Ogallala Ash Outcrop in Ellis County

Volcanic-ash deposits in western Oklahoma can be divided into two age groups. The older ash, in the Ogallala Formation, forms accumulations up to 18 feet thick and usually grades downward to bentonitic clay at the base. The age of the Ogallala in the Great Plains region ranges from about 16–17 m.y. to about 5 m.y. The photograph shows an outcrop of fresh Ogallala ash south of Lake Lloyd Vincent in Ellis County (sec. 23, T. 18 N., R. 26 W.).

The younger volcanic-ash beds of the Pearlette family belong to three different zones ranging in age from 0.6 m.y. to 1.9 m.y. The Pearlette ash, unlike the Ogallala, is characterized by lack of any distinct alteration trends. The inset shows a scanning electron micrograph of glassy shards from an outcrop in Custer County (sec. 27, T. 15 N., R. 16 W.). The sources of ash have most likely been volcanoes in the Valle Grande region of the Jemez Mountains in New Mexico, the Yellowstone National Park region, and the Crater Lake region in Oregon.

Volcanic ash is mined for use in swimming-pool filters, polishing materials, soil conditioning compounds, scouring soaps, oil-well drilling muds, fire-proofing and water-proofing materials, fire-clay applications, rubber products, water softening, insulation, and crop dusting. The material is valued for its ability to absorb grease and wastes and is also used in the paint industry.

—Salman Bloch

(SEM micrograph by Rhesa Bloodworth, Hazen Research, Inc.)
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY, 1979¹

Compiled by Elizabeth A. Ham²

Bibliography—pages 123–150

Index—pages 150–169

BIBLIOGRAPHY

¹ Includes some earlier listings.
² Associate editor, Oklahoma Geological Survey.

Barker, Colin, see Lipstreuer, K. A., and Barker, Colin

Bartolina, D. G., see Mayhugh, R. E., and Bartolina, D. G.
Bateman, A. M., see Jensen, M. L., and Bateman, A. M.

19. Bennison, A. P., 1979, Mobile basin and shelf border area in northeast Oklahoma during Desmoinesian cyclic sedimentation, in Hyne, N.

32. Bourlier, B. G., Nichols, J. D., Ringwald, W. J., Workman, P. J., and
Clemmons, Stanley, 1979, Soil survey of Osage County, Oklahoma: U.S. Bureau of Indian Affairs in cooperation with Oklahoma Agricultural Experiment Station, 164 p., 12 figs., 70 soil maps, 19 tables.

Brookins, D. G., see Chaudhuri, S., and Brookins, D. G.

Butler, B. H., see Henry, D. O., Butler, B. H., and Hall, S. A.

Cagle, G. W., see Bard, C. S., Butz, T. R., Cagle, G. W., Kane, V. E., Nichols, C. E., Rutledge, D. A., and Wolf, D. A.

Chatterton, B. D. E., see Perry, D. G., and Chatterton, B. D. E.

Chaudhuri, Sambhudas, see Cullers, Robert, Chaudhuri, Sambhudas, Kilbane, Neil, and Koch, Richard

Chism, Alan, see Conkin, J. E., and Chism, Alan

44. Chou, T. W., and Malasky, H. J., 1979, A crystal defect theory approach to faulting in geological structures: Journal of Geophysical
Research, v. 84, p. 6083–6089, 11 figs. (Includes Osage County fault.)
Christenson, S. C., see Davis, R. E., and Christenson, S. C.
Clemmons, Stanley, see Bourlier, B. G., Nichols, J. D., Ringwald, W. J., Workman, P. J., and Clemmons, Stanley.

45. Cocks, L. R. M., 1979, New acrotretacean brachiopods from the Palaeozoic of Britain and Austria: Palaeontology, v. 22, p. 93–100, 2 pls. (Refers to Oklahoma Silurian genera.)

Collins, Desmond, see Runnegar, Bruce, Pojeta, John, Jr., Taylor, M. E., and Collins, Desmond
Comadi, A. J., see Moffatt, H. H., and Comadi, A. J.
Coney, C. C., see Frest, T. J., Strimple, H. L., and Coney, C. C.

Coquel, Robert, see Owens, Bernard, Lobozia, Stanislas, and Coquel, Robert

Cuffey, R. J., see Hall, W. B., and Cuffey, R. J.
Cuffey, R. J., see Lutz-Carihan, A. B., and Cuffey, R. J.

54. Cunliffe, J. E., 1979, Late Pleistocene molluscs, southeastern Tulsa County, Oklahoma: Oklahoma Geology Notes, v. 39, p. 95–98, 1 fig.
Davis, D. K., see Kanino, R. E., and Davis, D. K.
Davis, R. E., see Fairchild, R. W., Hanson, R. L., and Davis, R. E.
Davis, R. E., see Hart, D. L., and Davis, R. E.
Derr, J. S., see Poppe, B. B., Naab, D. A., and Derr, J. S.
57. Deul, Maurice, 1979, Coalbed derived natural gas in conventional gasfields [abstract]: International Congress of Carboniferous Stratigraphy and Geology, ninth, Abstracts with papers, p. 51. (Includes Hartshorne coal.)
Donovan, T. J., see Henry, M. E., and Donovan, T. J.
Doolan, B. L., see Williams, Harold, and Doolan, B. L.
DuBois, R. L., see Lawson, J. E., Jr., DuBois, R. L., Foster, P. H., and Luza, K. V.
DuBois, R. L., see Lawson, J. E., Jr., Luza, K. V., DuBois, R. L., and Foster, P. H.
DuBois, S.M., see Steeles, D. W., DuBois, S.M., and Wilson, F. W.
Dutton, S. P., see Galloway, W. E., and Dutton, S.P.
64. Dunagan, J. F., Jr., 1979, Geology of the Lower Ordovician rocks of the

67. Engelder, Terry, 1979, The nature of deformation within the outer limits of the central Appalachian foreland fold and thrust belt in New York State: Tectonophysics, v. 55, p. 289–310, 8 figs., 2 tables. (Compares fracture patterns to those in Ouachitas.)

Fertl, W. H., see King, E. E., and Fertl, W. H.
Finley, R. J., see Gustavson, T. C., and Finley, R. J.
Forgey, R. L., see Donovan, T. J., Forgey, R. L., and Roberts, A. A.
Foster, P. H., see Lawson, J. E., Jr., DuBois, R. L., Foster, P. H., and Luza, K. V.
Foster, P. H., see Lawson, J. E., Jr., Luza, K. V., DuBois, R. L., and Foster, P. H.
Foster, Paul, see Luza, K. V., DuBois, R. L., Lawson, J. E., Jr., Foster, Paul, and Koff, Leonid

78. Frese, T. J., Strimple, H. L., and Coney, C. C., 1979, Paracrinoids (Platycystitidae) from the Benboul Formation (Blackriverian) of Virginia: Journal of Paleontology, v. 53, p. 380–398, 9 figs., 2 pls., 1 table. (Includes Oklahoma species.)

81. Friedman, G. M., 1979, Differences in size distributions of populations of particles among sands of various origins: Sedimentology, v. 26, p. 3–32, 31 figs., 1 table. (Includes Arkansas River bar.)

84. Friedman, S. A., 1979, Surface mine in Stigler coal, Haskell County, Oklahoma: Oklahoma Geology Notes, v. 39, p. 162. (Cover-photo description.)

Hall, S. A., see Henry, D. O., Butler, B. H., and Hall, S. A.

99. Hall, W. B., and Cuffey, R. J., 1979, Species-level bryozoan assemblages in the Wreford Megacyclothem (Lower Permian) of Kansas, Oklahoma, and Nebraska [abstract]: International Congress of Carboniferous Stratigraphy and Geology, ninth, Abstracts of papers, p. 84–85.

Ham, E. A., see Keener, K. L., Ham, E. A., and Kidd, C. M.
Hanson, R. L., see Fairchild, R. W., Hanson, R. L., and Davis, R. E.
Harding, Richard, see Urban, J. B., and Harding, Richard
111. Hatch, J. R., 1979, Distribution of zinc and cadmium in coals from the eastern and western regions, Interior Coal Province [abstract]: International Congress of Carboniferous Stratigraphy and Geology, ninth, Abstracts of papers, p. 86.
Haws, Alan, see Bellis, W. H., and Haws, Alan

132
 Henson, B. L., see Lee, L. J., and Henson, B. L.
 Henry, M. E., see Donovan, T. J., Termien, P. A., and Henry, M. E.
 Hoenig, M. A., see Hills, J. M., and Hoenig, M. A.
 Holbenach, R. E., see Grady, D. E., and Holbenach, R. E.
 Hrkel, E. J., see Bradford, R. N., and Hrkel, E. J.
 Huntzinger, T. L., see Corley, R. K., and Huntzinger, T. L.
127. Jacobson, S. R., 1979, Acritarchs as paleoenvironmental indicators in Middle and Upper Ordovician rocks from Kentucky, Ohio and New
York: Journal of Paleontology, v. 53, p. 1197–1212, 12 figs. (Discusses acritarch studies done on Oklahoma Ordovician rocks.)

John, C. J., see Kraft, J. C., and John, C. J.

Johnson, K. S., see Arndt, R. H., Johnson, K. S., and Roberts, J. F.

Jones, M. D., see Wagner, G. H., Konig, R. H., Vogelpohl, Sidney, and Jones, M. D.

135. Jones, N. W., and McKee, J. W., 1979, Basement rocks at Potrero de la Mula, Coahuila, Mexico [abstract]: Geological Society of America Abstracts with Programs, v. 11, p. 150. (Suggests relationship of igneous rocks with Ouachita core.)

Jordan, Louise, see Frezon, S. E., and Jordan, Louise

Kane, V. E., see Bard, C. S., Butz, T. R., Cagle, G. W., Kane, V. E., Nichols, C. E., Rutledge, D. A., and Wolf, D. A.

137. Kasino, R. E., and Davies, D. K., 1979, Environments and diagenesis, Morrow sands, Cimarron County (Oklahoma) and significance to regional exploration, production and well completion practices, in Hyne, N. J., editor, Pennsylvanian sandstones of the Mid-Continent: Tulsa Geological Society, p. 169–194, 18 figs., 3 tables.

Kidd, C. M., see Ham, E. A., and Kidd, C. M.
Kidd, C. M., see also Keener, K. L., Ham, E. A., and Kidd, C.M.
Kilbane, Neil, see Cullers, Robert, Chaudhuri, Sambhudas, Kilbane, Neil, and Koch, Richard

Kisvarsanyi, Geza, see Proctor, P. D., Toweh, S. H., and Kisvarsanyi, Geza

Knauth, L. P., see Jones, D. L., and Knauth, L. P.

Koch, M. R., see Morris, R. C., Proctor, K. E., and Koch, M. R.

Koch, Richard, see Cullers, Robert, Chaudhuri, Sambhudas, Kilbane, Neil, and Koch, Richard

Koff, Leonid, see Luza, K. V., DuBois, R. L., Lawson, J. E., Jr., Foster, Paul, and Koff, Leonid

Konig, R. H., see Wagner, G. H., Konig, R. H., Smith, D. A., Steele, K. F., and Zachry, D. L., Jr.

Konig, R. H., see also Wagner, G. H., Konig, R. H., Vogelpohl, Sidney, and Jones, M. D.

147. Kranak, P. V., 1978, Petrography and geochemistry of the Butterly Dolomite, and associated sphalerite mineralization, Turner pros-

151. Lamar, O. W., 1979, Soil survey of Kiowa County, Oklahoma: U.S. Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station, 73 p., 11 figs., 20 soil maps, 10 tables.

Larsh, H. A., see Harris, R. L., and Larsh, H. A.
Lash, C. C., see Gallagher, J. M., and Lash, C. C.

155. Laub, R. S., 1979, The corals of the Branfield Formation (Mid-Llandovery; Lower Silurian) in the Cincinnati Arch region: Bulletins of American Paleontology, v. 75, no. 305, 457 p. (Refers to Oklahoma species.)

Lawson, J. E., Jr., see also Luza, K. V., and Lawson, J. E., Jr.
Lawson, J. E., Jr., see also Luza, K. V., DuBois, R. L., Lawson, J. E.,
Jr., Foster, Paul, and Koff, Leonid
159. Leach, D. L., 1979, Temperature and salinity of the fluids responsible for minor occurrences of sphalerite in the Ozark region of Missouri: Economic Geology, v. 74, p. 931–937, 5 figs. (Includes Ouachita Geosyncline and Arkoma Basin as source areas.)
LeBlanc, R. J., Sr., see Stone, C. G., LeBlanc, R. J., Sr., Haley, B. R., and McFarland, J. D., III
161. Lewan, M. D., Winters, J. C., and McDonald, J. H., 1979, Generation of oil-like pyrolyzates from organic-rich shales: Science, v. 203, no. 4383, p. 897–899, 2 figs., 4 tables. (Oklahoma Woodford Shale is used as an example.)
Lewis, R. D., see Bickford, M. E., and Lewis, R. D.
Loboziak, Stanislas, see Owens, Bernard, Loboziak, Stanislas, and Coquel, Robert
Lowell, J. D., see Harding, T. P., and Lowell, J. D.
Ludvigsen, Rolf, see von Bitter, P. H., and Ludvigsen, Rolf
165. Luza, K. V., 1979, Granite quarry, Johnston County, Oklahoma: Oklahoma Geology Notes, v. 39, p. 82. (Cover-photo description.)
166. Luza, K. V., 1979, Hydraulic mining near Mill Creek, Oklahoma: Oklahoma Geology Notes, v. 39, p. 110. (Cover-photo description.)
Luza, K. V., see Lawson, J. E., Jr., and Luza, K. V.
Luza, K. V., see also Lawson, J. E., Jr., DuBois, R. L., Foster, P. H., and Luza, K. V.
Luza, K. V., see also Lawson, J. E., Jr., Luza, K. V., DuBois, R. L., and Foster, P. H.

173. MacGorman, D. R., 1979, Lightning location from VHF impulses relative to storm structure from dual Doppler radar [abstract]: American Geophysical Union Transactions, E0S, v. 60, p. 837. (Concerns measurements taken at Severe Storms Laboratory in Norman.)

McDonald, J. H., see Lewan, M. D., Winters, J. C., and McDonald, J. H.
McFarland, J. D., III, see Stone, C. G., and McFarland, J. D., III.
McFarland, J. D., III, see also Stone, C. G., LeBlanc, R. J., Sr., Haley, B. R., and McFarland, J. D., III.

176. McFarland, M. J., 1979, Correlations of brightness temperatures from the electrically scanning microwave radiometer (ESMR) with antecedent precipitation indices (API) [abstract]: American Geophysical Union Transactions, E0S, v. 60, p. 262.
McGinnis, M. R., see Frest, T. J., Strimple, H. L., and McGinnis, M. R.

178. McIntosh, G. C., 1979, Abnormal specimens of the Middle Devonian crinoid Bactocrinites and their effect on the taxonomy of the genus: Journal of Paleontology, v. 53, p. 18–28, 2 figs., 2 pls. (Refers to Henryhouse Formation species.)
McKee, J. W., see Jones, N. W., and McKee, J. W.
Malasky, H. J., see Chou, T. W., and Malasky, H. J.

Manger, W. L., see Saunders, W. B., Ramsbottom, W. H. C., and Manger, W. L.

Manger, W. L., see also Sutherland, P. K., and Manger, W. L.

Manger, W. L., see also Sutherland, P. K., and Manger, W. L., editors

Mankin, C. J., see Arndt, R. H., and Mankin, C. J.

187. Mapes, R. H., 1979, Carboniferous and Permian Bactritoides (Cephalopoda) in North America: University of Kansas Paleontological Contributions, Article 64, 75 p., 14 figs., 41 pls.

Maxwell, A. J., see Moebius, G. E., and Maxwell, A. J.

188. Mayhugh, R. E., and Bartolina, D. G., 1979, Soil survey of Seminole County, Oklahoma: U.S. Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station, 142 p., 11 figs., 53 soil maps, 19 tables.

Meissner, F. F., see Koch, W. J., and Meissner, F. F.

202. Niem, A. R., 1979, Patterns of flysch deposition and deep-sea fans in the lower Stanley Group (Mississippian), Ouachita Mountains, Ok-

Nitecki, M. H., see Toomey, D. F., and Nitecki, M. H.
Norris, J. B., see Smit, D. E., Norris, J. B., and Watson, P. K.

203. Oil and Gas Journal, 1979, Mid-Continent AAPG meets Oct. 7–9: v. 77, no. 39, p. 231–234. (Contains information on Anadarko Basin and Oklahoma heavy-oil resources.)

Oliver, Joseph, see Krothe, N. C., and Oliver, Joseph

Pareyn, Claude, see Manger, W. L., and Pareyn, Claude
Parker, R. G., see Simon, D. E., and Parker, R. G.

214. Parsley, R. L., 1979, Eumorphocystis, a Middle Ordovician diploporid with exothecal pinnate triserial appendages [abstract]: Geological

218. Petroleum Information Corporation, 1979, Mid-Continent region, in Resumé 78, p. 106–140, illus.

219. Pojeta, John, Jr., see Runnegar, Bruce, Pojeta, John, Jr., Taylor, M.E., and Collins, Desmond

220. Polone, D. J., 1979, Soil survey of Nowata County, Oklahoma: U.S. Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station, 88 p., 8 figs., 48 soil maps, 18 tables.

224. Puglio, D. G., see Iannocchione, A. T., and Puglio, D. G.

227. Raring, A. M., 1979, Structural Configuration in the deep Black Warrior Basin, Mississippi; new evidence [abstract]: Geological Society of America Abstracts with Programs, v. 11, p. 164. (Includes com-
parison with Ouachita structures.)
Reasoner, R. C., see Swafford, B. G., and Reasoner, R. C.
Reike, H. H., see Fertl, W. H., and Reike, H. H.
228. Rettman, P. L., 1979, Ground-water resources of the Palo Duro Creek
Basin, Texas and Oklahoma: U.S. Geological Survey Open-File Re-
port 79-209, 32 p., 15 figs., 4 tables. (Prepared in cooperation with
U.S. Army Corps of Engineers, Tulsa District.)
Ringwald, W. J., see Bourlier, B. G., Nichols, J. D., Ringwald, W. J.,
Workman, P. J., and Clemmons, Stanley
Ripley, E. M., see Lambert, M. W., and Ripley, E. M.
tables.
230. Robbins, G. D., Jr., 1979, Geology of the Yale Southwest Quadrangle,
Payne County, Oklahoma: Oklahoma State University unpublished
Roberts, A. A., see Donovan, T. J., Forgey, R. L., and Roberts, A. A.
231. Roberts, J. D., 1978, Ten-barrel "whodunit" at Red Fork: Chronicles of
Roberts, J. F., see Arndt, R. H., Johnson, K. S., and Roberts, J. F.
Roberts, J. F., see also Harrison, W. E., Curiale, J. A., and Roberts, J. F.
Roberts, J. F., see also Johnson, K. S., and Roberts, J. F.
232. Robison, C. R., 1978, A survey of the paleontological resources of
southeastern Oklahoma: Oklahoma Geological Survey, 146 p., 15
figs. (Final report to U.S. Bureau of Land Management.)
233. Root, M. R., 1978, Computer applications to petroleum exploration,
Osage County, Oklahoma: University of Alaska unpublished M.S.
thesis.
234. Rozentalab, M. H., 1978, Clay minerals and hydroxy interlayers in
selected Oklahoma soils: Oklahoma State University unpublished
235. Ross, C. A., 1979, Late Paleozoic collision of North and South America:
Geology, v. 7, p. 41–44, 6 figs. (Includes Ouachita geosyncline.)
236. Runnegar, Bruce, Pojeta, John, Jr., Taylor, M. E., and Collins, Des-
mond, 1979, New species of the Cambrian and Ordovician chitons
Matthevia and Chelodes from Wisconsin and Queensland: evidence
for the early history of polyplacophoran mollusks: Journal of
Paleontology, v. 53, p. 1374–1394, 4 figs., 3 pls. (Refers to Oklahoma
species.)
Rutledge, D. A., see Bard, C. S., Butz, T. R., Cagle, G. W., Kane, V. E.,
Nichols, C. E., Rutledge, D. A., and Wolf, D. A.
Sandberg, P. A., see Bailey, J. B., and Sandberg, P. A.
237. Saunders, W. B., Ramsbottom, W. H. C., and Manger, W. L., 1979,
Mesothem cyclicity in the mid-Carboniferous of the Ozark shelf
region?: Geology, v. 7, p. 293–296, 2 figs.
Schabilion, J. T., see Maps, Gene, and Schabilion, J. T.
238. Sharp, J. B., Steele, K. F., and Wagner, G. H., 1979, Geothermal
reconnaissance survey of the Ouachita Mountains, Arkansas
[abstract]: Geological Society of America Abstracts with Programs,
v. 11, p. 165–166.

240. Shingleton, L. C., and Watterson, Anderson, Jr., 1979, Soil survey of Atoka County, Oklahoma: U.S. Soil Conservation Service in cooperation with Oklahoma Agricultural Experiment Station, 153 p., 11 figs., 75 soil maps, 19 tables.

Smith, D. J., see Takken, Suzanne, and Smith, D. J.

Sparwasser, W. A., see Moebius, G. E., and Sparwasser, W. A.

Spiser, D. E., see Goemaat, R. L., and Spiser, D. E.

247. Standing, M. B., 1979, A set of equations for computing equilibrium ratios of a crude oil/natural gas system at pressures below 1,000 psia: Journal of Petroleum Technology, v. 31, p. 1193–1194, 1 fig., 1 table. (Study done on Oklahoma City Field Wilcox sand.)

Steele, K. F., see Sharp, J. B., Steele, K. F., and Wagner, G. H.

Steele, K. F., see also Wagner, G. H., Konig, R. H., Smith, D. A., Steele, K. F., and Zachry, D. L., Jr.

Steers, C. A., see Cole, E. L., and Steers, C. A.

Stone, C. G., see Holbrook, D. F., and Stone, C. G.

Strimple, H. L., see Frest, T. J., Strimple, H. L., and Coney, C. C.

Strimple, H. L., see also Frest, T. J., Strimple, H. L., and McGinnis, M. R.

Strimple, H. L., see also Fabian, R. K., and Strimple, H. L.

Suczek, C. A., see also Dickinson, W. R., and Suczek, C. A.

256. Sutherland, P. K., 1979, Stop descriptions—fourth day, afternoon, in Sutherland, P. K., and Manger, W. L., editors, Mississippian–Pennsylvanian shelf-to-basin transition, Ozark and Ouachita regions, Oklahoma and Arkansas: Oklahoma Geological Survey Guidebook 19, p. 61–65, figs. 91–102.

257. Sutherland, P. K., 1979, Stop descriptions—second day, in Sutherland, P. K., and Manger, W. L., editors, Mississippian–Pennsylvanian shelf-to-basin transition, Ozark and Ouachita regions, Oklahoma and Arkansas: Oklahoma Geological Survey Guidebook 19, p. 27–37, figs. 27–48.

258. Sutherland, P. K., and Manger, W. L., 1979, Comparison of Ozark Shelf and Ouachita Basin facies for Upper Mississippian and Lower Pennsylvanian Series in eastern Oklahoma and western Arkansas, in Sutherland, P. K., and Manger, W. L., editors, Mississippian–Pennsylvanian shelf-to-basin transition, Ozark and Ouachita

259. Sutherland, P. K., and Manger, W. L., editors, 1979, Mississippian–Pennsylvanian shelf-to-basin transition, Ozark and Ouachita regions, Oklahoma and Arkansas: Oklahoma Geological Survey Guidebook 19, 81 p., 7 papers, 116 figs. (Guidebook for Field Trip 11 of Ninth International Congress of Carboniferous Stratigraphy and Geology.)

Sutherland, P. K., see Manger, W. L., and Sutherland, P. K.

Sutherland, P. K., see also Morris, R. C., and Sutherland, P. K.

Taylor, M. E., see Runnegar, Bruce, Pojeta, John, Jr., Taylor, M. E., and Collins, Desmond

265. Taylor, W. L., 1979, Lightning initiation height and progression relative to storm dynamics [abstract]: American Geophysical Union Transactions, EOS, v. 60, p. 837. (Recordings for central Oklahoma storms.)

Thompson, T. B., see Naney, J. W., and Thompson, T. B.

Thompson, T. L., see Manger, W. L., and Thompson, T. L.

270. Toomey, D. F., and Nitecki, M. H., 1979, Organic buildups in the
Lower Ordovician (Canadian) of Texas and Oklahoma: Fieldiana, new ser., no. 2, 181 p., 85 figs., 4 tables.

Varnes, K. L., see Craig, L. C., and Varnes, K. L.

Vischer, G. S., see Vedros, S. G., and Vischer, G. S.

Vogelpohl, Sidney, see Wagner, G. H., Konig, R. H., Vogelpohl, Sidney, and Jones, M. D.

288. Wagner, G. H., Konig, R. H., Vogelpohl, Sidney, and Jones, M. D., 1979, Base metals and other minor elements in the manganese deposits of west-central Arkansas: Chemical Geology, v. 27, p. 309–327, 9 figs., 5 tables. (Deposits extend into Oklahoma.)

Wagner, G. H., see Sharp, J. B., Steele, K. F., and Wagner, G. H.

Watson, P. K., see Smit, D. E., Norris, J. B., and Watson, P. K.

Watterson, Anderson, Jr., see Bain, W. R., and Watterson, Anderson, Jr.

Watterson, Anderson, Jr., see also Shingleton, L. C., and Watterson, Anderson, Jr.

292. Wickersham, Ginia, 1979, Ground water resources of the southern part of the Garber–Wellington ground water basin, in Cleveland and southern Oklahoma Counties and parts of Pottawatomie County, Oklahoma: Oklahoma Water Resources Board Hydrologic Investigations Publication 86, 3 map sheets.

297. Wilson, F. W., see Steeples, D. W., DuBois, S. M., and Wilson, F. W.

302. Wiltse, E. W., 1979, Surface and subsurface study of the Southwest Davis Oil Field, sections 11 and 14, T 1 S, R 1 E, Murray County, Oklahoma, part 1: Shale Shaker, v. 29, p. 82–87, 2 figs., 1 pl.

303. Wiltse, E. W., 1979, Surface and subsurface study of the Southwest Davis Oil Field, sections 11 and 14, T 1 S, R 1 E, Murray County, Oklahoma, part 2: Shale Shaker, v. 29, p. 100–110, figs. 5–14.

Winters, J. C., see Lewan, M. D., Winters, J. C., and McDonald, J. H. Witz, F. E., see Kent, D. C., Naney, J. W., Neafus, R. J., and Witz, F. E. Witzke, B. J., see Heckel, P. H., and Witzke, B. J.

Workman, P. J., see Bourlier, B. G., Nichols, J. D., Ringwald, W. J., Workman, P. J., and Clemmons, Stanley

INDEX
(Numbers refer to entries in bibliography)

age dating: Rb–Sr, Beavers Bend illite, 42; U–Pb, basement rocks, 23

ANADARKO BASIN:

Hunton Group, 28
Marchand sands, 13
Morrowan fan-delta deposits, 239
Morrow sands, 137, 138, 262, 263
petroleum and natural gas, 13, 14, 41, 52, 61, 62, 69, 70, 106, 114, 125, 128, 137, 138, 145, 175, 193, 203, 218, 239, 243, 262, 268, 272
sedimentology, 13, 14, 20, 28, 61, 62, 92, 137, 262, 263, 272
Simpson Group, 28
structure and tectonics, 51, 52, 61, 69, 70, 80, 105, 106, 114, 128, 194, 268, 294
Upper Permian rocks, 130
waste-disposal reservoirs, 132

annual reports: Oklahoma Department of Mines, 70th, 212; Oklahoma Geological Survey, July 1, 1978–June 30, 1979, 185

ARBUCKLE MOUNTAINS:

Arbuckle Anticline, 38
Dougherty Anticline, 93
Lake Anticline, 93
Mill Creek, Fault, Graben, and Syncline, 29, 38, 93
Northwest Butterfly Field, 29
organic buildups, 270
petroleum and natural gas, 29, 38, 302, 303

ptymbocipd bimoana, 211

Reagan Fault, 38, 93, 303
sedimentology, 37, 134, 163, 270, 294
source of Vanoss sediments, 37
Southwest Davis Field, 38, 302, 303
structure, 29, 37, 38, 93, 294, 302, 303
Sycamore Creek Anticline, 38
Tishomingo Anticline, 38; Prices Falls limb, 38
Washita Valley Fault, 38, 294, 302, 303
Ardmore Basin: structure and tectonics, 105, 194, 268, 294
Ardmore Geological Society, history, 229
Arkoma Basin:
Atoka Formation, 6, 7
Backbone Anticline, 123
Cavanal Syncline, 123
Clarita Fault, 6
coal, 31, 39, 57, 60, 83, 84, 111, 122, 123, 139, 280, 281, 297
Cowlington Syncline, 123
Jack Hills Fault, 6
Kinta Anticline, 123
Milton Anticline, 123
paleogeography, 255
Panther Mountain Syncline, 123
petroleum, 6, 7, 105, 218, 255, 279
San Bois Syncline, 123
sedimentology, 6, 7, 19, 20, 249, 252, 256, 279, 283, 284
Simpson Group rocks, 255
source of Missouri lead-zinc ore fluids, 159
structure, 6, 7, 105, 123, 159, 194, 225, 226, 279, 283, 284
waste-disposal reservoirs, 132
Whitefield Uplift, 123
Bibliographies:
ground water, New Mexico, 30
oil shales and tar sands, 275
Oklahoma geology, 1978, 100
Oklahoma University theses in geology, 140
Cambrian:
Arbuckle Group, 132, 147, 213, 236; Butterfly Dolomite, 147; Fort Sill Formation, 236; Royer Dolomite, 213
biotite gabbros, Wichita Province, 222
Colbert Porphyry, 37
Glen Mountain Layered Complex, 94; Iron Mountain troctolites, 94
Timbered Hills Group, 37, 213; Honey Creek Formation, 213; Reagan Sandstone, 37
Wichita Granite Group, 2, 142; Lugert Granite, 142; Mount Scott Granite, 2; Quanah Granite, 2
Carboniferous:
ammonoids, 181, 237
Carboniferous–Permian boundary, 235
composition of sandstones, Ouachita area, 59
limestone analyses, 287
mesothems, Ozark Shelf, 182, 237
Ouachita Mountains, 163, 249, 250, 251, 252, 253, 256, 257, 258, 259, 284, 293
Ozark Mountains, 182, 237, 258, 259, 287
spores, 219
catalog, Oklahoma Geological Survey well cores, 206
Clinton NTMS Quadrangle, NURE survey, 15, 274
Coal:
analyses, 82, 83, 123, 189, 295
Chelsea area, 139
clean beds: Bluejacket coal, 139; Cavanal coals, 82, 83; Checkerboard coal, 19, 299, 300; Crowenburg coal, 19, 82, 83, 139, 297, 300; Dawson coals, 19, 83, 299, 300; Drywood coal, 139; Eram coal, 82; Hartshorne coals, 19, 39, 57, 82, 83, 122, 123, 295; Henryetta coal, 280, 281, 297; Iron Post coal, 60, 83, 139; McAlester (Stigler) coals, 82, 83, 84; Mineral coal, 82, 139; Morris coal, 19, 82; Riverton coal, 108, 139, 301; Rowe coal, 139; Secor coals, 82, 83; Seminole (Tulsa) coal, 19, 299, 300; Tebo coal, 139; Weir-Pittsburg coal, 83, 139; Witteville (Rowe) coal, 82
clean forum, 115
evolution and development, 82, 83, 139
natural gas from coals, 57, 122, 123
Oklahoma Geological Survey programs, 185
producers, 8, 83, 189, 212
production, 8, 83, 115, 212
reserves and resources, 39, 82, 83, 139, 189, 295
spoil-bank study, Henryetta, 95
statistics, 8, 9, 82, 83, 212
technology, 83, 212
vitrinite reflectance of coals in Arkoma Basin, 31
zinc and cadmium distribution in coals, 111
copper mineralization, 50

COUNTIES:
all counties: clays in soils, 234; ground-water levels, 88; mineral production, 8, 9; petroleum and natural gas, 9, 125, 218, 223; surface-water quality, 149
Adair: Carboniferous rocks, 259
Alfalfa: lacustrine delta, 162; petroleum exploration, 264
Atoka: paleontological survey, 232; soil survey, 240
Beaver: hydrology, Palo Duro Creek basin, 228; Missourian and Virgillian rocks, 154
Beckham: Blaine Formation, 271; petroleum and natural gas, 128, 264; uranium, 25
Blaine: Blaine Formation, 271; cobalt, 72
Bryan: Arkansas Novaculite, petroleum reserves, 197; soil survey, 47
Caddo: Binger fields, 13; Cement Field, 61, 62; Clinton Quadrangle, uranium study, 274; Kindblade Formation, 270; Marchand sands, 13, 14; oil fields, 13, 43
Carter: carbonate cements in surface rocks, 117; Kindblade Formation, 270; petroleum and natural gas, 264; soil survey, 190; Woodford Shale, pyrolyzates, 161
Cherokee: algal-bryozoan bioherms, 27; Carboniferous rocks, 259; Chesterian rocks, 208; Morrowan rocks, 209
Choctaw: paleontological survey, 232; soil survey, 261
Cimarron: cobalt, 72; Keyes Field, 43; Morrow sands, 137, 138; uranium, 1
Cleveland: Garber-Wellington aquifer, 292; Golden Trend, 43
Coal: Atoka Formation, 6, 7; coal, 83; paleontological survey, 232; Northeast Olney Field, 175
Comanche: alluvial deposits, 96; floods, 49; petroleum and natural gas, 264; vertebrate fossils, 244

Cotton: cobalt, 72; vertebrate fossils, 244
Craig: Cherokee sandstones, 65; coal, 83, 139; heavy oil, 108, 109
Creek: Glen Pool, 43
Custer: petroleum and natural gas, 128, 175; South Thomas Field, 175
Dewey: Lenora Gas Field, 278
Ellis: Southeast Arnett Field, 175
Garvin: Eola Field, 75; Northwest Butterfly Field, 29; Vanoss Group, 37; vertebrate fossils, 244; West Civic Field, 33
Grady: Blaine Formation, 271; petroleum and natural gas, 43, 61, 62, 75, 264
Grant: cobalt, 72
Greer: copper, 129
Harmon: Blaine Formation, 271
Harper: iodine, 167; Mocane–Laverne Field, 43
Haskell: coal, 82, 83, 84, 122, 123; Kinta Gas Field, 43; paleontological survey, 232; petroleum and natural gas, 43, 264; soil survey, 35
Jackson: Altus Oil Field, 75; copper, 129
Jefferson: vertebrate fossils, 244
Johnston: granite quarry, 165; Kindblade Formation, 270; silica-sand quarry, 166
Kay: Wreford Megacyclothem, 164
Kiowa: Kindblade Formation, 270; Lugert Granite, 142; soil survey, 151
Latimer: Carboniferous rocks, 259; coal, 83; paleontological survey, 232; Red Oak Field, 43
Le Flore: Carboniferous rocks, 259; coal, 82, 83, 122, 123; Poteau Gas Field, 43; paleontological survey, 232
Lincoln: areal geology, 199; Cherokee sands, 280, 281, 282
Logan: fossil amphibian, 207
Love: petroleum and natural gas, 264
McClain: soil survey, 191
McCurtain: Choctaw Anticlinorium, 64; cobalt, 72; paleontological survey, 232
McIntosh: coal, 82
Marshall: Arkansas Novaculite, petroleum reserves, 197; general, 34; petroleum and natural gas, 264
Mayes: coal, 139; Morrowan rocks, 209
Murray: Butterfly Dolomite, 147; Carboniferous rocks, 259; cobalt, 72; Kindblade Formation, 270; Reagan Fault Zone, 93; Southwest Davis Field, 302, 303; Vanoss Group, 37
Muskogee: algal–bryozoan bioherms, 27; Chesterian rocks, 208; coal, 82, 83
Noble: Perry gas sand, 55; sand and gravel plant, 168; vertebrate fossils, 244; Wreford Megacyclothem, 164
Nowata: algal–sponge community, 269; coal, 83, 139; soil survey, 220
Oklahoma: Garber–Wellington aquifer, 292; Oklahoma City Field, 247; vertebrate fossils, 244
Okmulgee: coal, 82, 83, 297; Henryetta coal spores, 297; spoil-bank study, 95
Osage: Avant Limestone, 55; cherts, 116; paleoclimate, Quaternary, 97; petroleum exploration, 233; pollens, 116; rotational fault, 44; Wreford Megacyclothem, 164
Ottawa: Cherokee sandstones, 65; heavy oil, 108, 109
Pawnee: cobalt, 72; Wreford Megacyclothem, 164
Payne: areal geology, 199; cobalt, 72; Yale Southwest Quadrangle, 230
Pittsburg: Carboniferous rocks, 259; coal, 83; paleontological survey, 232
Pontotoc: Atoka Formation, 6, 7; fossil fern, 186; Pennsylvanian molluscs, 11; Vanoss Group, 37
Pottawatomie: Cherokee Group, Cherokee sands, 225, 226, 280, 281, 282; Garber–Wellington aquifer, 292
Pushmataha: paleontological survey, 232; petroleum and natural gas, 264; soil survey, 12
Roger Mills: uranium, 25
Rogers: coal, 83, 139
Seminole: Cherokee sands, 280, 281, 282; cobalt, 72; Cromwell Field, 43; soil survey, 188; Vanoss Group, 37
Sequoyah: algal-bryozoan bioherms, 27; Carboniferous rocks, 259; magnetic and subsurface study, 290
Stephens: carbonate cements in surface rocks, 117; Velma Field, 74
Texas: hydrology, Palo Duro Creek basin, 228; Morrow sands, 262
Tillman: Tillman alluvium, ground water, 3; vertebrate fossils, 244
Tulsa: coal, 83, 299; first Red Fork well, 231; plant fossils, 299; Pleistocene molluscs, 54
Wagoner: Chesterian rocks, 208; coal, 83; Morrowan rocks, 209
Washita: soil survey, 192; uranium, 25
Woodward: iodine plant, 58, 124, 167

CRETACEOUS:
Comanchean Series:
Fredericksburg Group, 34: Goodland Limestone, 34; Kiamichi Formation, 34
Trinity Group, 34, 48, 110: Antlers Sandstone, 34, 110; Baum Limestone, 48
Washita Group, 34, 179:
 Bennington Limestone, 34
 Bokchito Formation, 34: Denton Clay Member, 34; McNutt Limestone Member, 34; Pawpaw Sandstone Member, 34; Soper Limestone Member, 34; Weno Clay Member, 34
Caddo Formation, 34: Duck Creek Member, 34; Fort Worth Member, 34
 Grayson Marl, 34, 179

Gulfian Series:
Woodbine Formation, 34: Dexter Member, 34

Permian-Cretaceous boundary, 77
data system, petroleum and natural gas, 273

DEVONIAN:
Arkansas Novaculite, 90, 119, 134, 197, 201, 202, 249, 288
Hunton Group, 28, 38, 76, 93, 113, 118, 128, 132, 144, 161:
 Bois d'Arc Formation, 38, 93: Cravatt Member, 38; Fittstown Member, 38
 Haragan Formation, 38, 93
 Henryhouse Formation, 128
 Turkey Creek Formation, 113
 Woodford Formation, 38, 76, 113, 132, 144, 161
Mississippian-Devonian boundary, 80
paleogeography, 113
phosphorites, 113
Pinetop Chert, 249

EARTHQUAKES:
catalog, 1900-1978, 158
El Reno, 1952, 40, 170, 171
general: 1900-1978, 157, 158, 170, 171, 172, 216; 1978, 156
map, 1900-1978, 157
relation to Nemaha Ridge, 248

ENVIRONMENTAL GEOLOGY:
air pollution, 8
flooding: Atoka County, 240; Blue Beaver Creek, 49; Bryan County, 47; Carter County, 190; Choctaw County, 261; flood control, Red River Basin, 289;
flood-hazard estimation through soil moisture, 176; flood-retarding dam, Sugar Creek, 197; Haskell County, 35; McClain County, 191; Nowata County, 220; Osage County, 32; Pushmataha County, 12; Washita County, 192; West Cache Creek, 49
land use: Atoka County, 240; Bryan County, 47; Carter County, 190; Choctaw
County, 261; Haskell County, 35; Kiowa County, 151; McClain County, 191; Nowata County, 220; Osage County, 32; Palo Duro Creek Basin, 228; Pushmataha County, 12; Seminole County, 188; Washita County, 192

mine disasters, 212
mined-land reclamation, 8, 212
Oklahoma Geological Survey programs, 185
regulations, 8
waste disposal, subsurface, 131, 132
water management: Atoka County, 240; Bryan County, 47; Carter County, 190; Choctaw County, 261; general, 169; Haskell County, 35; Kiowa County, 151; McClain County, 191; Nowata County, 220; Osage County, 32; Seminole County, 188; Washita County, 192
water pollution: Boone aquifer, pollution susceptibility, 10; Garber-Wellington aquifer, 292; general, 8; management planning, 169; pollution control, 169
water quality: Antlers aquifer, 110; Arbuckle aquifer, 71; Arkansas River Basin, 276; Boone aquifer, 10; Garber-Wellington aquifer, 292; Keystone Reservoir, 136; Ogallala aquifer, 148, 228; Red River Basin, 277; surface water, general, 149; zinc-mine water, 8

Geochemistry:
alteration of red beds over oil reservoirs, 74, 75
Arkansas Novaculite, oxygen-isotope analyses, 134; manganese deposits, 288
bitumens, Tri-State area, 108
Butterly Dolomite, 147
catagenesis of kerogens, 31, 107
hydrogeochmical prospecting for uranium, 2, 15, 25, 26, 274
limestone analyses, Carboniferous, 287
Ogallala aquifer, 148
oxygen-isotope study of carbonate cements in Permian surface rocks, 117
Permian concretions, 150
pyrolysis analysis of well cuttings, 145
pyrolyzates from kerogens, Woodford Shale, 161
radium-rich oil-field brines, 26
rare-earth analyses, Pennsylvanian-Permian rocks, 53
Rb/Sr ratios in Beavers Bend Illite, 42
red-bed copper, 50
soil analyses, Washita County, 192; Choctaw County, 261
vitrinite reflectance of coals, 31
water analyses in geothermal exploration, 238

Geomorphology:
Arkansas River Valley, 160
Cimarron River Valley, 199
Great Plains, physiographic provinces, 244
Wichita Mountains, 87

Geophysics:
abnormal pressures, Morrow sands, 16
fault-displacement-prediction model, 44
fracture strength of rock, Arkansas Novaculite, 90
geomagnetism, Van Buren Quadrangle, 290
gravity anomalies, Nemaha Ridge, 170; Southern Oklahoma Aulacogen, 234
Midcontinent Geophysical Anomaly, 248
paleomagnetism, Upper Permian rocks, 217
radiometric and magnetic survey, Clinton Quadrangle, 274
reflectivity studies of thunderstorms, 89, 173, 265

155
seismology: Arkoma Basin, 171; attenuation studies, Mounds, 85; earthquakes, 40, 156, 157, 158, 170, 171, 216; Nemaha Ridge, 170, 172, 248; Oklahoma Geophysical Observatory, 156, 157, 158; seismic activity, petroleum, 1978, 291; seismic stratigraphic analyses, Pennsylvanian sandstones, 86; seismograph-station codes, 221

shale-reservoir logs, 144

history: Ardmore Geological Society, 229; first Red Fork Field well, 231; flood control in Red River Valley, 289; petroleum exploration, 43

Hollis Basin, waste-disposal reservoirs, 132

Holocene: pollens, northeastern Oklahoma, 98

HYDROGEOLOGY, HYDROLOGY:

hydrogeochemical prospecting for uranium, 2, 15, 25, 274

Oklahoma Geological Survey programs, 185

resources: Antlers aquifer, 110; Arbuckle aquifer, 71; Arkansas River Basin, 276; Atoka County, 240; Carter County, 190; Choctaw County, 261; Garber aquifer, Garber–Wellington aquifer, 18, 292; ground water, general, 88; McClain County, 191; Nowata County, 220; Ogallala aquifer, 148, 227; Pushmataha County, 12; Red River Basin, 277; Rush Springs aquifer, 18; Tillman aquifer, 3; Washita County, 192

subsurface waters: Antlers aquifer, 110; aquifers, general 88; Arbuckle aquifer, 71; Boone aquifer, 10; Garber aquifer, Garber–Wellington aquifer, 18, 292, general, 88; ground-water levels, 88, 276, 277; North Canadian River alluvial aquifer, 56; Ogallala aquifer, 148, 223; Rush Springs aquifer, 18; stream-sediment analyses, Clinton and Lawton Quadrangles, 15; Tillman alluvial aquifer, 3; Washita River alluvial aquifer, 143; zinc-mine water, 8

surface waters: Arkansas River, 160; Blue Beaver Creek, 49; Cimarron River valley, 199; general, 149, 169; Keystone Reservoir, 136; Lake Texoma, 289; North Canadian River, 56; Red River, 92, 289; stream-sediment analyses, Clinton and Lawton Quadrangles, 15; Sugar Creek watershed and dam, 198; Washita River, 143, 198; water-quality management, 169; West Cache Creek, 49

water management: Atoka County, 240; Bryan County, 47; Carter County, 190; Choctaw County, 261; Haskell County, 35; Kiowa County, 151; McClain County, 191; Nowata County, 220; Osage County, 32; pollution control, surface waters, 169; Pushmataha County, 12; Seminole County, 188; Washita County, 192

water quality: Antlers aquifer, 110; Arbuckle aquifer, 71; Arkansas River Basin, 276; Boone aquifer, 10; Garber–Wellington aquifer, 292; Keystone Reservoir, 136; management planning, 169; Ogallala aquifer, 148, 228; pollution control, 169; pollution, general, 8; Red River Basin, 277; seepage estimates from dam, 198; surface waters, general, 149; Washita River alluvial aquifer, 143; zinc-mine water, 8

indexes: Oklahoma geology, 1978, 100; Oklahoma Geology Notes, v. 39, 205; Shale Shaker, v. 23–29, 246

Jurassic: Morrison Formation, Cimarron County, 1

Lawton NTMS Quadrangle, NURE survey, 15

McAlester Basin: sedimentology, 24; Spiro sand, 24; structure, 283, 284

Marietta Basin: structure, 34, 294

memorials: John Fredrick Roberts, 101

meteorology: Doppler radar recordings of lightning impulses, 89, 173; Doppler radar study of reflectivity, velocity, and spectrum width of storms, 265; Oklahoma thunderstorm study, 89

MINERAL INDUSTRIES:

commodities: boron, 9; brick manufacturing, 8; carbon, 8, 9; cement, 8, 9, 104;
clay and shale, 8, 212; coal, see Coal; cobalt, 72; copper, 129, 130, 212; crushed stone and aggregate, 8; feldspar, 8, 9; glass sand, silica sand, 8, 119, 166; granite, 8, 165, 212; gypsum, 8, 9, 129, 130, 212; helium, 8, 9; iodine, 8, 9, 58, 124, 167; lead and zinc, 9, 129; lime, 8; limestone, 212; petroleum and natural gas, see Petroleum and Natural Gas; pumice (volcanic ash), 9; salt, 9, 130; sand and gravel, 8, 9, 168, 212; soda ash, 8; stone, 9; sulfur, 9; tripoli, 8, 9, 119, 212; uranium, see Uranium

Interstate Mining Compact Commission, 212
mine disasters, 212
mined-lands reclamation, 8, 212
Oklahoma Geological Survey programs, 185
producers, 9, 212
regulations, 8, 9
statistics, 8, 9, 212
technology, 166, 167, 168
Tri-State mining district, exploration, 224

Mississippian:
Arkansas Novaculite, 90, 119, 134, 197, 201, 202, 249, 253, 288
Boone Formation, 10, 287
Caney Formation, Caney Shale, 187, 195: Delaware Creek Member, 187; Rhoda Creek Shale Member, 195; Sand Branch Member, 187
Compton Limestone, 267
crinoidal bioherms, Osagean, 184
Fayetteville Formation, 180, 183, 208, 210, 237, 257
Hindsville Formation, 180, 208, 257
Imo Formation, 180, 183, 210, 237
Jackfork Group, 163, 195, 196
Kinderhookian–Osagean boundary, 184
Mississippian–Devonian boundary, 80
Mississippian–Pennsylvanian boundary, 80, 180, 183, 195, 208, 210, 253, 256, 257, 258, 259, 260
Ozark Shelf, Chesterian, 182
paleogeography, 51
Pitkin Formation, 180, 181, 183, 208, 210, 237, 257, 287
St. Joe Limestone, 267, 287
Springer Formation, Springer Group, 132, 195
Stanley Group, Stanley Shale, 103, 195, 196, 202, 249, 252, 253, 256: Beavers Bend tuff, 202; Chickasaw Creek Formation, 196, 249, 252; Hatton tuff, 202, 249, 253; Hot Springs Sandstone Member, 253; Moyers Formation, 196; Mud Creek tuffs, 202; Tenmile Creek Formation, 196
stratigraphy, general, 80
tectonics, 51
Woodford Shale, 76, 132, 144
Nemaha Ridge, Nemaha Uplift: seismicity, 170, 172; structure, 21, 51, 69, 170, 172, 194, 248

Oklahoma Geological Survey:
annual report, July 1, 1978–June 30, 1979, 185
coal programs, 185
core catalog, 206
energy programs, 185
environmental programs, 185
hydrologic investigations, 185
mineral investigations, 185
Oklahoma Geophysical Observatory, 156, 157, 158, 170, 171, 172, 185, 221
petroleum and natural gas programs, 185
uranium programs, 185
Oklahoma Geophysical Observatory, 156, 157, 158, 170, 171, 172, 185, 221
Oklahoma Panhandle, waste-disposal reservoirs, 132
 see also Counties: Beaver, Cimarron, and Texas

ORDOVICIAN:
 Arbuckle Group, 29, 71, 132, 270: Cool Creek Formation, 270; Kindblade Formation, 270
 Bigfork Chert, 249
 Blakely Sandstone, 249, 250
 Collier Formation, 64, 249
 Corbin Ranch Limestone, 5
 Crystal Mountain Formation, 64, 249
 Fernvale Formation, 5
 Fite Limestone, 5
 Hunton Group, 28
 kerogen-diffraction pattern of shale, 107
 Lukfata Sandstone, 64
 Mazarn Shale, 64, 249
 Ordovician–Silurian boundary, 4
 Polk Creek Shale, 249
 Simpson Group, 5, 24, 28, 29, 37, 38, 46, 71, 78, 79, 127, 132, 141, 166, 214, 241, 255, 303:
 Bromide Formation, 5, 29, 38, 46, 78, 79, 127, 141, 214, 255, 303: Mountain Lake Member, 79; Pooleville Member, 5
 Joins Formation, 29, 255, 303
 McLish Formation, 29, 241, 255, 303
 Oil Creek Formation, 29, 166, 255, 303
 Simpson sands, 24
 Tulip Creek Formation, 29, 255, 303
 Wilcox sands, 24
 Sylvan Shale, 5, 38, 46, 127, 303
 Tyner Formation, 5
 Viola Formation, 5, 29, 38, 120, 127, 303
 Wellin Formation, 5
 Womble Formation, 64, 240

OUACHITA MOUNTAINS, OUACHITA GEOSYNCLINE:
 Backbone Anticline and Fault, 123, 253
 Broken Bow–Benton Uplift, 64, 201, 227, 249, 293
 Carboniferous sandstones, 59
 Choctaw Anticlinorium and Fault, 20, 64
 Cross Mountain Anticlinorium, 64
 geothermal areas, Arkansas, 238
 glaciation, evidence of, 251
 Greenwood Syncline, 253
 Linson Creek Anticlinorium, 64
 manganese deposits, Arkansas Novaculite, 288
 Ordovician rocks, Choctaw Anticlinorium, 64
 Ouachita seaway, 113
 Potato Hills, 293
 pre-Carboniferous sandstones, 59
 relation of interior zone to Coahuila, Mexico, igneous rocks, 135

relation to Appalachian belt, 103

sedimentology, 51, 91, 103, 134, 163, 196, 200, 202, 249, 250, 252, 253, 256, 258, 259, 283, 284, 293
source of Missouri lead-zinc ore fluids, 159
structure and tectonics, 20, 51, 59, 64, 67, 80, 91, 103, 105, 159, 194, 200, 201, 227, 235, 242, 249, 250, 251, 253, 256, 258, 259, 266, 268, 283, 284, 293, 296
Ti Valley Fault, 91, 249, 256
Washburn Anticline, 253
Windingstair Fault, 64, 91, 249, 253, 256
"Y" City Fault, 253

OZARK MOUNTAINS, OZARK UPLIFT, OZARK SHELF:
lead–zinc deposits, 159
sedimentology, 180, 182, 237, 257, 258, 259
source of Morrowan sediments, 209
stratigraphy, Chesterian–Morrowan, 257
structure and tectonics, 51, 80, 108, 159, 180, 209, 258, 259

PALEOBOTANY:
acritarchs, 127
algae, 27, 48, 269, 270
algal–bryozoan bioherms, 27
algal–sponge community, 269
lycopods, 60
fern, 186
Krebs Group, general, 232
Pennsylvanian coals, 297, 299

PALEOCURRENTS, PALEEOECOLOGY, PALEOENVIRONMENTS, PALEOGEOGRAPHY:
Atokan, 279
Blaine seas, 271
Bloyd Formation, 304
Carboniferous, Ozark Shelf, 237
Chesterian, 208
Devonian, general, 113
Devonian–Mississippian, 134
Gearyan and Leonardian, 244
Lansing Group, 154
Late Mississippian, Ouachita area, 103
Late Paleozoic, 235
Lower Ordovician, 270
Marchand sands, 13
Mississippian, general, 51, 80
Missourian, 55
Morrow Series, Morrow sands, 137, 209, 262
Pennsylvanian, general, 121, 194
pre-Pennsylvanian, 225
Quaternary, Osage County, 97
Simpson Group, Arkoma Basin, 255
Wann Formation, 211
Wreford Megacyclothem, 99

paleotemperatures: application of kerogen examination, 31, 107; application to petroleum exploration, 278

PALEOZOOLOGY:
acritarchs, 127
algal–bryozoan bioherms, 27
algal–sponge community, 269
ammonoids, 181, 237
biometrics, Missourian crinoids, 211
brachiopods, 45, 120, 270, 285
bryozoans, 27, 99, 269
cephalopods, 187, 270
chitons, 236, 270
conodonts, 153, 260, 267, 270
corals, 155
crinoidal bioherms, Lower Mississippian, 184
fusulines, 235
gastropods, 270
Krebs Group, general, 232
molluscs, 11, 54
ptychaspid biomere, 213
sponges, 269, 270
trilobites, 213, 215
vertebrates, 112, 207, 244: amphibians, 207; general, 244; reptiles, 112
Wreford Megacyclothem, 99

PALYNOLOGY:
Cherokee Group, Kansas, 301
miospores, Morrowan, 210
Ordovician acritarchs, 46, 127
pollens: late Holocene, northeastern Oklahoma, 98; Quaternary, Osage County, 97, 116
spores: Pennsylvanian coals, 297, 299, 300; trilite spores, Carboniferous, 219; Wellington Formation, 152

PENNSylvANIAN:
Atokan Series:
Atoka Formation, 6, 7, 145, 180, 249, 251, 252, 253, 256, 257, 279, 295:
 Red Oak Sandstone, 279
Cherokee Group, 301
correlation with Europe, 153
north-central Texas, Ouachita belt, 200
Ouachita Mountains, 283, 284
Wapanucka Formation, 20, 91, 180, 256, 257: Chickachoc Chert
 Member, 91; Trace Creek Shale Member, 91, 180, 257

Desmoinesian Series:
Cabaniss Group:
 Henryetta coal, 280, 281, 282, 297
 Oswego Limestone, 280, 281
 Senora Formation, 19, 60, 82, 83, 139, 225: Croweburg coal, 19,
 82, 83, 297; Eram coal, 82; Iron Post coal, 60; Morris coal,
 19, 82
 Skinner sands, 20, 225, 226, 280, 281, 282
 Verdigris Limestone, 65, 225, 280, 281, 282
Cherokee Group, 20, 65, 66, 146, 187, 225, 226, 280, 281, 282, 301:
 Bartlesville Limestone, 225, 226; Booch sands, 225, 226; Burbank
 sands, 146; Inola Limestone, 225; Pink lime, 225; Prue sands,
 225, 280, 281, 282; Red Fork sand, 20, 225, 226, 280, 281, 282;
 Senora Limestone, 225; Skinner sands, 20, 225, 226, 280, 281,
 282; Verdigris Limestone, 225
Deese Group, Deese Formation, 29, 187
Desmoinesian-Missourian boundary, 299, 300
heavy oil, 108, 109
Krebs Group:
 Boggy Formation, 20, 65, 66, 82, 108, 139, 225, 226, 232, 280, 281

282: Bluejacket-Bartlesville sand, 20, 65, 66, 82, 108, 139,
 225, 226, 280, 281, 282; Inola Limestone Member, 139, 225,
 280, 281, 282; Secor coals, 82, 83, 232; Taft Limestone
 Member, 149
 Brown Limestone, 280, 281, 282
McAlester Formation, McAlester coals, 19, 39, 65, 66, 82, 83, 84, 108, 122, 123, 139, 232, 253, 256, 295, 301; Booch sands, 20, 225, 226; Cameron Sandstone, 82; Hartshorne Formation, Hartshorne coals, 19, 39, 57, 65, 82, 83, 84, 108, 122, 123, 139, 232, 253, 256, 295; Riverton coal, 108, 139, 301; Stigler coal, 82, 83, 84, 232; Stuart Shale, 232; Thurman Sandstone, 232; Warner Sandstone Member, 65, 66, 82, 108

Pink Limestone, 280, 281, 282
Savanna Formation, 24, 65, 82, 139, 232; Cavanal coals, 82, 232; Drywood coal, 139; Rowe coal, 139; Sam Creek Limestone, 82; Spaniard Limestone, 82; Spiro sand, 24; Witteville (Rowe) coal, 82, 232

Marmaton Group:
Calvin Formation, 82
Cleveland sand, 20
Fort Scott Limestone, 139: Blackjack Creek Member, 139
Holdenville Formation, 19
Pawnee Limestone, 269
Seminole Formation, 19
Wewoka Formation, 19, 186, 187: Nowata Shale, 19

molluscs, 11

Gearyan Series:
Oscar Group, 68, 99, 244: Wreford Megacyclothem, 99, 164
Vanoss Group, 37, 68, 244
Mississippian–Pennsylvanian boundary, 80, 180, 183, 195, 210, 253, 256, 257, 258, 259, 260

Missourian Series:
Desmoinesian–Missourian boundary, 299, 300
Hoxbar Group, 13, 14, 19, 29, 61, 272; Checkerboard Limestone, Checkerboard coal, 19, 29; Cottage Grove Sandstone, 272; Hogshooter Formation, 13, 29; Huber sand, 29; Marchand sands, 13, 14; Tuley sand, 29
Kansas City Group, 154
Lansing Group, 154
Ochelata Group, 55, 68, 211: Iola Formation, Avant Limestone Member, 55; Wann Formation, 211
Skiatook Group, 19, 20, 68, 299, 300: Checkerboard Limestone, Checkerboard coal, 19, 29, 299, 300; Cleveland sand, 20; Dawson coal, 19, 299, 300; Seminole coal, 19, 299, 300
Stanton Formation, 187

Morrowan Series:
bioherms, 27
Bloyd Formation, 91, 180, 209, 237, 254, 257, 287, 304: Brentwood Limestone Member, 180, 237, 254, 257, 287, 304; Dye Shale Member, 180, 209, 257, 304; Kessler Limestone Member, 91, 180, 209, 257, 257, 287; Trace Creek Shale Member, 209, 257; Woolsey Member, 180, 257, 304
correlation with Europe, 153
Dornick Hills Group, 91, 153, 174
fan-delta deposits, 239
Hale Formation, 180, 209, 210, 237, 237, 253, 257: Cane Hill Member, 180, 183, 209, 257; Prairie Grove Member, 180, 209, 237, 253, 257
Jackfork Group, 163, 195, 196, 244, 249, 252, 253: Wesley Formation, 244; Wildhorse Mountain Formation, 249, 252, Prairie Hollow Member, 249
Johns Valley Shale, 195, 249, 250, 252, 253, 256

161
McCully Formation, 180, 209, 257: Chisum Quarry Member, 180, 209, 257; Greenleaf Lake Limestone Member, 180, 209, 257; Shale "A" Member, 180, 209; Shale "B" Member 209, 257
Morrow sands, 16, 128, 137, 138, 239, 243, 262, 263
Ouachita Mountains, 283, 284
Sausbee Formation, 180, 183, 208, 209, 254, 257: Braggs Member, 180, 183, 209, 254, 257; Brewer Bend Member, 180, 209, 257
Springer Formation, Springer Group, 91, 153, 174, 195: Target Limestone, 153
Union Valley Formation, 195
Wapanucka Formation, 20, 91, 180, 257: Chicachoc Chert Member, 91; Trace Creek Shale Member, 91, 180, 257
Witt Springs Formation, 180
paleogeography, general, 121, 194
Pennsylvanian-Permian boundary, 235, 298
rare-earth analyses, 53
sandstones: Anadarko Basin, 69; general, 36, 43, 121; waste-disposal reservoirs, 132
uraniferous deposits, 22
Virgilian Series:
Ada Group, 68
Cisco Group, 29
Douglas Group, 154, 285:
Oread Limestone, 154, 285: Heebner Shale Member, 154, 285;
Oread Megacyclothem, 285
Tonhawa Sandstone, 154
Stranger Formation, 187
Vanoss Group, 37, 68, 244
Permian:
Carboniferous-Permian boundary, 235, 298
Cimarronian Series, Cimarronian Group, 2, 18, 68, 87, 112, 129, 130, 152, 207, 244, 245, 271, 292:
El Reno Group, 68, 129, 130, 152, 244, 245, 271:
Blaine Formation, 129, 130, 245, 271
Chickasha Formation, 130, 271
Dog Creek Shale, 129, 130, 245: Yelton salt, 130
Duncan Sandstone, 130, 244
Flowerpot Shale, 129, 130, 152
Glorieta Formation, 130
Hennessey Group, 68, 207, 244: Fairmont Shale, 207
Post Oak Formation, 2, 87
Sumner Group, 2, 18, 68, 112, 129, 152, 244, 292:
Garber Formation, 2, 18, 112, 244, 292
Wellington Formation, 68, 112, 129, 152, 244, 292
Cretaceous, 150
Custerian Series, 2, 25, 130, 217:
Cloud Chief Formation, 2, 25, 130, 217: Moccasin Creek Gypsum Member, 2
Doxey Shale, 2, 25, 130, 217

dissolution of salts, 92

Gearyan, see Pennsylvanian
paleomagnetism, 217
Permian-Cretaceous boundary, 77
rare-earth analyses, 53
red-bed copper, 50
salt deposits, waste-disposal reservoirs, 132

Petroleum and Natural Gas:

abnormal pressures, 16

accumulation, entrapment, and reservoirs:

Anadarko Basin, 41, 69, 70, 105, 128, 137, 138, 262, 263, 268, 272
Ardmore—Anadarko Basin trend, 268
Arkansas Novaculite, 197
Arkoma Basin, 6, 7, 105, 279
Atoka sandstones, 6, 7
Cherokee sands, 280, 281, 282
Cottage Grove Sandstone, 272
deltaic reservoirs, 36, 43, 86, 239
estuarine reservoirs, Morrow sands, 137
fluvial-sand reservoirs, 36, 86
Jackfork Group, 163
Mills Ranch complex, 128
Morrow sands, 137, 138, 239, 243, 262, 263: estuarine reservoirs, 137;
fan-delta deposits, 239
Northwest Butterfly Field, 29
Pennsylvanian sandstones, general, 43, 86, 121
shale reservoirs, 76, 144; shale-reservoir well logs, 144
Southwest Davis Field, 302, 303
submarine-fan reservoirs, 239, 279: Morrowan deposits, 239; Red Oak
Sandstone, 279
alteration of red beds over petroleum accumulations, 74, 75
Anadarko Basin, 13, 14, 41, 43, 52, 61, 62, 69, 70, 75, 105, 106, 114, 125, 128,
137, 138, 145, 175, 193, 203, 218, 239, 243, 262, 263, 268, 272
Arbuckle Mountains, 29, 138, 302, 303
Arkoma Basin, 6, 7, 43, 105, 218, 255, 279
carboniferous coal-bed-derived natural gas, 57, 122, 123
deep wells, 114
economics, 63, 114, 223, 291
enhanced recovery, 52, 73, 203, 243: bauxite fracturing, 52; fracturing, Morrow
sands, 203, 243; waterflooding, 73
exploration and development:
Anadarko Basin, 52, 69, 70, 114, 125, 128, 175, 210, 239, 268
application of diagenetic-alteration indicators, 61, 62
application of Landsat direct detection, 62
application of paleotemperature gradients, 278
application of vitrinite reflectance of coals, 31
Arbuckle production, 128
Ardmore—Anadarko Basin trend, 268
Arkoma Basin, 218, 255, 279
computer applications, 233
fluvial/deltaic sands, Pennsylvanian, 36
gamma-ray monitoring, 76
general, 9, 133, 223, 264
giant oil fields, 223
history, 43, 231
Hunton production, 128
Marchand sands, 13, 14
Morrow sands, 137, 138
Osage County, 233
Pennsylvanian sandstones, general, 43, 69, 86
pyrolysis analysis of well cuttings, 145
Red Oak Sandstone, 279
Simpson sands, 235
fields, trends, units: Aledo, 128; all fields, 125, 223; Altus, 75; Antioch fields, 43; Aylesworth fields, 34; Bartlesville–Dewey, 43; Binger fields, 13, 14; Brooksville, 226; Buffalo Wallow, 239; Burbank, 43; Carpenter, 218; Cement fields, 61, 62; Centerpoint, 226; Chelsea, 43; Cherokee fields, 43; Chickasha, 75; Cromwell, 43; Cumberland, 34; Cushing, 43; Davenport, 61; Doyle, 117; Dutton, 43; Earlsbore pools, 226; Elk City, 218, 239; Eola, 38, 75; Fox-Graham, 117; Glen, 43; Golden Trend, 43; Granite, 43; Grisso, 226; Handy, 34; Healdton, 43; Isom Springs fields, 34; Jenks, 43; Keyes, 43; King, 226; Kingston, 34; Kinta, 43; Leedey, 218; Lenora, 278; Light, 43; Madill, 34; Mannsville, 34; Maud pools, 226; Mayfield, 218; Mills Ranch Complex, 128; Mocane–Laverne, 43; Morrow–Springer trend, 69; Morvin pools, 226; Noel, 218; Northeast Olney, 175; Northwest Butterfly, 29; Oklahoma City, 247; Poteau, 43; Powell, 34, 218; Red Fork, 43, 231; Red Oak, 43; Reydon–Cheyenne Area, 203, 218, 239, 243; Russellville, 218; St. Louis, 226; Shawnee Lake pools, 226; Shrekey, 239; South Gage, 272; South Thomas, 175; Southwest Arnett, 175; Southwest Davis, 38, 302, 303; Strong City, 218; Tecumseh Lake, 226; Tulsa, 43; Velma, 74, 117; Verden fields, 43; Viking, 239; Weatherford, 218; West Civit, 33; Wheeler, 43, 117; Yukon, 218
heavy oil, 108, 109, 203, 275: bibliography, 275
Marshall County, 34
migration, 174, 193: constraints, 174; general, 193
Oklahoma Geological Survey core catalog, 206
Oklahoma Geological Survey programs, 185
origin, generation, source, 76, 161, 268, 278: black shales, 76, 161; magmatic heating, 268; relation to paleotemperatures, 278
Perry gas sand, 55
Petroleum Data System, 273
pressure, effect on crude-oil/natural-gas equilibrium, 247
radium in oil-field brines, 26
reserves and resources, 9, 41, 52, 114, 175, 197, 203, 255
simulation study, West Dykeman Sand Unit, 33
statistics: economics, 63, 223, 291; exploration and development, 9, 63, 133, 218, 223; drilling, 63, 133, 218, 223; general, 9; production, 9, 125, 204; reserves and resources, 9, 204, 218, 223, 255; seismic activity, 291; stripper wells, 126; waterflood, 63, 73
stripper wells, 126
well logs, shale reservoirs, 144
Petroleum Data System, 273
Precambrian: Blue River Gneiss, 23; Spavinaw Granite, 23; Tishomingo Granite, 23, 37; Troy Granite, 23, 37
Quaternary:
Birch Creek Valley pollens, 116
Blue Beaver Creek alluvium, 96
Crater Creek alluvium, 96
East Cache Creek alluvium, 96
Medicine Creek alluvium, 96
North Canadian River alluvium, 56
Ogallala Formation, 148

Pleistocene molluscs, Tulsa County, 54
Post Oak Creek alluvium, 96
Tillman alluvium, 3
West Cache Creek alluvium, 96
remote sensing: fracture discrimination, Landsat and Skylab, 10; Tri-State district,
Landsat study, 224; use of Landsat images in assessing pollution susceptibility, Boone aquifer, 10

SEDIMENTOLOGY:
- algal-bryozoan bioherms, Morrowan, 27
- algal-sponge community, 269
- Anadarko Basin, 13, 14, 28, 61, 62, 92, 137, 262, 263, 272
- Arbuckle Mountains, 37, 134, 163, 270, 294
- Arkoma Basin, 6, 7, 19, 20, 249, 252, 256, 279, 283, 284
- bar deposition, 91
- basinal clastic deposits, Douglas Group, 154
- birdseye structures, McLish Formation, 241
- boulder beds, erratics: Johns Valley Shale, 249, 252, 253, 256, 283, 284, 293; Stanley Shale, 252
- Bouma sequences: Atoka Formation, 249, 252, 253, 256; Morrowan and Atokan, Ouachita Mountains, 283, 284
- channel-fill deposition: Cherokee Group, 65; Hartshorne Formation, 253; Jackfork Sandstone, 252; Morrow sands, 137
- Cretaceous, Marshall County, 34
- cyclothemes, cyclic sedimentation: coal cycles, 19; Desmoinesian, 19, 20, 65, 250, 281, 282; mesothems, Carboniferous, Ozark Shelf, 182, 237; Oread Megacyclothem, 285; Wreford Megacyclothem, 99, 164
- deltaic deposition: Atoka Formation, 253; Cherokee sands, 250, 281, 282; Desmoinesian, northeastern Oklahoma, 19, 20, 65; Dockum Group, 177; Hartshorne Formation, 253; Jackfork Group, 163; lacustrine delta, Alfalfa County, 162; Morrowan and Atokan, Ouachita Mountains, 283, 284; Morrow Formation, 262, 263; Pennsylvanian sands, general, 36; Pennsylvanian uraniferous deposits, 22; Stanley Group, 103
- diagenesis: Arkansas Novaculite, 134; Butterfly Dolomite, 147; catagenesis of kerogens, 31, 107; Cherokee sands, 280, 282; Cottage Grove Sandstone, 272; Hunton Group, 28; Morrow sands, 137; Permian sandstones, 2, 61, 62; Rush Springs Sandstone, 61, 62; Simpson sand, 24, 28; soft-sediment deformation, 250; Spiro sand, 24; Stanley Group, 196; Vanoss sandstones and mudrocks, 37; Wilcox sand, 24
- dissolution of Permian salts, 92
- evaporite origin of Arkansas Novaculite, 134
- flaser deposition, McAlester Formation, 253
- fluvial deposition: Arkansas River, 160; Arkansas River point bar, 81; Boyd Formation, 304; Dockum Group, 177; Morrow sands, 262; North Canadian River, 56; Pennsylvanian sands, 36
- flysch deposition: Arkansas Novaculite, 253; Atoka Formation, 256; Carboniferous, Ouachita area, 249, 293; Jackfork Sandstone, 252; Stanley Group, 103, 202, 253
- Mississippian, general, 51, 80
- Morrowan rocks, northeastern Oklahoma, 209, 237
- Oread Megacyclothem, shale facies, 285
- organic buildups, Kindblade Formation, 270
- Ouachita Mountains, 51, 91, 103, 134, 196, 200, 202, 249, 250, 252, 253, 256, 258, 259, 283, 284, 293
- Ozark Mountains, Ozark Shelf, 180, 182, 237, 256, 257, 258, 259
- paragenesis, Permian copper, 152
- Pennsylvanian, general, 194
- Pennsylvanian sandstones, general, 36, 121
- Pitkin and Fayetteville Formations, 208, 237
- point-bar deposits: Arkansas River, 81; Morrow sands, 262
- shallow-marine and shelf deposition: Atoka sandstones, 6, 7; Boyd Formation, 304; Cottage Grove Sandstone, 272; Desmoinesian, northeastern Oklahoma, 19, 20; Kinderhookian-Meramecian carbonate shelf, 184; Lans-
submarine-fan deposition: Jackfork Group, 163; Pennsylvanian sands, 36; Red Oak Sandstone, 279; Stanley Group, 103, 202, 252, 253
tidal deposition: Marchand sands, 13, 14; Morrow sands, 137
transgressive barrier facies, Cherokee Group, 146
silt turbidites: Atoka Formation, 256; Carboniferous, Ouachita area, 249, 293;
Jackfork Group, 163, 196; Morrowan and Atokan, Ouachita area, 283, 284; Stanley Group, 196, 202; Wapanucka Formation, 91
Wreford Megacyclothem, 99, 164

SILURIAN:
Beavers Bend Illite, 42
Blaylock Formation, 42, 249
Hunton Group, 28, 38, 45, 93, 118, 128, 132, 155, 178, 215, 285: Chimneyhill Subgroup: 38, 45, 93, 128, 285: Clarita Formation, 38, 93; Cochrane Formation, 38, 93; Keel Formation, 38
Henryhouse Formation, 38, 93, 128, 155, 178, 215
Missouri Mountain Formation, 249
Ordovician–Silurian boundary, 4

SOILS:
Atoka County, general, 240
Bryan County, general, 47
Carter County, general, 190
Choctaw County, general, 261
clay minerals in Oklahoma soils, 234
Enid Quadrangle, derivation of soils, 68
Haskell County, general, 35
Kiowa County, general, 151
McClain County, general, 191
Nowata County, general, 220
Osage County, general, 32
Pushmataha County, general, 12
Seminole County, general, 188
soil-moisture monitoring, 176
Washita County, general, 192
Southern Oklahoma Aulaeogen: gravity anomalies, 294; sedimentology, 294; stratigraphy, general, 294; structure, 93, 268, 294

STRATIGRAPHY (see also under various geologic systems):
Anadarko Basin, general, 69
biostratigraphy: Cambrian biomere, 213; Carboniferous, 180, 183, 195, 237, 256, 257, 258, 259; Carboniferous, ammonoid zonations, 237; Cherokee Group, palynology, 301; Chesterian and Morrowan, 195, 210, 256, 257, 258, 259, 260; Chesterian–Morrowan, conodonts, 260; Desmoinesian–Missourian boundary, plants, 299, 300; Late Ordovician–Early Silurian, 4; Lower Ordovician, 270; Morrowan and Atokan, conodonts, correlation with Europe, 153; Oread Megacyclothem, lithofacies and conodont biofacies, 285; Pennsylvanian–Permian boundary, 298; Permian, fusulines, 235; Waun Formation, conodont zonation, 211; Wreford Megacyclothem, correlation between Kansas and Oklahoma, 164
Carboniferous: Carboniferous–Permian boundary, 235, 296; Chesterian–Morrowan unconformity, 183, 208, 257, 260; Ouachita Mountains, 253, 258, 293

Cretaceous: Marshall County, 94; Permian–Cretaceous boundary, 77
Mississippian: Chesterian, northeastern Oklahoma, 208; Chesterian–Morrowan unconformity, 183, 208, 257, 260; general, 80; Kinderhookian–Osagean boundary, 184; Mississippian–Devonian
boundary, 80; Mississippian–Pennsylvanian boundary, 80, 180, 183, 195, 208, 210, 253, 256, 258, 259, 260; Ouachita Mountains, 253, 258, 259, 293

Ordovician: Ordovician–Silurian boundary, 4; Simpson Group, correlation with Arkansas Ordovician, 255; Welling Formation, 5

Pennsylvanian: Avant Limestone, 55; Cherokee Group, 65, 66, 225, 226, 301; Chesterian–Morrowan unconformity, 138, 208, 257, 259, 260; Desmoinesian Tri-State area, 65, 66; dichotomy of facies and time boundaries, 68; general, 121; Mississippian–Pennsylvanian boundary, 80, 180, 183, 195, 208, 210, 253, 256, 257, 258, 259, 260; Morrowan, northeastern Oklahoma, 208, 209; Ouachita Mountains, 253, 258, 259, 293; Pennsylvanian–Permian boundary, 235, 298; Vanoss Group, 37

Permian: Carboniferous–Permian boundary, 235, 298; dichotomy of facies and time boundaries, 68; Permian–Cretaceous boundary, 77; Upper Permian, correlation with Texas and New Mexico, 130; Vanoss Group, 37

Structural Geology (includes tectonics):

- Anadarko Basin, 51, 52, 61, 62, 69, 70, 80, 105, 106, 128, 194, 268, 294
- Arbuckle Anticline, 38
- Arbuckle Mountains, 29, 37, 38, 39, 294, 302, 303
- Ardmore Basin, 105, 194, 268, 294
- Arkoma Basin, 6, 7, 105, 123, 159, 194, 225, 226, 249, 279, 283, 284, 294
- Backbone Anticline and Fault, 123, 253
- Boktukola Fault, 249
- Bourbon Arch, Kansas, 108
- Brazil Anticline, 279
- Briery Fault, 249
- Broken Bow–Benton Uplift, 64, 201, 227, 249, 293
- Carbon Fault, 249
- Cavanal Syncline, 123
- Central North American Rift System, 21
- Cherokee Basin, 106
- Cherokee Group, subsurface, 225, 226
- Cherokee Platform, 108, 194
- Choctaw Fault and Anticline, 20, 64, 91, 249, 256, 279, 283, 284
- Clarita Anticline and Fault, 6, 7
- Cordell Anticline, 69
- Cowlington Syncline, 123
- cratonic rifting, Ouachita orogeny, 242
- Cross Mountain Anticlinorium, 64
- crustal movement during Desmoinesian, 20
- Cumberland Anticline and Syncline, 34
- Dougherty Anticline, 93
- Fort Cobb Anticline, 13, 69
- Greenwood Syncline, 253
- Horse Creek Anticline, 108
- Kinta Anticline, 123
- Lake Anticline, 93
- lineaments, Tri-State area, 224
- Linson Creek Anticlinorium, 64
- Lips Fault trend, 69
- Lynn Mountain Syncline, 249
- McAlester Basin, 283, 284
- Madill–Aylesworth Anticline, 34
- Marietta Syncline, 34, 294
- Miami Syncline, 108
- Midcontinent Geophysical Anomaly, 248
Mill Creek Fault, Graben, and Syncline, 29, 38, 93
Milton Anticline, 123
Mississippian, general, 51
Mobeetie Anticline, 69
Morvin Pool Horst, 225, 226
Nemaha Ridge, 21, 51, 69, 170, 172, 194, 248
Northwest Butterfly Field, 29
Oakland Anticline, 34
Octavia Fault, 249
Ouachita Mountains, Ouachita Geosyncline, 20, 51, 59, 64, 67, 60, 91, 103, 105, 159, 194, 200, 201, 227, 235, 242, 248, 250, 251, 253, 256, 258, 259, 266, 268, 283, 284, 293, 296
Panther Mountain Syncline, 123
pivotal fault, Osage County, 44
plate tectonics, relation to sandstone composition, 59; late Paleozoic, 235, 293
Potato Hills, 294
Preston Anticline, 34
Reagan Fault, 38, 93, 303
Rich Mountain Syncline, 253
San Bois Fault and Syncline, 123, 279, 283, 284
Sayre Anticline, 69
Seminoe–Cushing Ridge, 225, 226
Southern Oklahoma Aulacogen, 93, 268, 294
submarine slumping, Ouachita Mountains, 250
Sycamore Creek Anticline, 38
Tishomingo Anticline, 38
Ti Valley Fault, 91, 249, 256
Washburn Anticline, 253
Washita Valley Fault, 38, 294, 302, 303
Whitefield Anticline, 123
Wichita Mountains, 69, 87, 194, 222, 294
Wilzetta Fault, 225, 226
Windingstair Fault, 64, 91, 249, 253, 256
“Y” City Fault, 253

Tri-State Area:
Cherokee sandstone, 65, 66
heavy oil, 108, 109
Landsat study, 224
lead and zinc, 129, 159
lineaments, 224

Uranium:
association with hydrocarbon deposits, 2
Cambrian granites, 2
Clinton Quadrangle, NURE study, 15, 25, 274
Dockum Group, Texas Panhandle, 177
hydrogeochemical exploration, 2, 15, 25, 274
Lawton Quadrangle, NURE study, 15
mineralization, 1, 2
Morrison Formation, Cimarron County, 1
Oklahoma Geological Survey programs, 185

Persevansian host rocks, 22
Perian sandstones, 2
radium-rich brines, origin, 26
western Oklahoma, 130

Wichita Mountains:
biotite gabbros, 222
Harrison Attends Resource–Appraisal Meeting

William E. Harrison, Oklahoma Geological Survey petroleum geologist and geochemist, attended a resource-appraisal meeting called by the U.S. Geological Survey June 16 and 17 at the Denver Federal Center. The purpose of the conference was to gather data for updating estimates of recoverable resources of petroleum and natural gas in the United States. Harrison provided assessments on undiscovered petroleum resources in Oklahoma.

For purposes of this study, the United States was divided into 132 geologic provinces by the federal survey. Oklahoma contains five of these provinces—the Anadarko Basin, the Ardmore Basin, the Arkoma Basin, the Cherokee Platform, and the Nemaha Ridge. Harrison gave detailed comments on various aspects of exploration efforts in these Oklahoma provinces.

Evaluations are now being made on the basis of information about reservoir quality, source-rock quality and temperature history, and the potential of remaining undrilled (untested) areas of each of the provinces. Information collected will provide the basis for a revised version of USGS Circular 725, Geological Estimates of Undiscovered Recoverable Oil and Gas Resources in the United States, issued in 1975.

Oklahoma Receives Federal Mining Grant

Secretary of the Interior Cecil D. Andrus has announced that Oklahoma will receive a $379,478 grant under the Surface Mining Control and Reclamation Act. The grant, administered by the U.S. Department of the Interior’s Office of Surface Mining, will be used by the State to cover costs of Oklahoma’s initial program to regulate surface coal mining and reduce potential harmful effects to the environment.

The new funds will enable the State to cover salary and fringe benefits for 16 current State employees, as well as to provide funding for travel, equipment, and the technical and legal consultant services necessary to carry out requirements of the regulatory program.

Oklahoma’s coal industry produced 4,787,942 tons of bituminous coal during 1979.
New Director to Oversee School’s Five-Year Plan

The University of Oklahoma announced recently that Dr. John S. Wickham has been appointed director of the School of Geology and Geophysics. As director, Wickham will begin implementing a “five-year plan” designed to assure the school of a top position in teaching and research.

Through the new five-year plan, which was recently endorsed by OU President William S. Banowsky and the OU Board of Regents, the University has committed itself to essentially doubling the size of the faculty in order to have strong academic programs in five areas. Emphasis will be placed on petroleum geology, petrology and geochemistry, stratigraphy and paleontology, solid-earth geophysics and tectonics, and exploration geophysics.

"The School will have 12 full-time faculty members this fall, and four more will have been added by the fall semester of 1981 to bring the total to 16," Wickham said. "The University will then add two positions each year until the total has reached 26."

The recently created Monnett Professorship (endowed at $750,000 through alumni contributions) will be filled this fall by David Stearns, whose specialties are structural geology and petroleum geology.

Two other endowments of $300,000 each have created the Klabzuba and Schultz Professorships which, for the next few years, will bring distinguished visiting scientists to campus. This fall, Norman Domenico, consulting geophysicist with Amoco Research Lab in Tulsa, and next fall, Bill Galloway, who has done research in clastic depositional environments, will be teaching classes.

Wickham believes that the School will continue to provide a firm educational background that will allow its graduates to make important contributions to the energy industry. And he believes that, in a large way, this will be possible through the efforts of the alumni of the school.

"Alumni support has been outstanding in the past, Dr. Charles Mankin [former director of the school and current director of both the Oklahoma Geological Survey and the Energy Resources Center] organized an alumni advisory council in the 1960's and it has continued to be very active.
Through this council, the alumni have given financial and moral support as well as some excellent advice.

Since the nation's attention has been focused in recent years on the energy needs of the country, the school has seen an increase in enrollments, Wickham said. Figures show approximately 350 undergraduate and 60 graduate students in geology and geophysics at OU.

Wickham noted that increases in enrollments began shortly after the Arab oil embargo in 1973, and have been on the rise since.

The increasing enrollments have placed an added burden on Gould Hall, the already crowded building housing both the school and the Oklahoma Geological Survey. Both groups, however, are scheduled to benefit from a recently approved plan to direct $3 million toward the renovation of the building, Wickham said.

"The planning and design phase of the operation will take place this fiscal year, and we hope to begin construction in the following fiscal year. We will add air conditioning to the building and update the heating system, as well as do some desperately needed work on research and teaching labs and classrooms."

Wickham said attention would also be given to the exterior of the building, which now has a large expanse of glass that has been painted silver to help the un-airconditioned building remain as cool as possible during the scorching Oklahoma summers.

When the building was designed, he said, the glass was to be covered with large louvers that would be closed in the summer to keep out unwanted solar heating and opened in the winter to take advantage of the warming sunshine. Architects are currently working to update and improve this system to see if it would be feasible for future installation.

Wickham, who will see the school through the upcoming refurbishing of both building and program, came to OU as an assistant professor in 1969 after receiving his Ph.D. from Johns Hopkins. He had completed his undergraduate work at Pomona College, in southern California, in 1960 before beginning a four-year tour of duty in the Coast Guard. In 1975, he took a leave of absence from the University to work for Continental Oil Co. as a consultant in the Houston Division.

His work has included field and theoretical studies on structural problems in the Ouachita Mountains and the Southern Oklahoma Aulacogen. He has also worked on development of computer applications for lab research in structural geology, and computer models for rock deformation. Most recently, he has been involved with fracturing as it affects porosity, permeability, and migration of hydrocarbons.

The school is beginning the decade with a new director, a new five-year plan, proposed building modifications, and continued support from the alumni. The spirit is upbeat, and the outlook is bright.

—Connie Smith
AGI Issues New Glossary

"From A to Z, it's all here." So states the advertisement for the American Geological Institute's new, revised edition of the *Glossary of Geology*. What is all here, from "aa" to "zygous basal plate," is an alphabetized list of 36,000 geological terms, complete with definitions, cross references, synonymy, some historical background, some bibliographic citations, some etymology, expansion of sometimes puzzling abbreviations or acronyms into understandable words, and phonetic pronunciation guides for foreign-language terms. There is also a listing of some 2,000 references from which the bibliographic citations were drawn. One hundred fifty geoscientists contributed to the accuracy of the information contained.

The science grows, expands into new areas, intensifies in established fields; and specialties become more specialized. The literature expands accordingly. The addition of 3,000 terms to AGI's 1972 *Glossary* and redefinition of some terms was needed, and AGI has done a good job in this second edition.

The first AGI geological dictionary, *Glossary of Geology and Related Sciences*, was published in 1957, seven years after The American Association of Petroleum Geologists considered such a project and rejected it, suggesting that it might be a good undertaking for the newly formed American Geological Institute. A new edition, with a 4,000-entry supplement, was released in 1960. Each re-issue has been an improvement on the preceding version, and the 1980 edition is no exception.

The volume is printed in easy-to-read Century Schoolbook type on non-glare, cream-toned paper. Entries are boldface, as in the first edition, but definitions are indented a space, so that terms described stand out and are easier to spot. Each letter of the alphabet has its own introduction of an artistic photo of geological, paleontological, or geomorphic interest. The Wedgewood-blue jacket has a graphic, organic spiral that starts from a thin thread that vanishes in a 4.5-billion-year past.

Editors of the new edition of the *Glossary* are Robert L. Bates, professor emeritus of Ohio State University, and Julia A. Jackson, an editor with AGI.

Most of us recognize Bob Bates as the writer of the clever, occasionally embarrassing "geologic column" on the antepenultimate page of *Geotimes*, which is the page many readers of AGI's monthly periodical turn to first. The tenor of his column indicates that he is a stickler, and that is surely a prerequisite for a good lexicographer. But he is also the author of many scientific papers and a textbook on industrial rocks and minerals and has served as editor for the *Journal of Geological Education, The Professional Geologist*, and AIME's fourth edition of *Industrial Minerals and Rocks*. He is a distinguished member of the National Association of Geology Teachers, an honorary member and nominee for president-elect of the Association of Earth Science Editors, and a member of The American Association of Pe-
Emre Sancaktar Named to OGS Staff

Emre Ayse Sancaktar has recently joined the OGS staff as the newest member of the analytical-chemistry section. Along with her regular lab duties, she will be assisting petroleum geologist William E. Harrison in a regional study of the Woodford Shale in western Oklahoma. The two main objectives of this project are a temperature history and a determination of the hydrocarbon source-rock potential in that area.

Emre comes to the Survey from Bogazici University, Istanbul, Turkey, where she was an instructor in the chemistry department. Prior to that, she had spent three years as a teaching and research assistant in the chemistry department of Virginia Polytechnic Institute and State University at Blacksburg, Virginia, and had also taught at Robert College, Istanbul.

Her list of publications includes "Adsorption-Desorption of Water on Poly (ethylene terephthalate)" and "A Study of the Chemistry of Lithiotriphenyolphosphineacetylmethylene."

Emre and her husband, Selim, who teaches in OU’s School of Mechanical and Nuclear Engineering, live in Norman.
Energy-Research Exchange Agreement
Signed with West Berlin University

University of Oklahoma Provost J. R. Morris and OU Energy Resources Center (ERC) director Charles J. Mankin have recently signed an energy-research exchange agreement with the Technical University of West Berlin. The agreement involves all OU departments engaged in energy-related research. Mankin, of course, is well known in his capacity as director of the Oklahoma Geological Survey.

"The Technical University of West Berlin is far advanced in coal research. Its scientists feel they can help us in that area, and we can help them in enhanced oil recovery and other areas related to petroleum recovery and exploration," Jo Wilke, ERC director of special programs, said.

"Student exchanges will be made on the basis of a semester, and equivalent credit will be given."

Much energy-related research at OU is coordinated by the ERC as well as by the OGS. The center was established in 1978 to sponsor faculty and staff efforts to develop energy knowledge, provide government and industry with statistics and study results, and create and direct new energy-related research.

Johnson Receives Achievement Award

Kenneth S. Johnson, associate director of the Oklahoma Geological Survey, has been named recipient of a distinguished-achievement award granted annually to a leading earth scientist of the Rocky Mountain–Great Plains states by the Rocky Mountain Federation (RMF) of the American Federation of Mineralogical Societies. The award was presented at the annual RMF banquet held June 7 in Topeka, Kansas.

Johnson was selected for the honor in recognition of "his many published studies on the geology, mineral resources, and environmental geology of Oklahoma, and because of his teaching activities at The University of Oklahoma and his service to the gem and mineral societies of Oklahoma and to the public."

As recipient of the award, Johnson was authorized to designate a graduate student in earth science to receive a 2-year RMF scholarship in the amount of $1,000 per year. As his choice he has named Janina Bloch, Ph.D. candidate in the School of Geology and Geophysics at The University of Oklahoma, stating, "Ms. Bloch is an exceptionally well-qualified graduate student. She has maintained a 3.8 grade-point average, and as a graduate assistant she has instructed laboratory sections in mineralogy and petrology and has instructed lecture sections in sedimentary petrography."
Man and the Biosphere

Published as part of the Man and the Biosphere Program (MAB), which is "an inter-governmental effort to focus research, public education, and technical training" on environmental problems facing today's world, this book outlines the physical characteristics, scientific-research potential, and modifications made by man on 27 existing U.S. Biosphere Reserves.

The excellent photography and the use of a number of tables add to the readability of this publication. The MAB program is being supervised by UNESCO General Conference representatives from 30 nations.

Problems of Petroleum Migration

Thirteen authors present their differing views on the process of petroleum migration in this 274-page large-format publication. The book is a collection of papers from the Symposium on Petroleum Migration that was a part of the 1978 Annual AAPG meeting held in Oklahoma City.

Order from: AAPG, P.O. Box 979, Tulsa, Oklahoma 74101. Price: AAPG-SEPM members, $15; others, $18.

Stratigraphic Traps in Carbonate Rocks

A collection of 10 papers from AAPG Bulletins (1960-75) and Memoirs (14 and 24), this publication has been compiled by S. J. Mazzullo to help geologists understand carbonate facies in exploration. The book contains a bibliography and an extensive table of selected carbonate stratigraphic traps.

Order from: AAPG, P.O. Box 979, Tulsa, Oklahoma 74101. Price: AAPG-SEPM members, $6; others, $7.

U.S. Geological Survey Open-File Reports

U.S. Geological Survey Open-File Report 80-50, dealing with the water table in the High Plains aquifer in 1978 in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, has recently been issued. The material is by E. D. Gutentag and J. B. Weeks, and consists of one oversized sheet, scale 1:2,500,000.

AAPG

Mid-Continent Group to Examine Energy Exploration in the 80's

“Mid-Continent Energy Exploration in the 1980's” will be the central theme for the Mid-Continent Section of The American Association of Petroleum Geologists' biennial meeting scheduled for September 20, 21, and 22, 1981, at the Sheraton Century Center Hotel in Oklahoma City. James W. Cammack will serve as convention chairman.

Program co-chairmen Kenneth S. Johnson and Douglas J. Seyler are asking that abstracts for papers be submitted before December 1, 1980. They are requesting papers dealing with general geology and geophysics of the Midcontinent, potential new hydrocarbon objectives in the Midcontinent, innovations in exploration and production practices, and nonpetroleum energy exploration.

Those interested in submitting abstracts should contact Johnson in advance for a copy of the style sheet for authors. His address is on the front cover.

OKLAHOMA GEOLOGY NOTES

Volume 40 August 1980 Number 4

Bibliography and Index of Oklahoma Geology, 1979

Elizabeth A. Ham ... 123
Ogallala Ash Outcrop in Ellis County 122
Harrison Attends Resource-Appraisal Meeting 169
Oklahoma Receives Federal Mining Grant 169
New Director to Oversee School's Five-Year Plan 170
AGI Issues New Glossary .. 172
Emre Sancaktar Named to OGS Staff .. 173
Energy-Research Exchange Agreement Signed with
West Berlin University .. 174

Johnson Receives Achievement Award .. 174
Notes on New Publications .. 175
AAPG Mid-Continent Group to Examine Energy Exploration in the 80's ... 176