Shallow Woodford Shale Gas Play in NE Oklahoma

Oklahoma Gas Shale Conference

Presented by

John Coates

October 22, 2008

Outline

- Area of activity
- Type log
- Geochemistry
- Production Data
- Drilling and completion
- Production practices
- Pipeline project
- Summary

Wagoner County Woodford Activity

ORONA

CRONADO RESOURCES

Woodford Shale - Type GR/Density Log

Geochemistry

- Gas composition
- Isotope geochemistry
- Thermal maturity
- Total organic content (TOC)

Gas Composition

High CH₄, Some CO₂ and BTU~1,000 Similar to Antrim Gas

Coronado Resources, LLC

Gas Isotopes and Hydrocarbon Composition (in vol%)

HGS No.:	Well Name	Methane (C _l)	Ethane (C ₂)	Propane (C3)	Carbon Dioxide (CO ₂)
07-4726-200637	McCollough 17-1	95.7	0.9	0.0	2.74
07-4726-200639	McCollough 17-2	95.6	0.9	0.0	2.77
07-4726-200640	McCollough 17-2	95.7	0.9	0.0	2.68

Non-Hydrocarbon Gas Composition (%)

Sample	Gas	He	H_2	Ar	02	N ₂	co	Specific	BTU
ld.	units	%	%	%	%	%	%	Gravity	
McCollough 17-1	50 PSIG	0.005	0.000	0.000	0.000	0.61	0	0.587	987
McCollough 17-2	50 PSIG	0.006	0.004	0.007	0.008	0.71	0	0.588	986
McCollough 17-2	185 PSIG	0.007	0.000	0.006	0.005	0.69	0	0.588	987

Only Woodford Shale is "Dry Gas"

	Median Depth (ft)	SUM of C2, C3, i-C4, n-C4	C2 / C1	i-C4 / n-C4	C1 / C1-C4	GWR C2C5 / C1C5 x 100	LHR C1+C2 / C3+C4+C5	OCQ C4+C5/ C3
	923	67.0	0.934	0.2	0.279	73.38	1	0.7
	953	66.5	0.961	0.2	0.279	73.43	1	0.7
	985	65.0	0.917	0.2	0.307	70.36	1	0.6
	995	60.1	0.807	0.2	0.377	63.13	2	0.5
0	1005	57.2	0.725	0.2	0.409	59.98	2	0.5
Caney	1025	62.9	1.019	0.3	0.357	64.79	2	0.4
	1035	53.8	0.725	0.2	0.452	55.38	3	0.4
	1173	34.7	0.209	0.2	0.645	36.35	3	0.4
	1185	35.7	0.125	0.3	0.622	39.82	2	0.9
	1195	24.9	0.069	0.3	0.734	29.47	3	1.4
oodford	1205	0.5	0.005	0.7	0.995	0.51	1623	1.3
	1215	0.4	0.003	0.4	0.996	0.39	2413	1.1
	1225	0.3	0.003	0.3	0.997	0.35	2346	1.7

Cuttings Headspace Gas Ratios

Woodford

GWR = gas wetness index	< 0.5 dry gas; 0.5-17.5 gas; 17.5-40 oil; > 40 residual oil
LHR = light-to-heavy ratio	LHR > 100 - dry gas; < 100 condensate/oil
OCQ = oil character qualifier	< 0.5 gas potential; > 0.5 gas/light oil potential

Isotope Geochemistry

Biogenic Component to Woodford Gas

Isotope Geochemistry

Thermal Maturity is in the Oil Zone

Woodford TOC >6%, Marine Type II

- 2 years of production is now available for some wells
- Observed well production is consistent with a desorption driven reservoir (e.g. Antrim Shale)
 - Good initial gas and water rates
 - Gas inclines as dewatering Progresses
 - Flattening followed by gradual decline in gas rate

3rd Party Well – Over 1 Year Production History

Field	Operator	Wagoner	Location Wagoner County, Oklahoma			
Lease Name	<u>PUN</u> 14511971300000	Reporting Entity OTC	Cumulative (since 1979) 44 MMCF			
<u>Wells</u> 35-145-22966(19-4C)						

ORO

<u>Monthly Production in a Table</u> or download <u>DRI Version 2 Format (PHDWin users)</u> or, for compatibility with older programs, you can download <u>Older DRI Version 1 Format</u> or give me <u>help on downloading files</u>

Gas Production

Field UNKNOWN (UNION VALLEY-CROMWELL, WOODFORD)	Operator	Location Wagoner County, Oklahor	
Lease Name	<u>PUN</u> 14511865500000	Reporting Entity OTC	Cumulative (since <u>1979)</u> 91 MMCF; 133 BC
35-145-22949(18-1R) 35-145-22957(Wells 18-2R) 35-145-2296	2(18-40) 35-145-2	2965(18-3J)

<u>Monthly Production in a Table</u> or download <u>DRI Version 2 Format (PHDWin users)</u> or, for compatibility with older programs, you can download <u>Older DRI Version 1 Format</u> or give me <u>help on downloading files</u>

Gas and Condensate Production

Coronado's Production Test Summary

Well Name	Well Cost (\$)	Peak Rate (M cfd)	Water (BWPD)
McCollough 17-2	173,170	422	188
McCollough 17-1	184,921	400	332
Coronado 18-3	158,050	353	391
Showman 17-2	125,206	347	308
Essary 7-1	136,394	342	319
Gaither 7-1	160,557	313	237
Johnson 8-2	137,722	308	203
Chase 8-2	243,276	280	245
George 17-1	199,243	275	217
Coronado 18-5	210,703	260	272
Coronado 18-4	154,218	224	257
Showman 17-1	160,889	222	179
Chase 8-1	140,367	214	264
Tibbs 7-1	178,807	186	225
Miller 17-3	161,600	178	227

Coronado's Production Test Summary

Woodford Shale Dewatering

- Fluid level high
- Water rate high
- Gas rate zero/minimal
- Casing psi low pressure
- Fluid level dropping
- Water rate steady
- Gas rate increasing
 - Casing psi increasing

- Fluid level at perfs
- Water rate dropping
- Gas rate maximum
- Casing psi maximum

Chase 8-1

McCollough 17-2

Edwards 8-1

McCollough 17-1

Chase 8-2

Chrisman 21-1

The Antrim Shale is the analog to assess reserve potential in the play

Antrim Shale Decline Curves

CRONADO RESOURCES

Antrim Shale Decline Curves

CORONADO RESOURCES

Drilling

- Air rigs
- 2 days per well
- 120 feet of surface pipe
- 7 7/8" hole to TD
- Cement 5 1/2" casing to surface
- TD with 200 feet of rat hole

Cased, perforated and fracture stimulated

- **15% HCL**
- Resin coated sand
- N₂ 70/30 quality foam

 2 open hole horizontal wells drilled
Promising results – no horizontal fracs to date

- Utilize electric submersible pumps (ESP) with surface controllers
- Lowering and monitoring fluid level important
- Lifting water efficiently is key
- Dispose of water in Arbuckle injection wells

Well Location

Water Disposal Facility

Gas Transportation

Built a 26 mile pipeline connected to R-900

Gas Transportation

Pipe is 12" Steel (900 psi) and 16" Poly (90psi)

Gas Transportation

CRONADO RESOURCES

*Compressor Station Takes 90 psi Line to 900 psi -Amine Unit for CO*²

- Appears to be a desorption driven system dewatering results in inclining gas rates
- Average observed well rates (>150 Mcfd) are highly economic at current well costs
- Biogenic component to gas
- Convenient water disposal in the Arbuckle
- Large pipeline project completed
- Antrim Shale analog Typical Reserves (0.3-0.5 Bcf/well)