Horizontal Well Planning Within the Woodford and Other Gas Shales Within the Mid-Continent, USA

Camron Miller Data Services Manager; Sr. Borehole Geologist

Schlumberger Dallas/Fort Worth, TX

Hz Well Planning within Gas Shales – Key Topics

Lateral placement, based on mineralogy

Design

Execu

Production

Drilling direction, based on local stresses

Staying in the zone, based on LWD/MWD

and show the second second

Stimulation

Completion plan, based on borehole images or sonics

Production Log – did it work?

GAS

This is what we're seeing on production logs....

Woodford Shale Hz PL example

Flow Scanner* observations:

- > contribution to gas production varies between perforation clusters
- > 75% of water production is from 4 toe perforations (stage one)
- > 20% of gas productions is from 4 toe perforations (stage one) Solution:

Wouldn't it be nice to have geologic information to explain these results?

> operator plugged the four toe perforations and eliminated 80-85% of water production (1000 bwpd) with a minimal drop in gas production

Intro to Horizontal Well Planning in Gas Shales

<u>The key to success in horizontal well projects within gas shales is to</u> <u>set up, plan and execute an effective completion design</u>

Step 1: Lateral placement – pilot hole evaluation

- Geochemical log (ECS) to quantify mineralogy and play potential
- Borehole images for structural dip, fracture, fault and stress analysis

Step 2: Drilling direction depends on local stress regime

- Borehole images or advanced sonic tools for stress orientations
 - Drilling fractures form parallel to present day maximum horizontal stress direction
 - Fast shear azimuth is parallel to present day maximum horizontal stress direction

Step 3: Completion planning – Hz well evaluation

- Borehole images or advanced sonic tools for rock stiffness
 - Resistive vs. conductive mineralogy on borehole images
 - Rock mechanical properties for fracture closure stress
- Borehole images for structural dip, fracture, fault and stress analysis
 - Dip changes may indicate folding or faulting (higher stresses)
 - Natural fractures enhanced system perm, may be related to faulting, can be good or bad
 - > Drilling fractures help us predict hydraulic fracture initiation and geometry

Shale Minerals

Gas Shales

Quartz Rich Frequent Carbonates Illite Dominant Clay Chlorite Common Periodic Swelling Clays Pyrite Common Variable Kerogen

Reservoir Evaluation for Lateral Placement

Geochemically (ECS)-enhanced formation evaluation

- Quantitative mineralogy
 - High silica, low clay = better reservoirs and higher modulus
 - Swelling clays = big problems

Borehole images → FMI/OBMI/UBI

- Natural fractures
- Drilling-induced fractures
- Faults
- Bed orientation

Pilot Hole Example – Orienting the well

Drilling-Induced Fractures

- ENE-WSW
- Maximum horizontal stress

Natural Fractures

ENE-WSW

Important for natural completions

3D View of Horizontal Well – WellEye

Bedding has high apparent dip and fractures have low apparent dip

Bedded Pyrite (conductive)

Resistive Bed

Ν

Open fractures (both induced and natural)

1.44

S

GAS

Stress Information in Horizontal Wellbores → Induced Fractures: Variable Characteristics = Variable Treatments

Overall low stress & isotropic stresses Low maximum stress, high minimum stress (higher isotropic stress)

Longitudinal only

Transverse only

Low minimum stress, Max >> Min stress (stress anisotropy)

None

Overall high stress

Stress Information in Horizontal Wellbores → Induced Fractures: Variable Characteristics = Variable Treatments

Short & wide fracture fairway

Stress Information in Horizontal Wellbores \rightarrow Induced Fractures: Variable Characteristics = Variable Treatments

Stress Information in Horizontal Wellbores \rightarrow Induced Fractures: Variable Characteristics = Variable Treatments

Horizontal Woodford Example

Impact of Mineralogy on Mechanical Properties and Stress

Assume:

Anisotropic shale properties increases stress in argillaceous intervals

Large stress contrast between beds -

Argillaceous Shale: Isotropic: $\sigma_h = 5,288 \text{ psi} = 0.705 \text{ psi/ft}$ Anisotropic: $\sigma_h = 6,573 \text{ psi} = 0.876 \text{ psi/ft}$ Cherty Shale: Isotropic: $\sigma_h = 4,568 \text{ psi} = 0.609 \text{ psi/ft}$ Anisotropic: $\sigma_h = 4,605 \text{ psi} = 0.614 \text{ psi/ft}$

570

\$75

380

385

Much smaller Mechanical Properties Contrast than in Woodford Shale

Natural Fractures:

Variable Characteristics = Variable Treatments

gl.

Completion considerations:

- as natural fracture spacing decreases, perf spacing can increase
- isolate intervals with significant differences in natural fracture spacing

Horizontal Image Interpretation Examples

Horizontal Woodford Example

Horizontal Image Interpretation Examples

Sub-seismic faults

Potential Issues: wasted frac energy and inefficient reservoir stimulation can guide hydraulic fractures to water-bearing zones GAS

Wrap Up: Completion Planning/Prediction Summary Variable Characteristics = Variable Treatments

Conclusions

 Geochemically-enhanced formation evaluation, advanced sonic measurements and/or borehole image analysis optimize horizontal well placement

 Borehole image and/or advanced sonic analyses define local stress regime and determine the optimal horizontal well azimuth

Borehole image analysis can optimize the completion design

Thank You!

