Chapter 6

DOE HORIZONTAL PROJECT
Why a Horizontal Waterflood?

Problems with Conventional Waterflooding

- Low injection rates
- High injection pressures
- Producing wells frac’d into water
Benefits of Horizontal Waterflooding

- Inject large volumes of water
- High producing rates without fracture stimulation
- Bypassed oil in undrained compartments
Introduction

This project has been supported through a grant by the DOE NETL.

The opinions stated are those of the presenter.
Introduction

- Background
- Reservoir Modeling
- Geologic Interpretation
- Planning the Project
- Drilling the Wells
Introduction

- Evaluating the Initial Project Results
- Re-Drilling Operations
- Pilot Production Summary
- Conclusions
- Lessons Learned
Wolco
Evolving Pilot Test
Project Background

- Reservoir Candidate Screening
- Initial Reservoir Simulations
- Initial Pilot Selected
- Results of Original Pilot
- Second Pilot Selected
- Results of Second Pilot
Preliminary Reservoir Screening

Estimating OOIP

If there was only primary production then
Cum Production / 0.1 = OOIP

If there was primary + secondary production then
Cum Production / 0.2 = OOIP

Estimating Remaining Oil

= OOIP - Cum Production - 25% S_{RO}
Initial Simulation Results

- Is there sufficient remaining oil?

- Movable: 55%
- Residual: 25%
- Primary: 10%
- Secondary: 10%
Preliminary Reservoir Screening

Single layer or stratified reservoir?

“C” 18%

“D” 28%
Initial Reservoir Simulation

- Obtain History Including Offset Leases
 - Evaluate Technical Information
- Open and Cased Hole Logs
- Core Reports
- Engineering Reports
- Osage Agency Reports

- Model Reservoir
Initial Simulation Results

Vertical Permeability vs. Horizontal Permeability
Wolco

Oil saturation determination

30' ± Oil Saturation ≈ 52%
NAU Wells 39C and 44C Core Analysis
Combined Horizontal vs Vertical Permeability

y = 0.4455x
NAU Wells 39 C and 44C
Permeability Porosity Crossplot

\[y = 0.0011e^{0.6132x} \]
Wolco

Oil Saturation ✓
Vertical v. Horizontal Permeability ✓
Horizontal Permeability ✓
Geologic Interpretations

Geology Depositional Environment

- C Zone: 14-16% Porosity
- D Zone: > 20% Porosity

- Fluvial Dominated Deltaic
- Incised Valley Fill
Geologic Interpretations

Rock Mechanics
- Dr. Leonid Germanovich
- Rock Mechanics Dept. - Georgia Tech

- Avant Cores – from OGS Core Library

- Sonic Log Evaluation for estimating compressive rock strength
Geologic Interpretations

Rock Mechanics

“Estimating Compressive Strength from Travel Time from Sonic Logs”

by Ken Mason
Geologic Interpretations

Rock Mechanics
- Sonic log determines borehole stability
- Compressive strength estimated from shear wave values
- Compressive strength based on porosity
- Locally porosity < 25% is stable enough for open hole completion
Geologic Interpretations

Natural Fractures
- Osage Surface Fracture Mapping Project

- Primary fracture direction at surface ~ N35E

- Assumed same at Bartlesville zone
Wolco

Heel -to -toe configuration
Geologic Interpretations

Key Project Decision Points

- Horizontal wells should be drilled parallel to the predominate fracture orientation.

- In the Bartlesville reservoir, horizontal wells can be drilled with air using and completed open hole.
Planning the Project

Log Review
- Blake 3A

- Saturation – 30’

- Assume total reservoir to be 80’ Thick
Planning the Project

Location with pilot horizontal well plans in relation to existing wells
Drilling the Horizontal Wells

1. Drill the Vertical Well
2. Move Out Drilling Rig
3. Move In Workover Rig
4. Drill the Curve and Horizontal Sections
Drilling the Horizontal Wells

Short Radius Horizontal Drilling Technique
- Amoco (BP) Licensed Rotary Steerable System
- 70 ft. Radius of Curvature
- 1000 ft. Lateral Section

Based on Formation Stability
- Open Hole Completion
- Air/Foam Drilling Fluids
Drilling the Horizontal Wells

Advantages of These Techniques

- Low cost
- Drilling with air minimizes formation damage in low-pressure, sensitive reservoirs
- Use of air hammer permits rapid penetration rates
- Short-turning radius (70ft) permits wells to be conventionally completed with rod-pump set with low pressure head on the formation
Drilling the Horizontal Wells

Drill the Vertical Well

- Set pipe 70 ft above target formation
Drilling the Horizontal Wells

Drill the Curve
- Trip in Hole with Curve Drilling Assembly (CDA)
- Run Gyro to Orient CDA Direction
- Drill Curve
Drilling the Horizontal Wells

Drill the Curve

- 70 ft Radius
Drilling the Horizontal Wells

Drill the Curve
Drilling the Horizontal Wells

Drill the Curve
Drilling the Horizontal Wells

Drill the Curve
- 4 ½” PDC Bit
Drilling the Horizontal Wells

Drill the Lateral Section

1000 feet
Drilling the Horizontal Wells

Drill the Lateral Section
- 4 1/8” Air Hammer Bit
Drilling the Horizontal Wells

Wolco 4A – Section view

Planned vs Actual
Drilling the Horizontal Wells

Wolco 6A - Section view

Planned

Actual
Drilling the Horizontal Wells

Wolco 5A - Section view

Planned

Actual
Drilling the Horizontal Wells
Drilling the Horizontal Wells

Drilling and Completion Costs - 2001
- Wolco 4A - $257,000
- Wolco 5A - $214,000
- Wolco 6A - $202,000

In 2001 a nearby 1200 ft. horizontal well with a 300 ft. radius curve had an estimated completed cost of $700,000.
The Initial Project Results

Initial Production
- 98% Water Cut

VERY DISAPPOINTING RESULTS
DOE - Wolco Project

Not economic at $30/bbl
The Initial Project Results

Initial Production

High initial water cut was the problem.

The following questions needed to be answered:
The Initial Project Results

1. Why is the oil production below expectations?

2. Is water injection occurring below the parting pressure?

3. How can we increase oil production to realize economic operations?
The Initial Project Results

Step Rate Test

Wolco 4 A
Step Rate Test

573 PSI

1725 BWPD
The Initial Project Results

Step Rate Test Results
- Opened Fractures at 573 psi BHP
- 1725 BWPD
- Fracture gradient of 0.35 psf/ft which is less than a column of water
The Initial Project Results

Significance of Step-Rate Test
- Low fracture gradient of 0.35 psi/ft helps to explain why conventional waterfloods operating in the range of 0.70 psi/ft have often failed.

- Low fracture gradient provides additional support for the concept of using horizontal injection wells.
The Initial Project Results

Step Rate Test Operations Changes

- Injecting at approximately 1200 BWPD

- Surface pressure = Vacuum
The Initial Project Results

Spinner Survey

Distance

Percent Flow

0 25 50 75 100
The Initial Project Results

Analyzing the Spinner Survey Results

- Creation or extension of fractures during the drilling of curve with conventional mud
Logging Horizontal Wells

- Induction
- Density
- Fracture Identification & Orientation

Low cost?
Logging Horizontal Wells

- Induction
- Density
- Fracture Identification & Orientation

How? Low cost?
Logging Horizontal Wells

Grand Directions uses the latest and greatest, high tech, state of the art . . .

SRCL!
Logging Horizontal Wells

Sucker Rod Conveyed Logging

Adaptor
Logging Horizontal Wells

Sucker Rod Conveyed Logging

High tech, state of the art

Electrical Tape
Re-drilling Operations

Wolco 6A and 6A-4
Re-drilling Operations
Re-drilling Operations
The Initial Project Results

Reconfigure the Field Pilot Project

- Change from a horizontal waterflood to oil rim recovery
Pilot Production Summary

Monthly

Before Pilot Change

Horizontal Waterflood

![Graph showing changes in injected/disposed water and produced oil over time. The graph displays three lines: Wolco 4A Injected Water, Produced/Disposed Water, and Produced Oil. The x-axis represents months from December 2003 to August 2004, while the y-axis represents the quantity of injected/disposed water and produced oil in barrels (bbl). The graph highlights the changes in production and injection over the specified period.]
Pilot Production Summary

Monthly

After Pilot Change

Oil Rim Recovery with Vertical Injection

Graph showing monthly production data with three lines representing injected/disposed water, produced/disposed water, and produced oil.
Conclusions

1. The original pilot recovered very little oil making the results uneconomical.

This pilot was discontinued.
Conclusions

2. The pilot was modified by re-drilling the two horizontal wells into the oil rim and using an existing vertical well injecting into the bottom high permeability zone.
3. Simulations with the current reservoir characteristics match the present performance.
4. In old or abandoned fields where conventional waterfloods were inefficient, production may possibly be re-established with:
 - Horizontal wells placed in the oil rim
 - In areas of adequate oil saturation
 - Reservoirs with sufficient bottom hole pressure
Conclusions

5. Compartmentalization
Horizontal Waterflooding

Specific Lessons Learned

1. Initial production results were disappointing, with an oil cut of 1 to 2%, but total fluid withdrawal and injection rates were as predicted.
Horizontal Waterflooding

Specific Lessons Learned

2. Diagnostic tests on the horizontal injector determined injection parameters, which led operation procedures to keep the injection rates below fracture parting pressure.
3. The injection profile survey indicated that all of the injected fluid was exiting at the heel of the horizontal injection well. Negating the value of Wolco 4A pressure support.
Specific Lessons Learned

4. The 0.35 psi/ft fracture gradient was much lower than expected. And confirmed the necessity of using bottomhole pressure gauges when conducting step rate tests.
5. Fractures are dynamic and can take large volumes of water; obtaining injection profiles and step rate test information is vital.
6. The high permeability providing high injection capacity and location of the disposal well, Blake 1A, supplied pressure support for the re-drilled horizontal producers.
Horizontal Waterflooding

Specific Lessons Learned

7. Re-drilling the producers (Wolco 6A-4 and 5A-4) up structure (heading NE) and away from the original pilot area was successful because by-passed oil was encountered in compartments.
8. A bottomhole pressure of 125 psi is enough to have adequate withdrawal rates with horizontal producers at ~ 5% oil cut to generate a satisfactory economic rate of return.
9. The character of the layered reservoir with high and low permeabilities was able to be managed by injecting into the high permeability “D” zone in a vertical well and producing the oil rim at top of the lower permeability “C” zone with horizontal wells.
DOE Horizontal Project

Conclusion

- Low cost horizontals
- No problem with hole stability
- Low cost logging technique
- Low cost horizontal redrills