An Alternative Method of Obtaining Open Hole Logs in Horizontal Wells - Examples from the Mississippian

Mississippian and Arbuckle Workshop - October 31, 2012

Rick Reischman
ThruBit - Houston, TX

www,thrubit.com

5/15/2012

Objective:

To obtain high quality open hole log data <u>after drilling</u> with minimal risk and cost in horizontal wells.

How:

Conveying a specially designed set of slim hole logging tools by pumping them down through drillpipe and a PortalTM bit to suspend sensors into open hole. Data is then acquired in memory as the pipe is tripped out.

Benefits:

- Reservoir delineation (Porosity, Lithology, Stress)
- Completion optimization

ThruBit Areas worked

Four Levels of Deployment / Acquisition

BHA Components

PortalTM Bit - Sizes 6" - 12 1/4"

- Deployment/retrieval of the logging string at any time.
- Rotation and Circulation can be maintained at all times.
- Lost circulation material can be added.

X-over

4 1/2" IF (Pin)

4 1/2" XH (Box)

4 1/2" IF (Box)

Flapper (Optional)

4 1/2" IF (Pin)

4 1/2" IF (Box)

Bit Sub

4 1/2" Reg (Box)

4 1/2" Reg (Pin)

Bit

8 1/2" or TB Reamer

2 1/2" (2 3/8" drift) Pass through diameter required through all tubulars

Maximum Outer Diameter 2 1/8"

Minimum Hole Size 4"

Maximum Hole Size 14"

Temperature 300° F

Pressure 15,000 psi

TBN - Thermal Neutron

TBD - Density, PEF, Caliper

TBR - Array Induction

TBS - Sonic (monopole 6 receivers - compressional and shear)

Operating Milestones:

Max MD > 24000', Max Dog Leg = 31 deg / 100' Max Inc = 103 deg Max BHT=317

SureLogTM/Q-String Comparison - South Texas Vertical Well

Conditions:

- BS=6"
- OBM/16.8 ppg
- No Conditioning between runs
- Real Time Wireline

Horizontal Memory Logging Video

Typical Horizontal Well Logs

Questions:

In zone or Out of zone? Porosity/sweet spots? Naturally Fractured? Ideal placement of stages/perfs?

Bakken - North Dakota horizontal well

- Caliper data hole enlargements
- Variations in Porosity and Lithology
- GR is of little use for zone delineation

Oklahoma Woodford Shale Example

Horizontal well: 100'/division

Granite Wash - TX Panhandle horizontal well

Potential Optimized Frac Stages

Depth Scale: 100'/division

- Significant stratigraphic changes.
- Log data has a significant impact on completion design.
- GR is of little use for correlation or zone delineation

Mississippian Example 1 - Western Oklahoma

Depth Scale: 100'/major division

- Limited Gamma Ray response throughout the lateral
- Variations in Porosity will influence completion design

Mississippian Example 2 - Western Oklahoma

Depth Scale: 100'/major division

- Gamma Ray does not clearly indicate porosity/lithology changes
- Variations in Porosity will influence completion design

Production Logs from the Eagle Ford

Determine flow contribution by stage and cluster.

Often entire stages are not contributing: 60% of production from 39% of stages.

What if all stages contributed equally, or we eliminated the poor stages? Cost/boe goes down!

Sonic Applications

SureLog™ - Memory Quad combo Toolstring

- Compressional/Shear velocities
- Primary/Secondary Porosity
- Rock Properties Poisson's ratio/Young's Modulus
- Brittleness (SPE 115258)
- Qualitative fracture indications

Processed Results

Slowness Time Coherence

Shear

Compressional

Predicting Frac Geometry using Borehole Stress Data

Microseismic monitoring clearly shows that the fracture initiates in the lowest-stress interval (in red), and treatments tend to understimulate higher-stress intervals (in pink and blue).

Geo-Frac[™] - Stress Profiling

Horizontal well: 100'/division

Mississippian - Southern Kansas

Qualitative Fracture Identification - Sonic VDL vs Image Interpretation

Black=Open Continuous, Green=Open Lith Bound, Aqua=Open Partially healed

Mid Continent Shelf Carbonate

Depth Scale=100'/division

Sonic VDL in the Mississippian - N. Central Oklahoma horizontal well

· Typical interval with open fractures. Note attenuation and discontinuities in the shear portion of the VDL.

Healed fractures are not detected.

Depth Scale: 10'/division

Conclusions

- The SureLogTM tools, PortalTM bit, and deployment technique allow for the successful acquisition of open hole logs in horizontal wells at minimal risk.
 - Rapid retrieval of logging tools and sources if pipe becomes stuck
 - Full Circulation and rotation of pipe throughout the procedure
 - Wireline never exposed to open hole.
- Use of wireline enhances reliability.
 - Tools only deployed after bit is in position and well is deemed ready.
 - Down log recorded continuous monitoring of sensors before being released
 - Down log can be used as a secondary depth reference
- Rig time and acquisition cost savings with less operational and LIH risk compared to LWD and other logging techniques.
- Porosity and sonic data can optimize the completion by allowing the zones of similar properties to be grouped, resulting in improved frac designs and maximized productivity.

Questions

