Data Driven Woodford Shale Risk Characterization

Kevin Morgan; Phil Fox; John Thorkelson; Madhav M. Kulkarni; Timothy Jensen Marathon Oil Company
• Mission and Motivation

• Woodford Shale Overview

• Developing a Woodford Play Fairway

• Conclusions

• Acknowledgments
Mission and Motivation

- **Quickly** provide a **predictive** production risk map using reservoir attributes that demonstrate a **tangible impact on hydrocarbon production**. Map is used to **direct rig placement**.

Step 1
- Map Woodford geological / petrophysical data
- Compile HRZ Woodford production data
- Assign mapped geological / petrophysical data to wells with HRZ production data

Step 2
- Generate multivariate linear (MVL) models
- Identify best statistically valid MVL model and key attribute(s)
- Generate risk maps using key attribute(s) and validate model

Step 3
- Deliver map to Operation team and implement

[Marathon Oil Logo]
Woodford Shale Overview

- **Woodford Shale:**
 - Late Devonian – Early Mississippian
 - Thinly bedded black marine shale
 - 50’-500’ thick
 - Rich in silica
 - Organic (2%-8% TOC)

Modified from:
Northcutt and Campbell, 1995
Johnson and Luza, 2008
Oklahoma Geological Survey Publication EF 9
Woodford Shale Overview

- Three cores collected by MRO
- From basinal to upper slope environment of deposition
- WDFD is subdivided into three members:
 - Upper
 - Middle
 - Lower
- Variation in lithofacies and fabric type reflected in log character
Developing a Woodford Play Fairway

• Play Fairway map was needed
 • Prioritize future drill locations and leasing (re-leasing) opportunities

• Needed early on in the Woodford appraisal process
 • Prior to creation of a large resource database

• Mapped attributes required
 • Extend trends beyond well locations

• Quick turnaround requested
Developing a Woodford Play Fairway

Step 1: Map Woodford geological / petrophysical data
 • Un-shrunk
 • Not normalized

Step 2: Generate multivariate linear models
 Assign mapped geological / petrophysical data to wells with HRZ production data

Step 3: Generate risk maps using key attribute(s) and validate model
 Deliver map to Operation team and implement

- Map geological / petrophysical attributes
 - Gross thickness, OGIP, Neutron/Density Convergence thickness, PHIT, RHOB, etc.
- Compile primary phase gas EUR data
 - Un-shrunk
 - Not normalized
Developing a Woodford Play Fairway

- 1,000s of model permutations
 - Use geo and petro attributes to model EUR
- Results of the analysis
 - Identify the key geologic and petrologic attributes
 - Provide a linear regression equation to model EUR

Three Key Geological / Petrophysical Attributes:

- Gross Thickness
- OGIP
- N/D Convergence Thickness

Plug data into software to generate multivariate linear models
Developing a Woodford Play Fairway

• Three key attributes
 1. Woodford Gross Thickness
Developing a Woodford Play Fairway

Three key attributes

1. Woodford Gross Thickness
2. N/D Convergence Thickness
Developing a Woodford Play Fairway

Three key attributes
1. Woodford Gross Thickness
2. Convergence Thickness
3. OGIP
Developing a Woodford Play Fairway

- Generate fairway risk maps for each key attribute
- Low, Moderate, High Risk cutoffs based on qualitative production / key attribute observations

Gross Thickness Play Fairway Risk Map

Step 1
Map Woodford geological / petrophysical data
Compile HRZ Woodford production data

Step 2
Generate multivariate linear models
Assign mapped geological / petrophysical data to wells with HRZ production data

Step 3
Generate risk maps using key attribute(s) and validate model
Deliver map to Operation team and implement

Identify best statistically valid MVL model and key attribute(s)
Developing a Woodford Play Fairway

- Generate fairway risk maps for each key attribute
 - Low, Moderate, High Risk cutoffs based on qualitative production / key attribute observations

N/D Convergence Thickness
Play Fairway Risk Map

- Step 1: Map Woodford geological / petrophysical data
- Step 2: Generate multivariate linear models
- Step 3: Generate risk maps using key attribute(s) and validate model
- Deliver map to Operation team and implement

Low Risk
Moderate Risk
High Risk

High EUR
Low EUR
Developing a Woodford Play Fairway

• Generate fairway risk maps for each key attribute
 • Low, Moderate, High Risk cutoffs based on qualitative production / key attribute observations

OGIP Play Fairway Risk Map

Step 1
Map Woodford geological / petrophysical data
Compile HRZ Woodford production data
Assign mapped geological / petrophysical data to wells with HRZ production data

Step 2
Generate multivariate linear models
Identify best statistically valid MVL model and key attribute(s)
Generate risk maps using key attribute(s) and validate model

Step 3
Deliver map to Operation team and implement
Identify best statistically valid MVL model and key attribute(s)
Developing a Woodford Play Fairway

Step 1: Map Woodford geological / petrophysical data
Compile HRZ Woodford production data
Assign mapped geological / petrophysical data to wells with HRZ production data

Step 2: Generate multivariate linear models
Assign mapped geological / petrophysical data to wells with HRZ production data
Identify best statistically valid MVL model and key attribute(s)
Generate risk maps using key attribute(s) and validate model

Step 3: Deliver map to Operation team and implement
Identify best statistically valid MVL model and key attribute(s)

Composite Play Fairway Risk Map

- Combination of all three risk maps
Developing a Woodford Play Fairway

- Resulting predictive multivariate linear model for EUR using:
 - Gross Thickness
 - N/D Convergence Thickness
 - OGIP
Developing a Woodford Play Fairway

Well performance indicates based on location in fairway:

- Low Risk outperform Moderate Risk
- Moderate Risk outperform High Risk

EUR ranked probability curves
- Grouped by fairway risk designation

Step 1
Map Woodford geological / petrophysical data
Compile HRZ Woodford production data
Assign mapped geological / petrophysical data to wells with HRZ production data

Step 2
Generate multivariate linear models
Assign mapped geological / petrophysical data to wells with HRZ production data

Step 3
Generate risk maps using key attribute(s) and validate model
Deliver map to Operation team and implement
Identify best statistically valid MVL model and key attribute(s)
Developing a Woodford Play Fairway

- EUR bar graph
 - Grouped by fairway risk designation

Well performance indicates based on location in fairway:

Low Risk outperform Moderate Risk Moderate Risk outperform High Risk

Step 1: Map Woodford geological / petrophysical data
Compile HRZ Woodford production data
Assign mapped geological / petrophysical data to wells with HRZ production data

Step 2: Generate multivariate linear models
Assign mapped geological / petrophysical data to wells with HRZ production data

Step 3: Generate risk maps using key attribute(s) and validate model
Deliver map to Operation team and implement

Identify best statistically valid MVL model and key attribute(s)
Developing a Woodford Play Fairway

Step 1
Map Woodford geological / petrophysical data
Compile HRZ Woodford production data

Step 2
Generate multivariate linear models
Assign mapped geological / petrophysical data to wells with HRZ production data
Identify best statistically valid MVL model and key attribute(s)
Generate risk maps using key attribute(s) and validate model

Step 3
Deliver map to Operation team and implement
Identify best statistically valid MVL model and key attribute(s)

Low Risk Locations

Composite Play Fairway Risk Map

Marathon Oil Company
Woodford Shale Composite Play Fairway
Conclusions

• The Woodford Play Fairway concept:
 • Quick and practical method to predict economic risk early on in unconventional play
 • Assumption is that key reservoir attributes impact Woodford production

Gross Thickness
- Relationship to EoD
- OM content deposition / preservation

OGIP
- Incorporates organic richness, PHI, Sw
- Determine overall gas potential of reservoir

N/D Convergence Thickness
- Relationship to shale petrology and mineralogical properties
- Siliceous/cherty sub-facies
- Predominately brittle (ideal target)
- Typically fractured with elevated K and PHI
Conclusions

• Future Work

• To provide a high resolution assessment of fairway risk, additional multivariate work is needed that includes a more robust set of attributes that *may* impact production
 • Completion style and success
 • Wellbore targeting / orientation
 • Seismic attributes (tectonic stress / faulting / fracturing)
 • Petrophysical character and quality
 • Wellbore parent / sister relationship
 • Normalized EUR dataset (by effective lateral length)
 • The list goes on...

Fractures confined to the more competent, chert sub-facies of Woodford Shale
Thank you!

Acknowledgements: Thanks are due to Marathon Oil Company management and staff, in particular David Bernhardt, Darren Williams, Phil Fox, Joan Spaw, Kim Hlava, Dicman Alfred, Tim Moser, Larry Chadwell and the entire Woodford Shale Team who assisted with this project.

Questions?