Pine Hollow South Field Study

Booch Gross Sand Isopach

OLOGIC

The Booch Gas Play

Pine Hollow South Field Study Area Production

EOLOGI

Tilford Pinson Expl. LLC. Grantham #1-31 NW SE NE SW Sec. 31-6N-14E KBE: 628´

OLOG

1908

The Booch Gas Play

Pine Hollow South Field Study Type Log

Pine Hollow South Field Study Booch Production

OLOGI

1908

R 14 E

Booch Gross Interval Isopach Showing Pine Hollow South Study Area

OLOGI

1908

The Booch Gas Play

Pine Hollow South Field Study Upper Booch Interval Isopach

COLOGIO

1908

The Booch Gas Play

Pine Hollow South Field Study Structure: Top Booch

=OLOGIO

Pine Hollow South Field Study Stratigraphic Cross-Section A-A'

A

OLOGI

No production data

IPF: 193 MCFPD

No production data

SP 2005-1, PLATES 15 and 16 of 16

Pine Hollow South Field Study Stratigraphic Cross-Section B-B'

OLOGI

The Booch Gas Play

Pine Hollow South Field Study PS-5 Net Sand Isopach

OLOGI

Pine Hollow South Field Study Stratigraphic Cross-Section A-A'

LOG

Pine Hollow South Field Study Stratigraphic Cross-Section B-B'

DLOG

Pine Hollow South Field Study PS-2 Net Sand Isopach

EOLOGIC

Pine Hollow South Field Study Structure: Top Booch

=OLOGIO

Pine Hollow South Field Study Stratigraphic Cross-Section A-A'

00

Pine Hollow South Field Study Apparent Penitentiary Fault Drag

00

Pine Hollow South Field Study Newfield Sandra # 1-12 Sec 12 5N 13E (Vertical Woodford Test)

Pine Hollow South Field Study PS-1 Gross Sand Isopach

=OLOG/C

Pine Hollow South Field Study PS-0 Net Sand Isopach

EOLOGIO

Pine Hollow South Field Study Stratigraphic Cross-Section A-A'

A

OLOGIC

No production data

Pine Hollow South Field Production

TABLE 7. — Pine Hollow South Field (Study Area) Booch Production												
						EUR (MMCF)		Production (MCF)				
Operator name	Lease name	Well no.	Location	Status	Gas cum. s (MCF)	All Booch	PS-0	PS-5	PS no. b		atest Fi month	rst prod. date
Tag Team Re- sources LLC	Frank	1	sec. 13, T5N, R13E SW SW SW	ACT	5,229	50	50		0	189	189	2002/02
Tag Tearn Re- sources LLC	Sandra	1	sec. 13, T5N, R13E C NE	ACT	130,848	225		225	5	1,569	1,569	2000/04
Marbet LLC	Marbet LLC	31	sec. 14, T5N, R13E SE SE SE	ACT	71,342	275		275	5	9,512	3,135	2002/05
Marbet LLC	Marbet LLC	25	sec. 23, T5N, R13E C SE	ACT	54,576	50	50		0, (H)	2,345	1,114	2001/07
Tag Team Re- sources LLC	Nell Mary	6	sec. 24, T5N, R13E NE SW NW	ACT	349	50	50		0, 1	349	349	2003/12
Tag Tearn Re- sources LLC	Nell Mary	2	sec. 24, T5N, R13E C NE NE	ACT	29,335	125	125		0	1,439	1,439	2002/11
Tag Tearn Re- sources LLC	Nell Mary	1	sec. 24, 15N, R13E NW NE NW	ACT	27,557	150	150		0, 1	1,843	1,843	2002/11
Tag Tearn Re- sources LLC	Nell Mary	3	sec. 24, T5N, R13E S NE SE	ACT	7,962	75		75	5	941	941	2003/01
Tag Team Re- sources LLC	Watkins Blake	1	sec. 7, T5N, R14E S N SW	ACT	59,377	100		100	5	364	364	1991/01
Tag Team Re- sources LLC	Geneva	4	sec. 18, T5N, R14E SW SW NE	ACT	7,731	25	25		0	247	247	2002/03
Tag Team Re- sources LLC	Watson	1	sec. 18, T5N, R14E C SW	ACT	645,357	250		250	5, (H)	13,498	1,152	1981/08
Totals					1,039,663	1,375	450	925		32,296	12,342	

NOTE: Data from IHS Energy (through February 2004). EUR --- estimated ultimate recovery.

EUR calculated using latest months production 12 5 years. Many recent wells are not yet on production, making EURs provisional. Parasequence completed.

 $^{\mathrm{e}}\!\mathrm{H}$ — Hartshorne. Hartshorne commingled assigns 33% to Booch zone.

00

Pine Hollow South Field Study Volumetric Input

Interval	Avg. Net Sd	Area (ac)	Avg. Por	Avg. Sg	Pore Vol (Ac. Ft.)
DC 0	10.6	0.500	00/	750/	1.504
<u>PS-0:</u>	10 ft	2,528	9%	75%	1,706
<u>PS-5:</u>	17 ft	1,952	10%	80%	2,655

Pine Hollow South Field Study Gas Volumes

LOG

Interval	Gas IIP	Cum Prod	E.U.R.	Proj. R.F.
<u>PS-0:</u>	1,264	88	450	36%
<u>PS-5:</u>	2,544	485	925	36%
<u>Total:</u>	3,808	573	1,375	Avg: 36%

Pine Hollow South Field Study Lessons Learned

• Evaluation Issues

• Keys to Viability

General Conclusions

Conclusions: Stratigraphy

- Booch not equivalent to McAlester
- Records eight progradational cycles (all sourced from the north)
 - Lower Booch (2 cycles) most marine & poorest producer
 - Middle Booch (3 cycles) maximum progradation & best producer
 - Upper Booch (3 cycles) intermediate
- Reservoirs all sandstones (occurring at tops of cycles)
 - Best are channel-fills
 - Tidally reworked deltaics are poorer

Conclusions: Petroleum System

• Booch marine shales and coals are the dominant source rocks

• Gas prone

• Somewhat immature (may explain under-filling)

- Migration
 - Most occurs from adjacent shales and coals
 - Longer distant possible via channel sands (Brooken)
 - Cross-fault from Hartshorne Atoka and deeper possible
- Stratigraphy the key to economic entrapment

Conclusions: Evaluation

Challenges

- Volumetrics of limited value
- Complex reservoir geometry
- Few penetrations per accumulation
- Production allocation issues (commingling)
- Fuzzy line defining potential reservoir and pay
- Under-pressure requires early compression

• Exploration

- Many opportunities (in high-price environment)
- Drilling shallow and cheap
- Entirely subsurface play (will reward detailed analysis)
- Most reservoirs of limited aerial extent (easy to miss)
- Underlying Hartshorne excellent secondary objective

Acknowledgements

Max Tilford

Neil Suneson

Rick Andrews

Don't forget the Booch Field Trip March 4-5, 2009

