Horizontal Well Planning Within the Woodford and Other Gas Shales Within the Mid-Continent, USA

Camron Miller Data Services Manager; Sr. Borehole Geologist

SchlumbergerDallas/Fort Worth, TX

Hz Well Planning within Gas Shales–– Key Topics

Lateral placement, based on mineralogy

Drilling direction, based on local stresses

Staying in the zone, based on LWD/MWD

Completion plan, based on borehole images or sonics

Production

Stimulation

Design

Execut

Completion

Production Log – did it work?

GAS

This is what we're seeing on production logs….

Woodford Shale Hz PL example

Flow Scanner* observations:

- \triangleright contribution to gas production varies between perforation clusters
- $>$ 75% of water production is from 4 toe perforations (stage one)
 $>$ 20% of see productions is from 4 toe perforations (stage ane)
- ► 20% of gas productions is from 4 toe perforations (stage one) Solution:

Wouldn't it be nice to havegeologic information toexplain these results?

≻ operator plugged the four toe perforations and eliminated 80-85% of water production (1000 bwpd) with a minimal drap in assession minimal drop in gas production

Intro to Horizontal Well Planning in Gas Shales

The key to success in horizontal well projects within gas shales is to set up, plan and execute an effective completion design

Step 1: Lateral placement – pilot hole evaluation

- \triangleright $\;$ Geochemical log (ECS) to quantify mineralogy and play potential ⋗
- ⋗ Borehole images for structural dip, fracture, fault and stress analysis

Step 2: Drilling direction depends on local stress regime

- Borehole images or advanced sonic tools for stress orientations⋗
	- \triangleright \blacksquare \blacks
	- \triangleright Fast shear azimuth is parallel to present day maximum horizontal stress direction

Step 3: Completion planning – Hz well evaluation

⋗

⋗

⋗

⋗

- \triangleright Borehole images or advanced sonic tools for rock stiffness
	- ⋗ Resistive vs. conductive mineralogy on borehole images
	- Rock mechanical properties for fracture closure stress
- \triangleright Borehole images for structural dip, fracture, fault and stress analysis ⋗
	- ⋗ Dip changes may indicate folding or faulting (higher stresses)
	- ⋗ Natural fractures enhanced system perm, may be related to faulting, can be good or bad
	- ⋗ Drilling fractures help us predict hydraulic fracture initiation and geometry

Shale Minerals

Gas Shales

 Quartz Rich Frequent CarbonatesIllite Dominant ClayChlorite Common Periodic Swelling ClaysPyrite CommonVariable Kerogen

Reservoir Evaluation for Lateral Placement

Geochemically (ECS)-enhanced formation evaluation

- Quantitative mineralogy
	- High silica, low clay = better reservoirs andhigher modulus
	- Swelling clays = big problems

Borehole images → FMI/OBMI/UBI
● Natural fractures

- Natural fractures
- Drilling-induced fractures
- Faults
- Bed orientation

Siliceous zones

Pilot Hole Example – Lateral Placement 200 T**Optimized** ATarget250 R G ET $300_°$

Platform Express

 350

ECS SpectroLith & ELANPlus FMI image & interp Porosity, TOC, Perm & GIP

Pilot Hole Example – Orienting the well

Drilling-Induced Fractures

- ENE-WSW
- Maximum horizontal stress

Natural Fractures

ENE-WSW

Important for natural completions

3D View of Horizontal Well WellEye

Bedding has high apparent dip and fractures have low apparent dip

Bedded Pyrite (conductive)

Resistive Bed

N

Open fractures (both induced and natural)

S

GAS

Stress Information in Horizontal Wellbores → Induced Fractures:
Variable Characteristics = Variable Treatments Variable Characteristics = Variable Treatments

Transverse & Longitudinal

Overall low stress $\boldsymbol{\mathcal{R}}$ isotropic stresses

Low maximum stress,high minimum stress(higher isotropic stress)

Longitudinal only

Transverse only None

Low minimum stress,Max >> Min stress(stress anisotropy)

Overall high stress

Stress Information in Horizontal Wellbores → Induced Fractures:
Variable Characteristics = Variable Treatments Variable Characteristics = Variable Treatments

Stress Information in Horizontal Wellbores → Induced
actures: Variable Characteristics = Variable Treatment Fractures: Variable Characteristics = Variable Treatments

Stress Information in Horizontal Wellbores → Induced
actures: Variable Characteristics = Variable Treatment Fractures: Variable Characteristics = Variable Treatments

Horizontal Woodford Example

Impact of Mineralogy on Mechanical Properties and Stress

Anisotropic shale properties increases stress in argillaceous intervals

Large stress contrast between beds

Assume:

Argillaceous Shale: Isotropic: $\sigma_h = 5,288 \text{ psi} = 0.705 \text{ psi/ft}$ Anisotropic: $\sigma_b = 6.573$ psi = 0.876 psi/ft Cherty Shale: Isotropic: $\sigma_h = 4.568 \text{ psi} = 0.609 \text{ psi/ft}$ Anisotropic: $\sigma_{\text{H}} = 4,605 \text{ psi} = 0.614 \text{ psi/ft}$

Natural Fractures:

Variable Characteristics = Variable Treatments

fel.

COMPIENON CONSIGERATIONS.
Else natural fracture spacing decrease -Completion considerations:

as natural fracture spacing decreases, perf spacing can increase

isolate intervals with significant differences in natural fracture spacing

Horizontal Image Interpretation Examples

Horizontal Woodford Example

Horizontal Image Interpretation Examples

Sub-seismic faults

Potential Issues: \triangleright wasted frac energy and inefficient reservoir stimulation \triangleright can guide hydraulic fractures to water-bearing zones GAS

Wrap Up: Completion Planning/Prediction SummaryVariable Characteristics = Variable Treatments

Conclusions

Geochemically-enhanced formation evaluation, advanced sonic
measurements and/or berabele image analysis entimize berizon measurements and/or borehole image analysis optimize horizontal well placement

Borehole image and/or advanced sonic analyses define local stress
regime and determine the optimal herizontal well azimuth regime and determine the optimal horizontal well azimuth

 \checkmark Borehole image analysis can optimize the completion design

Thank You!

