AREA OF MINERAL PRODUCTION ON NORTH FLANK OF ARBUCkLE ANTICLINE

The cover photograph for this issue shows folded limestones and shales on the north flank of the Arbuckle anticline, 3 miles southwest of Davis. Two north-plunging anticlines are outlined by the prominent, tree-bare ridge of Viola Limestone (Ordovician) visible in the south half of the photograph. The anticlines cover most of secs. 10, 11, 14, and 15, T. 1 S., R. 1 E., in Murray County. The width of the area shown in the photograph is 2 miles.

This area has yielded significant quantities of mineral resources (limestone and petroleum) since the photograph was taken in the 1930's. Sooner Rock and Sand, Inc., opened its Davis quarry on the nose of the east anticline (SE¼ sec. 11) in 1959 and is mining the Viola Limestone for road material, aggregate, and other concrete products, most of which is being sent to Oklahoma City markets. The Davis quarry is closer to Oklahoma City than any other quarries in the Arbuckle Mountains, and its annual production in recent years has been a little over half a million tons.

An important petroleum discovery was made on the east anticline in January 1975. Mapco, Inc., completed the No. 1 Howell in sec. 14 for an initial potential flow (IPF) of 1,392 barrels of oil per day (BOPD) from sands of the Oil Creek Formation (Middle Ordovician) at a depth of 4,172–4,199 feet beneath a series of complex thrust faults. Since then 12 more wells have been completed in the Southwest Davis field (secs. 11 and 14), with IPF's of 130 to 400 BOPD, from upper and lower Oil Creek sands at depths ranging from 3,800 to 4,900 feet; two additional wells have been dry.

The photograph was taken by the U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service.

—Kenneth S. Johnson

Editorial staff: William D. Rose, Rosemary L. Hardage, Elizabeth A. Ham

Oklahoma Geology Notes is published bimonthly by the Oklahoma Geological Survey. It contains short technical articles, mineral-industry and petroleum news and statistics, an annual bibliography of Oklahoma geology, reviews, and announcements of general pertinence to Oklahoma geology. Single copies, seventy-five cents; yearly subscription, $4.00. All subscription orders should be sent to the address on the front cover.

Short articles on aspects of Oklahoma geology are welcome from contributors. A set of guidelines will be forwarded on request.

This publication, printed by the University of Oklahoma Printing Services, Norman, Oklahoma, is issued by the Oklahoma Geological Survey as authorized by Title 70, Oklahoma Statutes 1971, Section 3310, and Title 74, Oklahoma Statutes 1971, Sections 231-238. 1,500 copies have been prepared for distribution at a cost to the taxpayers of the State of Oklahoma of $2,707.00.
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY, 1976

Compiled by Elizabeth A. Ham

Bibliography—pages 91-124
Index—pages 124-143

BIBLIOGRAPHY

Adams, G. F., see Fairbridge, R. W., and Adams, G. F.
Adams, S. R., see Al-Shaieb, F. Z., Hanson, R. E., and Adams, S. R.
Ade-Hall, J. M., see Vincenz, S. A., Yaskawa, K., and Ade-Hall, J. M.
Agatson, R. S., see Rouse, J. T., Agatson, R. S., Bright, Jerlene, and Proctor, R. M.

Al-Shaieb, Zuhair, see Olmsted, R. W., and Al-Shaieb, Zuhair
Al-Shaieb, Zuhair, see also Shelton, J. W., and Al-Shaieb, Zuhair

American Petroleum Institute, see American Gas Association, American Petroleum Institute, and Canadian Petroleum Association

1 Includes some earlier listings.
2 Associate editor, Oklahoma Geological Survey.

 Antelo, Belarmino, see Isaacson, P. E., Antelo, Belarmino, and Boucot, A. J.

 Babitzke, H. R., see Cammarota, V. A., Jr., and Babitzke, H. R.

 Barringer, A. R., see Donovan, T. J., Barringer, A. R., Foote, R. S., and Watson, R. D.

 Beikman, H. M., see King, P. B., and Beikman, H. M.

18. Bellis, W. H., and Rowland, T. L., 1976, Shale and carbonate-rock re-
sources of Osage County, Oklahoma: Oklahoma Geological Survey Circular 76, 50 p., 18 figs., 1 panel, 4 tables.

Bergman, D. L., see Carr, J. E., and Bergman, D. L.
Bergman, D. L., see also Havens, J. S., and Bergman, D. L.

Bergström, S. M., see Boger, J. L., and Bergström, S. M.

Black, Bernard, see Decker, R. E., and Black, Bernard

Bock, W. D., see Otvos, E. G., Jr., and Bock, W. D.
Bogard, D. D., see Cressy, P. J., Jr., and Bogard, D. D.

28. Bojer, J. L., and Bergström, S. M., 1976, Conodont biostratigraphy of the upper Beekmantown Group and the St. Paul Group (Early and Middle Ordovician of Maryland and West Virginia) [abstract]: Geological Society of America Abstracts with Programs, v. 8, p. 465. (Refers to Lower-Middle Ordovician boundary in Oklahoma.)

Boucot, A. J., see Isaacscon, P. E., Antelo, Belarmino, and Boucot, A. J.
Bower, R. R., see Kidwell, A. L., and Bower, R. R.
Bowles, L. G., see Zweiacker, P. L., and Bowles, L. G.
Briggs, Garrett, see Wickham, John, Roeder, Dietrich, and Briggs, Garrett

Bright, Jerlene, see Rouse, J. T., Agatson, R. S., Bright, Jerlene, and Proctor, R. M.

Browning, J. M., see Walper, J. L., and Browning, J. M.

Burtch, F. W., see Walker, C. J., Burtch, F. W., Thomas, R. D., and Lorenz, P. B.

Canadian Petroleum Association, see American Gas Association, American Petroleum Institute, and Canadian Petroleum Association

45. Cannon, P. J., 1976, Generation of explicit parameters for a quantitative geomorphic study of the Mill Creek drainage basin: Oklahoma Geology Notes, v. 36, p. 3-17, 3 figs., 4 tables.

48. Carr, J. E., and Havens, J. S., 1976, Records of wells and water quality for

Case, G. R., see Zangerl, Rainer, and Case, G. R.

Cebull, S. E., see Shurbet, D. H., and Cebull, S. E.

Century, J. R., see Bright, J. A., and Century, J. R.

Chaudhuri, S., see Lee, M. J., and Chaudhuri, S.

Chilingarian, G. V., see Bissell, H. J., and Chilingarian, G. V.

60. Cooper, Paul, 1976, The cyanophyte Wetheredella in Ordovician reefs and off-reef sediments: Lethaia, v. 9, p. 273-281, 3 figs. (Refers to an Oklahoma algal species.)

Derby, J. A., see Simon, D. E., and Derby, J. A.

Derby, J. R., see Stitt, J. H., Miller, J. F., and Derby, J. R.

Dickinson, W. R., see Graham, S. A., Ingersoll, R. V., and Dickinson, W. R.

Dixon, G. H., see Frezon, S. E., and Dixon, G. H.

78. Donovan, T. J., 1976, Landsat study of alteration aureoles in surface rocks overlying petroleum deposits: Government Reports Announcements, v. 76, no. 8, p. 104. (Flights over Cement and Davenport oil fields, Oklahoma; abstract in Petroleum Abstracts, v. 16, p. 1158.)

Donovan, T. J., Barringer, A. R., Foote, R. S., and Watson, R. D., 1976, Low-altitude remote sensing experiments at Cement and Davenport oil
Drummond, H. E., see Vandeveer, L. R., and Drummond, H. E.
DuBois, B. M., see Johnson, J. P., Cunningham, J. W., and DuBois, B. M.
DuBois, R. L., see Lawson, Jim, and DuBois, R. L.
Epstein, Samuel, see Knauth, L. P., and Epstein, Samuel
Fanelli, L. L., see Koelling, G. W., and Fanelli, L. L.
Fanelli, L. L., see also Prehoda, Ronald, and Fanelli, L. L.
92. Feenstra, Roger, and Wickham, J. S., 1976, Computer models of simple shear deformation superposed on symmetric folds applied to deforma-
tion in the Ouachita Mountains [abstract]: Geological Society of America Abstracts with Programs, v. 8, p. 20. (Reprinted in Oklahoma Geology Notes, v. 36, p. 68.)
Felix, C. J., see Burbridge, P. P., and Felix, C. J.
Fernandez, L. A., see Twyman, J. D., and Fernandez, L. A.
Fischer, A. G., see Roggenthen, William, Fischer, A. G., Napoleone, Giovanni, and Fischer, J. F.
Fischer, J. F., see Giddens, J. D., III, Gregory, C. W., Smith, C. K. B., and Fischer, J. F.
Fischer, J. F., see also Powell, B. N., and Fischer, J. F.
Fischer, J. F., see also Roggenthen, William, Fischer, A. G., Napoleone, Giovanni, and Fischer, J. F.
Foote, R. S., see Donovan, T. J., Barringer, A. R., Foote, R. S., and Watson, R. D.
95. Forney, G. G., and Nitecki, M. H., 1976, Type fossil Mollusca (Hyolitha, Polyplacophora, Scaphopoda, Monoplacophora, and Gastropoda) in Field Museum: Fieldiana Geology, v. 36 [misnumbered on publication as v. 35].
French, R. B., see Van der Voo, R., French, R. B., and Williams, D. W.
97. Friedman, S. A., 1976, Effect on recoverable coal reserves by surface mining under adverse geological and engineering conditions [abstract]: Geological Society of America Abstracts with Programs, v. 8, p. 876. (Concerns Oklahoma reserves; reprinted in Oklahoma Geology Notes, v. 36, p. 245.)
Friz, T. O., see Imhoff, E. A., Friz, T. O., and LaFevers, J. R.
100. Fry, H. C., and Cuffey, R. J., 1976, Filiramaporina kretaphilia—a new
genus and species of bifoliate tubulobryozoan (Ectoprocta) from the Lower Permian Wreford Megacyclothem of Kansas: University of Kansas Paleontological Contributions, Paper 84, 9 p., 3 figs., 2 pls.

Ghermazien, T., see Crow, F. R., Paine, M. D., and Ghermazien, T.

Goemaat, R. L., see Hart, D. L., Jr., Hoffman, G. L., and Goemaat, R. L.

Goodwin, R. H., see Brocoum, S. J., and Goodwin, R. H.

Grayson, R. C., Jr., see Sutherland, P. K., and Grayson, R. C., Jr.

Gregory, C. W., see Giddens, J. D., III, Gregory, C. W., Smith, C. K. B., and Fischer, J. F.

Hague, J. M., see Ryan, J. P., and Hague, J. M.

Halseth, M. A., see Ossian, C. R., and Halseth, M. A.

Hanson, R. E., see Al-Shaieb, F. Z., Hanson, R. E., and Adams, S. R.

Harris, R. E., see Westerstrom, L. W., and Harris, R. E.

Havens, J. S., see Carr, J. E., and Havens, J. S.

Heine, R. R., see Al-Shaieb, Zuhair, and Heine, R. R.

Hoffman, G. L., see Hart, D. L., Jr., Hoffman, G. L., and Goemaat, R. L.
Holdoway, K., see Zeller, E. J., Dreschhoff, G., Angino, E., Holdoway, K.,
Hakes, W., Jayaprakash, G., Crisler, K., and Saunders, D. F.
Hudson, J. O., see Raymond, R. L., Hudson, J. O., and Jamison, V. W.

Ingersoll, R. V., see Graham, S. A., Ingersoll, R. V., and Dickinson, W. R.

130. Irving, E., and Pulliah, G., 1976, Reversals of the geomagnetic field, magnetostratigraphy, and relative magnitude of paleosecular variation in the Phanerozoic: Earth-Science Reviews, v. 12, p. 35-64, 17 figs., 3 tables. (Includes Garber Formation quiet interval.)
Irwin, J. H., see Cameron, A. N., Irwin, J. H., Sniegocki, R. T., and Yost, I. D.

131. Isaacson, P. E., Antelo, Belarmino, and Boucot, A. J., 1976, Implications of a Llandovery (Early Silurian) brachiopod fauna from Salta Province, Argentina: Journal of Paleontology, v. 50, p. 1103-1112, 4 figs., 1 pl., 1 table. (Refers to Oklahoma species.)

Johnson, K. S., see Southard, L. G., Johnson, K. S., and Roberts, J. F.

Jones, L. L., see Lacewell, R. D., Jones, L. L., and Osborn, J.

4 figs., 4 tables. (Report on McClain County disposal site.)

Kaufman, Sidney, see Oliver, Jack, Dobrin, Milton, Kaufman, Sidney, Meyer, Robert, and Phinney, Robert

Keller, G. R., see Cebull, S. E., and Keller, G. R.

144. Kennedy, J. R., 1976, A look at dry-hole contributions: Oil and Gas Journal, v. 74, p. 88-91, 3 figs., 2 tables. (Includes Morrow-Springer example.)

Kent, D. C., see Naney, J. W., Kent, D. C., and Seely, E. H.

Keyes, W. F., see Merwin, R. W., and Keyes, W. F.

152. King, P. B., 1976, Reply [to comment by R. H. Belderson on King, P. B.,

Kisvarsanyi, E. B., see Kisvarsanyi, G., and Kisvarsanyi, E. B.

Klapper, Gilbert, see Barrick, J. E., and Klapper, Gilbert

Koinm, D. N., see Kessler, L. G., II, Koinm, D. N., and Lundy, W. L.

162. Lacellew, R. D., Jones, L. L., and Osborn, J., 1976, Adjustments due to a declining groundwater supply: high plains of northern Texas and western Oklahoma: Texas A and M University, College Station, Water Resources Institute, 42 p., 1 fig., 10 tables. (Available as National Technical Information Service PB-255 792; abstract in Selected Water Resources Abstracts, v. 9, no. 20, p. 25.)

LaFevers, J. R., see Imhoff, E. A., Friz, T. O., and LaFevers, J. R.

LaFountain, L. J., see Jacobs, A. M., and LaFountain, L. J.

163. Landing, Ed, 1976, Early Ordovician (Arenigian) conodont and graptolite biostratigraphy of the Taconic allochthon, eastern New York: Journal
LeBlanc, R. J., see Thompson, Alan, and LeBlanc, R. J.

168. Linville, Bill (editor), 1976, Contracts and grants for cooperative research on enhancement of recovery of oil and gas: Energy Research and Development Administration Technical Information Center Progress Review 7, 82 p., illus. (Includes Oklahoma grant projects.)

Loomis, E. C., see Sargent, K. A., and Loomis, E. C.
Lorenz, P. B., see Walker, C. J., Burotch, F. W., Thomas, R. D., and Lorenz, P. B.

Ludvigsen, R., see Chatterton, B. D. E., and Ludvigsen, R.

Lundy, W. L., see Kessler, L. G., II, Koinam, D. N., and Lundy, W. L.

176. Lutz-Garihah, A. B., 1976, Composita subttila (Brachiopoda) in the Wreford Megacyclothem (Lower Permian) in Nebraska, Kansas, and Oklahoma: University of Kansas Paleontological Contributions, Paper 81, 19 p., 2 pl., 9 tables, 8 text-figs.

Lyons, Paul, see Wickham, John, Lyons, Paul, and Morris, R. C.

180. McCaslin, J. C., 1976, Drilling programs link Oklahoma gas fields: Oil and Gas Journal, v. 74, no. 8, p. 151, 1 fig.

MacDonald, K. G., see Bright, J. A., and MacDonald, K. G.

McKinney, F. K., see Boardman, R. S., and McKinney, F. K.
Meyer, Robert, see Oliver, Jack, Dobrin, Milton, Kaufman, Sidney, Meyer, Robert, and Phinney, Robert
Michalski, Bernadette, see Harper, W. B., Michalski, Bernadette, and Moore, B. M.

Miller, J. F., see Stitt, J. H., Miller, J. F., and Derby, J. R.

Moore, B. M., see Harper, W. B., Michalski, Bernadette, and Moore, B. M.

Morris, R. C., see Wickham, John, Lyons, Paul, and Morris, R. C.

Mose, D. G., see Bickford, M. E., and Mose, D. G.

County; abstract in Selected Water Resources Abstracts, v. 10, no. 2, p. 5."

Napoleone, Giovanni, see Roggenthen, William, Fischer, A. G., Napoleone, Giovanni, and Fischer, J. F.

Nicksic, C. P., see Bostick, N. H., and Nicksic, C. P.

Nitecki, M. H., see Forney, G. G., and Nitecki, M. H.

210. Noran, Dave, 1976, Reservoir data base expands content: Oil and Gas Journal, v. 74, no. 34, p. 137, 1 photo, 1 table.

211. Ohle, E. L., 1976, Precipitation mechanisms for Mississippi Valley-type ore deposits [discussion]: Economic Geology, v. 71, p. 1060-1061. (Refers to Tri-State district, Anadarko basin, Ouachita basin.)

221. Ormiston, A. R., and Lane, H. R., 1976, A unique radiolarian fauna from
the Sycamore Limestone (Mississippian) and its biostratigraphic significance: Palaeontographica, Abt. A., p. 158-180, 6 pls., 4 text-figs., 2 tables.

Osborn, J., see Lacewell, R. D., Jones, L. L., and Osborn, J.

Overbey, W. K., Jr., see Shumaker, R. C., Pierce, C. I., and Overbey, W. K., Jr.

Paine, M. D., see Crow, F. R., Paine, M. D., and Ghermazien, J.

Bulletin, v. 8, no. 6, p. 31-33. (Lists Oklahoma earthquakes.)
Phares, R. S., see Vischer, G. S., Saitta B., Sandro, and Phares, R. S.
Phinney, Robert, see Oliver, Jack, Dobrin, Milton, Kaufman, Sidney, Meyer, Robert, and Phinney, Robert
Pierce, C. I., see Shumaker, R. C., Pierce, C. I., and Overbey, W. K., Jr.
236. Pirson, S. J., 1976, Track record in ME exploration: Oil and Gas Journal, v. 74, no. 38, p. 241-244, 246, 249, 3 figs., 3 tables. (Caddo County survey.)
237. Potter, C. W., 1975, Lower Ordovician conodonts of the upper West Spring Creek Formation, Arbuckle Mountains, Oklahoma: University of Missouri at Columbia unpublished M.S. thesis.
239. Powell, B. N., and Fischer, J. F., 1976, Plutonic igneous geology of the Wichita magmatic province, Oklahoma: Geological Society of America South-Central Section, Guidebook for Field Trip no. 2, February 28-29, 1976, 35 p., 52 figs., 7 tables. (Published by Oklahoma Geological Survey.)
Proctor, R. M., see Rouse, J. T., Agatson, R. S., Bright, Jerlene, and Proctor, R. M.
Pruatt, Martin, see Wickham, John, Pruatt, Martin, and Reiter, Leon
Pulliah, G., see Irving, E., and Pulliah, G.

246. Rankin, D. W., 1976, Appalachian salients and recesses: Late Precambrian continental break-up and the opening of the Iapetus Ocean: Journal of Geophysical Research, v. 81, p. 5605-5619, 5 figs., 2 tables. (Refers to Anadarko basin and Ouachita orogenetic belt.)

Reed, P. R., see Claypool, G. E., and Reed, P. R.
Reiter, Leon, see Pruatt, M. A., and Reiter, Leon
Reiter, Leon, see also Wickham, John, Pruatt, Martin, and Reiter, Leon
Rhoades, E. D., see Coleman, G., Gander, G. A., and Rhoades, E. D.

252. Roberts, John, 1976, Carboniferous chonetacean and productacean brachiopods from eastern Australia: Palaeontology, v. 19, p. 17-77, 18 figs., pls. 3-13. (Refers to Oklahoma species.)

Roberts, J. F., see Southard, L. G., Johnson, K. S., and Roberts, J. F.

Roeder, Dietrich, see Wickham, John, Roeder, Dietrich, and Briggs, Garrett

256. Roles, J. S., 1976, Ground water resources of the Rush Springs Sandstone...
of southwestern Oklahoma: Oklahoma Water Resources Board Publication 72, 3 sheets.

Rose, W. D., see Ham, E. A., and Rose, W. D.

Rowland, T. L., see Bellis, W. H., and Rowland, T. L.

Saitta B., Sandro, see Visher, G. S., Saitta B., Sandro, and Phares, R. S.

accumulation rates: Geology, v. 4, p. 723-727. (Includes Oklahoma Carboniferous flysch deposits and southern Oklahoma aulacogen.)

269. Sheehan, P. M., 1976, Late Silurian brachiopods from northwestern Utah: Journal of Paleontology, v. 50, p. 710-733, 1 fig., 5 pls., 1 table. (Refers to Oklahoma species.)

274. Shurbet, D. H., and Cebull, S. E., 1975, The age of the crust beneath the Gulf of Mexico: Tectonophyscis, v. 28, p. T25-T30, 1 fig. (Relates history of Gulf to that of Paleozoic Ouachita orogenic system.)

276. Simpson, L. C., 1976, Paleontology of the Garber Formation (Lower Permian), Tillman County, Oklahoma: University of Oklahoma un-
published M.S. thesis, 29 figs., 7 charts, 7 tables. (Abstract in Oklahoma Geology Notes, v. 36, p. 131.)

Smith, C. K. B., see Giddens, J. D., III, Gregory, C. W., Smith, C. K. B., and Fischer, J. F.

Snegocki, R. T., see Cameron, A. N., Irwin, J. H., Snegocki, R. T., and Yost, I. D.

Speed, R. C., see Sloss, L. L., and Speed, R. C.

Sprinkle, James, see Longman, M. W., and Sprinkle, James

287. Strimple, H. L., 1976, The inadunate crinoid genus Mooreocrinus in
Oklahoma: Oklahoma Geology Notes, v. 36, p. 161-165, 1 fig.
Strimple, H. L., see Pabian, R. K., and Strimple, H. J.
Summerfelt, R. C., see Hill, L. G., and Summerfelt, R. C.

Taylor, Constance, see Taylor, R. J., and Taylor, Constance

290. Taylor, M. E., 1976, Indigenous and redeposited trilobites from Late Cambrian basinal environments of central Nevada: Journal of Paleontology, v. 50, p. 668-700, 9 figs., 3 pls. (Refers to Oklahoma genera.)

Thomas, R. D., see Walker, C. J., Burtsch, F. W., Thomas, R. D., and Lorenz, P. B.

311. Valderrama, Rafael, 1976, The Skinner sandstone zone in central Okla-

313. Van der Voo, R., French, R. B., and Williams, D. W., 1976, Paleomagnetism of the Wilberns Formation (Texas) and the Late Cambrian paleomagnetic field for North America: Journal of Geophysical Research, v. 81, p. 5633-5638, 5 figs., 2 tables. (Includes comparison with Wichita Mountain granites.)

Viele, G. W., see Keller, W. D., Viele, G. W., and Johnson, C. H.

Vine, J. D., see Tourtelot, E. B., and Vine, J. D.

Watson, R. D., see Donovan, T. J., Barringer, A. R., Foote, R. S., and Watson, R. D.

(Reprinted in Oklahoma Geology Notes, v. 36, p. 25-26.)

Wicander, E. R., see Loeblich, A. R., Jr., and Wicander, E. R.

Wickham, J. S., see Feenstra, Roger, and Wickham, J. S.

Wilhm, Jerry, see Namminga, H. E., and Wilhm, Jerry

Williams, D. W., see Van der Voo, R., French, R. B., and Williams, D. W. Williamson, E. A., see Davies, D. K., and Williamson, E. A.

Wise, F. A., see Doscher, T. M., and Wise, F. A.

Yaskawa, K., see Vicenz, S. A., Yaskawa, K., and Ade-Hall, J. M.

Yost, I. D., see Cameron, A. N., Irwin, J. H., Sniegocki, R. T., and Yost, I. D.

351. Zidek, Jiri, 1976, Kansas Hamilton Quarry (Upper Pennsylvanian) Acanthodes, with remarks on the previously reported North American occurrences of the genus: University of Kansas Paleontological Contributions, Paper 83, 41 p., 15 figs., 7 pls., 2 tables. (Refers to Oklahoma Permian species.)

INDEX

Age Dating:
cosmic-ray-exposure age in meteorites, helium, neon, argon, Keyes chondrite, 62
paleomagnetism, 239, 255
potassium/argon, 239
rubidium/strontium, 24, 239
uranium/lead, ages of zircons, 24
Wichita rocks, geochronology, 24, 239, 255
algae, see Paleobotany

Anadarko Basin:
abnormal pressures, 49, 241
carbonate deposition, 68
channel-fan complex, 145
deep wells, 1, 8, 10, 25, 82, 179, 181, 241
deltaic deposition, 39
dip meter study, 44
geothermal gradients, 241, 328
history of petroleum exploration, 179
Hunton Group, general, 8
LANDSAT study, 115
Morrow sands, 26
origin, 246
petroleum exploration, 8, 25, 26, 39, 44, 49, 82, 154, 179, 236, 343
petroleum-recovery tests, 275
porosity and permeability data, 8
red-bed and evaporite deposition, 68
sedimentology, 25, 39, 68, 145, 182, 247, 248
seismicity, 33
stratigraphy, 8, 344
structure and tectonics, 8, 33, 68, 72, 96, 115, 182, 239, 246, 273, 282, 328, 342, 344
annual reports: Oklahoma Department of Mines, 226; Oklahoma Geological Survey, 188;
Oklahoma Water Resources Board, 215; U.S. Geological Survey Water Resources Division, Oklahoma District, 308, 309

Arbuckle Mountains:
Arbuckle anticline, 259
Arbuckle Formation, Arbuckle Group, 8, 127, 146, 159, 262, 328
Belton anticline, 259
carbonate deposition, 25
cherts, Arbuckle and Viola limestones, 159
conodonts, 15, 237
dolomites, dolomitization, 8
electric-log mapping, 190
Hunton anticline, 8, 52, 259
Hunton Group, correlation with Anadarko basin, 8
infrared and aerial photograph study, 263
Lawrence uplift, 8
magnetic anomaly, 259
Mesozoic rocks, 153
Middle Ordovician rocks, correlation with Canadian strata, 51
Mill Creek fault, 8
Ordovician vertebrates, 222
paleoenvironments, 8
Paleozoic rocks, 66, 173
palynology, 37, 66
petroleum exploration, 66, 117, 179
Precambrian rocks, 69
Reagan fault, 75, 76, 117
relation to Anadarko basin, 8
relation to Ouachita Mountains, 151
sedimentology, 8, 52, 66, 127, 145, 172
Silurian-Devonian relationship, 8
source of Kansas Missourian deposits, 282
source of Texas Pennsylvanian clastics, 56
sponge, 251
Spring Creek Formation, conodonts, 237
stratigraphy, 8, 51, 221
structure and tectonics, 8, 52, 66, 68, 69, 70, 75, 76, 96, 104, 117, 172, 239, 254, 259, 277, 282, 342
Sulphur fault, 117
Sycamore Limestone, biostratigraphy, radiolarians, 221
Timbered Hills fault block, 117
Tishomingo anticline, Tishomingo horst, 117, 259
trilobites, 51, 285
vertical-intensity profiles, 259
Washita Valley fault, 75, 76, 117, 259

Ardmore basin: coal, 327; deposition, 96, 104, 182, 261; petroleum exploration, 117, 205; structure and tectonics, 8, 70, 72, 75, 76, 96, 104, 117, 182, 186, 261, 336

ARKOMA BASIN:
Atokan and Morrowan sands, 186
Cherokee reservoir sands, 315
Choctaw fault, 84, 96, 151, 186
coal-bearing strata, 97, 327
deltaic deposition, 39
growth faults, 151, 186
Kinta fault, 186
relation to Ouachita Mountains, 204
San Bois fault, 186
sedimentology, 39, 186, 315
structure and tectonics, 51, 70, 75, 76, 84, 96, 151, 186, 315, 327, 342

BIBLIOGRAPHIES:
coal and dispersed organic matter, 30
coal, U.S. Geological Survey publications, 324
North American oil and gas fields, 296
Oklahoma geology, 1975, 116
pre-Smackover formations, northern Gulf Coastal Plain, 312
selenium geology, 103

CAMEBRIAN:
Appalachian-Ouachita facies, 292
Arbuckle Limestone, 127, 159
Cambrian-Ordovician boundary, 286, 290
Carlton Rhyolite, 3, 127, 317
Cold Springs Granite, 239
Fort Sill Limestone, 285
Honey Creek Limestone, 127
Mount Scott Granite, 106, 239, 255
Mount Sheridan Gabbro, 106, 238, 239, 255, 295, 300
Navajo Mountain basalts, 219
palcomagnetism, 239, 255, 313, 317
Proconodon tus conodont zone, 197
Ptychaspid Biomere, 284
Reagan Sandstone, 127
Saukia-Missisquioa Zone, 286, 290
Signal Mountain Formation, 290
structural evolution, 283
Tillman metasediments, 219
Wichita Granite, 3, 219, 239, 317
Wichita Mountain granites, 3, 106, 219, 238, 239, 255, 313, 317
Carboniferous: brachiopods, 252; orogeny, 123, 151; Ouachita Mountains, 110, 123, 265, 294
catalog, mollusks, Field Museum, 95
Central Oklahoma platform, 96, 310
central stable region: glacial rebound, 132; seismicity, 33, 132; tectonic provinces, 33
Clinton quadrangle: hydrology, general, 47; surface geology, 47
COAL:
Ardmore basin, 327
Arkoma basin, 97, 327
bibliographies, 30, 324
coal balls, Craig County Desmoinesian, 229
coal beds, 97, 98, 99, 198, 229, 282, 310, 311, 327, 342
coking coals, 59, 198
consumption, 333
deposition, 327
gasification, 280
mined-land reclamation, 114, 128, 226
Mineral Lands Reclamation Act, 226
mines, 98, 199
Oklahoma Geological Survey programs, 188
Ouachita Mountains, 327
producers, 98, 199, 226, 280
projections, 61
reserves and resources, 97, 98, 99, 280
shipments, 333
source of electric power, 61, 280
statistics, 9, 98, 226, 280, 333
sulfur content, 98
technology, 97, 98, 99, 280, 333
transportation, 333
Wichita Mountains, 327
copper: deposits, 3, 4, 9, 74, 112, 113, 135, 138, 150, 169, 171, 257; mineralization, 3, 4, 74,
112, 113, 135, 138, 150, 169, 171, 257, 278, 298; statistics, 226, 280
COUNTIES:
all counties: mineral industries, 226, 280; petroleum and natural-gas statistics, 10, 11,
280; water resources, 308, 309
Adair: Atoka Formation, 299; fossil bear, 244; ground water, 120
Alfalfa: Hunton Group, 8
Atoka: coal, 99; fossil fish, 352; ground water, 121; palynology, 339
Beaver: fossil spores, 37; "Haskell" limestone, 39; hydrology, 40, 119, 307; petroleum, 270; Tonkawa Formation, 39; Virgilian deposits, 247
Beckham: deep wells, 8, 82, 154, 179, 181; ground water, 40, 47, 307; Hunton Group, 8; hydrology, 40, 47; petroleum exploration, 8, 154, 179, 181, 343; surficial structure, 344; uranium, 43
Blaine: Hunton Group, 8; hydrology, 47; petroleum, 8, 180
Bryan: ground water, 121; hydrocarbon accumulation, 127; nannofossils, 126; stratigraphy, 127
Caddo: ground-water data, 40, 47, 207, 216, 218, 307; Hunton Group, 8; hydrology, general, 47; magnetoelectric exploration, 236; petroleum, 180, 343; uranium, 43
Canadian: earthquake, 164; Hunton Group, 8; hydrology, 47; petroleum, 180, 289
Carter: Caddo anticline, 75, 76, 104, 105; deep wells, 82; Devil's Kitchen sandstones, 261; earthquakes, 164, 231; fossil fish, 352; fossil sponge, 251; Hunton Group, 8
Cherokee: Atoka Formation, 299; fossil fish, 352; ground water, 120
Choctaw: ground water, 121
Cimarron: Black Mesa, altitude, 316; earthquake, 164; hydrology, 40, 119, 307
Cleveland: earthquake, 164; ground water, 40, 307; Hunton Group, 8
Coal: coal, 99; Devonian microplankton, 170; ground water, 121; Hunton Group, 8; petroleum, 205
Comanche: Hunton Group, 8; hydrology, 218; petroleum, 205; uranium, 43; Wichita magmatic province, 239
Cotton: uranium, 43
Craig: Atoka Formation, 299; coal, 98, 99, 229, 333; coal balls, 229; fossil fish, 352; ground water, 120
Creek: coal, 99; ground water, 120; Skinner sandstone zone, 310, 311
Custer: Hunton Group, 8; hydrology, 47, 216, 218; surficial structure, 344; uranium, 43
Delaware: ground water, 120
Dewey: deep wells, 82; Hunton Group, 8; hydrology, 47
Ellis: Hunton Group, 8; hydrology, 47; Morrow sandstone, 26; petroleum exploration, 26
Garfield: Skeleton Creek, pollution, 206
Garvin: copper deposits, 298; earthquake, 164, Haragan–Bois d'Arc Formations, 8
Grady: ground water, 40, 47, 218, 307; Hunton Group, 8; hydrology, general, 47; petroleum, 180, 289
Grant: Hunton Group, 8
Greer: copper, 74, 135, 169; ground water, 40, 47, 307; hydrology, general, 47; Plainview syncline, 137
Harmon: ground water, 40, 307
Harper: Endicott sandstone, 39; Hunton Group, 8; Virgilian deposits, 247
Haskell: Bluejacket-Bartlesville Sandstone, 319; coal, 98, 99, 333; ground water, 121
Hughes: Booch sands, 39; ground water, 121; Hawkins pool, 39; Hunton Group, 8; Skinner sandstone zone, 310, 311
Jackson: copper, 9, 74, 112, 113, 135, 169, 298; ground water, 40, 307; Hunton Group, 8
Jefferson: uranium, 43
Johnston: Devil's Kitchen sandstones, 261; fossil fish, 352; fossil spores, 37; ground water, 121; Hunton Group, 8; radiolarians, 221; Sycamore Limestone type section, 221
Kay: brachiopod, 176; ground water, 40, 120, 307
Kingfisher: Cherokee Group, 346, 347, 348; Hunton Group, 8; hydrology, 4; water pollution, 206
Kiowa: gold prospecting, 90; Hunton Group, 8; hydrology, 47, 218; intrusion breccia, 214; Wichita magmatic province, 239
Latimer: coal, 99; ground water, 121
Le Flore: coal, 98, 99, 333; ground water, 121
Lincoln: ground water, 120; Skinner sandstone zone, 310, 311
Logan: Garber-Wellington aquifer, 48; Hunton Group, 8; Skeleton Creek, pollution, 206
Love: Devil's Kitchen sandstones, 261
McClain: Hunton Group, 8; petroleum, 289; waste-disposal site, 141
McCurtain: Arkansas Novaculite, 143; Ozan Formation, nannofossils, 160; Red River, altitude, 316
McIntosh: coal, 99; earthquake, 164; ground water, 120; Skinner sandstone zone, 310, 311
Major: ground water, 40, 307; Hunton Group, 8; Pleistocene pond fauna, 268
Marshall: deep wells, 82; exploration, 205; hydrology, 218
Mayes: Atoka Formation, 299; coal, 98, 99; fossil fish, 352; ground water, 120
Murray: Hunton Group, 8; petroleum exploration, 205; radiolarians, 221
Muskogee: Atoka Formation, 299; coal, 98, 99, 333; ground water, 120; Skinner sandstone zone, 310, 311
Noble: brachiopod, 176; Ceres field, 348; copper deposits, 4; ground water, 120; Hunton Group, 8; Oswego Limestone, 39; palynology, 201; Red Fork Sandstone, 39; South Ceres pool, 39
Nowata: coal, 98, 99; enhanced-recovery project, 320; ground water, 120
Okfuskee: coal, 99; ground water, 120; Skinner sandstone zone, 310, 311
Oklahoma: Garber-Wellington aquifer, 48; Hunton Group, 8; Oklahoma City field, 208, 328
Oklmulgee: coal, 98, 99; ground water, 120; Skinner sandstone zone, 310, 311
Osage: brachiopod, 176; carbonate-rock resources, 16; Cherokee Group, thermal analysis, 55; ground water, 120; North Stanley field, 133; trilobites, 225
Ottawa: ground water, 120; mine-water evaluation, 178; zinc mining, 9, 178
Pawnee: brachiopod, 176; clay minerals, 165; copper deposits, 4; fossil fish, 352; ground water, 120
Payne: copper deposits, 4; fossil fish, 352; ground water, 40, 120, 307; Skinner sandstone zone, 310, 311; uranium, 43
Pittsburg: coal, 98, 99, 333; ground water, 121
Pontotoc: fossil fish, 352; ground water, 121; Hunton Group, 8
Pottawatomie: Cherokee Group, 245; ground water, 121; Hunton Group, 8; Skinner sandstone zone, 310, 311
Pushmataha: ground water, 121
Roger Mills: deep wells, 82, 179; earthquake, 164; Hunton Group, 8; hydrology, 4; petroleum exploration, 179, 180, 343; surficial structure, 344; uranium, 43
Rogers: coal, 98, 99, 333; ground water, 120; shark egg capsule, 350
Seminole: ground water, 121; Hunton Group, 8; Skinner sandstone zone, 310, 311
Sequoyah: coal, 99; ground water, 120; Hunton Group, 8
Stephens: deep wells, 82; exploration, 205; hydrology, 218
Texas brine disposal, 101; ground water, 40, 307; hydrology, general, 119
Tillman: fossil fish, 352; ground water, 40, 217, 307; paleontology, 276, 352; uranium, 43
Tulsa: ammonoid locality, 189; coal, 99; epizoan, 330; ground water, 120; Skinner sandstone zone, 310, 311
Wagoner: Atoka Formation, 299; coal, 99; ground water, 120; Skinner sandstone zone, 310, 311
Washington: bryozoans, 27; coal, 99; crinoid, 287; fossil fish, 352; ground water, 120
Washten: deep wells, 82, 179, 181; Hunton Group, 8; hydrology, 47, 216, 218; petroleum exploration, 179, 181; surficial structure, 344; uranium, 43
Woods: Hunton Group, 8; underground gas storage, 86
Woodward: ground water, 40, 307; Hunton Group, 8

Cretaceous:
Colorado Group, 119
Comanchean Series, Trinity Group, mapping, 94
Dakota Sandstone, 119
Gulfian Series, Ozan Formation, nannofossil, 160
Kiowa Formation, foraminifers, 191
Lower Cretaceous, nannofossils, 125
Purgatoire Formation, 119
reworked foraminifers, 223
Upper Cretaceous unconformities, 193
Walnut Clay: angiosperm pollen, 64; foraminifers, 191; oyster bank, 93
Cretaceous, 9, 74, 112, 113, 135, 138, 169, 171
data systems, 31, 32, 210, 258

Devonian:
- Anadarko basin, 8
- Arkansas Novaculite, 8, 84, 143, 151, 173, 174, 204
- Bois d'Arc Formation: general, 8; microplankton, 170
- Cravatt Member, Bois d'Arc Formation, 8
- Fittstown Member, Bois d'Arc Formation, 8
- Frisco Formation, 8
- Haragan Formation: general, 8; microplankton, 170
- Hunton Group, general, 8
- Hunton lime, oil traps, 167
- Misener Sandstone, 8
- petroleum, 8, 167
- Sallisaw Formation, 8
- Silurian-Devonian boundary, 8
- Sylamore Sandstone, 8
- Turkey Creek Limestone, 8
- Woodford Shale, 8

directories: coal producers, 199; licensed water-well drillers, 215

Earthquakes:
- Boise City, 1976, 232
- Carter County, 1975, 231
- El Reno earthquakes, 33, 111, 321
- general, 321
- records of felt earthquakes, 164
- south-central Oklahoma, 1975, 164
- unidentified 1976 earthquake, 234
- west-central Oklahoma, 1976, 233

encyclopedia, regional geology, 88
engineering geology, see Environmental Geology; Hydrogeology, Hydrology, technology;
Mineral Industries, technology; Petroleum and Natural Gas, technology

Environmental Geology:
- biodegradation of oil in soil by fertilizers, 249
dam safety, 215
- declining ground-water supply, effect in western Oklahoma, 162
- floods: control, 291; insurance programs, 215; streams, 293
- hazardous-waste disposal, 141
- hazardous water pollution control, 291
- irrigation districts, 215
- land use: effect of changes on watersheds, 63; effect of Keystone Reservoir construction on land use, 314
- mine disasters, mine safety, 226
- mined-land reclamation, 114, 128, 225
- Oklahoma Geological Survey programs, 188
- stream-water administration, 215
- underground gas storage, 86
- waste-discharge monitoring, 215
- water quality: brine pollution, 77, 101, 119; effect of steam-electric generating plants on reservoirs, 353; Garber-Wellington aquifer, 48; general, 215; heavy-metal pollution, 38, 206; Lake Thunderbird, pollution, 46; oil-field-brine disposal, regulations, 101; oil-field-brine disposal, technology, 101; Oklahoma Panhandle aquifers, 119; reservoirs, 124, 291, 297, 353; Rush Springs aquifer, 216, 218, 256; Sugar Creek watershed, movement of ground-water pollutants and nutrients, 207; trace elements, 58; zinc-mine water study, 178

129
weather modification, 215
General Information Processing System (GIPSY), 31, 258
Geochemistry:
airborne geochemical studies, 79
 Carlton Rhyolite, 3
clay-mineral study, Havensville Shale, 165
cosmogenic He, Ne, and Ar in meteorites, 62
geochemical maps, copper distribution, 4
geothermal gradients: Anadarko basin, 241, 328; Oklahoma City field, 328
 Hunton Group, core analyses, 8
hydrogen and oxygen isotope ratios in cherts, 159
hydrogeochemical anomaly study, uranium mineralization, 220
 iron sulfides, 150
isotope study, Arbuckle Group, 262
lead and zinc mineralization, 16, 211
paragenesis, copper mineralization, 278
petrogenesis, Mount Sheridan igneous rocks, 295, 300
 Raggedy Mountain Gabbro, 3, 235
sulfur-isotope analyses, Creta copper deposit, 169
thermal analysis, Cherokee Group, 55
trace-element analyses, Arbuckle Group, 262
uranium mineralization, 3, 220
 water content of cherts, 159
 Wichita Granite, 3
 Wichita Mountain igneous rocks, relation to copper and uranium, 3
generic names decisions, 301, 302
geography: land and water area, 316; state boundaries, 316
gem morphology: Mill Creek drainage basin, 45; Oklahoma Panhandle, 175
Geophysics:
aeromagnetic profiles, Cement and Davenport fields, 79
dipmeter study, Morrowan sandstones, 44
electrical conductivity in shales, 228
electric well logs, 2, 8, 190, 228, 271
gamma-ray logs, 8
gemagnetism: Arbuckle Mountains, 259; Garber Formation, 130; Wichita Mountain rocks, 239, 255, 313, 317
gemophysical anomalies: Arbuckle Mountains, 259; southern Oklahoma aulacogen, 242, 243; Wichita Mountains, 239
gemothermal gradients: Anadarko basin, 24, 328; Oklahoma City field, 328
 gravity anomalies, Wichita Mountains, 239
magnetic interpretation, early study of Oklahoma City field, 208
magnetoelectric exploration, Anadarko basin, 236
radioactivity surveys for uranium, 166, 306
reflection profiling, Wichita Mountain basement, 219
resistivity mapping, Cement and Davenport fields, 79
seismicity: Anadarko basin, 33; central stable region, 33, 132; earthquakes, see Earthquakes; glacial rebound, central stable region, 132; Nemaha ridge, 33; Ouachita Mountains, 89; Ozark uplift, 33; southern Oklahoma aulacogen, 336; Wichita Mountain basin rocks, 219
 spontaneous-potential logs, 8
statistics, activity, 1975, 87
vertical-intensity study, Arbuckle Mountains, 259
 X-ray diffraction patterns, copper sulfides, 150
 Hollis basin, 134, 135, 138

130
HYDROGEOLOGY, HYDROLOGY:
Clinton quadrangle, 47
general, 215, 308, 309
Oklahoma Geological Survey programs, 188
resources: Clinton quadrangle, 47; Garber-Wellington aquifer, 48; general, 215, 308, 309;
ground water, general, 40; ground water, northeastern Oklahoma, 120; ground
water, southeastern Oklahoma, 121; ground water, western Oklahoma, 162; Okla-
homa Panhandle, 119; reservoir resources, 124; Rush Springs aquifer, 216, 218,
256; Tillman County alluvial aquifer, 217
subsurface waters: Clinton quadrangle, 47; east-central Oklahoma, 77; Garber-Wellington
aquifer, 48; general, 215, 307, 309; Glorieta Formation, 101; ground-water levels,
307; northeastern Oklahoma, 120; Ogallala aquifer, 101; Oklahoma Panhandle
aquifers, 119; Rush Springs aquifer, 216, 218, 256; southeastern Oklahoma, 121;
statistics, 40, 47, 119, 120, 121, 216, 217; Sugar Creek watershed, 207; Tillman
County aquifers, 217; western Oklahoma, 162; zinc-mine water, 178
surface waters: Arkansas River, 38; Arkansas River Navigation System, 291; Broken
Bow Reservoir, 291; Cardinal Creek, 45; Clinton quadrangle, 47; Deep Fork River,
38; east-central Oklahoma, 77; Foss Reservoir, 291; general, 215, 308, 309; Glover
River, 291; Illinois River, 291; Kerr Reservoir, 291; Keystone Reservoir, 314;
Kiamichi River, 38; Lake Eufaula, 291; Lake Texoma, 291; Lake Thunderbird, 46;
Mill Creek drainage pattern, 45; North Canadian River, 38; Oklahoma Panhandle,
119; Oologah Reservoir, 291; reservoirs, effect of steam generating plants on, 353;
reservoirs, general, 124; reservoirs, mineral cycling, 297; reservoirs, uses, 291;
Skeleton Creek, pollution, 206; soil-moisture variability, 57; Stereo Creek, 45; Sugar
Creek watershed, 207; trace elements, 58; watershed runoff model, 63
technology: flood-depth estimating techniques, 293; hydraulic-conductivity tests, 207
water migration during compaction of clastics, 187
water quality: brine disposal, brine pollution, 77, 101, 119; Clinton quadrangle, 47; east-
central Oklahoma, 77; Garber-Wellington aquifer, 48; general, 215; Glorieta Forma-
tion, 101; heavy-metal pollution, 38; Lake Thunderbird, 46; Ogallala aquifer, 101,
119; Oklahoma Panhandle aquifers, 119; reservoirs, 124, 291, 297, 353; Rush
Springs aquifer, 216, 218, 256; Sugar Creek watershed pollution, 207; trace elements,
58; zinc-mine water, 178
indexes: coal and dispersed organic matter, 30; coal, USGS publications, 324; Oklahoma
geology, 1975, 116; Oklahoma Geology Notes, v. 36, 213
Jurassic: Exeter Sandstone, 119; Morrison Formation, 119
McAlester basin, 174
mapping: electric-log mapping, 190, 271; quantitative mapping techniques, 94
maps: central Ouachita Mountains, structure, 194; coal mines, eastern Oklahoma, 98; Hunton
Group, 8
Marietta basin, 8, 70, 96, 239, 336
Mesozoic, general, 153
meteorites: Keyes chondrite, 62; Lost City meteorite, 267
Mill Creek drainage basin, geomorphic study, 45
MINERAL INDUSTRIES:
commodities: ammonia, 149; asphaltite, 91; bentonite, 226; cadmium, 67; carbon black,
1, 280; cement, 34, 280; clays and shales, 6, 9, 18, 165, 226, 280; coal, see Coal;
coke, 59, 198; copper, 3, 4, 9, 74, 112, 113, 135, 138, 150, 169, 171, 226, 257,
280, 298; feldspar, 332; gallium, 53; general, 9, 203, 208, 280; germanium, 303;
gold prospecting, 90; grahamite, 91; granite, 226; gypsum, 9, 135, 175, 226, 250,
280; helium, 9, 12, 200, 280; impsonite, 91; iodine production, 304; lead and zinc,
9, 16, 41, 211, 226, 260; lime, 280; petroleum and natural gas, see Petroleum and
Natural Gas; salt, 157, 226, 280; sand and gravel, 9, 226, 227, 280; selenium,
bibliography, 103; silver, 280; stone, 9, 18, 83, 226, 280; sulfur, 195; thorium
processing, 279; tripoli, 54, 226, 280; uranium, 3, 43, 61, 166, 220, 341, 349;
vandium, 91; vermiculite, exfoliating plant, 102; volcanic ash, 226

131
Interstate Mining Compact Commission, 226
mine disasters, 226
Oklahoma Geological Survey programs, 188
producers, 98, 199, 226, 280
reclamation, surface-mined land, 114, 128, 226
regulations, 9, 226
smelters, 280
statistics, 9, 12, 34, 41, 59, 83, 149, 157, 195, 198, 200, 203, 208, 226, 227, 250, 260, 280, 303, 304, 305, 332
technology: mining methods, 97, 98, 99, 203, 280, 333; petroleum and natural gas, see Petroleum and Natural Gas; thorium processing, 279; vermiculite exfoliating plant, 102

MISSISSIPPIAN:
Arkansas Novaculite, 8, 84, 143, 151, 173, 174, 209
Beavers Bend tuff, 209
conodont zones, 85
fossil fish, 352
Goddard Formation, 37
Hatton tuff, 209
Jackfork Formation, 294
Johns Valley Shale, 294
"Mississippi lime," 167, 347
Mud Creek tuffs, 209
Noble Ranch Group, 75, 76, 104
Osage-Meramec Series, 347
Springer Formation, 104, 140
Stanley Group, Stanley Shale, 84, 110, 151, 209, 294
Sycamore Limestone, 221
Tennille Creek Formation, 209
Woodford Shale, 8, 167

NEMAH ANTICLINE, NEMAH RIDGE, NEMAH UPLIFT:
Oklahoma Geological Survey project, 188
relation to Anadarko basin, 8, 33, 96, 182, 273, 328, 342
relation to Kansas Precambrian volcanics, 23
seismicity, 33, 188
structure and tectonics, 8, 23, 33, 96, 182, 273, 282, 310, 327, 328, 342

Oklahoma Department of Mines, annual report, 1975, 226
Oklahoma Panhandle, 37, 39, 40, 88, 101, 119, 164, 175, 247, 270, 307, 316
Oklahoma Water Resources Board, annual report, 1974, 215

ORDOVICIAN:
Anadarko basin, Hunton Group, 8
Appalachian-Ouachita clastic wedges, 292
Arbuckle Formation, Arbuckle Group, 8, 127, 146, 262, 328
benthic fauna, 20
Bigfork Chert, 84, 143, 204
Blakely Formation, 65, 84, 151, 204
Blaylock Sandstone, 8, 151
Bromide Formation, 51, 172, 251
Chimneyhill Subgroup, 8
Collier Shale, 84, 151, 204
Crystal Mountain Formation, 65, 84, 151, 204
Early-Middle Ordovician boundary, 20
Joins Formation, 19, 163
Keel Formation, 8

132
Lower-Middle Ordovician boundary, 28
McLish Formation, 51
Mazarn Shale, 84, 151, 204
Missouri Mountain Shale, Missouri Mountain Slate, 8, 151
Oil Creek Formation, 19, 51, 328
Ordovician-Cambrian boundary, 286, 290
Ordovician-Silurian boundary, 8
petroleum reservoirs, Oklahoma City field, 328
Polk Creek Shale, 204
reef-building algae, 60
Saukia-Missisquioia Zone, 286, 290
Simpson Group, Simpson sand, 127, 172, 192
Spring Creek Formation, 237
Sylvan Shale, 8
trilobites, 51, 172, 286, 290
Tulip Creek Formation, 51
Viola Limestone, 8, 159, 222
Wilcox sand, 328
Womble Formation, 84, 151, 204

OUACHITA MOUNTAINS (includes Ouachita basin, Ouachita foldbelt, Ouachita front, Ouachita geosyncline, Ouachita trend):
asphaltite deposits, 91
basinward facies changes, Wapanucka Limestone, 288
Benton–Broken Bow uplift, 50, 84, 92, 151, 174, 204, 254, 335
Black Knob Ridge, 117, 174
Boktukola fault, 84, 151
Caddo Gap, Arkansas Novaculite, 173
Carboniferous rocks, 110, 123, 265, 294
Choctaw anticlinorium, 84
Choctaw fault, 96, 151, 204
coal, 327
craton, 14, 89, 151
deep-sea fans, 209, 294
flysch facies, 25, 123, 127, 151, 196, 204, 209
genetic rock sequences, 292
Linson Creek synclinorium, 84
Mesozoic rocks, general, 153
nonglacial varves, Arkansas Novaculite, 173, 174
Octavia fault, 84, 151
paleogeography, 17, 65, 123, 151, 152
Paleozoic rocks, general, 66, 153, 196
palynology, 339, 340
Pennsylvanian, general, 96, 182
petroleum exploration, 66, 91, 117
Potato Hills, 143, 335
relation to Appalachians, 123, 151, 292
relation to Arbuckle Mountains, 151, 204
relation to Arkoma basin, 204
relation to Gulf of Mexico, 274
relation to Marathon region, 151
relation to Ozark Mountains, 204
rock types, 14
sedimentology, 25, 52, 65, 66, 110, 123, 127, 151, 182, 196, 204, 209, 288, 292, 294
shelf deposition, 52, 65
source of Anadarko basin Virgilian clastics, 247, 248
source of Kansas Missourian deposits, 282

133
source of Texas Pennsylvanian and Permian deposits, 35, 56
source of Vamoosa Formation sediments, 202
source of Viburnum-trend ores, 16, 211
stratigraphy: general, 151, 196, 204; Morrowan and Atokan, 340
structure and tectonics, 14, 17, 25, 35, 50, 52, 65, 66, 72, 84, 89, 91, 92, 96, 110, 117,
123, 136, 143, 151, 152, 175, 182, 183, 185, 194, 196, 204, 209, 242, 243, 246,
254, 274, 282, 292, 318, 327, 334, 335, 336, 337, 342
Ti Valley fault, 117, 151, 204
turbidites and graywackes, 110, 123, 151, 204, 294
unconformity analysis, 52
Windingstair fault, 84, 151

Ozark Mountains, Ozark Uplift:
correlation with Ouachita Mountains, 204
seismicity, 33
source of Kansas Missourian deposits, 282
stratigraphy, 204
structure and tectonics, 23, 33, 96, 182, 183, 184, 273, 282, 310

Paleobotany:
algae: Bromide Formation, algal mats, 172; Morrowan bioherms, 29; Ordovician reefs,
60; Pennsylvanian, 13, 29
angiosperm pollen, Walnut Clay, 64
gen: Desmoinesian coal balls, 229; Garber Formation, 276
microplankton, Devonian, 170
nannofossils, Lower Cretaceous, 125, 126

Paleoecology, Paleoenvironments:
Bromide Formation, 172
Hunton Group, 8
Morrowan bioherms, 29
Pennsylvanian: climate, 264; eastern Oklahoma, 320
Ptychaspid Biomere, Cambrian, 284
Walnut Formation, 93
Wreford Megacyclothem, 100, 165, 176, 177

Paleozoic:
Arbuckle Mountains, 66, 153
compaction of Paleozoic shales, 187
evolution of southern continental margin, 123
general, 153
Oklahoma Panhandle, 175
Ouachita Mountains, 66, 153, 196
paleogeography, 123, 151, 152, 153, 264
pre-Smackover formations, 312

Paleozoology:
adaptive radiation, trilobites, 284
ammonoids, 29, 109, 189
blastoids, 142
brachiopods, 7, 8, 29, 131, 172, 176, 252, 269, 286
bryozoans, 7, 8, 27, 29, 100, 172
conodonts, 8, 15, 28, 85, 163, 197, 221, 237, 286, 288
corals: Hunton Group, 8; Morrowan bioherms, 29
crinoid evolution, 287
crinoids, 8, 287, 330
cystoids, 172
epizoans, 330
foraminifers, 93, 96, 191, 223
fossil communities: Bromide Formation, 172; Morrowan bioherms, 29
gastropods, 29, 281

134
general: Desmoinesian coal balls, 229; Fitzhugh Member of Clarita Formation, 7; Garber Formation, 276; Hunton Group, 8; Morrowan bioherms, 29
graphtolites, Hunton Group, 8
mollusks: Field Museum, 95; Hunton Group, 8
nannofossils, Lower Cretaceous, 125, 126
Ordovician benthic fauna, 20
ostracodes, 7, 8, 19, 93, 172
pelecypods, 8, 93
Pleistocene pond fauna, 268
radiolarians, 221
sponges, 251
trace fossils (ichnofossils), 299
trilobites, 7, 8, 51, 172, 177, 225, 284, 285, 286, 290
vertebrates, 21, 22, 222, 244, 276, 345, 345, 350, 351, 352

PALYNODE.
Atoka Formation: evidence for origin, 339; Ouachita Mountains, 340
Atokan Series, 339, 340
Flowerpot Formation, Prewitt shale, spore replacement in copper ores, 113
Goddard Formation, spores, 37
Haragan-Bois d'Arc Formations, microplankton, 170
Lower Cretaceous, 125, 126
Morrowan Series, 340
Morrow Formation, spores, 37
Ozan Formation, nannofossil, 160
Springer Formation, 37, 140
Tonkawa Formation, spores, 37
Upper Cretaceous, 160
Upper Permian, microflora, 140
Walnut Clay, angiosperm pollen, 64
Wellington Formation, Hamiapollenites, 201

PENNOSVANIAN.
algae, 13, 29
ammonoids, 109
Atokan Series: Atoka Formation, Atoka Group, 96, 110, 151, 167, 204, 294, 299, 339, 340; Atokan-Morrowan boundary, 85, 299; coal, 327; conodont zones, 85; Cromwell sands, 186; Dornick Hills Group, 75, 76, 96, 104; Lake Murray Formation, 96, 104; Spiro sands, 186, 320
canyon-fan complex, Anadarko basin, 145
climates, 264
cosmial coals, 229
cosmial bearing strata, 97, 98, 99, 198, 229, 282, 310, 311, 327, 342
Desmoinesian Series: Atoka Formation, Atoka Group, see Atokan Series; "Big lime," 96; Bluejacket-Bartlesville Sandstone, 42, 133, 271, 319, 320, 322, 323, 347; Boggy Formation, 2, 96, 327, 352; Booch sandstones, deltaic deposits, 39, 320; Breezy Hill Limestone, 347; Buckhorn asphalt, gastropod, 281; Cabaniss Formations, Cabaniss Group, 310, 311, 342; Calvin Sandstone, 96; Cherokee Group, Cherokee sands, 55, 167, 245, 315, 320, 331, 346, 347; Croweburg coal, 327, 342; Deese Group, 75, 76, 104, 261, 281, 352; Devil's Kitchen Member, Deese Group, 261; Dornick Hills Group, 104, 352; electric-log study, Criner Hills, 190; Fort Scott Limestone, 96; Hartshorne Formation, 96, 97, 151, 320, 327; Henryetta coal, 310, 311; Holdenville Shale, 96; Inola Formation, 2, 347; Krebs Group, 96; Labette Shale, 96; Lenapah Limestone, 96; McAlester Formation, 39, 96, 320, 327; Marmaton Group, 96; Nowata Shale, 96; Oologah Limestone, 96; Pink limestone, 39, 310, 311, 320, 347; Prue sand, 320, 347; Red Fork Sandstone, 2, 39, 320, 346, 347, 348; Savanna Formation, 96, 327; Senora Formation, 96, 229, 342, 350; Skinner sand, 39, 310, 311, 315, 320, 346, 347, 348; Strawn Group, Texas, 56; Stuart Shale, 96; Thurman
Sandstone, 96; Verdigris Limestone, 310, 311, 342, 347, 350; Wetumka Shale, 96; Wewoka Formation, 352
fossil fish, 345, 350, 351, 352
fusulinid zones, 96
Gearyan: Foraker Limestone, 18; Havensville Shale, 165, 176
general, 175, 182, 183, 184, 185, 282
Kansas, general, 282
Missourian Series: Barnsdall Formation, 18, 96, 287; Chanute Formation, 18; Coffeyville Formation, 352; Dawson coal, 327; Iola Formation, 18, 96; Ochelata Formation, Ochelata Group, 27, 96; Seminole Formation, 189, 330; Strawn Group, Texas, 56; Tallant Formation, 18; Tonkawa Formation: deltaic deposits, 39; spores, 37; Wann Formation, 18, 96, 225
Morrowan Series: Arkoma basin, 186; Baldwin coal, 327; bioherms, 29; blastoids, 142; Floyd Formation, 96, 288, 340, 352; brachiopods, 252; Braggs Member, Sausbee Formation, 29; Brewer Bend Limestone, 29; Chisum Quarry Member, McCully Formation, 29; conodont zones, 85; dipmeter study of sandstones, 44; Dornick Hills Formation, Dornick Hills Group, 75, 76, 96, 104; Goddard Formation, Goddard Shale, 37, 96; Golf Course Formation, 96, 104; Greenleaf Lake Member, McCully Formation, 29; Hale Formation, 96, 340; Jackfork Sandstone, 110, 151, 204, 294; Johns Valley Shale, 96, 110, 151, 204, 294; Lake Murray Formation, 96, 104; McCully Formation, 29; Morrow Formation, Morrow sands, petroleum, 26, 37, 270, 275; Noble Ranch Group, 75, 76; Sausbee Formation, 29; Springer Formation, Springer Series, 37, 75, 76, 96, 140; Wapanucka Limestone, 96, 288, 352
Oklahoma City field, petroleum reservoirs, 328
Ouachita Mountains, orogeny, 14, 175, 182, 183, 184, 185, 196, 204
paleogeography, 264, 320
porosity data, sandstones, 192
uranium-resource evaluation, 272
Virgilian Series: Ada Formation, Ada Group, 96, 352; Canyon Group, 96; coal, 327; Dewey Limestone, 96; Douglas Group, 96; Endicott sandstone, 39; Foraker Limestone, 18; Heebner Shale, 247, 248; Hoxbar Formation, 96; "Laverty-Hoover" sandstone, 247; Lecompton Formation, 96, 202; Pawhuska Formation, 18; Skiatook Group, 96; Tonkawa sand, 96; Vamoosa Formation, 18, 96, 202, 352; Vanoss Formation, 96

Permian:
Admire Group, uranium, 43
Blaine Formation, 74, 134, 135, 137, 278
bryozoans, 100
Caney gypsum bed, 135
Chase Group, 43
clay minerals, 165
Cloud Chief Formation, 3, 216, 218
copper deposits, copper mineralization, 3, 4, 9, 74, 112, 113, 135, 138, 150, 169, 171, 257, 278, 298
Council Grove Group, uranium, 43
Dog Creek Formation, 134
Doyle Shale, copper, 4
El Reno Group: copper, 74; hydrology, 216; uranium, 43
Flowerpot Shale, 74, 112, 113, 134, 135, 150, 169, 171, 257, 278, 298
Foraker Limestone, 18
fossil fish, 21, 22, 276, 351
Garber Formation: copper, 298; paleomagnetism, 130; paleontology, 276, 352
Garber-Wellington aquifer, 48
Garrison Shale, 4
Glorieta Formation, brine disposal, 101
Havensville Shale: brachiopod, 176; clay minerals, 165

136
Haystack gypsum bed, 135
Hennessey Formation, Hennessey Group: fossil fish, 21, 352; uranium, 43, 220
Kiser gypsum bed, 135
Mangum copper deposit, 169
Marlow Formation, 216
Marty dolomite bed, 135
Matfield Shale, 4
Meadows copper shale, 135
microflora, Upper Permian, 140
Oklahoma Panhandle: general, 175; hydrology, 119; red beds, 119
porosity data, sandstones, 192
Prewitt shale, 112, 113, 135
Quartermaster Formation, uranium, 43
red beds, Oklahoma Panhandle, 119
Rush Springs Sandstone, 43, 216, 218, 220, 256
San Angelo Formation, 134, 135, 150, 278
uranium mineralization, occurrences, and potential, 3, 43, 220, 272
Vanoss Group, fossil fish, 352
Wellington Formation: hydrology, 48; lungfish, 21; palynology, 210; uranium, 43
Whitehorse Group, uranium, 43
Wichita Formation, uranium, 43
Wreford Megacyclothem, 100, 165, 176, 177
Permo-Pennsylvanian, Osage strata–benchlands, 193

Petroleum and Natural Gas:

abnormal reservoir pressures, 49, 71, 241
accumulation, entrapment, and reservoirs: Anadarko basin, 8, 49, 241; Arkoma basin, 315; Bartlesville Sandstone, 42, 133, 320, 323; Burbank–Bartlesville sand reservoir, 133, 323; Cherokee sands, 167, 315, 348; combination traps, 167; Cumberland thrust, 127; Dibble-Mustang field, 289; gas pools, 161; Oklahoma City field, 328; relation to deltaic deposition, 39, 320; unconformities, 52, 193, 328, 329; Wichita aulacogen, 36, 326
Anadarko basin, see Anadarko Basin; see also Petroleum and Natural Gas: exploration and development
aqueous solubility, 241
Ardmore basin, 117, 205
Arkoma basin, 39, 315
asphaltite, 91
bibliography of North American oil and gas fields, 296
core and sample analyses, Anadarko basin, 8
data systems, 31, 32, 210, 258
deep wells, 8, 10, 25, 82, 154, 179, 181, 241
enhanced recovery, 80, 81, 82, 108, 122, 133, 146, 147, 148, 156, 168, 275, 322, 323
exploration and development: aerial photography, 79; aeromagnetic profiles, 79; Anadarko basin, 8, 25, 26, 44, 49, 82, 154, 179, 181, 236, 275, 343; Arbuckle Mountains, 66, 117, 179; Ardmore basin, 117, 205; Arkoma basin, 39, 315; Beaver County, 270; Cadco County, 343; Cherokee sands, 167, 315, 348; deltaic-deposit prospecting, 39; dipmeter data, 44; electric-log mapping, 190, 271; Ellis County, 26; El Paso Natural Gas 1 Hunt-Cross Unit, 343; Fort Cobb anticline, 144; future power projects, 61; history of exploration, 214; Hunton cores, 8; Hunton production, 8; identification of sediments from well logs, 2; LANDSAT studies, 78, 115; magneto-electric exploration, 236; Mapco 1 Howell, 343; Morrow sands, 26, 37, 270, 275; Morrow-Springer tests, 144, 179, 180; new discoveries, 5; Ouachita Mountains, 66, 91, 117; Panhandle, 270; Pennsylvanian fields, 180; permeability, Hunton Group, 8; porosity, data interpretations, 192; porosity, Hunton Group, 8; quantitative mapping, 94; remote sensing, 78, 79, 115, 180, 236; resistivity mapping, 79;
south-central Oklahoma, 205; unconformity interpretations, 52, 193; Watonga trend, 180, 236
fields, pools, and districts: all fields, 10; Bayou field, 190; Burbank pool, 146, 156, 168;
Carpenter field, 343; Cement field, 78; Ceres field, 348; Cheyenne Valley field, 2;
Davenport field, 78; Delaware-Childers field, 322; Dibble field, 289; East Binger field, 236, 343; Greater Seminole district, 39; Handy field, 117; Hawkins pool, 39;
Hewitt field, 190; Idabel West field, 91; Mayfield field, 154, 179; Minnett field, 91;
Mustang field, 289; North Chickasha field, 180; North Stanley pool, 133, 147, 148, 168;
Northwest Hewett field, 190; Northwest Reydon field, 179; Oakdale-Campbell trend, 8;
Oklahoma City field, 208, 328; Payne-Criner field, 8; Reeder field, 91;
Reydon field, 343; Sholem Alchem field, 205; South Bald field, 91; South Ceres pool, 39;
Southeast Cogar field, 180; South Powell field, 117; Southwest Cheyenne field, 179;
Southwest Lone Grove field, 190; Southwest Minco field, 180; Southwest Reydon field, 181; Watonga trend, 180, 236; West Brock field, 190; West Daisy field, 91; West Edmond field, 8; West Enville field, 117; West Reydon field, 181;
Yellowstone field, 86
geothermal gradients, 241
giant oil fields, 253
heavy oil, 122, 331, 338
history: exploration, 224; magnetic interpretation, 208; Oklahoma Geological Survey in-
volve ment, 224
Hunton Group, Anadarko basin, general, 8
Hunton production, 8, 179
migration, 241, 328
Oklahoma Geological Survey programs, 188
origin and generation, source, 161, 241, 328, 329
pipelines, 280
refiners, 280
statistics: consumption and demand, 118, 158; deep tests, 10, 82; economics, 81, 82, 87,
118, 158, 253; exploration and development, 5, 10, 11, 80, 82, 87, 118, 139, 253,
343; general, 139, 253; natural gas, general, 158; natural-gas liquids, 240; pro-
ducing formations, 10; production, 5, 9, 10, 73, 81, 118, 158, 212, 280, 305;
projections, 5, 61, 80; reserves, 5, 118, 158, 200, 212, 253; rig count, 82; seismic
activity, 87; stocks on hand (1974), 118; storage, 158; stripper wells, 129, 253;
transportation, 118, 158; well data, 10, 323
stripper wells, 129, 253
technology: enhanced recovery, 80, 81, 82, 108, 122, 133, 146, 147, 148, 156, 168, 275,
322, 323, 338; fracturing-fluids evaluation, 275; heavy-oil-recovery methods, 122,
338; identification of sediments from well logs, 2; magnetic interpretation of Okla-
homa City field, history, 208; magnetoelectric exploration and interpretation, 236;
permeability testing, 275; pressure testing, 275; quantitative mapping techniques, 94;
underground gas storage, 86
well logs: electric, 2, 190, 228, 271; gamma-ray, 8; sediment identification, 2; sponta-
neous-potential, 8; types, 2
Petroleum Data System, 31, 32, 210, 258
plate margins, cross sections, 70, 318, 335
Pleistocene: fossil bear, 244; pond fauna, Major County, 268; terrace and alluvial deposits,
Tillman County, hydrology, 217
Pliocene: Ogallala Formation: brine pollution, 101; general, 175; hydrology, 119
Precambrian:
 Appalachian-Ouachita succession, 292
 Arbuckle Mountains, 69
 Blue River gneiss, 69
 continental break-up, 246
 craton, 14
 Layered series, 238

138
plutonic igneous geology, Wichita province, 239
structural evolution, 283
Swisher gabbroic terrane, 238, 239
Tishomingo Granite, 69, 127
Troy Granite, 69
volcanic terrane, 23
Wichita Mountains: layered rocks, 238, 239; relation to St. Francois Precambrian, 24

REMOTE SENSING:
- aerial photography: Arbuckle Mountains, 263; Cement and Davenport fields, 79; Ouachita Mountains, 136, 194; southeastern Kansas, 273
- aeromagnetic profiles, Cement and Davenport fields, 79
- airborne radioactivity surveys, uranium deposits, 166, 306
- infrared imagery, Arbuckle Mountains, 263
- LANDSAT imagery: Anadarko basin, 344; petroleum exploration, 78, 115; southeastern Kansas, 273; Wichita Mountains, 344
- resistivity mapping, Cement and Davenport fields, 79

SEDIMENTOLOGY:
- abnormal pressures, 71
- alluvial deposition: Red River basin, 266; Skinner sand, 315; Vamoosa Formation, 202
- Anadarko basin, 8, 25, 39, 68, 145, 182, 247, 248
- Appalachian-Ouachita facies, 292
- Arbuckle Mountains, 8, 52, 66, 127, 145, 172
- Ardmore basin, 96, 104, 182, 261
- Arkoma basin: Atokan and Morrowan sands, 186; Cherokee sands, 315; deltaic deposition, 39
- Atoka Formation, facies, 299
- basinward facies changes, Wapanucka Formation, 288
- bioherms, 29
- Bouma sequences, Anadarko basin, 145
- Bromide Formation, facies, 172
- canyon-fan complex, Anadarko basin, 145
- carbonate deposition, 68, 247, 248, 325, 326
- channel-fill deposition: Carboniferous, Ouachita Mountains, 294; Red Fork Sandstone, 2, 346, 347, 348; Skinner sand, 315, 346, 348
- Clarita Formation, biofacies, 7, 8
- clastic deposition, 68, 187, 292
- coal balls, Desmoinesian, 229
- cyclic sedimentation, Anadarko basin, 247, 248
- cyclothem, Desmoinesian, 342
deltaic deposition: Atoka Formation, 299; Booch sands, 39, 320; Endicott sand, 39; Inola Sandstone, 2; Pennsylvanian, eastern Oklahoma, 320; Pennsylvanian, north-central Texas, 35; Red Fork Sandstone, 2, 39, 320; Skinner sands, 310, 311; Tonkawa Formation, 39
diagenesis: paragenesis, copper deposits, 278; porosity-depth ratios, 187, 192; sabkha diagenesis, 278; sand compaction, 2, 35; sedimentary ores, 16, 113, 278; shale compaction, 71, 187; water expulsion from clastics, 187
evaporite and red-bed deposition: Anadarko basin, 68; Permian, 134, 135, 138
flysch deposition, 25, 123, 127, 151, 196, 204, 209, 265, 294
getinc-increment strata, Cherokee Group, 347, 348
graywackes: Ouachita area, 110, 123, 151, 204, 294; Wichita Mountains, 325, 326
Havensville Shale, depositional environment, 165
Hollis basin, 134, 135
Hunton anticline, 52
Hunton Group, general, 8
lithofacies mapping, Trinity Group, 94
low-velocity sand deposition, Anadarko basin, 145
Ouachita Mountains, 25, 52, 65, 66, 110, 123, 127, 151, 182, 196, 204, 209, 288, 292, 294
paleocurrents, Ouachita area, 204
Pennsylvanian, general, 96, 182
Permian: copper shales, 135, 278; Devil’s Kitchen Member, Deese Group, 261; Yamoosa
Formation, 202; Virgilian, Anadarko basin, 247
recycled sediments, Atoka Formation, 339
redeposition of transported fossils, 223
Red River transition-zone deposits, 266
shelf deposition, 52, 65, 204, 299, 347
Simpson Group, facies, 172
Skinner sand, facies, 315
southern Oklahoma aulacogen, Wichita aulacogen, 36, 172, 265, 325, 326
submarine fans: Anadarko basin, 247, 248; Ouachita Mountains, 209, 294
tidal deposition: Bluejacket-Bartlesville Sandstone, 319; Lecompton Limestone, 202;
Permian, Texas, 278
transgressive deposition, Atoka Formation, 299
transgressive-regressive cycles: Cherokee Group, 348; Simpson Group, 172
turbidites, 110, 123, 151, 204, 294
varve deposition, Arkansas Novaculite, 173, 174
Wapanucka Formation, facies, 288
Wichita Mountains, 36, 172, 265, 325, 326
wildflysch: Johns Valley boulders, 151; southern Oklahoma aulacogen, 265

Silurian:
Blaylock Sandstone, 5, 8, 84, 151, 204
Bois d’Arc Formation: conodonts, 15; Cravatt Member, 8; Fittstown Member, 8
Chimneyhill Subgroup, 8
Clarita Formation: conodonts, 8, 15; Fitzhugh Member, 7, 8; general, 8; Prices Falls
Member, 8
Cochrane Formation, 8, 15
Frisco Formation, 8
Haragan Formation, 8, 15
Henryhouse Formation, 8, 15, 131, 269
Hunton Group: brachiopods, 7, 8, 131, 269; conodont biostratigraphy, 15; general,
Anadarko basin, 8; sedimentology, 8, 151, 204
Keel Formation, 8, 15
Kirkjatidum biofacies, 8
Missouri Mountain Shale, Missouri Mountain Slate, 8, 84, 151, 204
Quarry Mountain Formation, 8
Silurian-Devonian boundary, 8
southern Oklahoma aulacogen, 8, 72, 75, 76, 172, 238, 239, 242, 243, 265, 283, 336, 337, 344
state boundaries, 316

Stratigraphy:
Anadarko basin, 8, 344
Appalachian-Ouachita succession, 292
Arbuckle Mountains: Mississippian, 221; Paleozoic rocks, 8, 66, 204, 221; relation to
Anadarko basin, 8; relation to Ouachita Mountains, 204
Arkoma basin, 204
biostratigraphy: Atoka Formation, Atoka Group, Atokan Series, 85, 299, 339, 340; Boyd
Formation, palynology, 340; Bois d’Arc Formation, 8, 170; Cambrian, 197, 286, 290;
Chimneyhill Subgroup, 8, 170; Clarita Formation, 8, 15, 170; Cochrane Formation,
8, 170; conodonts, 8, 15, 28, 85; Frisco Formation, 8, 170; Hale Formation,
palynology, 340; Haragan Formation, 8, 170; Henryhouse Formation, 8, 170;
Hunton Group, 8, 170; Keel Formation, 8, 170; microplankton, 170; Morrowan
Series, conodont zones, 85, 288; Ordovician, 8, 28, 51, 170, 286, 290; palynology,
339, 340; Proconodontus Zone, 197; Saukia-Mississquoa Zone, 286, 290; Sycamore
Limestone, radiolarians, 221; trace fossils, 299; trilobites, 51; Wapanucka Limestone, conodonts, 288; Woodford Shale, 8
Bryan County, general, 127
Cambrian-Ordovician boundary, 286
Early-Middle Ordovician boundary, 20
Flowerpot Shale, 257
Hunton Group, general, 8
Lower Devonian, 8, 170
Lower-Middle Ordovician boundary, 28
Middle Ordovician, correlation with Canadian strata, 51
Morrowan-Atokan boundary, 85, 299
Oklahoma Panhandle, 88, 175
Osage strata–benchlands, 193
Ouachita Mountains, 66, 151, 196, 204, 292, 339, 340
Ozark Mountains, 204
unconformity analyses, 52, 193
Upper Cretaceous unconformities, 193

STRUCTURAL GEOLOGY (includes tectonics):
Amarillo-Wichita uplift, 239
Anadarko basin, 8, 33, 38, 68, 72, 96, 115, 182, 239, 246, 273, 277, 328, 342, 344
Arbuckle anticline, 259
Arbuckle Mountains, 8, 52, 66, 68, 69, 70, 75, 76, 96, 104, 117, 172, 239, 254, 259, 277, 282, 336, 342
Ardmore basin, 8, 70, 72, 75, 76, 96, 104, 117, 182, 186, 261, 336
Arkoma basin, 51, 70, 75, 76, 84, 96, 151, 186, 315, 327, 342
Belton anticline, 259
Benton–Broken Bow uplift, 50, 84, 92, 151, 174, 214, 254, 335
Berwyn syncline, 75, 76
Black Knob Ridge, 117
Boktukola fault, 84, 151
Cañon anticline, 75, 76, 104, 105
Central Oklahoma fault zone, 8
Central Oklahoma platform, 96, 310
central stable region, 33, 132
Cherokee Group, subsurface, 245, 315
Cherokee platform, 315
Choctaw fault, 84, 96, 151, 186, 204
Cordell faulted foldbelt, Cordell graben, 344
craton, Ouachita area, 14, 89, 151
Criner uplift, 8, 117, 239
Cumberland thrust, 127
Custer County, surficial structure, 344
Duncan-Criner fault, 75, 76
fault lineaments, relation to ores, 107, 155
Franks fault, 8
Glenn syncline, 105
growth faults, Arkoma basin, 151, 186
Hollis basin, 96, 134, 135, 138, 239
Hunton anticline, 8, 52, 259
Keyes dome, 96
Kinta fault, 186
Lawrence uplift, 8
Marietta basin, 8, 70, 96, 239, 336
Meers fault, 317
Mill Creek fault, 8
Mountain View fault, 344
Mount Sheridan area, 295, 300
Nemaha anticline, Nemaha arch, Nemaha ridge, Nemaha uplift, 8, 23, 33, 96, 182, 273, 282, 310, 327, 328, 342
North Block horst, 344
Octavia fault, 84, 151
Oklahoma Panhandle, 88, 175
Ouachita Mountains, 14, 17, 25, 35, 50, 52, 65, 66, 72, 84, 89, 91, 92, 96, 110, 117, 123, 136, 143, 151, 152, 175, 182, 183, 185, 194, 196, 204, 209, 242, 243, 246, 254, 274, 282, 292, 318, 327, 334, 335, 336, 337, 342
Overbrook anticline, 75, 76, 104, 117
Ozark Mountains, Ozark uplift, 23, 33, 96, 182, 183, 184, 273, 282, 310
Pennsylvanian, general, 96, 182, 183, 185
Plainview syncline, 137
Potato Hills, 143, 204, 335
Reagan fault, 75, 76, 117
San Bois fault, 186
shear deformation, Ouachita Mountains, 92
southern Oklahoma aulacogen, 8, 72, 75, 76, 172, 238, 239, 242, 243, 265, 283, 336, 337, 344
Sulphur fault, 117
thermal metamorphism, Arkansas Novaculite, 143
thrust masses, Ouachita Mountains, 254
Timbered Hills fault block, 117
Tishomingo anticline, Tishomingo horst, 117, 259
T Valley fault, 117, 151, 204
Tri-State area, 155
Washita Valley fault, 8, 75, 76, 117, 259
Waurika-Muenster arch, 261
Wichita aulacogen, Wichita Mountains, Wichita uplift, 8, 36, 70, 96, 106, 238, 239, 277, 295, 317, 325, 326, 327, 336, 342, 344
Wichita-Criner axis, 70, 96, 239
Wichita fault zone, 8
Wichita megashear, 344
Windingstair fault, 84, 151
wrench-fault deformation, Caddo anticline, 105

tectonics, see Structural Geology
Triassic, Dockum Group, Oklahoma Panhandle, 119
Tri-State area: lineament patterns, relation to mineral deposits, 155; origin of ore deposits, 211; zinc-mine water, 178; zinc mining, 9

URANIUM:
host rocks, central Great Plains, 349
mineralization, 3, 220
Permian rocks, 3, 43, 220, 272
power projects, future, 61
processing, 341
radioactivity surveys, 166, 306
resource evaluations, 272, 306

Wichita aulacogen, 36, 325, 326

WICHITA MOUNTAINS:
basement rocks, age, 24, 255
Carlton Rhyolite, 3, 127, 317
coal, 327
Cold Springs Granite, 239
copper and uranium mineralization, 3
deposition, 36, 172, 265, 325, 326
intrusion breccia, 214

142
Layered series, 235, 238, 239
Medicine Creek area, igneous-rock relationships, 106
Mesozoic rocks, 153
Mount Scott Granite, 106, 239, 255
Mount Sheridan area, petrogenesis, 295, 300
Mount Sheridan Gabbro, 106, 238, 239, 255, 295, 300
Navajo Mountain basalts, 219
paleomagnetism, 239, 255, 313, 317
Paleozoic rocks, 153
plutonic igneous geology, general, 239
relation of Precambrian rocks to St. Francois Mountains, 24
source of Permian mineral deposits, 3
structure and tectonics, 8, 36, 70, 96, 106, 238, 239, 277, 295, 317, 325, 326, 327, 336, 342, 344
Swisher gabbroic terrane, 238, 239
Tillman metasediments, 219
trilobites, 285
Wichita aulacogen, 36, 325, 326
Wichita fault zone, 8
Wichita Granite, 3, 219, 239, 317
Wichita megashear, 344
Wichita Mountain granites, 3, 106, 219, 238, 239, 255, 313, 317
Wreford Megacyclothem, 100, 165, 176, 177

AAPG Distributes Speaker’s Kit

The American Association of Petroleum Geologists’ Public Information Committee has assembled a speaker’s kit for use by geologists addressing various types of audiences on the subject of energy. The kit contains 49 slides, in addition to comprehensive reference materials, and is intended to provide speakers with factual information on which to base their presentations.

Claude E. McMichael, a geologist with Shell Oil Company in New Orleans, was chiefly responsible for putting the kit together. He explained that the material in the kit covers the energy situation in the United States, including use, current sources, known supplies, outlook for new sources, necessity for conservation, and environmental effects. “It is not a ‘canned talk,’” he emphasized. “Each person using the kit is to assemble his presentation according to his own idea of how it should be given.”

All the geological societies affiliated with AAPG in this country were recently sent one kit each from the association, free of charge, for loan to their members. Additional kits are available on a loan basis from headquarters or for purchase at $25.00 apiece. For further information, write AAPG Headquarters, P.O. Box 979, Tulsa, Oklahoma 74101.
Greater Seminole Oil Field Commemorated

An 8-foot granite marker was unveiled in a ceremony July 14, 1977, in recognition of the significant petroleum discoveries in 1926 that led to the development of the multipay Greater Seminole oil field. The marker is the 13th to be dedicated in a joint project of the Oklahoma Historical Society and the Oklahoma Petroleum Council. It was placed adjacent to the site of a proposed oil museum near the entrance to Seminole Municipal Park, on State Highway 99 at the north edge of Seminole.

The granite monument was unveiled by Governor David L. Boren and by representatives of the sponsoring organizations, the Seminole Historical Society, and the city of Seminole. Also assisting was D. A. McGee, chairman of the board of Kerr-McGee Corp., Oklahoma City, who spoke at a forum luncheon preceding the dedication.

Production from the greater Seminole field reached its peak of 527,400 barrels on July 30, 1927. By 1977 cumulative production had reached an impressive 201,246,000 barrels.

Taking part in the dedication of the granite marker commemorating the Greater Seminole oil field were, left to right, D. A. McGee, board chairman of Kerr-McGee Corp., Oklahoma City; Governor David L. Boren; and Warren L. Jensen, vice-president of the Oklahoma Petroleum Council and vice-president of Continental Oil Co., Ponca City.
New AAPG Executive Committee Takes Charge

Edd R. Turner, a geologist with Getty Oil Co. in Houston, took the helm of The American Association of Petroleum Geologists as president on July 1. Joining the executive committee as president-elect was Robert D. Gunn, independent oil operator from Wichita Falls, Texas.

Oklahoma is well represented on this year's executive committee by Edwin P. Kerr, vice-president, and John W. Shelton, editor. Ed, who lives in Oklahoma City, is a graduate of The University of Oklahoma and has been an independent exploration geologist since 1973. John, a professor of geology at Oklahoma State University, Stillwater, has just begun his second 2-year term as editor.

Other officers are John J. Amoruso, consulting geologist and independent, Houston, the new secretary, and George S. Galbraith, independent geologist, Abilene, Texas, who is serving his second and final term as treasurer of the 18,500-member organization.

New Theses Added to OU Geology Library

The following M.S. theses have been added to The University of Oklahoma Geology and Geophysics Library:

Relative Mechanical Durabilities of Quartz and Feldspar, by James Harrell.

145
OGS Releases New Coal-Mine Map of Oklahoma

An updated version of a map showing coal-mining operations in Oklahoma has just been published by the Oklahoma Geological Survey. Compiled by S. A. Friedman, the Survey’s coal geologist, the map depicts all coal mines, preparation plants, and loading facilities in the eastern Oklahoma coal field as of January 1 of this year.

The 32- by 28-inch map sheet, printed at a scale of 1:500,000 (1 inch = 8 miles), shows 69 mining operations in all, a substantial increase over the 42 shown in last year’s version. All active mines are at the surface. The region’s one underground mine, Kerr-McGee’s deep Choctaw Mine southeast of Stigler, is idle.

A comprehensive table lists the individual mines and plants, the seams mined and their thickness, thickness of overburden, sulfur content, and annual production range. The principal seams are the Croweburg, Iron Post, Stigler, and upper and lower Hartshorne. Production during 1976 amounted to approximately 3.6 million short tons.

A green overprint on the map shows the regional extent of the coal field. Also shown are railroads, highways, and waterways, including the Arkansas River Navigation System.

Map of Eastern Oklahoma Showing Active Coal Mines (January 1, 1977) is available from the Survey for $2.00 by writing to the address on the front cover.

Two Colorado Coal Publications Issued

The Colorado Geological Survey has recently published two volumes on coal. Both can be ordered by writing to the survey at the following address: Room 715, 1313 Sherman Street, Denver, Colorado 80203. Prepayment is requested.

Resource Series 1, Geology of Rocky Mountain Coal, Proceedings of the 1976 Symposium, contains 14 papers plus abstracts of 5 papers that were presented at a symposium held in April 1976 at the Colorado School of Mines. In addition to Rocky Mountain coal deposits in Colorado, Montana, New Mexico, Utah, and Wyoming, the publication covers basic coal geology and geochemistry, coal-exploration techniques, and geologic aspects of coal mining and utilization. Edited by D. Keith Murray, the 175-page volume is available for $4.00.

The second study is entitled Colorado Coal Analyses, 1975 (Analyses of 64 Samples Collected in 1975) and was prepared by Donna L. Boreck, David C. Jones, D. Keith Murray, Janet E. Schultz, and Denise C. Suek. Issued as Information Series 7, the 112-page report contains the most detailed chemical analyses ever published on Colorado coals. The beds sampled range in age from Late Cretaceous to early Tertiary. The report sells for $3.00.
Coal-Geology Course Offered at OU

The fourth annual short course in Coal Geology Fundamentals will be given October 24-26 at the Oklahoma Center for Continuing Education on The University of Oklahoma campus in Norman. Sponsored by the Oklahoma Geological Survey and OU’s Management Development Programs, the 3-day course will focus on applied coal geology and will offer an optional 1-day field trip to the eastern Oklahoma coal field.

The course has been organized by the Survey’s coal geologist, S. A. Friedman, and follows the general format of those given in the past. In addition to Friedman, the faculty consists of P. A. Hacquebard, coal geologist with the Geological Survey of Canada, Dartmouth, Nova Scotia; C. G. Groat, chairman of the Department of Geology, The University of Texas at El Paso; M. Deul, research geologist with the U.S. Bureau of Mines, Pittsburgh, Pennsylvania; E. C. Beaumont, consultant, Albuquerque, New Mexico; and R. L. Fuchs, president of Geosystems, Inc., Westport, Connecticut.

The course is directed toward scientists, engineers, and administrators who are not formally trained in the principles or practice of coal geology. General topics to be covered are the origin, occurrence, and geographic distribution of coal; principal coal regions of the United States and their remaining coal resources; types of coal mining; and trends in coal production. Selected aspects of these topics will include coal economics, coal exploration, sulfur in coal, current and future uses of coal, applied coal petrology, and methane in coal.

Tuition for the course is $150.00, plus an additional $75.00 for the field trip. For further details, contact John Boardman, Director, Management Development Programs, The University of Oklahoma, 1700 Asp Avenue, Norman, Oklahoma 73037 (phone 405—325-1931).

Mining Engineers to Meet in St. Louis

The fall meeting and exhibit of the Society of Mining Engineers (SME) of the American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) is scheduled for October 19-21 in St. Louis’ convention center.

Among the session topics are underground coal mining, coal utilization, mineral resources and the environment, open-pit mining, chemical processing, and rock mechanics. Besides coal, mineral commodities dealt with specifically are lithium, bauxite-alumina, limestone, clay, lead, and zinc.

Two pre-meeting short courses are planned (on longwall and shortwall mining and on economic principles for coal-property valuation), as are several 1-day field trips.

For further information on the meeting, contact Ruth M. Orologio, SME Meetings Manager, P.O. Box 8800, Salt Lake City, Utah 84108 (phone, 801—582-2744).
Gem and Mineral Show Scheduled for Oklahoma City

The General Exhibits Building at the State Fairgrounds in Oklahoma City will be the locale October 15 and 16 for the Oklahoma Mineral and Gem Society's biennial show. Billed as an October Festival of Gems and Minerals, the show promises to be an extravaganza of specimens, working displays, and other exhibits. A swap area also will be provided.

For further information on the show, contact the chairman, Les Wagner, 3400 Preston Drive, Oklahoma City, Oklahoma 73122.

Oklahoma APGS Members to Meet in October

The annual meeting of the Oklahoma Section of the Association of Professional Geological Scientists has been scheduled for October 14 and 15 at the new Sheraton-Century Center Hotel in downtown Oklahoma City. Section president Henry Trattner, Oklahoma City independent, will preside.

For details on the meeting, contact John W. Erickson, Michigan Wisconsin Pipe Line Co., Fidelity Plaza, Suite 1400, Oklahoma City, Oklahoma 73102 (phone 405—239-7031).

OKLAHOMA GEOLOGY NOTES

Volume 37 August 1977 Number 4

Bibliography and Index of Oklahoma Geology, 1976
Elizabeth A. Ham .. 91
Area of Mineral Production on North Flank of Arbuckle Anticline 90
AAPG Distributes Speaker's Kit 143
Greater Seminole Oil Field Commemorated 144
New AAPG Executive Committee Takes Charge 145
New Theses Added to OU Geology Library 145
OGS Releases New Coal-Mine Map of Oklahoma 146
Two Colorado Coal Publications Issued 146
Coal-Geology Course Offered at OU 147
Mining Engineers to Meet in St. Louis 147
Gem and Mineral Show Scheduled for Oklahoma City 148
Oklahoma APGS Members to Meet in October 148

148