick, or data insufficient to
estimate reserves

UPPER HARTSHORNE COAL BED

Geology by B. R. Haley, 1960
Digital compilation by Jerry Clark

63



R32W R31W R30W

R28W R27W

Z N

R29W

= ==

SEBASTIAN

=z O -3

LOGAN

SCOTT

2N S

Figure 6-B

EXPLANATION

Coal Outcrop
12
X

Reported or observed thickness, in inches; selected to
show thickness trend

28
Coal-thickness line
Number indicates thickness, in inches

Categories of coal reserves

24,
Measured and indicated T
N
Inferred *

Coal less than 14 inches thick, or data insufficient to
estimate reserves

UPPER HARTSHORNE COAL BED

Geology by B. R. Haley, 1960
Digital compilation by Jerry Clark



ZW— Zpa—AZ0— ZoAZy— 20—

R27W R26W R25W R24W

mew b | 7T ReSW Reow  R2IW.

| |

roow | JOHNSON |
i ! 1

= _

|
!
:
!
:
/ |
\| FRANKLIN| <~ e |

- Figure 7-A
CHARLESTON COAL BED

Geology by B. R. Haley, 1960
Digital compilation by Jerry Clark

.

EXPLANATION

1000

Overburden-thickness line
Number indicates thickness, in feet

Categories of coal reserves

G,
Measured and indicated T
i
Inferred A

Coal less than 14 inches thick, or data insufficient to
estimate reserves

65



ZW— Z2phn—=42Z204 ZO0—dZzZg— 20

R27W R26W R25W R24W

—_——————_ -

-
R28W ; | R23W_ R22W _R2IW
¥ ! |
R2OW | l JOHNSON |
I ! } %l
i ! i
| : |
/ ! _ \N\}o “ IYUMIN% I
\| FRANKLIN| <& o ~& !
s ' N
R32W ? i
I~ i
\R3TW
A
— 1
SEBA|
l - Figure 7-B
- o CHARLESTON COAL BED
\ L. T _1 Geology by B. R. Haley, 1960
1 L ——— - Digital compilation by Jerry Clark
|
1
I
s Ne—=
) EXPLANATION
Categories of coal reserves
Coal Qutcrop

D

Fault

D, downthrown side; U, upthrown

side

3

X
Reported or observed thickness, in inches; selected to
show thickness trend

Generalized boundary between bituminous coal

and semianthracite

Fixed-carbon content, 86 percent

28
Coal-thickness line

Number indicates thickness, in inches

Coal less than 14 inches thick, or data insufficient to

66

Measured and indicated

Inferred

estimate reserves

1

N

A



2N Z -] Z O+

Z 0

R2OW R28W R27W R26W R25W
4] | ' :
/
7 |
| \ | w
L | | ~ g
l 1 \\ /7 N\ £ i
FRANKLIN \_s 2=
: N
| I
T |
60 l
1 ..I_| LOGAN
I
I
l ]
Figure 8-A

PARIS COAL BED

EXPLANATION

60

Overburden-thickness line
Number indicates thickness, in feet

Categories of coal reserves

Measured and indicated

Inferred

> —

Geology by B. R. Haley, 1960
Digital compig?'on by Jerry Clark



Z 0o~ Z O~

AN !

R2OW  R28W R27W R26W R25W
~ | | !

S
/

/
|

SEM‘i\NTHRAchE
|
-

FRANKLIN

— —— e -

LOGAN

e e

Figure 8-B
PARIS COAL BED

Geology by B. R. Haley, 1960
Digital compilation by Jerry Clark

EXPLANATION
=28
Coal Quterop Number indionten thicimese, in inches
8 Categories of coal reserves
Fal:llt
D, downﬂlrownSis(;ie; U, upthrown

3 Measured and indicated

X
Reported or observed thickness, in inches; selected to N
show thickness trend Inferred *

Generalized boundary between bituminous coal ) X . .
and semianthracite Coal less than 14 inches thick, or data insufficient to
Fixed-carbon content, 86 percent 68 estimate reserves




N
NN

//////z?///f// oo 0

-
.///%/////%M//////////%




(1€ "81d ‘0161 ‘T9938) 'TBOO JO Paq
1oMmO] oY) Suore SUnEs[O 9y} 9OON ‘Te0d 1SaUBd[0 2y} onpord
01 uojdunuNny ¥e SwWwool SUr{Iom Jo POYIdW Y] JO MITA [3P]

01 2In31yg

i

AT A

- .J.K
A

—
-

-

-
o~

. m
\ S bt R
Ay % -




| R
83N 09

sjsodep eyuby
908BjiNS~IBOU JOlen

dnoin XO0OoIM ;

dnoip susoqie|d

dnos® uosoer

waysAg Assuselend

SYSNVIHY )
40 \ _ M
v3HVY 30HNOS3H ILINOI & , e N o | L, pomes
40 - 0 okt b LW:I.H_-IT...IJ&
dvN O1D01039 4 | !
—.—‘ m.__J@_H_ ?_wEou.coi_ Niod
w2000 e
hf(l.-L m 1
L ]
H i
o . w _..hv./, uon_g .ﬁ.uﬂ.-aom“
il _._o " ¢ ) ,“l.- r _
. A u -..llm.._ _ .f-\. usso r~— 1 _
M T "7 kemuoo m,/\,.\zq)(. PN ¢
P T
_ | m. r ! upyueag ] _,
G| PUInGsiD : uengusA | edog | uo M S \
2 u“oveoaovc_\h wwolg _ m ! ..
T ™ N _ | \
_ [ & R woimen L | __
_ disyg .m.._.. piex /Mw m:w J.._L-.I.-.I._l- coqu!\ :o.ae_:-ui_..j-ll_
g T
e r } \
AN R L N R A N R

e me e e — -

71



OKLAHOMA GEOLOGICAL SURVEY
OPEN-FILE REPORT 2-2001

4

Coal stratigraphy of the northeast Oklahoma
shelf area, with an overview of Arkoma
basin coal geology

LeRoy A. Hemish
Oklahoma Geological Survey
Norman, OK

Hemish, L.A., 2001, Coal stratigraphy of the northeast Oklahoma
shelf area, with an overview of Arkoma basin coal geology, in
Oklahoma coalbed-methane workshop 2001: Oklahoma
Geological Survey, Open-File Report 2-2001, p. 72-92.



COAL STRATIGRAPHY OF THE
NORTHEAST OKLAHOMA SHELF AREA , WITH AN OVERVIEW OF ARKOMA
BASIN COAL GEOLOGY

LeRoy A. Hemish, Oklahoma Geological Survey
INTRODUCTION

Studies of the coal geology of the northern part of the northeast Oklahoma shelf
area were carried out by the author, mostly during the late 1970s and early 1980s. The
objective of these studies was to evaluate the coal resources and reserves of the northeast
Oklahoma shelf area that are available for surface mining. Reports of the studies were
published by the Oklahoma Geological Survey (OGS) (Hemish, 1986; 1989a; 1990). The
shelf-area part of this report focuses mainly on the coal stratigraphy from those earlier
reports in Craig, Nowata, Rogers, Mayes, Tulsa, Wagoner, and Washington Counties.
The data were compiled from 2,000 drill and core logs, provided mostly by coal
companies, and from 247 sections measured by the author. These were supplemented by
other measured sections from earlier studies.

The study area comprises about 1,800 mi’ situated in the northern part of the coal
belt of eastern Oklahoma (Fig. 1). The coal-producing area of the six counties lies
mostly within the Claremore Cuesta Plains geomorphic province. The region is
characterized by resistant sandstones and limestones that dip gently westward and
northwestward, forming cuestas between broad shale plains. Because of the low dip of
the beds, the northeast Oklahoma shelf area is particularly amenable to strip mining.

Also included in this report are excerpts from an upcoming OGS publication
dealing with surface to subsurface correlation of methane-producing coals in an area
extending from T. 20 N. to T. 29 N., and R. 10 E. to R. 17 E. The area encompasses
more than 2,700 mi® in Nowata and Washington Counties, and parts of Craig, Osage,
Rogers, and Tulsa Counties.

An overview of the coal geology of the Arkoma basin, based largely on field
investigations by Hendricks and others (1939), Trumbull (1957), Friedman (1974;1982),
and Hemish (1988b; 1994a,b; 1999) supplements the main body of this report.

GEOLOGY
Northern Part of the Northeast Oklahoma Shelf Area

The six-county study area lies around the western edge of the Ozark uplift
(Fig. 1). Strata dip very gently westward and northwestward at ~1°. Major deformation
in the region occurred during Middle Pennsylvanian time; folds and fauits associated with
the deformation are of early Desmoinesian age (Huffman, 1958, p. 89). Small- and
intermediate-scale anticlines and synclines, and minor faults observed in surface coal
mines in the area are manifestations of the deformation.
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Rose diagrams were constructed from 37 Brunton-compass measurements of cleat
direction in the Craig and Nowata Counties coal field (Fig. 2A); from 20 measurements
in Rogers and Mayes Counties (Fig. 2B); and from 28 measurements in Tulsa and
Wagoner Counties (Fig. 2C). Weighted averages of the 85 combined measurements
show that the face cleats strike N47°W, and the butt cleats strike N49°E.

Stratigraphy
General Statement

All of the minable coal horizons in the area studied are in rocks of Desmoinesian
(Middle Pennsylvanian) geologic age. These rocks consist mostly of sandstone, siltstone,
limestone, and shale. Coal constitutes a minor percentage of the whole.

The names of the various stratigraphic units and the types of rocks included are
shown in Figure 3. Thirty-four named coal beds and several unnamed coal beds are
present in the northeast Oklahoma shelf area. Many of the coals were named either in
Kansas or Missouri, particularly those that have any real economic potential at this time.
Hemish (1987) presented a compendium of coal nomenclature in which he discussed the
origin of the coal names and identified their stratigraphic position in relation to associated
markers. The coal beds themselves are excellent markers, and coalbed nomenclature is
very useful in stratigraphic work.

The coal beds are separated by marine and nonmarine strata, indicating that they
were laid down under cyclical conditions. According to Heckel (1991) vegetation which
subsequently formed coal grew in coastal swamps near epeiric seas that covered
northeastern Oklahoma during Desmoinesian time. Fluctuations of sea level caused
oscillatory transgressions and regressions of the sea over the area. Channel sandstones,
black shales, and interchannel coals here represent environments associated with deltas.
Just as the shoreline oscillated back and forth, so did the delta environment. This
accounts for the distribution, geometry, and relationships of the various rock units
preserved across the area. Burial of these sediments resulted in alteration of vegetal
matter to coal. Differential compaction of coals, shales, and sandstones account for much
of the pinch-out and minor structures in the area.

Nine coal beds that have the requisite thickness for surface mining are present in
the northern part of the shelf area of northeast Oklahoma. From oldest (lowest) to
youngest (highest) they are: Rowe coal, Drywood coal, Bluejacket coal, Weir-Pittsburg
coal, Mineral coal, Fleming coal, Croweburg coal, Iron Post coal, and Dawson coal (Fig.
3). Seven of these beds produce coalbed methane in the northeast Oklahoma shelf area.
There are 299 completions in the Rowe; 1 in the Drywood; 13 in the Bluejacket; 18 in the
Weir-Pittsburg; 21 in the Croweburg; 36 in the Iron Post; and 12 in the Dawson (B. J.
Cardott, personal communication). Additionally, gas is produced from three coal beds
that are of no commercial importance for surface mining in Oklahoma. They are the
Riverton (15 wells), the Bevier (11 wells), and the Mulky (315 wells). Methane is also
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being produced from one unidentified coal bed, for a total of 742 completions in the
shelf area (B. J. Cardott, personal communication, August 28, 2001). Reported gas
production from the Mulky coal is enigmatic. Hemish (1986, p. 18) reported occurrence
of the Mulky in Oklahoma in only three drill holes in secs. 13 and 22, T. 23 N,,R. 19 E,,
northern Craig County, where its maximum thickness is 10 inches. Occurrence of the
Mulky coal down dip to the west in Nowata, Washington, and Osage counties has not
been verified by the OGS from coring. It seems probable that the methane is being
produced from the Excello black shale. If present, the Mulky occurs at the base of the
Excello Shale (Hemish, 1986, fig. 4).

Krebs Group

The Krebs Group is the oldest group that includes coal-bearing rocks in the study
area (Fig. 3). The Krebs Group has been subdivided into four formations, the Hartshorne
Formation, the McAlester Formation, the Savanna Formation, and the Boggy Formation.
Thin and discontinuous coals are present in the shelf area in the oldest two formations in
the Krebs Group, but they have no importance for surface mining.

Two commercially important named coals and several thin, discontinuous
unnamed coals are present in the Savanna Formation. The Rowe coal, which occurs near
the middle of the Savanna (Fig. 3) is stratigraphically the lowest coal having surface-
mining value in the study area. It has been mined chiefly in the area southeast of the
town of Inola in the extreme southern part of Rogers County, where it ranges from 10 to
30 inches in thickness at a depth of <100 ft. It thins to the north, and in Craig County it
has limited economic promise only in small areas. The outcrop line of the Rowe coal is
shown in Figure 4.

The other commercial coal in the Savanna Formation is the Drywood coal, which
occurs near the top of the formation (Fig. 3), just below the Bluejacket Sandstone. The
Drywood has been mined in past years in Craig County in sec. 13, T. 26 N, R. 19 E,,
where it was measured at 3 feet in thickness. The thickness of the Drywood coal varies,
and along most of its outcrop boundary (Fig. 5) it is not of mineable thickness. Core-
drilling in northeastern Craig County shows that in some places channels that were filled
by the Bluejacket Sandstone have cut into or completely through the Drywood coal
(Hemish, 19890, fig. 5).

The Boggy Formation is the youngest formation in the Krebs Group. It contains
only one coal bed having commercial value in the study area--the Bluejacket coal
(Fig. 3), which occurs above the Bluejacket Sandstone and below the Inola Limestone.
The Bluejacket coal is absent throughout all of Craig County except for a small area in
the extreme southwestern corner. The Bluejacket bed is of mineable thickness in eastern
Rogers County and west-central Mayes County in T. 22 N., Rs. 17 and 18 E., where it
ranges from 10 to 18 inches in thickness. Although the bed has not been mined in recent
years, past underground mining is evidenced by several abandoned, caved-in drift
openings in sec. 16, T. 22 N., R. 18 E. The outcrop line of the Bluejacket coal is shown
in Figure 6.
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Cabaniss Group

The Cabaniss Group is represented by only the Senora Formation on the platform
area of northeastern Oklahoma (Branson and others, 1965, p. 34). It includes the strata
between the base of the Weir-Pittsburg coal and the base of the Fort Scott Formation
(Fig. 3). Ten named coal beds are present in the Senora Formation, of which five are
economically important for surface mining. Three of the other five beds--the Bevier, the
Mulky, and the Scammon (tentatively identified)--are too thin to be mined in Oklahoma
but are mined in Kansas and Missouri. The RC bed is also too thin to be mined and is
known to be present only in Rogers and Wagoner Counties (Hemish, 1989a, 1990). The
Tebo has limited economic value and in Oklahoma is thick enough for surface mining in
only Wagoner and Muskogee Counties.

The oldest commercial coal in the Senora Formation is the Weir-Pittsburg. It
crops out in a diagonal line from northeast to southwest across Craig County but is
unmappable in southern Rogers County (Fig. 4). It is the thickest coal bed occurring in
the study area, with reported thicknesses ranging from 1.5 feet to 2.0 feet in northeastern
Rogers County and northwestern Mayes County. It has a recorded maximum thickness
of 6.2 feet at a depth of more than 400 feet in northwestern Craig County in T. 29 N, R.
18 E. The Weir-Pittsburg has been mined extensively in the past west of Welch, in Craig
County, and in more recent times near Estella, also in Craig County, and around the town
of Chelsea in northeastern Rogers County and northwestern Mayes County.

The Mineral coal (Fig. 3) occurs stratigraphically above the Chelsea Sandstone,
and, in northern Craig County, below the Russell Creek Limestone. In Rogers County
exposures of the Mineral coal are difficult to find, but reported thicknesses in the county
vary from 6 inches to more than 2 feet. West of Chelsea, in Rogers County, the Mineral
coal is from 1 to 1.5 feet thick and has been mined by Peabody Coal Company in past
years. The Mineral was mined in the late 1970s in northern Craig County where it
reaches its maximum thickness of 27 inches. Typically, it is 14 to 18 inches thick in that
area. The outcrop line of the Mineral coal is shown in Figure 6.

The Fleming coal is present in Oklahoma only in the northern one-third of Craig
County (Fig. 6). The Fleming is extremely variable in thickness. It locally attains
thicknesses of 18 inches but tends to thin abruptly within a short distance. Its
stratigraphic position is approximately midway between the underlying Mineral coal and
the overlying Croweburg coal (Fig. 3); therefore, the Fleming coal is sometimes mined
with one or the other, or with both.

The Croweburg coal crops out in a nearly continuous line extending diagonally
from northeast to southwest through the middle of Craig County, the southeast corner of
Nowata County, and the middle of Rogers County (Fig. 5). It averages about 18 inches
in thickness and has long been prized for its high quality. The Croweburg has been
extensively strip mined along the outcrop belt throughout Craig, Nowata, and Rogers
Counties, often to depths as great as 60 to 70 feet.
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The Croweburg coal is readily identified in the field by the overlying succession
of beds (Fig. 3). It is directly overlain by light-gray silty shale that varies in thickness
from as much as 50 feet in Nowata County and northern Rogers County, to about 30 feet
in southern Rogers County, and to about 10 feet in northern Craig County. The light-
gray shale is overlain by black, fissile shale containing phosphatic nodules (Oakley
Shale). The black shale is overlain in turn by the Verdigris Limestone, a persistent, dark-
gray fossiliferous limestone, about 2 to 8 feet thick, that weathers yellow-brown.

The Iron Post coal is the uppermost commercial coal in the Senora Formation. It
crops out across Craig, Nowata, and Rogers Counties in an irregular line roughly parallel
to the outcrop line of the Croweburg coal (Fig. 4). The Iron Post coal lies about 30 to 50
feet above the Verdigris Limestone and is overlain by a few inches to a few feet of gray
and/or black shale containing phosphatic nodules (Kinnison Shale). The shale is overlain
in turn by an impure, dense, fossiliferous brown-weathering limestone, 2 to 10 feet thick,
known as the Breezy Hill. Another black, phosphatic shale, 4 to 8 ft. thick (Excello
Shale), separates the Breezy Hill Limestone from the base of the Blackjack Creek
Limestone, the lowermost unit of the Marmaton Group. If present, the Mulky coal occurs
at the base of the Excello Shale.

Marmaton Group

The Marmaton Group overlies the Cabaniss Group and is at the top of the
Desmoinesian Series (Fig. 3). Only one coal of economic importance is present in the
Marmaton Group in the study area--the Dawson coal, which crops out in western and
north-central Tulsa County, northwestern Rogers County, and central Nowata County
(Fig. 5). Its maximum known thickness is 30 inches.
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Depositional Environments

Operators who work in the northeastern Oklahoma shelf area frequently find the
task of identifying methane-producing coal beds frustrating. Examination of existing
logs and careful research of available literature do not always provide the answers. Why?

To find the answers one must go back through geologic time and revisit the
depositional environment. As discussed previously, epeiric seas periodically covered
much of a large land mass that is now the Midcontinent of the United States. About 60
cycles of glacial-eustatic marine transgression and regression were recognized in the mid-
Desmoinesian to mid-Virgilian along the Midcontinent outcrop belt (Heckel, 1989, p.
160). Differences in water depth during high stands, in the position of the shoreline
during lowstands, in the encroachment of detrital clastics during regression, and in the
thickness of the limestone facies formed at intermediate stands resulted in variations in
the basic sequence of lithologic units. Stratigraphic patterns that resulted from periodic
waxing and waning of glaciations show variable thicknesses, dependent on time. Delta
shifting, which operated wherever the shoreline stood for a sufficient period of time also
introduced stratigraphic sequences that interrupted the typical cyclical successions.

The typical vertical succession of lithologic units consists of 1) terrestrial blocky
mudstone often capped with coal, fluvial-deltaic sandstone and shale; overlain by 2) thin
transgressive marine limestone; overlain by 3) thin black phosphatic shale, deposited in
deep water; overlain by 4) thicker regressive, shoaling-upward marine limestone capped
by terrestrial mudstone paleosol or fluvial-deltaic clastics (Heckel, 1989, p. 162).

However, and particularly in Oklahoma, ideal successions are seldom found in the
stratigraphic record. Examination of cross sections A-A' and B-B' (Hemish, 1986 pl. 6)
show that shelf geology is not "layer cake". Coal beds and other markers are not always
continuous. In places coals merge to form one bed; in others a bed may split to form two
or more beds. In critical areas markers may be absent. Lithologic intervals between
markers may be extremely variable. (A shale 20 ft. thick in one log may be 80 ft. thick in
another). Sandstone channels often cut out markers and interrupt the typical cyclical
succession of beds.

Surface to Subsurface Correlations

Changing depositional environments related to sea level fluctuations are the main
cause of the problems facing workers attempting to make accurate interpretations of the
stratigraphy in the subsurface. The only sure way to correlate beds from surface to
subsurface is through close-spaced drilling. However, because of the availability of
numerous existing logs in the shelf area, exploration-drilling expenses can be greatly
reduced, and interpretations can be made from the existing logs with a reasonable degree
of confidence. Construction of paleogeographic maps where sufficient data are available
can lead to a better understanding of the distribution of coal beds in the subsurface, and
hence, more accurate application of existing nomenclature.
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A subsurfacae study of coal beds in a 2,700 mi’ area in six counties in Oklahoma
directly south of the Kansas state line and west of the outcrop belt has been made by the
author, using existing well logs. Six cross sections were constructed from the logs to
provide a reference subsurface stratigraphic framework throughout the area (Fig. 7).
Sixty-two well logs (gamma ray and bulk density or neutron) were selected from >200
logs examined at the OGS Log Library. As an aid in recognizing the various coal beds
that produce methane, persistent markers such as the Checkerboard Limestone, Fort Scott
Limestone, Verdigris Limestone, Tiawah Limestone, and Inola Limestone were
identified. Persistent black shales, such as the Excello Shale, the Oakley Shale and
several unnamed shales also proved useful as markers. Two type logs were designated
(one in the northern part of the study area, and one in the southern part). The northern
type log is reproduced here (Fig. 8), and is representative of the logs used in the study.

Correlation of named coals from surface studies discussed previously in this paper
with those identified in the subsurface study will provide a much-needed basis for proper
recognition of the 10 methane-producing coals in the shelf area. Determination of coal
bed thicknesses from the logs was not attempted. However, deflections in the log curves
suggest that most of the beds are probably not more than 1 to 2 ft in thickness, with a few
exceptions, where the coal may be as much 4 ft thick.

Arkoma basin

General Statement

The Arkoma basin is an elongate tectonic province that extends about 250 mi
across parts of eastern Oklahoma (Fig. 1) and west-central Arkansas. The Arkoma basin
is bounded on the south by the Ouachita Mountains, on the southwest by the Arbuckle
Mountains, on the north by the Ozark uplift, and it grades northwestward into the
northeast Oklahoma shelf area. The Arkoma basin is characterized by a great thickness
of sedimentary rocks: about 5,000-20,000 ft (Johnson, 1988, p.1). The coal-bearing
strata in the basin are in the early Desmoinesian Krebs Group and the overlying Cabaniss
Group (Fig. 9). These rocks were deposited during major subsidence of the Arkoma
basin before initial folding of strata in the basin.

There are marked differences in the coal-bearing strata between the Arkoma
basin and the northeast Oklahoma shelf area. The main differences between the two
areas are: 1) Coal-bearing rocks present above the Senora Formation in the shelf area are
absent in the Arkoma basin; 2) Stratigraphic units are generally much thicker in the
Arkoma basin; 3) Commercial coal beds in the northern shelf area pinch out to the south
and are absent in the basin; conversely, certain well-developed commercial coals in the
Arkoma basin, such as the Hartshorne coal, pinch out to the north, or have no commercial
value in the shelf area, owing to thinness; 4) Quality of the same coal in the two regions
often varies because of different depositional environments (Hemish, 1988b, p. 7).
Additionally, strata in the Arkoma basin are much more deformed than they are in the
shelf area. Beds have been folded into broad, northeast-trending synclines and narrow
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anticlines, resulting in steep dips of the beds in some areas (Trumbull, 1957, p. 339;
Friedman, 1974, p. 6). Faulting is also common throughout the Arkoma basin.

Stratigraphy

All of the minable coals in the Arkoma basin are in rocks of Desmoinesian age.
They are in the Hartshorne, McAlester, Savanna, and Boggy Formations of the Krebs
Group, and, in the extreme northwestern part of the basin, in the Senora Formation of the
Cabaniss Group. Figure 9 is a generalized stratigraphic column showing the relative
positions of the coal beds in the Arkoma basin. As in the shelf area, the coal beds are
separated by marine and nonmarine strata, indicating cyclical conditions during
deposition. The rocks consist mostly of shale, sandstone, and siltstone, with limestone
and coal a minor percentage of the whole. Only the coal beds that produce methane, or
may have methane-producing potential are briefly discussed below.

Krebs Group

The Lower Hartshorne coal is stratigraphically the lowest coal bed in the Krebs
Group. It occurs in the upper part of the Hartshorne Formation, and ranges in thickness
from0.7 to 7.0 ft (Fig. 9) (Hemish and Suneson, 1997). It is one of the favorite targets
for coalbed methane production in the basin.

The Upper Hartshorne coal occurs in the Hartshorne Formation a few inches to
as much as 180 ft above the Lower Hartshorne coal (Trumbull, 1957, p. 345). It marks
the boundary between the Hartshorne Formation and the overlying McAlester Formation
(in Oklahoma). The Upper Hartshorne coal ranges from 0.2 ft to 4.5 ft thick (Fig. 9). In
parts of Haskell, and Le Flore Counties the Upper and Lower Hartshorne beds coalesce
or are separated by only a few inches or a few feet of bony coal or coaly shale (Trumbull,
1957, p. 345). Due to the convergence of the 6-ft-thick Lower Hartshorne coal bed and
the 4-ft-thick Upper Hartshorne coal bed, a single 10-ft-thick bed of coal is exposed in
the NW1/4NW1/4SW1/4NE1/4 sec. 35, T.6 N., R.18 E., Latimer County. The coal bed
is called the Hartshorne coal, and it is the thickest known occurrence of coal in the State
(Hemish, 1999, p. 34).

The McAlester (Stigler) coal occurs in the McAlester Formation. It ranges from
1.0 ft to 5.0 ft in thickness (Fig. 9), and is widespread throughout the Arkoma basin. It
has been extensively mined on the surface as well as underground (Hendricks and others,
1939). The Upper McAlester coal was strip mined in recent times in Latimer County
near Red Oak in conjunction with the McAlester coal. It ranges in thickness from 0.2 ft
to 1.7 ft (Fig, 9).

The Cavanal coal occurs in about the middle of the Savanna Formation. It has
commercial mining importance only in Le Flore County around Cavanal Mountain. It
was shown by Friedman (1982, pl. 3) as the Lower Cavanal coal (0.2-2.2 fi thick), and
the Upper Cavanal coal (1.2-3.2 fi thick) (Fig. 9). The Rowe coal occurs stratigraphically
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above the Cavanal coals, but has been identified only in the northern part of the Arkoma
basin where it is 0.3-1.4 ft thick (Fig. 9).

The Lower Witteville occurs near the top of the Bluejacket Sandstone Member
of the Boggy Formation. It was mined underground in the past in Le Flore County
around Cavanal Mountain, where it is as much as 4.7 ft thick. It was traced as far north
as Muskogee County, but it has no commercial value due to thinning, other than in Le
Flore County (Hemish, 1994a).

The Secor coal also occurs in the Boggy Formation, stratigraphically just above
the Bluejacket Sandstone (Fig. 9). It is 0.1-4.0 fi thick, and is widespread throughout the
Arkoma basin. It has good potential for coalbed-methane exploitation, but thickness and
quality are variable (Hemish, 1988b).

Cabaniss Group

The Croweburg (Henryetta) coal is present in the Senora Formation of the
Cabaniss Group in only the extreme northwestern part of the Arkoma basin. It is 0.6-2.8
ft thick in that area (Hemish, 1994b) (Fig. 9). However, just to the northwest, in
Okmulgee and Okfuskee Counties (which is technically part of the shelf area), the
Croweburg coal is >3.0 ft thick over an extended area (Hemish, 1994b, pl. 3).

CONCLUSIONS

Although a greater number of coal beds have methane-producing potential in
the northeast Oklahoma shelf area, they are generally thinner and less widespread than
those in the Arkoma basin. It is probable that future exploration will reveal that many of
the coal beds discussed above will prove to be good reservoirs in areas such as the
western part of the Arkoma basin as well as the southern part of the northeast Oklahoma
shelf area.
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Figure 2. A-Rose diagrams of cleat orientations in coal beds of Craig and Nowata
Counties (from Hemish, 1986, fig. 7, app. 4).

B-Rose diagrams of cleat orientations in coal beds of Rogers and Mayes Counties
(from Hemish, 1989a, fig. 8, app. 4).

C-Rose diagrams of cleat orientations in coal beds of Tulsa and Wagoner Counties
(from Hemish, 1990, fig. 8, app. 4). 84
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Coalbed-Methane Activity in Oklahoma, 2001

Brian J. Cardott
Oklahoma Geological Survey

ABSTRACT.— Nearly 1,300 wells in the Oklahoma coalfield have been drilled
exclusively for coalbed methane (CBM) since 1988, in part for the Section 29 tax credit.
A database of CBM completions records 742 completions on the northeast Oklahoma
shelf and 552 completions in the Arkoma basin. Operators presently target ten coal
objectives on the shelf and five in the basin. The primary CBM objectives, ali
Desmoinesian (Middle Pennsylvanian) in age, are the Mulky (315 wells) and Rowe (299
wells) coals on the shelf and the Hartshorne coals (519 wells) in the basin.

In general, coals in the Arkoma basin are deeper and thicker than those on the
northeast Oklahoma shelf and have higher initial gas rates and lower initial produced-
water rates. Many horizontal CBM wells have been drilled in the Arkoma basin since
1998, the more successful wells following improvements in completion techniques.
Much is known about the coal geology of the Oklahoma coalfield (e.g., number of coals,
age, depth, thickness, rank, quality). The present emphasis is on finding permeable
sweet spots and matching coal characteristics to optimum completion techniques.

INTRODUCTION

Commercial production of coalbed methane (CBM) in Oklahoma began in 1988
from the Hartshorne coal at depths ranging from 611 to 716 ft (186 to 218 m). Bear
Productions recorded initial-potential (IP) gas rates of 41 to 45 Mcfd (thousand cubic
feet of gas per day) per well from seven wells in the Kinta gas field (sec. 27, T.8N.,
R.20E., Indian Meridian) in Haskell County. Bear Productions was the only CBM
operator in Oklahoma from 1988-1990.

The CBM play in Oklahoma began in 1988 with the first completions in the
Arkoma basin (Figure 1). Following a peak of 71 completions in 1992, activity declined
for several years before rising to 97 completions reported in 2000. CBM completions on
the shelf began in 1994 with a total of thirteen. Shelf completions totaled 216 in 1998.
The apparent decrease in the number of completions from 1998 to 2000 arises from the
time lag between when some wells are drilled and when they are reported, and a
decrease in drilling activity by companies seeking the balance of Section 29 tax credit in
workover wells. When all wells for 1999 and 2000 are reported, the total should be
higher. Through July 2001, 1,294 CBM completions have been reported in Oklahoma
— 552 in the Arkoma basin and 742 on the northeast Oklahoma shelf.

The coalfield in eastern Oklahoma occupies the southern part of the western
region of the Interior Coal Province of the United States (Campbell, 1929; Friedman,
2000). The coalfield is divided into the northeast Oklahoma shelf and the Arkoma basin
(Friedman, 1974; Figure 2). The commercial coal belt (Fig. 2) contains coal beds of

mineable thickness (= 10 in. [25 cm] thick and < 100 ft [30 m] deep for surface mining);
coal beds in the noncommercial coal-bearing region (Fig. 2) are too thin, of low quality,
or too deep for mining. CBM exploration has occurred in both areas.
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Figures 3 and 4 are generalized stratigraphic columns of the northeast
Oklahoma shelf and Arkoma basin, showing nearly 40 named and several unnamed
coal beds and their range in thickness measured from surface exposures and shallow-
core samples. Coal beds are 0.1 to 6.2 ft (0.03 to1.9 m) thick on the shelf and 0.1 to 7.0
ft (0.03 to 2.1 m) thick in the basin. The thickest known occurrence of coal in the
Oklahoma coalfield is the Hartshorne coal (10 ft) in Latimer County (sec. 35, T.6N.,
R.18E.; Hemish, 1999) where the Upper and Lower Hartshorne coals coalesced into
one bed.

Coal rank, as generalized for all coals at or near the surface, ranges from high-
volatile bituminous on the shelf and western Arkoma basin to medium- and low-volatile
bituminous in the eastern Arkoma basin in Oklahoma (Figure 5). Rank increases from
west to east and with depth in the Arkoma basin, attaining semianthracite in Arkansas.
The Hartshorne coal, for example, is medium-volatile bituminous at 2,574 ft (785 m) in
the Continental Resources’ 1-3 Myers well in Pittsburg County (sec. 3, T.7N., R.16E.) in
the high-volatile bituminous area in Figure 5 (see Fig. 14 for location of well).

SOURCE OF DATA

The following discussion of Oklahoma CBM completions is based on information
reported to the Oklahoma Corporation Commission and Osage Indian Agency. The
names of coal beds are as reported by the operator. For the most part, coal names
assigned by operators have not been verified with electric logs, and may not conform to
usage accepted by the Oklahoma Geological Survey. Since not all the wells are
reported as CBM wells, some interpretation was necessary. Dual completions in
sandstone and coal beds, including perforations of more than one coal bed, were made
in some wells. Therefore, not all the wells are exclusively CBM completions. Dual
completions were included only if gas rates were reported for the coal beds.

This summary is incomplete inasmuch as some wells were not known to be CBM
wells or were not reported as such at the time of this compilation. This evaluation is
based on reported CBM completions, which may or may not have been connected to a
gas pipeline. Likewise, some completions may have produced gas but have since been
plugged.

The data summarized in this report have been extracted from the Coalbed-
Methane Completions table of the Oklahoma Coal Database. Each record (well
completion) in the table lists operator, well name, API number, completion date, location
(county, gas field, township-range-section, latitude-longitude), coal bed, production
depth interval, initial gas potential and water rates, pressure information, and
comments. The database is available for viewing at or purchase from the Oklahoma
Geological Survey. A searchable version of the Coalbed-Methane Completions table is
accessible on the Internet through a link on the OGS web site,
http:/Awww.ou.edu/special/ogs-pttc.
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COALBED METHANE ACTIVITY
Northeast Oklahoma Shelf

There have been 742 CBM well completions reported on the shelf by 47
operators through July 2001 (Figure 6, excluding one Croweburg coal completion in
Okfuskee County). Completions are distributed across Craig, Nowata, Okfuskee,
Okmulgee, Osage, Rogers, Tulsa, and Washington Counties. Not all these represent
wells drilled specifically for CBM. In fact, about 60% are workovers and recompletions
of older conventional gas and oil wells. In ascending order, the coal beds yielding
commercial methane include the Riverton (McAlester Formation), Rowe and Drywood
(Savanna Formation) and Bluejacket (Boggy Formation) in the Krebs Group; Weir-
Pittsburg, Croweburg, Bevier, Iron Post, and Mulky (Senora Formation) in the Cabaniss
Group; and Dawson (Holdenville Formation) in the Marmaton Group of Desmoinesian
age (Figure 3). Note that the Rowe coal of Kansas and Missouri is equivalent to the
Keota coal in Oklahoma, while the Drywood coal of Kansas and Missouri is equivalent
to the Spaniard coal in Oklahoma (Hemish, 1990, p. 10).

Figure 7 shows the depth range of CBM completions in 738 wells on the shelf.
Coal beds were perforated at depths-to-top of coal of 256 to 2,428 ft (78 to 740 m), for
an average depth of 947 ft (289 m). Two modes are apparent. First, the shallower
mode represents the Mulky coal (241 wells) completed over a depth range of 256 to
1,732 ft (78 to 528 m); 241 of 321 wells that perforated the Mulky coal were completed
in only the Mulky coal. The Mulky, the uppermost coal in the Senora Formation, occurs
at the base of the Excello Shale Member (Hemish, 1987) and varies in composition from
bituminous coal to carbonaceous shale with increasing amounts of mineral matter. (As
determined by Schopf [1956], carbonaceous shale contains >50% mineral matter by
weight or <30% carbonaceous matter by volume. According to ASTM [1994], impure
coal contains 25 to 50% mineral matter by weight.)

The second mode represents the Rowe coal (299 wells), completed over a depth
range of 726 to 2,088 ft (221 to 636 m). The deepest coal completion (2,428 ft) is in the
Weir-Pittsburg coal in Osage County (Calumet Oil Co., 7 Catlett well, sec. 32, T.28N.,
R.8E.). Although two to four coal beds were perforated in 107 completions, only the
shallowest coal depth was used in Figure 7.

Initial-potential gas rates from 663 wells range from a trace to 260 Mcfd and
average 27 Mcfd (Figure 8). However, as will be shown in production-decline curves
below, IP rates do not demonstrate the full potential of a CBM well because they reflect
only the first of the three stages of a typical CBM production-deciine curve: dewatering,
followed by stable production and decline (Schraufnagel, 1993). IP gas rates in the
Mulky coal range from a trace to 145 Mcfd and in the Rowe coal from 1 to 260 Mcfd.
Figure 9 shows the relationship of depth and initial-potential gas rate for CBM wells on
the shelf. The shallowest coals (256-317 ft) had IP rates of 1-8 Mcfd. The shallowest
coal with a moderate IP rate of 28 Mcfd was at a depth of 326 ft. Coals with the highest
IP rates (>100 Mcfd) were from depths of 561 to 1,463 ft. The maps in Figures 10 and
11 respectively highlight the Mulky and Rowe CBM wells that exhibit the generally
higher rates—29 (12%) of 241 Mulky-only wells with initial gas rates of 50 to 145 Mcfd,
and 58 (20%) of 297 Rowe-only wells with initial gas rates of 50 to 260 Mcfd. Four of
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the eight wells having the highest reported IP rates produce from the Rowe coal in
T.25N., R.14E. Those four wells initially produced 130 to 260 Mcfd and 30 to 90 bwpd
from depths of 1,136 to 1,190 ft (346 to 363 m).

Production-decline curves for three CBM wells in Nowata and Rogers Counties
are illustrated in Figure 12. Their IP rates range from 7 to 36 Mcfd and 12 to 120 bwpd.
Following a period of 3 to 12 months of erratic production in some wells, gas production
can stabilize at more than 1 MMcf (million cubic feet of gas) per month. Maximum
monthly production among the three selected wells is 4,664 Mcf (average 155 Mcfd),
attained 12 months after completion in the 1 Mitchell well (Figure 12b). Depths-to-top of
coal for the three selected wells is 1,113 ft (Figure 12a), 966 ft (Figure 12b), and 1,077 ft
(Figure 12¢). Gas content and composition data are unavailable for coals on the
northeast Oklahoma shelf.

Initial water rates on the shelf range from 0 to 1,201 bwpd and average 60 bwpd
from 643 wells (Figure 13, excluding one well with 1,201 bwpd). Most of the water is
believed to be formation water and not water from fracture stimulation. Because of
generally poor water quality, these wells require disposal wells for the produced water.
In general, water volumes are not metered; therefore, the volume of disposed water and
the effect of water production on gas rate are unknown. Data on water quality is not
available.

Arkoma Basin

Figure 14 shows the locations of 552 CBM completions in the basin reported by
44 operators through July 2001. Completions have been reported in Coal, Haskell,
Hughes, Latimer, Le Flore, Mcintosh, and Pittsburg Counties. In ascending order, the
methane-producing coals include the Hartshorne (undivided), Lower Hartshorne, and
Upper Hartshorne (Hartshorne Formation), McAlester and “Savanna” (interpreted to be
the McAlester coal, McAlester Formation; a completion in Coal County reported to be in
the “Lehigh” coal is equivalent to the McAlester coal), Secor (Boggy Formation), and
unnamed coal in the Krebs Group of Desmoinesian age (Figure 4). Most (519
completions) of the CBM completions in the Arkoma basin are from Hartshorne coals.

Figure 15 shows the depth range of CBM completions in the basin. Coals in 535
wells were perforated at depths-to-top of coal of 347 to 3,726 ft (106 to 1,136 m), for an
average of 1,421 ft (433 m). Three of the four deepest completions, 3,632 to 3,726 ft
(1,107 to 1,136 m), were made in the Hartshorne coal in Hughes County (T.4N.,
R.11E.)(Figure 14). Although 28 completions have perforated two to three coals, only
the shallowest coal depth was used in Figure 15.

IP gas rates from 467 wells range from a trace to 1,150 Mcfd (average 106
Mcfd)(Figure 16). Most (341 completions) produced 10 to 120 Mcfd. The highest IP
rates were reported from the Hartshorne coal. Based on 452 completions with depth
and initial potential pairs, Figure 17 shows no relationship between initial-potential gas
rate and depth in the Arkoma basin. Low gas rates (<50 Mcfd) span the entire depth
range. The 142 wells (30% of 467) with the highest gas rates (>99 Mcfd) are from
depths of 636-3,031 ft (194-924 m), not associated with the deepest completions.
Theoretically, gas content increases with increasing rank, depth, and reservoir pressure
(Kim, 1977; Scott and others, 1995; Rice, 1996). However, gas production depends on
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many variables, including gas content, water volume, cleat mineralogy, permeability,
porosity, and stimulation method.

The first horizontal or lateral CBM well in Oklahoma was completed by Bear
Productions in August 1998. By the end of July 2001, 71 horizontal CBM wells (13% of
552 completions) had been completed in Haskell, Le Flore, and Pittsburg Counties
reported by 5 operators—Bear Productions Inc., 5 wells; Brower Oil & Gas Co. Inc., one
well; Continental Resources, one well; Mannix Oil Co. Inc., 57 wells; Questar
Exploration & Production Co., 7 wells)(Figure 18, some areas have two to ten
horizontal wells). IP gas rates in the horizontal wells were 15 to 1,150 Mcfd (average of
345 Mcfd) at true vertical depths-to-top of coal of 752 to 3,031 ft (229 to 924 m). Higher
gas rates are possible in a horizontal well than in a single-bed vertical well by drilling at
a high angle (perpendicular to oblique) to the face cleat to drain a larger area. Vertical
CBM wells exhibit an elliptical drainage pattern as a result of the directional (anisotropic)
permeability of the cleat (Diamond and others, 1988). Horizontal CBM wells are
completed openhole. The lateral distance within the coal for 54 horizontal CBM wells
ranged from 439 to 2,523 ft (134 to 769 m), with an average of 1,442 ft (440 m). Figure
19 is a subset of Figure 17 and shows the relationship of vertical depth-to-top of coal
and initial-potential gas rate for 53 horizontal CBM wells in the basin having both depth
and IP data.

The map in Figure 20 shows Hartshorne CBM wells that have the highest initial
gas rates—125 (24%) of 519 Hartshorne CBM wells with initial gas rates of 100 to 1,150
Mcfd. A comparison with Figure 18 shows that many of the Hartshorne CBM wells with
high gas rates are horizontal CBM wells.

Figure 21 illustrates gas-production-decline curves for five CBM wells in different
areas in the Arkoma basin, using monthly production data. IP rates range from 30 to
350 Mcfd and 0 to 75 bwpd. Depths-to-top of coal for the five selected wells is 2,020 ft
(Figure 21a), 1,018 ft (Figure 21b), 1,228 ft (Figure 21c), 981 ft (Figure 21d), and 1,351
ft (Figure 21e). The lateral distance within the coal for the horizontal CBM well in Figure
21b is 1,131 ft. Figure 21e extends the data presented in Andrews and others (1998, p.
57, Figure 45a).

Initial produced-water rates from 416 wells range from 0 to 320 bwpd (average
19 bwpd)(Figure 22). Most (301 completions) produced less than 20 bwpd. Most
Arkoma basin CBM well completions are situated on the flanks of anticlines (Figure 23)
and tend to produce relatively little water. An undisclosed amount of initial water
production is frac water introduced during fracture stimulation.

Andrews and others (1998) summarized published information on gas resources,
gas content, gas composition, and cleating in Hartshorne coals. Measured gas
contents in the Arkoma basin range from 70 to 560 cf/ton in high-volatile to low-volatile
bituminous coal cores from depths of 175 to 3,651 ft (63 to 1,113 m).

CONCLUSIONS
The Oklahoma CBM play began in the Arkoma basin in 1988. The play then
spread to the northeast Oklahoma shelf in 1994. Through July 2001, 1,294 CBM

completions were reported in Oklahoma — 552 in the Arkoma basin and 742 on the
northeast Oklahoma shelf. The primary objectives are Hartshorne coals in the basin
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and the Mulky and Rowe coals on the shelf. Fourteen percent (107 of 742) of the CBM
completions on the shelf were multiple-coal completions with two to four coal beds,
while most of the CBM completions in the basin were single-coal completions.

Coal completion depths range from 256 to 2,428 ft (78 to 740 m) and average
947 ft (289 m) in 738 wells on the shelf, and 347 to 3,726 ft (106 to 1,136 m), averaging
1,421 ft (433 m) in 535 wells in the basin.

Initial-potential gas rates range from a trace to 260 Mcfd (average 27 Mcfd) from
663 wells on the shelf, and a trace to 1,150 Mcfd (average 106 Mcfd) from 467 wells in
the basin. The maximum initial gas rate was reported in the Hartshorne coal at a true
vertical depth of 1,604 ft (489 m) from a horizontal well in Haskell County.

Produced-water rates range from 0 to 1,201 bwpd (average 60 bwpd) from 643
wells on the shelf, and 0 to 320 bwpd (average 19 bwpd) from 416 wells in the basin.

Low initial gas rates and minimal initial increase in gas production during
dewatering are often attributed to formation damage caused by well stimulation,
including the generation of coal fines that plug permeability. Present industry emphasis
is on matching the completion techniques to the specific coal.

Future development of CBM in Oklahoma is promising. Applications of horizontal
drilling and established completion practices have demonstrated the potential for CBM
in the Midcontinent USA.
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History of Oklahoma CBM Completions
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Figure 1. Histogram showing numbers of Oklahoma coalbed-methane
well completions, 1988 to 2000.
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Figure 2. Map of Oklahoma coalfield. Modified from Friedman (1974).
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Figure 7. Histogram of coalbed-methane well completion depths on
the northeast Oklahoma shelf.
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Figure 8. Histogram of initial-potential-gas rates in coalbed-methane
well completions on the northeast Oklahoma shelf.
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Figure 13. Histogram of initial water production rates from coalbed-methane wells
on the northeast Oklahoma shelf (excluding one well with 1,201 bwpd).
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Figure 15. Histogram of coalbed-methane well completion depths in the Arkoma basin.
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Figure 16. Histogram of initial-potential-gas rates in coalbed-methane well
completions in the Arkoma basin.
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Figure 17. Scatter plot of initial-potential-gas rate (in thousand cubic feet of gas
per day-Mcfd) and depth (in feet) to top of coal in the Arkoma basin.
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Figure 19. Scatter plot of initial-potential-gas rate (in thousand cubic
feet of gas per day—Mcfd) and depth (in feet) to top of coal in
the Arkoma basin horizontal CBM wells.
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Figure 22. Histogram of initial water production rates from coalbed-
methane wells in the Arkoma basin.
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ARKOMA BASIN
Major Structural Features
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Midcontinent evolving coalbed-methane
completion techniques and practices

Roger Marshall
Cudd Pumping Services
Seminole, OK

Marshall, R., 2001, Midcontinent evolving coalbed-methane
completion techniques and practices, in Oklahoma coalbed-
methane workshop 2001: Oklahoma Geological Survey, Open-
File Report 2-2001, p. 140-150.



Drilling and Completion Considerations

Open Hole Completion

Advantages

e Reduces damage from drilling fluids and cement

Disadvantages

+ Tendency to produce coal fines and frac sand

o Difficult to control frac due to excess exposure

of other formations

¢ Limited amount of rathole for pump placement

Hole Size
6 % inch
Advantages

e Cheaper to drill

e Less cement required

Disadvantages

¢ Difficult to centralize casing

¢ Increased potential for bridging

e Higher annular friction increases risk of cement

invasion in coals

e More costly cements required to reduce friction

and limit invasion
7 718 inch
Advantages

Better casing centralization

Larger casing (5 %")can be used if necessary

Reduced potential for bridging in annulus

Lower annular friction reduces potential for

cement invasion

e More options availabte for cement design

Disadvantages

e Increased drilling costs

e Larger volumes of cement required
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Drilling and Completion Considerations (continued)
Cementing & Perforating

Extremely critical to success of well

2 sks cement can fill cleats in 4 ft coal to radius

of 5 ft

Use best available cement and procedure to.

reduce damage

Perforate with 4 to 6 spf using scallop gun or slick

gun.

More research needed regarding orientation of

perforations with cleats.
After drilling

TD well and trip out of hole

Only load hole if sand or other formation

warrants need for induction log. Only interested

in bulk density log. Run high resolution if

available.

If needed load with KC| water

Do not use gel or mud
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Early Observations

e 63 wells were fraced without a screenout

e High frac gradients

e FG averaged 1.55 psi/ft with some as high as

2.0 psilft. Researchers indicated that this

trend was normal in coals due to multiple

fractures and multiple orientations although

most wells did have a FG of less than 1.0

psi/ft early in treatment. Explanation was that

obtained rates were not high enough at that

point in the treatment to initiate a true

fracture.

e Wells produced a tremendous volume of coal

fines. Found to be detrimental to downhole

pumps.

e 50% of gas production would typically be lost after

pump changes. Water rates would only drop 5 to

10%.

Early Conclusions

e Coal fine plugging was responsible for high

decline rates and poor production.

» The combination of high water and gas rates were

thought to provide the mechanism for fines

transport.

e Backpressure was held in attempt to control fines

movement but success was limited.

Early Solutions
"Eliminate the fines, eliminate the problem."

e Fines were assumed to be created from

proppant etching of the coal face.

e Observations from Stim-Lab indicated that

fines are created by the turbulence of the fluid
within the fracture. Foams and gels have a
velocity of zero at the coal face.

e Recommended that linear foam with minimal
foamer be used.

s Treatments were total failures
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Development and Modification of Controlled Velocity Frac

Wilkins observed that frac gradients from foam

and gel fracs were considerably lower than those

from water fracs and suspected that fracs were

growing out of the coal.

Later, tagged sand confirmed frac heights of 45'

and 72' into the unproductive Hartshorne Sand.

Flowbacks during two fracs aiso yielded "coal

slurry" indicating excessive turbulence in the

fracture.

During review of frac charts, Wilkins found that the

point of coal failure was typically 20 bpm in a

5 % ft. coal or 3.5 bpm per foot of coal.

e Later observations in thinner coal bodies

indicate that failure can occur at rates as

low as 2 to 2 ¥z bpm/ft.

¢ Low concentrations of friction reducers

and sand appear to reduce turbulence

allowing higher pump rates without

increasing damage to coal.

Wilkins then developed the theory that a "critical

velocity" is reached during treatment, producing

coal fines resulting in screen-out or diversion out

of the coal.

Since proppant transport is difficult at lower

rates, a method to decrease the velocity had to

be developed.

e Research into thin fluid proppant transport

indicates that high velocity is not as

important as it was once thought to be.

Field tests have confirmed that

considerable amounts of sand can be

placed at much lower pumping rates

Increased fracture width would ultimately

decrease the velocity within the fracture

Fracture width can usually be increased by

increasing the fluid viscosity with gels, but gels

tend to produce severe damage in most coals.
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Development and Modification of Controlled Velocity Frac (continued)

e The "Contfrolled Velocity Frac" was then

developed utilizing 100 mesh sand to increase

fluid efficiency.

e Recent field tests indicate that 100 mesh

sand is not always necessary to control.

leakoff and in many cases can be

eliminated or replaced with larger sand

¢ Dramatic decreases in frac gradients were noted

on initial treatments.

+ Further refinements made by running sand

continuously, and controlling reduction of pump

rates and rate surges during gear changes.

e Observations indicate that changes in

pumping rate are extremely critical. In

some cases even when rate changes are

small (£1 bpm) and performed smoothly

dramatic increases in pressure can occur.

e Indications of limited entry into perforations from

studies from the Black Warrior and confirmed by

downhole camera lead to the adoption of acid

spearhead. Although damaging to the coal, the

immediate succession of water will dilute the acid

to the point of no damage, except maybe near

wellbore.
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Introduction To NE Oklahoma — 1999-2000

e Typical treatments consisted of 400 bbl 10# to

30# gel with 8,000# to 12,000# proppant.

Multiple screen-outs noted and frac gradients ranging
from

1.6 psifft to 3.0 psi/ft.

e Good rates noted during drilling operations, but

very poor production after fracs.

o Downsized "controlled velocity" treatment to

match coal thickness.

e Dramatic decrease in frac gradients and increase

in gas and water rates.

o Failed frac attempt resulted in the discovery of the

acid/water treatment and true nature of

permeability.

1999-2000 Completion Procedure

1. Swab well down.

2. Start acid & load hole.

3. Breakdown formation @ <3 bpm.

4. Pump %2 volume of acid through perforations.

5. Shut down. Soak acid for 5 minutes

6. Resume pumping @ 5 bpm.

7. Increase rate in 2 bpm increments every 30 to 50

bbl if pressure is stable or falling. Hold rate if

pressure is increasing after 30 bbl.

8. Limit maximum rate to 3.5 times coal thickness.

9.  Shut well in for minimum of 48 hrs.

10. Run tubing, pump and rods.

11. Test well. Itis not necessary to hold

back pressure to restrict gas volume.

12. If needed frac well with controlled velocity frac

treatment minus acid spearhead.
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10.

11.

12.

13.

Typical Acid Procedure

Rowe Coal
Thickness — 3 ' ft
Depth - +1000 ft.

Run open ended tubing to below perforations

Pump 1 bbl acid down tubing and out annulus into

bobitail

Spot remaining acid across perforations

Shut in annulus and chain tubing down

Break down formation at 3 bpm or less

Pump approximately half of the designed acid

volume at breakdown rate (<3 bpm)

Increase pump rate to +4 bpm

Increase pump rate in 1 to 2 bpm increments

every 25 to 30 bbls if pressure is stable or

decreasing. Do not increase pump rate if

pressure is increasing after 30 bbls of

displacement.

Limit maximum rate to 2 % times coal thickness

Shut well in and allow to go on vacuum. Bleed

pressure off slowly if still holding pressure after 24

hours.

Run tubing, pump and rods.

Test well holding back pressure to maximize

water recovery and prevent premature gas

breakthrough unless field experience in the area

indicates it is not necessary

If needed frac well with Controlled Velocity Frac

treatment

750 gallons 15% HCI with 1gpt corrosion inhibitor
240 bbls fresh water with biocide
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10.

11.

12.

14.

15.

16.

Typical Controlled Velocity Frac Treatment

Hartshorne Coal
Thickness - 6 ft.
Depth - £1500 ft.

180 bbls Pad at 4 — 10 bpm

180 bbls Pad at 12 — 14 bpm

180 bbls Pad at 16 — 18 bpm

80 bbls with ¥ ppg 100 mesh sand at 20 — 22 bpm
80 bbls with 2 ppg 100 mesh sand at 22 bpm

80 bbls with % ppg 100 mesh sand at 24 bpm

80 bbls with 1 ppg 100 mesh sand at 24 bpm

220 bbls with 1 ppg 20/40 sand at 24 bpm

220 bbls with 1 ¥z ppg 20/40 sand at 24 bpm

230 bbls with 1 ppg 12/20 sand at 24 bpm

150 bbls with 2 ppg 12/20 sand at 24 bpm

+30 bbls Flush

Shut well in and allow to go on vacuum. Bleed
pressure off slowly if still holding pressure after 24
hours. Flowback rate should be limited to 2 bbls
per hour or less

Run tubing, pump and rods.

Test well holding back pressure to maximize
water recovery and prevent premature gas

breakthrough unless field experience in the area
indicates it is not necessary

1710 bbls fresh water with biocide and % gpt friction reducer
8,400 lbs 100 mesh sand

23,100 Ibs 20/40 mesh sand

22,300 Ibs 12/20 mesh sand
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Summary

Cased hole completions are preferred due to
improved zonal isolation and fewer production
problems

Larger hole size reduces damage due to
cementing and allows more flexibility in
completions

The generation of coal fines is a major cause of
stimulation failures and resulting low productivity

The generation of coal fines can be minimized by
using proper stimulation techniques and
production practices

Fracturing gels and most other conventional
stimulation additives have generally proven to be
detrimental to production of coal bed methane

In Eastern Kansas, Western Arkansas and all of
Eastern Oklahoma, fresh water with a biocide and
a minimal amount of friction reducer has proven
to be the least damaging fracturing fluid in most
cases

Although hydrochloric acid can be damaging to
most coals, small volumes of acid can provide
definite benefits when applied properly

Fracturing procedures are continually being
modified and improved as more experience is
gained in the Mid-Continent area. Current
treatment trends are toward lower pumping rates,
less 100 mesh and 20/40 sand and more 12/20
sand

Proper production practices are at least as

important as drilling and completion practices in
coal bed methane wells
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Arkoma basin coalbed methane:
Overview and discussion of
successes and failures

Doug O’'Connor
Muirfield Resources Company
Tulsa, OK

O’Connor, D., 2001, Arkoma basin coalbed methane: Overview and
discussion of successes and failures, in Oklahoma coalbed-
methane workshop 2001: Oklahoma Geological Survey, Open-
File Report 2-2001, p. 151.



Arkoma Basin Coalbed Methane:
Overview and Discussion of Successes and Failures

Doug O'Connor
Muirfield Resources Company
Things to think about
Permeability, permeability, permeability
Tensional geologic features enhance permeability

Temperature logs and gas shows reported on driller’s logs are obvious indications of
permeability

Sandstones are still our friends

Gas-in-place does not make you as much money as gas that is sold

Lateral variations in coal character are much more extreme than logs indicate
The most important contour on the coal isopach is the zero line

Air drilling is a godsend

Examine the cleat structure in a coal hand sample. The black stuff on your hands is called
“coal fines”. This stuff is not your friend.

Determine coal thickness from the gamma ray, not the density
Completion techniques 777

Whoever coined the phrase “you can’t screw up a good well” was not the prospect
generator

After the bit penetrates the coal there are many more ways to hurt the coal than help it
Be patient
Why are coals notorious for drinking cement but the fracture gradient is so high?

Is there really twice as much gas-in-place in a coal with a density of 2 g/em’ vs one with
a density of 1 g/cm3 when all other attributes are identical?

Are there any good prospects left?

151



OKLAHOMA GEOLOGICAL SURVEY
OPEN-FILE REPORT 2-2001

9

Appendix

Sisson, N.S., 2001, Hartshorne coalbed-methane
economics in Oklahoma, in Oklahoma coalbed-
methane workshop 2001: Oklahoma Geological
Survey, Open-File Report 2-2001, 8 p.
(Presented at Oklahoma Coalbed-Methane
Workshop in Oklahoma City, March 29, 2001)

Cardott, B.J., 2001, Coalbed methane (selected
references for Oklahoma).

Cardott, B.J., 2001, Bibliography of Oklahoma coal.



Hartshorne Coalbed-Methane

Economics in Oklahoma

Presented March 29, 2001

S. Neil Sisson
Wildhorse Operating Company
President



LEASEHOLD COST CONSIDERATIONS

1) Land Intensive Area — High Brokerage Costs

a)

b)

d)

On Structure — Lots of HBP Acreage

1) Working Under Old JOA's

2) Usually Spaced 640's

3) Dealing With Major Companies or Large Independents
A) Farmouts - 75% NRI With Possible BIAPO
B) Term Lease - $100 to $300 per Acre for Shallow Rights
C) Prolonged Procedure

Off Structure — Non HBP

1) Minerals Broken up Small Tracts

2) Sophisticated Mineral Owner

3) Knowledgeable Landowners
A) Costs for Pipeline Right-of-Way

B) Surface Damages

Pool & Space
1) Prepare Up Front for Increased Well Density and Locations
A) Attorney - Corporation Commission Work
B) Engineer — Technical Witness
C) Geologist - Technical Witness
Check out Surface of the Ground
1) Topographic Maps Do Not Tell Story of Some Creek Depths and Some
Hill Inclines



AVERAGE WELL COST

BASED ON FOUR WELLS DRILLED JANUARY THRU OCTOBER, 2000

856' AVERAGE DEPTH

INTANGIBLE DRILLING & COMPLETION COSTS

SURVEYOR & PERMITS
SURFACE DAMAGE

LOCATION ROADS & PITS
DRILLING FOOTAGE

DRILLING DAYWORK

OPEN HOLE LOGS

WATER TO DRILL & CEMENT
SUPERVISION ENGINEERING
SUPERVISION EXPENSE
DRILLING OVERHEAD

CASED HOLE LOGS & PERFORATING
CEMENT (To Surface)
COMPLETION UNIT
STIMULATION ACID WATER
TANK BATTERY CONSTRUCTION

EQUIPMENT COSTS (Flowing Well)

CONDUCTOR CASING (1JT.)
PRODUCTION CASING
TUBING

WELLHEADS

STOCK TANK
CONNECTIONS

GAS SEPARATOR

TOTAL

NOTE ADDITIONAL COSTS
PUMPING WELL
FRAC JOB

$10,000.00
$30,000.00

$575.00
$1,800.00
$3,800.00
$4,600.00
$500.00
$1,100.00
$420.00
$700.00
$500.00
$375.00
$2,550.00
$3,600.00
$870.00
$2,900.00

950.00
$25,240.00

$240.00
$2,200.00
$1,600.00
$550.00
$1,100.00
$1,000.00

$1.100.00
$7,790.00

$44.670.00



LEASE OPERATING EXPENSES

Flowing Well Pumping Well
Pumper $150 $ 175
Overhead $250  ($125 each additional well on lease) $ 250
Revenue Distribution $ 50 $ 50
Insurance $ 20 $ 20
Soap $ 30 $ O
Maintenance & Misc. $ 50 $ 50
Electricity $ 0 $ 60
Pulling Expense (1) $ 300
Water Hauling (2) $100 $ 100
TOTAL $650 $1005

(1) Assume 1 pump change per year,
Pump $1,800, Rig % day $1500, Truck $300 = $3,500 /12 mths = $291

(2) Assume Mature Well 1 to 3 BWPD, $200 per 120 BBL Load

(3) Above example assume compression & gathering netted from gas revenues.
Compression cost on a per well basis depends on number of wells put
through the gathering point and the size of compressor needed for gas

volume and discharge pressure.



REVENUE ANALYSIS AND TIMING

WELL #1 WELL #2
DATE DRILLED Jan-00 Apr-00
INITIAL PRODUCTION
DATE Mar-00 May-00
AMOUNT 30 mcfpd 10 mcfpd
30 DAY PRODUCTION 100 mcfpd Loaded Up w/Water

TREATMENT Acid/Water Screened out Foam Frac

LEASEHOLD COSTS $14,415 $0

WELL COST $36,730 $43,776

LOES $6.414 $3,257

TOTAL COSTS $57,559 $47,033

REVENUES $88,452 NA

Net to WI After Tax,

75 NRI and Gathering Well was S| waiting on electric
line, pumping unit & workover rig

PAYOUT 9 Months to run rods & pump.

CURRENT PROD. 92 mcfpd/0 BW 38 mcfpd/10 BWPD

Put on Pump 03/01/01
Water Decreasing
Gas Increasing



REVENUE ANALYSIS AND TIMING

DATE DRILLED

INITIAL PRODUCTION
DATE

AMOUNT

30 DAY PRODUCTION

TREATMENT

LEASEHOLD COSTS

WELL COST

LOES

TOTAL COSTS

REVENUES

Net to WI After Tax,
75 NRI and Gathering

PAYOUT

CURRENT PROD.

WELL #3

Jul-00

Oct-00

25 mcfpd

50 mcfpd

Acid/Water

$0

$34,340

$3,658

$37,998

$30,428

Next Month

66 mcfpd/0 BW

WELL #4

Oct-00

Mar-01

12 mcfpd

NA

Acid/Water

$0

$42,512

$1.273

$43,785

NA

Needs Frac

21 mcfpd/0 BW



GAS GATHERING DEALS

1)

2)

Major Pipeline Markets

a) ONEOK - 300 to 400 PSI Line Pressure

b) ENOGEX - 50 to 80 PSI Line Pressure

c) RELIANT - 50 to 150 PSI Line Pressure

You Lay Gathering Line to Them and Compress.

d) Deal Terms Vary From 10¢ to 36¢/mcf and 3% to 8% Fuel

Lower Pressure Pipeline Markets
a) Enerfin, Duke, Ozark
b) Deal Terms Generally % of Proceeds

Low Side — 65% to 70%
High Side — 80% to 85%

They Lay The Gathering Line to You

Percentage depends on how close to their line,
your volume and quality of gas.



INCREASED WELL COST

Well costs have increased in some categories dramatically due to increased

demand for the vendor's services and increased fuel and labor costs.

Then (1)

Surface Damages $1,000
Right-of-Way $10 to $15/rod
Surveyors $ 375
Cement (1,000' Well) $3,100
Open Hole Logs $ 990
Drilling $5 to $6/ft.
Drilling Daywork $ 200/hr.
Workover Rigs:

Pole $ 90/hr.

Double $ 115/hr.

Tubing Tongs $ 75/day

(1) 1% six months of year 2000
(2) February 2001

Now (2)

$2,500

$20 to $35/rod
$ 400
$4,941
$1,450

$8 to $10 /ft.

$ 300/hr.

$ 125/hr.
$ 140/hr.

$ 125/day

Plus all the add on Additional
Costs: Acid Swabbing, Travel Time,
Fuel Surcharge, etc.



revised October 2001
Coalbed Methane
(Selected References for Oklahoma)
by Brian J. Cardott

Ammosov, 1.1, and L.V. Eremin, 1963, Fracturing in coal (translated from Russian):
IZDAT Publishers, Office of Technical Services, Washington, D.C., 112 p. (cleat
vs. rank)

Andrews, R.D., B.J. Cardott, and T. Storm, 1998, The Hartshorne play in southeastern
Oklahoma: regional and detailed sandstone reservoir analysis and coalbed-
methane resources: OGS Special Publication 98-7, 90 p.

Arri. L.E., D. Yee, W.D. Morgan, and M.W. Jeansonne, 1992, Modeling coalbed
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