Lower Mississippian Sequence Stratigraphy and Depositional Dynamics: Further Insights from the Outcrops, Northwestern Arkansas and Southwestern Missouri

> Walter L. Manger Professor of Geology, Emeritus University of Arkansas

> > October 31, 2012

OSAGEAN PALEOGEOGRAPHY – modified from LANE, 1982

LOWER MISSISSIPPIAN LITHOSTRATIGRAPHY

THREE UNITS REFLECTING EUSTATIC CYCLICITY BASAL CHERT-FREE INTERVAL – **BACHELOR, COMPTON, NORTHVIEW, PIERSON = ST. JOE** MEDIAL CHERT-BEARING INTERVAL – **REEDS SPRING, ELSEY =LOWER** BOONE UPPER CHERT-BEARING INTERVAL – **BURLINGTON/KEOKUK = UPPER** BOONE

MISSISSIPPIAN LITHOSTRATIGRAPHY – SOUTHWESTERN MISSOURI – THOMPSON, 1986

LOWER MISSISSIPPIAN LITHOSTRATIGRAPHY, SOUTHERN MIDCONTINENT - MANGER AND OTHERS, 1988

CHATTANOOGA OR OLDER STRATA

PENNSYLVANIAN SECTION

MISSISSIPPI CHAT ? UPPER CHERT-BEARING CRINOIDAL LIMESTONE – HIGHSTAND/REGRESSION

LOWER CHERT-BEARING CRINOIDAL LIMESTONE – MAXIMUM FLOODING INTERVAL

CHERT-FREE DOLOMITIC LIMESTONE -TRANSGRESSIVE SYSTEMS TRACT

WOODFORD

ARBUCKLE

LAWCO - OLSEN #2 WELL OSAGE CO., OK

Record of Sea-level Eustacy and Coastal Onlap for the Mississippian Period

Loucks and Ruppel, 2007

SEQUENCE STRATIGRAPHIC HISTORY

LOWER MISSISSIPPIAN IS SINGLE, UNCONFORMITY- BOUNDED, THIRD-ORDER CYCLE WITH SIGNATURE OF HIGHER ORDER CYCLES

UNCONFORMITIES AT BASE OF BACHELOR, BASE OF ST. JOE, OR WITHIN CHATTANOOGA AND AT TOP OF KEOKUK OR UPPER BOONE

TRANSGRESSION - BASAL CHERT-FREE INTERVAL BACHELOR TO PIERSON - ST. JOE

MAXIMUM FLOODING INTERVAL – CHERT-BEARING - REEDS SPRING – LOWER BOONE

HIGHSTAND AND REGRESSION – CHERT-BEARING BURLINGTON/ KEOKUK (SHORT CREEK) – UPPER BOONE

MISSISSIPPIAN LITHOSTRATIGRAPHY – NORTHWESTERN ARKANSAS - Manger and Shelby, 2000

LOWER MISSISSIPPIAN OUTCROP, NORTHWESTERN **ARKANSAS AND SOUTHWESTERN MISSOURI**

TRANSGRESSION TO MAXIMUM **FLOODING INTERVAL = ST JOE AND LOWER BOONE**

NORTHVIEW

PENECONTEMPORANEOUS CHERT – LOWER BOONE – MAXIMUM FLOODING INTERVAL

Opal – A → Opal – CT → Chalcedony → Quartz Shrinkage fractures from de-watering Fractured chert – reservoir?

SEM IMAGES – PENECONTEMPORANEOUS CHERT

LOWER BOONE – BELLA VISTA ROADCUT, ARKANSAS

SEM IMAGES – PENECONTEMPORANEOUS CHERT

LOW MAGNIFICATION – CRUDE CRYSTALLITES

MICROBOTRYOIDAL TEXTURE - SILICA LEPISPHERES ?

LOWER BOONE – BELLA VISTA ROADCUT, ARKANSAS

BURLINGTON/UPPER BOONE – HIGHSTAND/REGRESSIVE SEQUENCE

LATER DIAGENETIC CHERT – POTENTIAL TRIPOLITIZATION – PRINCIPAL RESERVOIR INTERVAL V

▲ UPPER BOONE HIGHSTAND SEQUENCE – CRINOIDAL PACKSTONES AND LATER DIAGENETIC CHERT

UPPER BOONE MISSISSIPPIAN OUTCROP, NORTHWESTERN ARKANSAS

DEPOSITION WITHIN EFFECTIVE WAVE BASE ▼

▲ REGRESSIVE CARBONATES WITH LATER DIAGENETIC CHERT REPLACEMENT ALONG BEDDING PLANES

SEM IMAGES – LATER DIAGENETIC CHERT

TRIPOLIC CHERT RESERVOIR – HIGHSTAND/REGRESSION – UPPER BOONE

LIGHT = TRIPOLITIC CHERT / DARK = LIMESTONE TRIPOLITIC CHERT DEVELOPS ONLY IN CALCAREOUS INTERVALS

SEM - TRIPOLITIC CHERT

PINEVILLE, MISSOURI – U.S. HIGHWAY 71 ROADCUTS

KEOKUK – REGRESSIVE SEQUENCE

Return to Effective Wave Base

Mobile Skeletal Sand of Crinozoan Detritus – NOTE LACK OF CHERT

LOBATE SEDIMENT MOVEMEMNT - LOWER MISSISSIPPIAN ISOPACHOUS MAPS – ST JOE AND BOONE

▲ ST JOE – MIDDLE KINDERHOOKIAN to LOWER OSAGEAN

MODERN ANALOGUE - SEDIMENT MOVEMENT AT SOUTHEASTERN END OF TONGUE OF THE OCEAN, BAHAMAS

This sediment is mostly clean carbonate sand

MODRN ANALOGUE - SEDIMENT MOVEMENT, SOUTH CAT CAY, BAHAMA PLATFORM

This sediment is clean oolite

HIGH WALL EXPOSURES, VALLEY SPRING QUARRY, NORTHERN ARKANSAS

HIGH WALL EXPOSURES, VALLEY SPRING QUARRY, NORTHERN ARKANSAS

HIGH WALL EXPOSURES, VALLEY SPRING QUARRY, NORTHERN ARKANSAS

SCHMIDT PLOTS – BEDDING AND FRACTURES

▲ Gray 2-13H, Osage County, OK

TWO MAIN POPULATIONS OF BEDDING PLANE DIPS – NE AND SW, WITH MINOR NW AND SE ORIENTATION

MANY FRACTURES SCATTERED WITH ESSENTIALLY E-W ORIENTATION

Olson 4 -14H, Osage County, OK▼

VIRTUALLY ALL BEDDING PLANE DIPS TO SE, BUT SCATTERED WITHIN 90°

FEWER, MORE CONCENTRATED FRACTURES WITH ESSENTIALLY E-W ORIENTATION

NORTH-SOUTH FACIES RELATIONSHIPS – OZARK RAMP

Thompson, 1986

BURLINGTON-KEOKUK LIMESTONES ELSEY FORMATION REEDS SPRING FORMATION PIERSON FORMATION COMPTON & NORTHVIEW FORMATIONS

Consident zonation of lower Mississippian strata from Springfield to Branson, MO.

s

N-S Correlation of the Compton through Burlington-Keokuk Interval in Southwestern Missouri (Thompson, 2012, personal communication, unpublished figure)

С

ONOD

0

N

т

z

0

NE

8

ELSEY FORMATION REEDS SPRING FORMATION PIERSON FORMATION COMPTON & NORTHYJEW FORMATIONS

Conodont zunaum vacam merson and mercas oping suala across the southern part of southwestern Missouri, Jane (US 71) to Roaring River State Park

E-W Correlation of the Compton through Burlington-Keokuk Interval in Southwestern Missouri (Thompson, 2012, personal communication, unpublished figure)

OBSERVATIONS ON RESERVOIR INTERVAL – MISSISSIPPI LIME PLAY

- RESERVOIR INTERVALS SEEM TO BE DEVELOPED IN BOTH THE LOWER AND UPPER CHERT-BEARING INTERVALS, BUT NOT CONSISTENTLY IN ALL WELLS
- UNDERSTANDING OF TRIPOLITIC CHERT DEVELOPMENT SUGGESTS THOSE INTERVALS ARE CONFINED TO THE UPPER PORTION OF THE LOWER MISSISSIPPIAN SECTION
- CHERT-BEARING INTERVALS EXHIBIT SIGNIFICANT FRACTURES, BUT SOME ARE CONDUITS FOR GROUNDWATER
- TRANSPORTATION DOWN-RAMP BY LOBATE MOVEMENT CONFOUNDS SUBSURFACE CORRELATION OF RESERVOIR INTERVALS
- MAJOR FRACTURE SYSTEMS NEED TO BE AVOIDED; MAPPING OF GROUNDWATER PRODUCTION MAY PROVIDE INSIGHTS TO RESERVOIR DISTRIBUTION
- HIGHER PRESSURE FRACKING WITH LESS PROPPANT MAY PRODUCE HIGHER HYDROCARBON PRODUCTION