

The University of Oklahoma MEWBOURNE COLLEGE OF EARTH & ENERGY

Shales Moving Forward

Moore Norman Technology Center Norman, Oklahoma

July 21, 2011

Microseismic Frac Mapping: Moving Beyond the Dots from an Engineering Perspective

Jeff Noe Micro**Seismic**, Inc. Chief Engineer

Outline

- Microseismic 101
- A glance in the rear view mirror
- The engineer's fracture diagnostics toolbox
- Why engineer's use microseismic monitoring
- Microseismic technology advancements
- "Unconventionals" have changed the game
- What's missing? Moving Beyond the Dots
- Value addition opportunities
- What's Next?

Microseismic 101

- Practice of listening to passive, microseismic activity caused by hydraulic fracturing (reservoir subsidence, and water, steam, or CO2 injection or sequestration).
- Microseisms are seismic energy emissions generated by shear slippages along weakness planes in the earth
- Passive Imaging is seismic without sources receivers only

Objective:

- Detect and locate microseismic events in time and space.
- •Measure characteristics of events (magnitude, source mechanism, etc.)
- Provide diagnostic information about the hydraulic fracture

A Glance in the Rearview Mirror

 1860 – Nitroglycerin injection used to stimulate shallow oil well in Pennsylvania (precursor to fracing?)

1947 - Stanolind Oil conducted the first experimental fracturing in the Hugoton field located in southwestern Kansas. The treatment utilized napalm (gelled gasoline) and sand from the Arkansas River. (1)

- 1949 Halliburton conducted the first two commercial hydraulic fracturing treatments in Oklahoma (1)
- 1950's through 1980's Numerous hydraulic fracturing pumping and diagnostics technology developments
- 1992 Pinnacle Technologies introduced surface tilt frac mapping
- Late 1990's and early 2000's Pinnacle Technologies introduced downhole tilt and microseismic frac mapping
- 2003 MicroSeismic, Inc. introduced surface microseismic frac mapping
- 2008 MicroSeismic, Inc. introduced BuriedArray[™] microseismic frac mapping
- Over 1.1 million hydraulic fracture stimulation jobs in the past 6 decades
- Less than 2% of these jobs monitored using frac mapping technology

(1) SPE JPT, December 2010; Hydraulic Fracturing – The Fuss, The Facts, The Future

The Engineer's Fracture Diagnostics Toolbox

Micro Seismic

Pinnacle Technologies

Why engineer's use microseismic monitoring

- Diagnostic tool to better understand hydraulic fracture geometry
 - Length
 - Height
 - Azimuth
 - Complexity
- Identify patterns of hydraulic fracture development
 - Zonal containment or lack thereof
 - Well to well or stage to stage overlap
- Geohazard avoidance
- Estimate stimulated reservoir volume
- Fracture treatment refinement
- Long-term field development optimization

© 2011 MicroSeismic. All Rights Reserved

Technology Advancements - Downhole

- Expanded arrays
- Fiber-optic wireline

Technology Advancements - Surface

FracStar[®] Array

	_	
Arrow	1 1	mo
Alla	/ I V	JUE.
	· J	

- Duration
- Coverage area
- Capabilities
- Surface Temporary ~3 to 7 Sq. Miles Frac Monitoring

Technology Advancements – Buried Array™

BuriedArray[™]

- Sub-Surface • Array Type Duration Permanent • Coverage area Hundreds of Sq. Miles Capabilities Frac Monitoring **Reservoir Monitoring** 50-300'
- Buried

Technology Advancements - Processing

- Improved event detection capability and location accuracy
- Detailed source analyses better understanding of how rock is breaking

Technology Advancements – Visualization

Well and Events

Discrete Fracture Network

- Layered permeability distribution
- Average fracture aperture ft
- Average fracture porosity unitless
- Total fracture volume (ft³) sum of fracture volumes in the model

• Stimulated reservoir volume (ft³) – volume of geocellular cubes that have fracture properties (the affected rock matrix)

Stimulated Reservoir Volume

Unconventionals are Changing The Game

Unconventionals are Changing The Game

Number of Frac Stages Per Well

Market Overview

Rig Direction and Frac Stages

US Average Land Rig Count by Direction

7/8/11 Update: US Land – 1854 Horizontal – 1073 % of total - 58

 Production is increasingly moving towards horizontal wells with longer laterals to increase the surface area in a well

 Longer laterals are increasing the number of frac stages required and subsequently, the horsepower required

Source: Simmons and Company

9

Unconventionals are Changing The Game

Oil Field Services Market

Estimated North American Pressure **Pumping Horsepower** 2003 - 2011E (in millions) 11.6 9.6 7.7 7.2 5.7 3.9 2.9 2.3 2.1 2011E 2006 2008 2009 2010 2003 2005 2007 2004

Pressure Pumping Horsepower 2011E Halliburton Others¹ 19% 23% Cudd 4% 15% Schlumberger 6% Trican 5% Weatherford 9% Baker Hughes Superior Frac Tech

Representation of North American

Market Overview

~ 450% increase in pumping capacity since 2003
Still growing at ~ <u>20-25% per</u> year

- Even with the 24% growth of horsepower between 2009 and 2010, there is still demand for additional pressure pumping equipment
- As the amount of horsepower increases, there will be additional service opportunities for United
- · United Holdings serves a number of the large oil field service companies

1) Greater than 20 companies Source: Spears & Associates, "Drilling: Market Forecast"

10

The New Landscape - Unconventionals

- Almost exclusively HW's
- Almost all wells require hydraulic fracturing
- Long laterals (up to 10,000')
- More frac stages per lateral (>30)
 - Plug and perf capabilities extended
 - Packer and sleeve systems enhanced
- High rate (>100 bpm), large volume (> 100,000 bbls/well), high proppant tonnage (> 4,000,000 lbs/well) fracs
- 24 hour frac operations (30+ stages/24 hrs)
- "Factory" style multi-well pads and innovative frac sequencing
 - Zipper fracs
 - Simultaneous fracs
- Result is significantly more data at a much faster pace
- Operators (and service providers) are overwhelmed

Microseismic Frac Mapping – Beyond the Dots

- Engineers are asking:
 - What Does it Mean?
 - How does it relate to production?
 - What needs to be changed?
- Determination of individual well fracture geometries , well orientation and well spacing requirements are no longer enough
- Must view and analyze as a "system"
- Engineers want an integrated solution:
 - Subsurface
 - o Geophysics
 - Geology
 - Petrophysics
 - o Geomechanics
 - Completion
 - Treatment
 - Microseismic
 - Production

Value Addition Opportunity Model

What's Ahead

- Continued R&D on event characterization to improve understanding of how the rock is breaking
- Improved understanding of "created" versus "effective" fracture geometry "Where is the proppant?"
- Better understanding of how fracture geometry evolves during a treatment
 - Are we reactivating pre-existing fractures or creating new fractures or both?
 - Which is more prevalent?
 - How are stress changes that occur during fracture treatments driving and/or rerouting the fractures?
- Better understanding of the connectivity and flow properties of the hydraulic fracture network

What's Ahead

- Reservoir Monitoring
 - Production, Haynesville
 - SAGD, Alberta
 - Water injection, Saudi Arabia

-

- Compaction, North Sea
- Production, North Sea
- Cyclic Steam Injection, Alberta
- CO_2 Injection, Wyoming
- Gas Injection, Dubai
- Earthquake Monitoring
- Environmental Monitoring
- Integration of active and passive seismic

Final Thoughts

"The wise man must remember that while he is a descendant of the past, he is a parent of the future." ~ Herbert Spencer

"You can't have one foot in yesterday or one foot in tomorrow; you have to keep both feet in today and that's how you get to tomorrow. " ~ John Wooden

