Facies architecture, sequence stratigraphy and depositional history of the Ordovician Bromide Formation

Jesse Carlucci, Ph.D Geosciences Midwestern State University

Coauthors: Stephen Westrop (OU and Sam Noble Museum), Carlton Brett (Univ of Cincinnati), Roger Burkhalter (Sam Noble Museum), Ben Scribner (MSU)

Stratigraphy is the triumph of terminology over common sense-P.D. Krynine

Facies architecture and sequence stratigraphy of the Ordovician Bromide Formation (Oklahoma): a new perspective on a mixed carbonate-siliciclastic ramp

I-35N, new reference section for the Bromide Formation

The Traditional View

- Transgressive-Regressive cycle
- Evolution from ramp to rimmed platform with shelf edge carbonate buildups.
- While peritidal carbonates were deposited on the shelf, the aulacogen was a major depocenter, accumulating thick deposits of limestone-shale rhythmites.

What are the goals?

- Update correlations based on lithofacies analysis and bounding surfaces to better understand depositional history.
- Apply sequence stratigraphic techniques to interpret sea level change at a variety of hierarchical scales.
- Understand the sedimentology and facies cyclicity of a petroleum-producing formation.
- Integrate with invertebrate paleontology.

The Bromide Formation

Upper Ordovician	Katian	Mohawkian	SChat	Viola Gp	P. und	Viola Springs Fm.	
	Sandbian		Turinian	Simpson Group			Corbin Ranch
						Bromide Formation	Pooleville
					Ε	ide F	Mtn. Lake
		ockian	yan:		C. sweeti	Brom	
							Pontotoc
	Dariw.	Whiterockian	Chazyan			Τι	ılip Creek Fm.

Comparison of Mohawkian Depositional Sequences across Laurentia

Placing Facies (15) in a depositional model

Wave-rippled calcisiltite and grainstone lithofacies

High energy detached shoreface deposits

One of the shallowest facies of the Mt. Lake.

Overlies surfaces of forced regression.

Abruptly overlies outer ramp rhythmites.

Meter Scale Cycle Hierarchy

Directional trend of meter-scale cycles: net progradation, aggradation, retrogradation etc.

Depositional Sequence Hierarchy

I-35 north I-35 south Tyson quarry (TQ) Rock Crossing long (RCL) Sequence 3 Sequence 2 Sequence 1 TST LST/ TST

Depositional Sequence Hierarchy

Transgressive, wave dominated coastline

Interpretation

Sequence 3 is progressively cut-out downramp; Late Mohawkian equivalent is missing from the deepest portion of the basin.

Shelf edge buildup?

- The condensed grainstones that are progressively cut-out downramp were previously interpreted as a buildup that was only present near the hinge-line of the aulacogen.
 - We prefer an interpretation that describes them as a transgressive mosaic.
 - Extensive authigenic mineral crusts
 - Still present in aulacogen
 - No relief, gradational between localities

Our Interpretation

- The mixed siliclastic-carbonate succession (sequence 2, Mt. Lake) expanded downramp into the aulacogen, rather than the fully carbonate succession (sequence 3, Pooleville)
- It is not just downramp facies change because all the same facies are in the same order, but its cut-out in the aulacogen.

Updated Depositional Model

Criner Hills Region of Oklahoma is on the southern ramp, shallowing towards the Texas Arch

Correlation into the subsurface (work is ongoing by M.S. student Ben Scribner)

The Pooleville is a shallowing upward HST between the Viola "hot" jump and the "hot" jump of the illitic-chloritic shale at the base of Sequence 3.

Modern View (accounting for sequence stratigraphic boundaries)

- Multiple levels of cyclicity within three 3rd order depositional sequences.
- Each successive sequence becomes more carbonate-dominated and less siliciclastic-dominated.
- Sequence 2 expanded downramp, so the aulacogen either wasn't an active depozone during sequence 3, or it was, but the deposits were subaqueously removed.
 - Viola unconformity cuts down into the aulacogen from the southern part of the ramp
 - Far field tectonics from the Taconic Orogeny?
 - Dissolution from internal waves below the pycnocline?

Modern View (accounting for sequence stratigraphic boundaries)

- The lack of a buildup, and gradational transitions between facies suggested the Bromide was a ramp rather than a rimmed platform.
- Criner Hills Region is not near the center of the aulacogen, but actually on a southern ramp towards the Texas Arch.
- These interpretations are also supported by biostratigraphy (thousands of trilobite individuals) and by carbon isotope chemostratigraphy.

Collaborators:

Stephen Westrop

Carl Brett Matt Saltzman Ben Scribner

Roger Burkhalter

mwsu.edu