

But what are microseismic events? Some researchers suggest that through Moment Tensor Inversion we can see opening and closing of tensile fractures. Others suggest that events are predominantly shear pre-existing fractures or accommodation failure related to hydraulic fracture growth Termination at bed boundaries may manifest as a different mechanism. If we better understand the mechanism, can we: Predict height growth? Adjust treatment parameters to maximize (or minimize) height growth?

Horizontal fracturing?

Conclusions

Multiple wells (at least two) significantly improves event locations
Fractures in the Granite Wash appear significantly narrower with multi-well solution
Fault plane solutions separate into two populations
Strike-slip events oriented close to regional stress direction
Dip-slip events near horizontal (or vertical)
Vertical event locations are not precise enough to correlate FPSs with bounding formations

Future Work

Relocation of events using cross correlation

-Has been shown to dramatically improve location of events

Fault plane solutions for all of the high quality events Inclusion of S/P amplitude ratios in fault plane solutions Integration with azimuthal anisotropy and attributes from 3D seismic

Acknowledgements

University of Oklahoma Granite Wash Consortium Devon Energy for providing the data Ron Kerr (formerly Devon Energy), Sara Long (Devon Energy), Ian Stark (OU MS student)