

Hydraulic Fractures, Acoustic Emissions and Shearing

C. Moreno, Y. Chitrala, C. Sondergeld and C. Rai

Norman, July 21, 2011

University of Oklahoma Mewbourne School of Petroleum and Geological Engineering Norman, OK, USA

Hydraulic Fracturing

Warpinski (2009)

229

H

170

Field setup

•16 piezoelectric sensors

•Frequency response:50 KHz- 2 MH

•Sampling rate: 5 MHz

Waveforms

Petroleum & Geological Engineering

AE Calibration

Hsu and Breckenridge (1981)

Sample	Mineralogy, wgt%	Model	VP (m/sec)	error (mm)
Indiana Limestone	Calcite, 95	Constant velocity model	3900	±3.00
Lyons Sandstone	Quartz, 85	Constant velocity model	4335	±3.22
		Anisotronis model	4300	±6.00
Syn-Shale		(Berryman 2008)	Anisotropic parameters: ε=0.25, γ= 0.74, δ=0.40	

Indiana Limestone: k= 5 md; 3-samps

Indiana Limestone: isotropic velocity model

- Fracture aligned with stress direction
- Spatial and temporal propagation of fracture observed (color coding)

30

50

Time

Intermediate

Perforation

Early

Late

Sensor

SPE-138441

 Well developed nearly planar fracture

Parallel

60

90

120

-10

10

Y (mm)

Perpendicular

Limestone- Spatial evolution of fractures

Lyons Sandstone: k=20 µd; ; 8-samps

Pumping rate=10 cc/min P_{bdwn}= 4038 psi Total events =2700

- Events occur during pressure build-up and at pump shut-off
- 28% of the recorded events were locatable

Lyons Sandstone: isotropic velocity model

- Fracture aligned with applied stress
- More diffuse distribution of events compared to limestone
- 765 events located

Lyons Sandstone- Spatial evolution of fractures

Fracture through going in the center, origin and tapers upward away from injection consistent with hypocenters in previous slide.

Fracture highlighted with black lines

 LVLEWBOURNE
 SCHOOL

 Petroleum & Geological Engineering
 The University of Oklahoma

Field scale mine-backs

1 cm

Syn-Shale: k=5 nd ; 4-samps Stress applied parallel to bedding

MEWBOURNE

Petroleum & Geological Engineering The University of Oklahoma

SCHOOL

Pumping rate=5 cc/min P_{bdwn}= 1700 psi Total events= 102

- 42% of the recorded events were locatable
- Most of the AE distributed during initial stage

Syn-Shale- Stress applied parallel to bedding

- Fracture subparallel to stress applied
- 47 events were located
- 42% of events recorded were locatable
- Limited development of fracture plane
- Fairly narrowly confined to a plane

Syn-Shale- Stress applied parallel to bedding

Petroleum & Geological Engineering

Syn-Shale- Stress applied perpendicular to bedding

4-samps

Pumping rate=5 cc/min P_{bdwn} =2300 psi Total events= 302

- Majority of events before breakdown
- 22% of the recorded events were locatable

Syn-Shale- Stress applied perpendicular to bedding

- A local cluster developed around the borehole
- Deviation of the fracture direction from maximum stress orientation is 25, consistent with calculations
- 66 events were located

Syn-Shale- Stress applied perpendicular to bedding

40

60

Stress distribution-Anisotropic reservoirs

Hoop stress symmetry different from isotropic materials **Deviation depends** on anisotropy and far field stress **Fracture direction** deviates from the maximum stress direction by 20

0°

Aadnoy, 1987

Focal Mechanism Studies

FOCAL MECHANISMS

Pump Pressure, Cum. AE vs. Time (Sandstone)

M Petr

SEM Observations Of Hydraulic Fractures

Lyons Sandstone

Perpendicular

TimeEarlyIntermediateLate

SEM along Fracture front propagation is toward viewer

Fracture after propagating 1" from wellbore

Petroleum & Geological Engineering The University of Oklahoma

Petroleum & Geological Engineering The University of Oklahoma

8 mm

Large process Zone thin fracture

MEWBOURNE, SCHOOL Petroleum & Geological Engineering

50 µm

Slice 10

Hydraulic fracturing

- Physical location of fractures agrees with hypocenter locations
- Isotropic materials fractures controlled by applied stress direction
- Anisotropic materials, initiation direction controlled by direction of applied stress and anisotropy
- Shear failure dominates the hydraulic fracture propagation
- MS events correlate with pressure buildup, secondary activity with pump stoppage for brittle lithologies
- Fractures are discontinuous and bifurcate like natural systems
- Fractures are not planar surfaces...controls proppant placement
- Process zone is discontinuous

Triaxial Hydraulic Fracture Tests

We thank Devon Energy for their continued support

Mr. Gary Stowe for his laboratory expertise

Apache and Mewbourne Oil donated the SEM used in these studies

