Cover Picture

GOLD IN OKLAHOMA

Of the many stories and accounts of gold in Oklahoma, only one appears to be authentic. Dr. Edwin DeBarr published a short article in 1904, entitled "Report of Mineral Deposits in the Wichita Mountains" (published by the Department of Geology and Natural History, Territory of Oklahoma, Norman, as the 3d Biennial Report).

Dr. DeBarr did the assay work at The University of Oklahoma and found one sample (No. 136) that contained gold. His notes (p. 36) are quoted here.

"No. 136, Placer washings made by myself south of Brushy Mt., Gold Hill, and Bald Mountain.

"All samples were assayed by fluxes and by the cyanide processes and heavy sulphides were assayed by the chlorination process, and all save No. 136 showed no trace of gold.

"No. 136 was obtained from washing placer material south of Brushy and Bald Mountains and Gold Hill, in the creeks and in Deep Red in which material there is a very small quantity of exceedingly fine gold in a limited area. The lack of water and the black iron in which it is found, together with the limited amount of gold therein, renders it unprofitable for working."

The area where the gold sample was collected is southeast of Snyder, Kiowa County, where some prospectors worked until 1935. For a more detailed account of gold stories, please refer to Oklahoma Treasures and Treasure Tales by Steve Wilson (published by The University of Oklahoma Press, Norman, in 1976).

The cover photograph (courtesy of the Western History Collections, University Libraries, The University of Oklahoma) shows a placer operation south of Snyder.

—Robert O. Fay

Editorial staff: William D. Rose, Rosemary L. Croy, Elizabeth A. Ham

Oklahoma Geology Notes is published bimonthly by the Oklahoma Geological Survey. It contains short technical articles, mineral-industry and petroleum news and statistics, an annual bibliography of Oklahoma geology, reviews, and announcements of general pertinence to Oklahoma geology. Single copies, seventy-five cents; yearly subscription, $4.00. All subscription orders should be sent to the address on the front cover.

Short articles on aspects of Oklahoma geology are welcome from contributors. A set of guidelines will be forwarded on request.

This publication, printed by the Transcript Press, Norman, Oklahoma, is issued by the Oklahoma Geological Survey as authorized by Title 70, Oklahoma Statutes 1971, Section 3310, and Title 74, Oklahoma Statutes 1971, Sections 231-238. 1,500 copies have been prepared for distribution at a cost to the taxpayers of the State of Oklahoma of $2,775.20.
OKLAHOMA GEOLOGICAL SURVEY

ANNUAL REPORT

July 1, 1975-June 30, 1976

INTRODUCTION

Last year, fossil fuels produced the largest segment of Oklahoma’s gross State income. Revenue was derived from 202.5 million barrels of liquid petroleum and natural-gas liquids, 1.7 trillion cubic feet of natural gas, and 2.4 million tons of coal. The estimated value of their production exceeded $2 billion in 1975, whereas all other components of the State’s minerals industries produced natural resources valued at $100 million.

Because of the enormous importance of the fossil-fuel industry to the State and the nation, the Oklahoma Geological Survey has focused a lot of its attention on energy research. In fact, during the 1976 fiscal year, about one-half of the Survey’s total effort was directed toward fossil fuels or related energy studies.

ENERGY PROGRAMS

One of the Survey’s most satisfying accomplishments during the last year was completion of a study of the Hunton strata in the deep Anadarko basin. The results of this study, conducted by Survey geologist Thomas W. Amsden, were published as Bulletin 121, Hunton Group (Late Ordovician, Silurian, and Early Devonian) in the Anadarko basin of Oklahoma, a 214-page, soft-cover text that is accompanied by 10 color maps and a sheet containing 4 cross sections. The purpose of the study was to provide a stratigraphic and lithologic analysis of the Hunton as an aid in delineating further exploration targets in the Anadarko basin. After completion of this study, a similar investigation of Hunton strata in the Arkoma basin was initiated by Dr. Amsden. This study is scheduled for completion in the next fiscal year, and publication is projected for late 1977 or early 1978.

An investigation of heavy-oil occurrences in northeastern Oklahoma was initiated during the 1976 fiscal year (as part of a coordinated effort involving Oklahoma, Kansas, and Missouri in a 3-year study of occurrences of heavy oils in the contiguous 3-state area). This project, funded in part by a grant from the Energy Research and Development Administration (ERDA), concerns heavy oils in sandstones of Pennsylvanian age. Analysis of avail-
able electrical and sample logs from earlier exploration activities in the region has been initiated, with the objective of establishing a stratigraphic framework for the lenticular sandstone bodies in the region. A second phase of the study will involve drilling a series of cores at selected locations to obtain data on the degree of saturation and to provide better definition of the organic chemistry of these heavy-oil deposits. John Roberts, the Survey’s chief petroleum geologist, is supervising the project, assisted by several graduate research assistants.

Heavy-oil deposits also occur in other parts of the State. Preliminary investigations of occurrences in Simpson strata in the Arbuckle Mountains suggest that a more comprehensive study of these deposits should be undertaken, and such a project will probably be initiated in the 1978 fiscal year.

Because of the increased work load resulting from special petroleum investigations in addition to the normal requirements of responding to requests for petroleum-related information, the Survey added an additional professional staff member to the petroleum-geology section. William E. Harrison joined the Survey in August. His prior experience includes 3 years with Shell Oil Company and 1 year with Atlantic Richfield Company. His professional experience includes both exploration and research. In addition to his contributions on current projects, Dr. Harrison is expected to initiate studies on the origin of petroleum and non-conventional methods of hydrocarbon detection.

Coal resources in Oklahoma represent a substantial and still largely untapped energy source; production has increased slowly from a low of 800,000 tons in 1967 to 2.4 million tons in 1975. For the past several years, all coal production has been from surface-mining operations. At present, 31 mines are operating, although several of them have not reached full production. When they do, the annual production should approach 5 million tons.

Following completion of the Survey’s general report on the coal resources of the State, *Investigation of the Coal Reserves in the Ozarks Section of Oklahoma and Their Potential Uses*, by S. A. Friedman, the Survey has initiated several specific coal studies. A compilation of the location, operating name, and general-production information for each coal mine in the State was completed during the fiscal year, and the compilation was published in July 1976 as the Survey’s *Map of Eastern Oklahoma Showing Active Coal Mines (January 1, 1976)*. Plans call for an annual revision and reprinting of this map in order to provide current information on the status of coal-mining activities in Oklahoma.

In addition, coal samples have been collected from each active mine in the State. Complete coal analyses, including a substantial amount of trace-element information, are being performed on each sample. This project is supported in part by the U.S. Geological Survey, and much of the coal analysis is being handled by the U.S. Bureau of Mines. Preliminary results on some of the samples are now available, and the remaining information should be available during the latter part of the 1977 fiscal year. Further sampling and analysis of coals from the currently developing mines will probably be initiated in the 1978 fiscal year.
The major thrust of the Survey's coal-investigation program, however, is the preparation of maps for each county showing the location of each coal bed. Specific information that will be completed on each map includes coal-bed thickness, structural attitude, location of structural contour at the maximum estimated stripping ratio for coal recovery by surface mining, information on roof-rock conditions for potential underground mining operations, and coal chemistry at selected point sources. These activities have been initiated (with partial support from the U.S. Bureau of Mines) for data on the Harts- horne coal in Haskell and Le Flore Counties. Additional work on the project is being accomplished through the Survey's partial support of several thesis projects at Oklahoma State University and The University of Oklahoma. It is expected that this program will be continued, with the possibility of some outside funding, until all counties in the coal fields have been completed.

BASIC SURVEY TASKS

Although energy studies are a significant portion of the Survey's program, basic geologic mapping, mineral-resource assessments, water-resources investigations, and environmental studies are all important Survey tasks.

The Survey published Bulletin 120, Geology and Mineral Resources of Choctaw County, Oklahoma, during fiscal year 1976. This study, authored by OU geology professor G. G. Huffman and several of his former students, provides information on the geology, industrial-mineral resources, and oil and gas development of this county. Mapping programs are in various stages of completion for Alfalfa, Bryan, Custer, Muskogee, Noble, Payne, and Washita Counties. At least one of these county reports will be published during the next fiscal year.

The Survey is currently in the second year of a 3-year study on the impact of surface mining in each of Oklahoma's 77 counties, excluding coal fields. This study, funded in part by a grant from the U.S. Geological Survey, involves locating each current or former surface-mining operation in the State and compiling information on the commodity extracted from each mine, the tonnage involved, and any reclamation practices that have been employed. The results will provide definitive base-line information for future mining and reclamation operations. The project is being conducted by Survey geologists K. S. Johnson and K. V. Luza, assisted by OU geology professor A. J. Myers and several graduate research assistants.

The Survey investigates problems related to mined-land reclamation practices in order to provide technical assistance to industry and to the State's regulatory agency, the Oklahoma Department of Mines. In that connection, the Survey assisted in developing proposed legislation pertaining to the reclamation of orphaned mined land in the Oklahoma coal fields. The data supporting the need for such legislation was provided in part by an earlier study of Oklahoma coal-mining operations conducted by Dr. Johnson.
This study was published in 1974 as GM-17, *Maps and Description of Disturbed and Reclaimed Surface-Mined Coal Land in Eastern Oklahoma*.

The Survey is continuing its cooperative water-resources investigations with the U.S. Geological Survey. This program is designed to provide (1) a regional assessment of the State's water resources, and (2) detailed information on the State's most important ground-water aquifers. The first phase of this program is nearing completion. Most of the field mapping has been completed, and the cartographic preparation of the information is advancing steadily. The Survey has already published 5 of the 9 proposed hydrologic atlases (the Fort Smith, Tulsa, Ardmore-Sherman, Oklahoma City, and Clinton quadrangles). It is anticipated that 2 additional atlases (covering the Lawton and the Enid quadrangles) will be published in the next fiscal year.

The second phase of the water-investigations program, detailed aquifer studies, has been initiated with analysis of the Vamoosa Formation and the Antlers (Trinity) sandstone. The studies should be completed in the next fiscal year and published during fiscal year 1978.

A special study of the water resources in the abandoned zinc mines of the Miami-Picher mining district was initiated this year. The study, designed to be completed in fiscal year 1978, will provide information on the quantity and quality of the water contained in the mines. Should the water quality prove satisfactory, it is anticipated that the quantity involved would be suitable for industrial purposes. This project is being funded under the joint sponsorship of the Northeast Counties of Oklahoma Development Association, the U.S. Geological Survey, and the Oklahoma Geological Survey.

Water-investigation programs may prove to be some of the Survey's most important projects as future demands impose an increasing burden on the State's water resources. Information collected today will be essential in arriving at rational decisions in future years concerning the most effective use of this invaluable natural resource.

Another continuing Survey program, trace-metal analysis, was concentrated this last year on occurrences of zinc in the Arbuckle Mountains and copper, lead, and zinc in the Ouachita Mountains. Dr. R. O. Fay is collecting information on trace-metal occurrences in an effort to understand the geologic factors controlling them. From such information it is anticipated that criteria can be established to aid in the search for economic concentrations of these metals.

A new project, concerned with assessing the seismicity and tectonic framework of the State, was developed at the end of the 1976 fiscal year. This study, funded in part by a grant from the Nuclear Regulatory Commission, is part of a multi-state effort to provide information on earthquakes in the Midcontinent. The study is designed to provide information on the location and frequency of earthquakes—with particular attention devoted to the Nemaha Ridge in Oklahoma, Kansas, and Nebraska. It is expected to be completed in 5 years, and interim annual reports will be prepared. The results of the study should provide information to aid in developing effective building codes for the metropolitan areas of the State and to assist the NRC in assessing potential sites for nuclear power plants.
PUBLIC SERVICE

The Oklahoma Geological Survey is the State’s basic research and development agency concerned with natural resources. In order to discharge our constitutionally-mandated responsibilities, the Survey must maintain a close working relationship with all State and federal agencies, the business and industrial sector, and most importantly with the public. For several years The University of Oklahoma Geology and Geophysics library has served as the official repository for Oklahoma Corporation Commission drillers’ logs. Increased demand for these files and lack of funding to maintain the files such that they could be readily accessible spurred the Survey to join with the Corporation Commission in establishing an agreement with Petro-Well Libraries to microfilm the material. That project has now been completed, and a microfilm library of the Corporation Commission drillers’ logs is available for public inspection at the Survey. This file will be continually updated under the terms of the agreement.

Finding new ways to assist the public and more efficient ways to meet our continuing obligations to the people of the State is the Survey’s most important task and the objective to which the entire staff is dedicated.

Charles J. Mankin, Director
APPENDIX A
Survey Staff, 1975-76 Fiscal Year

Professional
Thomas W. Amsden
Rosemary L. Croy
Robert O. Fay
David A. Foster
S. A. Friedman
William E. Harrison¹
Kenneth S. Johnson
Kenneth V. Luza²
Charles J. Mankin
John F. Roberts
William D. Rose
Leonard R. Wilson

Technical
Cartographic
Marion E. Clark
Roy D. Davis
David M. Deering
Christine G. Pflegl³
Sondra L. Underwood⁴

Core and Sample Library
Billy D. Brown⁶
Eldon R. Cox
Kenneth N. Miller⁷

Editorial
Elizabeth A. Ham

Electron Microscope Technician
William F. Chissoe III

Geological Technician
Robert D. Wingate

Laboratory Technician
Robert M. Powell⁸

Secretarial
Betty J. Bellis
Helen D. Brown
Margarett K. Civis
Cynthia (Trettevik) Sarem-Aslani
Gwen C. Williamson

¹Appointed August 1975.
²Appointed July 1975.
³Resigned December 1975.
⁴Resigned June 1976.
⁵Resigned June 1976.
⁶Resigned September 1975.
⁷Appointed October 1975.
⁸Appointed September 1975.

Part-Time Professional
George C. Huffman
(The University of Oklahoma)

Frederick H. Manley
(Georgia State University)

A. J. Myers
(The University of Oklahoma)

James H. Stitt
(University of Missouri, Columbia)

John B. Thuren³
(The University of Oklahoma)
APPENDIX B

List of Survey Publications Issued, 1975-76 Fiscal Year

New Publications

Annals No. 5, Oklahoma Academy of Science.—*Oklahoma Reservoir Resources*. Proceedings of a symposium held November 1974 at Southeastern Oklahoma State University, Durant. 151 pages, 33 figures, 52 tables. Issued March 1976.

Geologic Map, GM-18.—*Stereoscopic and Mosaic Aerial-Photograph Study of the Structure of the Central Ouachita Mountains in Oklahoma and Arkansas*, by Frank A. Melton. One 4-color map sheet, with 3 maps at scales of 1:250,000, 1:125,000, and 1:62,500, showing principal structures visible from aerial photographs. Issued April 1976.

Guidebook for GSA South-Central Section Meeting.—*Plutonic Igneous Geology of the Wichita Magmatic Province, Oklahoma*, by Benjamin N. Powell and Joseph F. Fischer, with contributions by David W. Phelps and Martin A. Pruatt. 10th annual meeting, guidebook for field trip no. 2. 35 pages, 52 figures, 7 tables. Issued February 1976.

Publications Reprinted

Guidebook for 1974 annual meeting of The Geological Society of America, South-Central Section.—*Guidebook to the Depositional Environments of Selected Pennsylvanian Sandstones and Carbonates of Oklahoma*, by John W. Shelton and T. L. Rowland. 8th annual meeting, guidebook for field trip no. 3. 75 pages, 33 figures, 15 plates. Issued 1974; reprinted November 1975.

APPENDIX C

Publications by Survey Staff, 1975-76 Fiscal Year

THOMAS W. AMSDEN
Early Late Silurian biofacies in south-central Oklahoma as determined by point counting [abstract]: Geological Society of America Abstracts with Programs, v. 7, p. 974-975 (reprinted in Oklahoma Geology Notes, v. 36, p. 29).

ROSEMARY L. CROY

ROBERT O. FAY

S. A. FRIEDMAN
Coal geology of parts of Craig, Nowata, and Rogers Counties, Oklahoma, in Coal and oil potential of the Tri-State area: Tulsa Geological Society Field Trip Guidebook, p. 41-47.

ELIZABETH A. HAM

WILLIAM E. HARRISON
Kenneth S. Johnson
OGS exhibit at International Petroleum Exposition: Oklahoma Geology Notes, v. 36, p. 77-78 (cover photo and description).
Ridges and valleys of the Ouachita Mountains: Oklahoma Geology Notes, p. 45-46 (cover photo and description).

Charles J. Mankin

John F. Roberts

William D. Rose

Leonard R. Wilson
Field studies of Carl Colton Branson: Oklahoma Geology Notes, v. 35, p. 201-202 (cover photo and description).
Palynological evidence for the origin of the Atoka Formation (Pennsylvanian) rocks in the type area [abstract]: Geological Society of America Abstracts with Programs, v. 8, p. 72-78 (reprinted in Oklahoma Geology Notes, v. 36, p. 72-73.)
Appendix D

Papers Presented by Survey Staff at
Professional Meetings, 1975-76 Fiscal Year

Oklahoma City Geological Society, Monthly Meeting
 Oklahoma City, Oklahoma, September 9, 1975

Thomas W. Amsden
 Hunton lithostratigraphy

State Geological Surveys of the Midcontinent Region and Geological
Division of the U.S. Geological Survey, Annual Conference
 Estes Park, Colorado, September 22-24, 1975

Charles J. Mankin
 Oklahoma Geological Survey's research program

American Association of Petroleum Geologists, Mid-Continent Section Biannual Meeting
 Wichita, Kansas, October 2, 1975

Robert O. Fay (paper prepared by Kenneth S. Johnson)
 Geology of the Permian Blaine Formation and associated strata in southwest Oklahoma

Kenneth S. Johnson
 Geology of the Permian Blaine Formation and associated strata in southwest Oklahoma (paper presented by Robert O. Fay)

Oklahoma Petroleum Council, Annual Meeting
 Tulsa, Oklahoma, October 7, 1975

Charles J. Mankin
 Future prospects for petroleum in Oklahoma

Bureau de Recherches et Minieres, Special Conference
 Orleans, France, October 10, 1975

Kenneth S. Johnson
 Uranium mineralization in the Uravan district of the Colorado plateau

Bureau de Recherches et Minieres, Special Conference
 Orleans, France, October 13, 1975

Kenneth S. Johnson
 Permian copper shales of southeastern United States

Paleontological Society of America, Annual Meeting
 Salt Lake City, Utah, October 22, 1975

Thomas W. Amsden
 Early Late Silurian biofacies in south-central Oklahoma as determined by point counting.

Institute of Electrical and Electronic Engineers, Oklahoma Section
 Monthly Meeting
 Oklahoma City, Oklahoma, October 28, 1975

Charles J. Mankin
 Oklahoma's mineral and energy resources
U.S. Geological Survey, Kansas Geological Survey, and Kansas Water Resources Board, Special Conference on "Discharge of Saline Water from Permian Rocks to Streams in Central Kansas"
Lawrence, Kansas, November 18, 1975

KENNETH S. JOHNSON
Geologic framework of the Permian basin and its relation to discharge of saline water

Society of Physics Students, Regional Annual Meeting
Southwestern State University, Weatherford, Oklahoma, November 21, 1975

CHARLES J. MANKIN
Oklahoma's mineral and energy resources

Interstate Oil Compact Commission, Annual Meeting
Birmingham, Alabama, December 8, 1975

CHARLES J. MANKIN
Energy research and development

Oklahoma Gem and Mineral Society, Monthly Meeting
Oklahoma City, Oklahoma, January 15, 1976

KENNETH V. LUZA
A geological trek through the Black Hills

Bartlesville, Oklahoma, Chapter of Society of the Sigma Xi, Monthly Meeting
Bartlesville, Oklahoma, January 29, 1976

KENNETH S. JOHNSON
Coal mining and land-reclamation activities in eastern Oklahoma

Geological Society of America, South-Central Section Annual Meeting
Houston, Texas, February 26-27, 1976

LEONARD R. WILSON
Palynological evidence for the origin of the Atoka Formation (Pennsylvanian) rocks in the type area

Shallow Exploration Drillers, Annual Clinic
Oklahoma City, Oklahoma, March 3, 1976

KENNETH S. JOHNSON
Geology of Oklahoma

American Institute of Chemical Engineers, Oklahoma Section Annual Meeting
Tulsa, Oklahoma, March 6, 1976

S. A. FRIEDMAN
Recoverable coal reserves in Oklahoma

Geological Society of America, Penrose Conference
Houston, Texas, March 15-20, 1976

CHARLES J. MANKIN
The role of a state geological survey in energy research and development
Geological Society of America, Northeastern and Southeastern Sections Annual Meeting

WILLIAM E. HARRISON
Graphitization of sedimentary organic matter: a potentially useful method for assessing paleotemperatures

Oklahoma State Department of Energy, Special Seminar
Norman, Oklahoma, March 26, 1976

CHARLES J. MANKIN
The University's conservation plan

Oklahoma Heritage Foundation, Monthly Meeting
Oklahoma City, Oklahoma, March 29, 1976

CHARLES J. MANKIN
Oklahoma's mineral and energy resources

Society of Research Administrators, Regional meeting
New Orleans, Louisiana, April 2, 1976

CHARLES J. MANKIN
Organizing for energy research

Ardmore Geological Society, Monthly Meeting
Ardmore, Oklahoma, April 8, 1976

KENNETH S. JOHNSON
Strip mining and land reclamation in the eastern Oklahoma coal field

U.S. Army Corps of Engineers, Special Conference
Tulsa, Oklahoma, April 28, 1976

KENNETH S. JOHNSON
Geology of Permian salt deposits and the salt plains of western Oklahoma

Tulsa Geological Society, Annual Field Trip
Tulsa, Oklahoma, April 30, 1976

S. A. FRIEDMAN
Coal stratigraphy and resources at Peabody's No. 1 and No. 2 strip mines, Rogers and Craig Counties, Oklahoma

L. R. WILSON
Desmoinesian coal seams of northeastern Oklahoma and their palynological content

Association of Professional Geological Scientists, Oklahoma Section Monthly Meeting
Oklahoma City, Oklahoma, May 11, 1976

KENNETH S. JOHNSON
Geological programs of Oklahoma State agencies

Enid Gem and Mineral Society, 6th Biennial Gem and Mineral Show
Enid, Oklahoma, May 22, 1976

KENNETH V. LUZA
Geology and minerals of South Dakota
AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS, ANNUAL MEETING
New Orleans, Louisiana, May 26, 1976
S. A. FRIEDMAN
Coal geology in Oklahoma

ASSOCIATION OF AMERICAN STATE GEOLOGISTS, ANNUAL MEETING
Vail, Colorado, June 20-25, 1976
CHARLES J. MANKIN
Presidential address

SOME MISSOURIAN TRILOBITES FROM NORTHEASTERN OKLAHOMA

ROGER K. PABIAN1 and HARRELL L. STRIMPLE2

INTRODUCTION

Trilobites of Missourian age, unlike occurrences of Desmoinesian age, are not common in Oklahoma. Girty (1911) and Branson (1965) have recorded occurrences of \textit{Ditomopyge parvula} (Girty) from the Wewoka and Lenapah Formations respectively. In each case, trilobites and trilobite parts are important constituents of the faunas.

While making collections of Missourian crinoids for a biostratigraphic study of the Midcontinent Missourian, several trilobites were collected in northeastern Oklahoma.

MATERIAL

Three pygidia and a single, complete, damaged specimen of \textit{Ditomopyge scitula} (Meek and Worthen) were collected from the Wann Formation, Ochelata Group, exposed at the Bartlesville Mound, west of Bartlesville, Oklahoma.

A large, complete but crushed specimen of \textit{Ameura missouriensis} (Shumard), collected by W. D. White, and a pygidium of \textit{D. scitula} were collected from a sandy, oolitic, calcareous zone of the Wann exposed at the hairpin-turn section in the E\textfrac{1}{2} sec. 15, T. 25 N., R. 12 E., northwest of Ochelata, in Osage County. The \textit{Ameura} specimen is estimated to be about 65 mm long.

1Associate professor, Conservation and Survey Division, The University of Nebraska, Lincoln, Nebraska.
2Curator and research investigator, Department of Geology, The University of Iowa, Iowa City, Iowa.
A complete specimen and a pygidium of *D. scitula* were found in the upper shale zone in the Avant Limestone Member exposed about 2 miles west of Ramona in the S½ sec. 25, T. 25 N., R. 12 E., Osage County.

ASSOCIATED FAUNAS

Some similarities between Missourian trilobite occurrences in Oklahoma and Nebraska have been observed. In both areas, trilobites occur with large, diverse, invertebrate faunas.

Fagerstrom (1964) and Fagerstrom and Boellstorff (1964) indicated that *Ameura sangamonensis* (Meek and Worthen) [=*A. missouriensis* (Shumard)] occurred with at least 16 other species of marine invertebrates in the Bonner Springs Shale of Nebraska. Pabian and Fagerstrom (1972) indicated that *Ditomopyge scitula* from the basal Ervine Creek Limestone (Virgilian) was found with at least 57 other marine invertebrate species.

The fauna in the Wann Shale exposed at the Bartlesville Mound appears to contain at least 3 bryozoan, 3 brachiopod, 1 bivalve, 1 gastropod, 2 echinoid, and 25 crinoid species.

At the hairpin turn, the fauna is equally diverse though not identical in generic make up. Collections show that there are at least 2 bryozoan, 8 brachiopod, 5 gastropod, 1 echinoid, and 14 crinoid species. At the hairpin turn, *Ameura* and *Ditomopyge* are found together, which is unusual. Pabian and Fagerstrom (1968) indicated that the trilobites *Ameura* and *Ditomopyge*
do not normally occur together. Pabian (1970) found that in Nebraska these two genera were for the main part incompatible. Only one sample of 70, that from the basal Stoner Limestone, contained appreciable numbers of both *Ameura* and *Ditomopyge*.

The fauna collected from the Avant exposure near Ramona contains at least 1 sponge, 4 bryozoan, 6 brachiopod, 6 gastropod, 4 bivalve, 2 nautiloid, 1 echinoid, and 10 crinoid species.

Trilobites form a small part of the total Missourian fauna of Oklahoma. However, trilobites may eventually aid in refining correlations of Missourian units in Oklahoma with similar units in neighboring states, because trilobites frequently occur in essentially intact fossil communities.

ACKNOWLEDGMENTS

The manuscript was reviewed by Terence Frest of The University of Iowa. Thanks are also due Doris Peabody and Nancy Christensen of the Conservation and Survey Division, University of Nebraska, the former for typing the manuscript and the latter for preparing the index map.

References Cited

Energy Index Available

Doctoral dissertations that deal with energy research and development have been identified and indexed by University Microfilm International of Ann Arbor, Michigan. The firm has published the index, which contains 6,000 titles and 25,000 citations, and copies are available. The price is $65.00.
Wyoming Geological Survey Dedicates New Building

In September, the Wyoming Geological Survey dedicated its new headquarters—a 22,400-square-foot stone and metal structure that cost $930,000. The two-story building is located in Laramie on the University of Wyoming campus. It includes a complete basement for storage and laboratory facilities. The ground floor is devoted to public services and contains drafting, publications, sales, and mailing facilities. The second floor has offices for the staff geologists and houses the Survey’s extensive files on oil and gas, coal, mineral, and environmental information. The second floor also houses the Laramie office of the U.S. Geological Survey.

While most of the construction was paid for by a 1975 appropriation of the state legislature, nearly 100 Wyoming firms, organizations, and individuals contributed $100 each toward the building’s cost as a result of a 1974 fund drive launched to show the geology profession’s support for the project.

Dr. Charles J. Mankin, director of the Oklahoma Geological Survey, addressed the dedication ceremony, and a number of regional dignitaries were in attendance.

The Wyoming Survey has grown from a 1-man operation when it was founded in 1933 to the point that it now employs 12 people full time and a number of part-time employees.
cherche pour le central U.S.A.

A program initiated by the U.S. Energy Research and Development Administration (ERDA) to provide hydrogeochemical and stream-sediment data for 12 central states is described in a series of quarterly reports prepared by ERDA's Oak Ridge Gaseous Diffusion Plant (ORGDP). The study, entitled Hydrogeochemical and Stream Sediment Survey in Central United States, is part of ERDA's National Uranium Resource Evaluation Program (NURE) and will provide information that can be used to determine the distribution of uranium in surface and underground waters and stream sediments and will serve as indicators of areas favorable for the discovery of uranium.

The five reports issued to date describe the administration and managerial set-up of the program and give detailed information on sampling, testing and analysis of samples by various methods, processing of data obtained, and storage of samples. They are as follows: GJtx-29(76) [K-TL-524], Part 1, April 1, 1975 through June 30, 1975; GJtx-30(76) [K-TL-524], Part 2, July 1, 1975 through September 30, 1975; GJtx-31(76) [K-TL-524], Part 3, October 1, 1975 through December 31, 1975; GJtx-32(76), [K-TL-524, Part 4], January through March 1976; and GJtx-52(76) [K-TL-524, Part 5], April through June 1976.

The reports have been placed on open-file by ERDA's Grand Junction, Colorado, office, and the Oklahoma Geological Survey has copies available for inspection. Microfiche copies can be ordered for $2.25 prepaid from Bendix Field Engineering Corporation, Technical Library, P.O. Box 1569, Grand Junction, Colorado 81501. Printed copies will be made at the requestor's expense by Colorado Copy Center, Suite T-8, Valley Federal Plaza, Grand Junction, Colorado 81501; Qahada Engineering, 307 South 12th Street, Grand Junction, Colorado 81501; or Sir Speedy Instant Printing Center, Engineering Center, 912 North Avenue, Grand Junction, Colorado 81501. As they become available, reports can be ordered from the National Technical Information Service (NTIS), Springfield, Virginia 22161.

Uranium Evaluated in Michigan and Wisconsin

Uranium and Thorium Occurrences in Precambrian Rocks, Upper Peninsula of Michigan and Northern Wisconsin, with Thoughts on Other Possible Settings, issued as GJtx-48(76), has been placed on open file by ERDA's Grand Junction, Colorado, office. This 5-part, 294-page report was prepared by J. Kallioekoski and Carol Johnson of the Department of Geology and Geological Engineering, Michigan Technological University, Houghton, Michigan, for ERDA's NURE program. It evaluates the uranium and
thorium potential of the area and gives the geologic background and mode
of occurrence of these metals in the Precambrian. It also discusses relationships of uranium in glaciated terrain. Occurrence maps and an end-moraine
map are included.

The report can be ordered as above and is also available for inspection
at the Oklahoma Geological Survey.

ERDA Funds OSU Study

Oklahoma State University has received a $50,000 grant from ERDA
to carry on the NURE program in southwestern Oklahoma. The contract for
this project was negotiated with Bendix Field Engineering Corporation, the
prime contractor for ERDA's Grand Junction office. Investigations will in-
volve detailed study of Permo-Pennsylvanian alluvial-fan deposits asso-
ciated with the Wichita and Arbuckle uplifts, Lower Permian channel
sands deposited on gentle local features associated with major structures,
and the crystalline basement rocks of the Wichita and Arbuckle uplifts.

STATISTICS OF OKLAHOMA'S PETROLEUM INDUSTRY, 1975

JOHN F. ROBERTS

In spite of loss of the depletion allowance and the possibility of price
controls, higher prices for both oil and gas resulted in 3,646 wells being
drilled in 1975 in search of oil and gas—the most drilled during one year
since 1966 (table 1, fig. 1). This was 589 more wells than were drilled in the
previous year, an increase of 19 percent. There were 2 less exploratory wells
drilled than during 1974, even though there were 591 more development
wells, which indicates a reluctance to invest in high-risk ventures due to
economic uncertainties. The success ratio for exploratory wells was the
same as last year, 28 percent. Osage, with a total of 456 wells, was the most
actively drilled county, and 19 of its wells were exploratory (fig. 2). Grant
County had 15 wildcat wells, followed by Garvin, Kay, and Lincoln Coun-
ties with 14 each. These discoveries were from formations ranging from the
Hoxbar (Middle Pennsylvanian) down to the Arbuckle (Ordovician). The

1Geologist, Oklahoma Geological Survey.
Table 1.—Drilling Activity in Oklahoma, 1975

<table>
<thead>
<tr>
<th></th>
<th>1975</th>
<th>1974</th>
</tr>
</thead>
<tbody>
<tr>
<td>All wells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of completions</td>
<td>1,743</td>
<td>3,646</td>
</tr>
<tr>
<td>Gas</td>
<td>638</td>
<td>3,057</td>
</tr>
<tr>
<td>Dry</td>
<td>1,265</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,646</td>
<td></td>
</tr>
<tr>
<td>Footage</td>
<td>18,253,324</td>
<td>17,046,378</td>
</tr>
<tr>
<td>Average footage</td>
<td>5,003</td>
<td>5,345</td>
</tr>
<tr>
<td>Exploration wells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of completions</td>
<td>59</td>
<td>394</td>
</tr>
<tr>
<td>Gas</td>
<td>52</td>
<td>396</td>
</tr>
<tr>
<td>Dry</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>Percentage of completions</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Footage</td>
<td>2,608,013</td>
<td>2,674,764</td>
</tr>
<tr>
<td>Average footage</td>
<td>6,619</td>
<td>6,754</td>
</tr>
<tr>
<td>Development wells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of completions</td>
<td>1,684</td>
<td>3,252</td>
</tr>
<tr>
<td>Gas</td>
<td>586</td>
<td>2,661</td>
</tr>
<tr>
<td>Dry</td>
<td>982</td>
<td></td>
</tr>
<tr>
<td>Percentage of completions</td>
<td>70</td>
<td>67</td>
</tr>
<tr>
<td>Footage</td>
<td>14,371,614</td>
<td>14,371,614</td>
</tr>
<tr>
<td>Average footage</td>
<td>4,810</td>
<td>5,146</td>
</tr>
</tbody>
</table>

1Source: *Oil and Gas Journal*, v. 74, no. 24, June 14, 1976.

2Footages and totals do not include 150 service wells, average of 2,522 feet per well.

3Footages include service wells.

Figure 1. Graph showing total wells drilled, oil wells completed, and gas wells completed in Oklahoma, 1946-75. Source: *Oil and Gas Journal.*
Figure 2. Exploratory drilling by counties during 1975. Upper figures give number of exploratory wells drilled; lower figures give number of successful completions. Source: American Petroleum Institute in cooperation with U.S. Bureau of Mines.
major contributors to new reserves and production were the Hunton and the Morrow-Springer sands along the northern rim of the Anadarko basin in middle and western parts of the State.

Table 1 summarizes drilling activity during 1975 and compares it with that of the previous year. The average total depth of all wells decreased from 5,345 feet the previous year to 5,003 feet. This decrease reflects the fact that few wells drilled below 20,000 feet were active during the year and also registers the large increase in the number of relatively shallow wells in and around the Osage platform.

<table>
<thead>
<tr>
<th>FIELD</th>
<th>1975 PRODUCTION (1000 BBLS)</th>
<th>CUMULATIVE PRODUCTION (1000 BBLS)</th>
<th>ESTIMATED RESERVES (1000 BBLS)</th>
<th>NUMBER OF WELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen</td>
<td>2,245</td>
<td>129,166</td>
<td>10,834</td>
<td>1,495</td>
</tr>
<tr>
<td>Avant</td>
<td>355</td>
<td>106,957</td>
<td>2,043</td>
<td>650</td>
</tr>
<tr>
<td>Bowlegs</td>
<td>1,245</td>
<td>159,737</td>
<td>1,563</td>
<td>160</td>
</tr>
<tr>
<td>Burbank</td>
<td>3,380</td>
<td>507,419</td>
<td>33,581</td>
<td>1,050</td>
</tr>
<tr>
<td>Cement</td>
<td>2,490</td>
<td>142,726</td>
<td>12,274</td>
<td>1,430</td>
</tr>
<tr>
<td>Cushing</td>
<td>2,670</td>
<td>465,852</td>
<td>19,148</td>
<td>1,665</td>
</tr>
<tr>
<td>Earlsboro</td>
<td>490</td>
<td>216,914</td>
<td>3,086</td>
<td>205</td>
</tr>
<tr>
<td>Edmond, West</td>
<td>530</td>
<td>155,677</td>
<td>4,323</td>
<td>435</td>
</tr>
<tr>
<td>Eola-Robberson</td>
<td>3,150</td>
<td>111,127</td>
<td>28,873</td>
<td>480</td>
</tr>
<tr>
<td>Fitts</td>
<td>2,650</td>
<td>153,523</td>
<td>19,477</td>
<td>635</td>
</tr>
<tr>
<td>Glenn Pool</td>
<td>1,775</td>
<td>311,196</td>
<td>18,804</td>
<td>1,055</td>
</tr>
<tr>
<td>Golden Trend</td>
<td>6,190</td>
<td>408,201</td>
<td>91,799</td>
<td>1,115</td>
</tr>
<tr>
<td>Healdton</td>
<td>8,720</td>
<td>300,960</td>
<td>52,040</td>
<td>1,440</td>
</tr>
<tr>
<td>Hewitt</td>
<td>5,500</td>
<td>224,486</td>
<td>45,514</td>
<td>1,155</td>
</tr>
<tr>
<td>Little River</td>
<td>300</td>
<td>160,201</td>
<td>4,799</td>
<td>165</td>
</tr>
<tr>
<td>Oklahoma City</td>
<td>1,915</td>
<td>735,811</td>
<td>16,104</td>
<td>250</td>
</tr>
<tr>
<td>Postle</td>
<td>5,100</td>
<td>75,660</td>
<td>55,002</td>
<td>285</td>
</tr>
<tr>
<td>Seminole, Greater</td>
<td>880</td>
<td>200,336</td>
<td>9,664</td>
<td>255</td>
</tr>
<tr>
<td>Sho-Vel-Tum</td>
<td>32,600</td>
<td>1,055,056</td>
<td>264,944</td>
<td>8,060</td>
</tr>
<tr>
<td>Sooner Trend</td>
<td>9,140</td>
<td>208,554</td>
<td>55,446</td>
<td>3,075</td>
</tr>
<tr>
<td>St. Louis</td>
<td>970</td>
<td>217,115</td>
<td>7,885</td>
<td>585</td>
</tr>
<tr>
<td>Tonkawa</td>
<td>270</td>
<td>135,482</td>
<td>1,518</td>
<td>205</td>
</tr>
<tr>
<td>Totals</td>
<td>90,565</td>
<td>10,352,156</td>
<td>758,721</td>
<td>25,850</td>
</tr>
</tbody>
</table>

Source: Oil and Gas Journal, v. 74, no. 4, January 26, 1976.
<table>
<thead>
<tr>
<th>YEAR</th>
<th>CRUDE PETROLEUM</th>
<th>NATURAL GAS</th>
<th>NATURAL GASOLINE AND CYCLE PRODUCTS</th>
<th>LIQUEFIED PETROLEUM GAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOLUME (1,000 BBLS)</td>
<td>VALUE ($1,000)</td>
<td>VOLUME (MMCF)</td>
<td>VALUE ($1,000)</td>
</tr>
<tr>
<td>Through</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1955</td>
<td>7,230,010</td>
<td>11,443,269</td>
<td>12,977,332</td>
<td>1,378,370</td>
</tr>
<tr>
<td>1956</td>
<td>215,862</td>
<td>600,096</td>
<td>678,603</td>
<td>54,288</td>
</tr>
<tr>
<td>1957</td>
<td>214,661</td>
<td>650,423</td>
<td>719,794</td>
<td>59,743</td>
</tr>
<tr>
<td>1958</td>
<td>200,699</td>
<td>594,069</td>
<td>696,504</td>
<td>70,347</td>
</tr>
<tr>
<td>1959</td>
<td>198,090</td>
<td>578,423</td>
<td>811,508</td>
<td>81,151</td>
</tr>
<tr>
<td>1960</td>
<td>192,913</td>
<td>563,306</td>
<td>824,266</td>
<td>98,088</td>
</tr>
<tr>
<td>1963</td>
<td>201,962</td>
<td>587,709</td>
<td>1,233,883</td>
<td>160,405</td>
</tr>
<tr>
<td>1964</td>
<td>202,524</td>
<td>587,820</td>
<td>1,323,390</td>
<td>166,747</td>
</tr>
<tr>
<td>1965</td>
<td>203,441</td>
<td>587,944</td>
<td>1,320,995</td>
<td>182,297</td>
</tr>
<tr>
<td>1966</td>
<td>224,839</td>
<td>654,281</td>
<td>1,351,225</td>
<td>189,172</td>
</tr>
<tr>
<td>1967</td>
<td>230,749</td>
<td>676,095</td>
<td>1,412,952</td>
<td>202,052</td>
</tr>
<tr>
<td>1968</td>
<td>223,623</td>
<td>668,202</td>
<td>1,390,884</td>
<td>197,506</td>
</tr>
<tr>
<td>1969</td>
<td>224,729</td>
<td>701,155</td>
<td>1,523,715</td>
<td>223,128</td>
</tr>
<tr>
<td>1970</td>
<td>223,574</td>
<td>712,419</td>
<td>1,594,943</td>
<td>248,811</td>
</tr>
<tr>
<td>1971</td>
<td>213,312</td>
<td>725,610</td>
<td>1,684,260</td>
<td>273,945</td>
</tr>
<tr>
<td>1972</td>
<td>207,633</td>
<td>709,033</td>
<td>1,806,887</td>
<td>294,523</td>
</tr>
<tr>
<td>1973</td>
<td>191,204</td>
<td>723,273</td>
<td>1,770,980</td>
<td>334,110</td>
</tr>
<tr>
<td>1974</td>
<td>177,785</td>
<td>1,277,076</td>
<td>1,638,492</td>
<td>458,904</td>
</tr>
<tr>
<td>1975</td>
<td>161,394</td>
<td>1,367,007</td>
<td>1,735,934</td>
<td>531,196</td>
</tr>
</tbody>
</table>

Total: 11,334,817 25,560,553 38,449,961 5,448,571 25,330,307 1,695,509 22,624,413 1,187,620

Figures from: Minerals Yearbook of the U.S. Bureau of Mines. Totals for crude petroleum differ from those compiled by the U.S. Bureau of Mines and the American Petroleum Institute principally because of the exclusion from USBM and API compilations of an estimated production of 26,355,000 barrels for the years 1905-1906.

1Preliminary figures for 1975.
The 22 giant fields of Oklahoma are listed in table 2. (A giant field is one that has an estimated ultimate recovery of more than 100 million barrels of oil.) The giant fields produced 45 percent of the year's total liquid hydrocarbons from 36 percent of the State's producing wells.

Table 3 lists cumulative and yearly production and the value of all petroleum products to January 1, 1976. Table 4 compares petroleum production for the last 2 years. Crude-oil production declined, even though the number of wells completed during the year increased, because the maturity of numerous wells resulted in their abandonment. Natural-gas production increased slightly, even though fewer gas wells were completed during the previous year.

\begin{table}
\centering
\begin{tabular}{lcc}
\hline
\textbf{Crude oil and lease condensate} & 1974 & 1975 \\
\hline
Total annual production (1,000 bbls)\(^1\) & 177,785 & 161,394 \\
Value ($1,000)\(^1\) & 1,277,076 & 1,367,007 \\
Cumulative production 1891-year (1,000 bbls) & 11,179,024 & 11,334,817 \\
Daily production (bbls) & 487,000 & 442,000 \\
Total number of producing wells\(^2\) & 71,848 & 71,657 \\
Daily average per well (bbls) & 6.8 & 6.2 \\
Oil wells on artificial lift (estimated)\(^2\) & 67,969 & 67,568 \\
\hline
\textbf{Natural gas} & & \\
Total annual marketed production (MMCF)\(^1\) & 1,638,942 & 1,735,934 \\
Value ($1,000)\(^1\) & 458,904 & 531,196 \\
Total number of gas and gas-condensate wells\(^2\) & 9,367 & 9,707 \\
\hline
\textbf{Natural-gas liquids} & & \\
Total annual marketed production (1,000 bbls)\(^1\) & 43,812 & 41,074 \\
Value ($1,000)\(^2\) & 251,099 & 281,260 \\
\hline
\end{tabular}
\end{table}

\(^1\)Item for 1974 is U.S. Bureau of Mines final figure. Item for 1975 is U.S. Bureau of Mines preliminary figure.

Figure 3 shows a decrease in natural-gas reserves from 13.4 trillion cubic feet to 13.1 trillion cubic feet, because more natural gas was produced than was added by discoveries and revisions. The ratio of reserves to production was 7.8, down 0.1 from the previous year.

Figure 3. Graph showing statistics on estimated proved reserves of natural gas in Oklahoma, 1946-75. Source: American Gas Association, annual reports.
Figure 4 displays an increase in discoveries and extensions of total liquid hydrocarbons. The decrease in production from 207 million barrels in 1974 to 195 million barrels in 1975 accounts for a slight increase of remaining reserves to 1,539 million barrels, a reserve-production ratio of 7.9.

Figure 4. Graph showing statistics on estimated proved reserves of total liquid hydrocarbons in Oklahoma, 1946-75. Source: American Petroleum Institute, annual reports.
National Stripper Well Survey, January 1, 1976, a joint project of the Interstate Oil Compact Commission and the National Stripper Well Association, indicates that at the close of 1975, Oklahoma had 58,736 stripper wells, a 1.8 percent decrease over the 1974 figure and 82 percent of the total number of producing oil wells. A stripper well, for the purpose of this survey, is a well producing 10 barrels of oil per day, or less, during the year under consideration. In Oklahoma, stripper wells produced 72,730,579 barrels of oil—45 percent of the State's crude-oil production. This is an increase in the percentage of the State total in 1974, due to the fact that there was a greater decrease in the State total than there was in stripper-well production. There were 1,739 stripper wells abandoned during 1975—130 less than were abandoned in 1974. The increasing importance of stripper wells and their increasing share of the total State production reflects the impact of increases in the price of oil. Higher prices permit wells to be produced to lower levels of daily production before the economic limit is reached. Lower production levels also produce additional quantities of oil that otherwise would not be recovered before abandonment.

Oklahoma continues to rank third in the nation in natural-gas production (with 8.5 percent of the total U.S. production) and fourth in liquid-hydrocarbon production (5.4 percent of the total). The State ranks fourth in the nation in natural-gas reserves and fifth in oil reserves.

OWRT Seeks Research Scholar

The Office of Water Research and Technology (OWRT) of the Department of the Interior is seeking the services of an "in-house scholar" for a 1-year period, starting this summer. OWRT can work with the applicant's home institution to arrange either full salary or a supplement for a partial salary such as might be needed during sabbatical leave. The task of the research scholar, in a general sense, is to be supportive of the mission of OWRT. The agency hopes to attract a senior scholar in the water-resources field who is willing to devote a year to a creative activity that will enhance water-resources research; the specific assignment will be tailored to the individual desires and talents of the scholar.

Persons interested in occupying this post from the summer of 1977 to the summer of 1978 (with specific starting and finishing dates to be arranged individually) should write to: Dr. William S. Butcher, Director, Office of Water Research and Technology, U.S. Department of the Interior, Washington, D.C. 20240. Applicants should provide an outline of the kind of contribution they feel they could make to OWRT through their field of specialization. They must notify OWRT of their interest by February 1, 1977; selection will be announced before April 1, 1977.
Communicating with the Congress; the Geological Scientist Must Provide Greater Input

More geological scientists must get involved in the legislative process at the national level. In recent years the complexity of environmental problems has become increasingly evident to most thinking members of society. A majority of geological scientists, because of their broad background and experience in the interrelations among the natural sciences and in the applications of their knowledge to the wise use and development of our natural resources, are in a particularly favorable position to provide such authoritative and useful information in helping solve environmental problems such as those dealing with soil and water. National policies affecting environmental issues are formulated by the Congress and implemented by the Executive Branch—the latter maintaining large numbers of geological scientists to help it design and carry out the programs. On the other hand, because the Congress has only a meager staff of geological scientists, it must depend on other sources for most of this badly needed scientific input. Geological scientists therefore have an opportunity (and a responsibility) to communicate more with the Congress, so that better-informed environmental decisions will be reached.

However, we geological scientists have been derelict, and we (and society) are paying the consequences. It is time that we reverse this course,

1. by running for congressional office;
2. by serving on the staff of a member or a committee or as a staff member of a congressional advisory agency;

OKLAHOMA ABSTRACTS is intended to present abstracts of recent unpublished papers relating to the geology of Oklahoma and adjacent areas of interest. The editors are therefore interested in obtaining abstracts of formally presented or approved documents, such as dissertations, theses, and papers presented at professional meetings, that have not yet been published.
3. as a staff or resource person of an executive agency, of a lobby, or of a professional or scientific society; or
4. by providing advice as an individual professional.
Such involvement brings both positive and negative rewards; as responsible professional scientists we owe it to ourselves and to society to take these risks. [p. 750]

Geochemistry of Wichita Mountain Igneous Rocks as Related to Copper and Uranium Mineralizations in Southwestern Oklahoma

F. ZUHAIR AL-SHAIEEB, RICHARD E. HANSON, and SCOTT R. ADAMS, Department of Geology, Oklahoma State University, Stillwater, Oklahoma

The distribution of copper, uranium, and other trace elements was studied in Raggedy Mountain Gabbro, Carlton Rhyolite, and Wichita Granite, the three major igneous rock groups in the Wichita Mountain Province. The distributions of copper in both the rhyolites and the granites were similar with an average value of 11.0 ppm. Few anomalies (more than 50 ppm) were detected in the granitic rocks. Copper distribution in the Raggedy Mountain Gabbro Group could be divided into two distinct populations, a gabbroic population and an anorthositic population, with average values of 140 ppm and 20 ppm respectively. The uranium content of the rhyolites is very consistent, showing an average value of 4.0 ppm, while the granites show a range of concentration between 2 and 7 ppm, which is proportional to the degree of alteration. Riebeckite-bearing pegmatite dikes in the granite are relatively rich in uranium with values ranging between 40 and 90 ppm. The Raggedy Mountain Gabbros have the lowest uranium content with concentrations of less than .5 ppm.

The Permian sedimentary copper deposits and uranium mineralization in arkosic rocks in southwestern Oklahoma probably are related to enormous volumes of granitic and gabbroic material eroded from the Wichita Mountain Province following Late Pennsylvanian uplift. "Granite wash" locally is more than 5,000 feet thick. The gabbroic materials, however, underwent nearly complete decomposition and only a few assemblages of zeolite and opal, and some grains of highly weathered anorthosite, have been found. Simple calculations demonstrate that enough copper probably was released from gabbroic material and enough uranium probably was leached from granitic and rhyolitic materials to account for known mineralizations in southwestern Oklahoma and to suggest possible future discoveries in the area. [p. 752]

Late Canadian-Whiterockian Strata in Eastern North America: New Data on Distribution and Biostratigraphy

STIG M. BERGSTROM, Department of Geology and Mineralogy, The Ohio State University, Columbus, Ohio

The prominent unconformity separating Early and Middle Ordovician rocks over the North American interior is less pronounced, if developed at all, in marginal areas such as the Great Basin, Oklahoma, and Texas. Based on sections in central Nevada, the Whiterockian Stage was proposed for earliest Middle Ordovician deposits (Cooper, 1956) and such strata have
been thought to be restricted in the U.S. to the areas just mentioned. However, in the last few years, Whiterockian-type fossils have been found in the Appalachians in Shelby Co., Alabama and Polk Co., Georgia where strata mapped as Lenoir Limestone have yielded Whiterockian conodonts. The lower Lenoir of the easternmost thrust belts in Tennessee apparently includes Whiterockian strata, but the stratigraphic position of the base of the stage remains unknown there. Whiterockian-type conodonts are known also from the upper Beekmantown in Virginia (Suter & Tillman, 1973; Tillman, 1976), and an excellent Whiterockian succession is present in West Virginia-Maryland (Boger & Bergström, 1976) where the base of the stage is some 900 feet below the top of the Beekmantown. Preliminary studies have proved the presence of *Multiostodus* and other conodonts suggesting a Whiterockian age in the Bridport Dolomite, the youngest formation of the Beekmantown in its reference section at Shoreham, Vermont, which has previously yielded no diagnostic fossils. Accordingly, rather than being absent in eastern U.S., as was generally assumed in the past, Whiterockian strata appear to be rather widely distributed but developed largely in a biofacies lacking the typical Whiterockian megafossils. The lithology of these strata suggests deposition in very shallow water, and it seems likely that this environment was too extreme for the development of a benthic fauna of the type characteristic of Whiterockian strata in the Great Basin and Oklahoma.

Degradation of Water Quality by Salt Water Infiltration in East-Central Oklahoma

J. J. D'LUGOSZ, U.S. Geological Survey, WRD, Rm 621, 201 N.W. 3rd, Oklahoma City, Oklahoma

The specific conductance of surface and ground water in east-central Oklahoma, in most localities, ranges from 200 to 600 micromhos per centimetre. In some areas, however, the conductance ranges from 2,000 to 50,000 micromhos per centimetre because of an increase in salinity of the water.

Water use in the area is primarily for domestic and city water supplies, and these high-salinity levels could represent a hazard for certain uses.

The increase in salinity of surface water and ground water is the result of brine infiltration in areas of salt water injection. Evidence for surface-water contamination is based upon several hundred specific conductance measurements made in all major basins at periods of low flow. Additional evidence is provided by field observations of brine being discharged into streams and of vegetation kills in some oil fields under secondary recovery.

Evidence for ground water degradation is based on approximately 150 chemical analyses and analysis of approximately 300 geophysical logs. Because bromide is abundant in Oklahoma brines (from 500 to 6,500 milligrams per litre) and almost nonexistent in fresh ground water, it is used as a tracer and, where present, indicates salt-water infiltration. Cross sections based on geophysical logs show that in some areas the base of fresh water has risen since the onset of brine injection. However, due to the complexity of the stream-aquifer system, the extent of surface and subsurface movement of salt water is not accurately known.
Effect on Recoverable Coal Reserves by Surface Mining Under Adverse Geological and Engineering Conditions

S. A. FRIEDMAN, Oklahoma Geological Survey, 830 Van Vleet Oval, Room 163, Norman, Oklahoma

The revised 1974 estimate by the Oklahoma Geological Survey of Oklahoma's identified remaining bituminous coal resources is 7,200,000,000 short tons, of which only 2,300,000,000 tons was classified as net (economically) recoverable reserves, primarily because of steep dips, faults, excessive depth, or thin coal. Resources and reserves were determined within the measured, indicated, and inferred reliability categories. The inferred areas were restricted to no more than 2 miles from coal data points to avoid overestimating resources that might be limited by the complex structural geology in the 7,700 feet of Middle Pennsylvanian coal-bearing strata (mostly shales and sandstones) of the Arkoma basin.

Profitable surface mining has progressed to a depth of 120 feet in the 4-6-foot-thick, low- to high-volatile bituminous Hartshorne coking coals that dip 20°-56° on the flanks of west-southwestward plunging, faulted anticlines and broad synclines. One surface mine, 90-120 feet deep, produces from the 13-24-inch thick, coking medium-volatile bituminous Stigler coal that dips only 3° westward. Thus, steeply dipping thick coal is mined by surface methods to the same depth as gently dipping thin coal, indicating that adverse geological and mining conditions have been overcome by operators responding to a demand for high-priced coking coal in Oklahoma. This type of mining suggests that as demand and prices increase for bituminous coking coal, some coal that has been considered nonrecoverable because of steep dips, faults, or excessive depth might become strippable, net-recoverable reserves, not only in Oklahoma, but in additional coal regions of North America.

Character of Copper Ore in Prewitt Shale (Permian) at Creta Mine, Southwestern Oklahoma

RICHARD D. HAGNI and DELBERT E. GANN, Department of Geology and Geophysics, University of Missouri-Rolla, Rolla, Missouri

The Creta Mine copper deposit in southwestern Oklahoma is a Kupferschiefer-type deposit that is confined to a narrow stratigraphic horizon (Prewitt Shale, Permian) and is widely distributed. The primary copper ore consists of chalcocite and digenite. The other copper sulfides, which are covellite, rare bornite, and chalcopyrite, were deposited as replacements of pyrite, spores, and other material. Pyrite occurs in a variety of forms and is less replaced in the upper portion of the Creta ore body. Melnicovite pyrite in the form of spheroidal bodies ranging in size from 50μm to less is the most abundant form of iron sulfide. Much of the digenite and chalcocite is pseudomorphic after melnicovite pyrite. The more crystalline layers of the melnicovite pyrite spheroids commonly remain as replacement remnants within the grains of copper sulfide in the form of atolls. Octahedral, cubic, and pyritohedral pyrite crystals, which are less common than the melnicovite pyrite, are commonly replaced by copper sulfides but are much more resistant to replacement. Spores of Triletes are totally replaced by copper
sulfide and show all stages of replacement beneath the ore zone. Small amounts of native silver replace copper sulfide. Lesser amounts of copper sulfide are present as chalcocite crystals, veinlets, and pore fillings in silty lamellae. The Creta copper ore is not of syngenetic origin. It was epigenetically introduced after the host Prewitt Shale was deposited and after the melnicovite and crystalline pyrites were diagenetically developed at an early stage.

Recognition and Paleoenvironmental Significance of Low Velocity Current Deposits in Ancient Submarine Canyon and Fan Channel Sequences

L. G. KESSLER, II, Phillips Petroleum Company, Bartlesville, Oklahoma; D. N. KOINM, and W. L. LUNDY, Phillips Petroleum Company, Oklahoma City, Oklahoma

Discrete units of ripples, dunes, and small bars similar to those encountered in modern fluvial sediments are observed in ancient submarine canyon and fan deposits. These units, which are interbedded with Bouma sequences and other common canyon and fan deposits, are probably the result of constant low velocity (20-50 cm/sec) currents traveling down canyon into fan distributaries. Such currents could be generated by continuous shelf processes such as delta distributary progradation or longshore current deflection. Catastrophic turbidity current processes dominate canyon and fan deposition prior to, and at cessation of, such low velocity current activity.

Two ancient examples illustrate the relative importance of such low velocity current deposits in different submarine canyon and fan systems. In the Cambrian St-Roch Formation of southern Quebec a few dune cross-bedded coarse sandstone units of 1.0 m maximum thickness are interbedded with thick resedimented conglomerates and graded sandstone beds in a submarine fan channel. These thin units represent a brief interlude of constant low velocity current deposition in a turbidity current dominated system. In an Upper Pennsylvanian marine pelitic section in the Anadarko basin of western Oklahoma a ripple and dune cross-bedded sand body of 26.5 m maximum thickness was deposited in a low velocity current dominated submarine canyon-fan complex. This sand, which is underlain by a thin crinoidal pebbly mudstone and overlain by thin incomplete Bouma sequences, prograded southwestward from three low gradient submarine canyons to form several overlapping fans. These canyons were fed by westward accreting delta distributaries.

Facies and Communities of an Ordovician Aulacogen Deposit: The Bromide Formation of Southern Oklahoma

MARK W. LONGMAN and JAMES SPRINKLE, Department of Geological Sciences, The University of Texas at Austin, Austin, Texas

The Bromide Formation was deposited in a shallow storm-dominated equatorial sea in the Southern Oklahoma Aulacogen. A low-lying desert bordered the aulacogen on the north but provided little sediment. Because subsidence initially exceeded the rate of deposition, the interbedded ter-
rigorous and carbonate rocks of the lower Bromide were deposited during a transgression. Depositional environments ranged from tidal flat (laminated sandstone) to shoreface (thick sandstone beds), transition zone (shale and biosparite), and open shelf (shale and biomicrite). Eventually the sea flooded the desert and cut off the supply of terrigenous material. Subsidence slowed, and the remains of carbonate-producing organisms began filling the basin. The offlapping micrites and biomicrites of the upper Bromide were deposited in environments ranging from open shelf through transition zone and shoreface to supratidal mudflat. Similar transgressive-regressive cycles, apparently produced by sporadic subsidence in the aulacogen, occur in other formations of the Simpson Group and may also be present in other aulacogens.

Community diversity in both the mixed terrigenous-carbonate facies and pure carbonate facies of the Bromide increased in an offshore direction. Tidal flat communities in both were dominated by algal mats and ostracods. The terrigenous shoreface communities were dominated by active burrowers and other infauna, whereas the carbonate shoreface community was dominated by the epifaunal coral *Tetradium*. Transition zone communities in both were characterized by vagrant epifaunal deposit and suspension feeders such as trilobites and cystoids. Open shelf communities were diverse and dominated by sessile epifaunal suspension feeders, especially brachiopods, bryozoans, and pelmatozoan echinoderms.

Ditomopyge and *Ameura*, Trilobites in the Permian Wreford Megacyclothem of Kansas, Nebraska, and Oklahoma

ANNE B. LUTZ-GARIHAN, Department of Geosciences, Indiana University Northwest, 3400 Broadway, Gary, Indiana, and ROGER J. CUFFEY, Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania

Extending from southernmost Nebraska across Kansas and into northern Oklahoma, the Wreford Megacyclothem (Lower Permian) has been investigated for its paleoenvironments, bryozoans, and brachiopods. Its rocks also yield trilobites, of scientific interest because they represent some of the later surviving relicts of this formerly thriving major invertebrate group.

Ameura missouriensis (Shumard, 1858) is very rare in the Wreford Megacyclothem, occurring only in lower Havenville brachiopod-molluscan limestone in central Kansas.

Ditomopyge scitula (Meek & Worthen, 1865) is rather common in the Wreford, especially as pygidia and isolated free cheeks with genal spines, but occasionally also as enrolled complete carapaces. Two pygidia bear possible fossilized color markings, a row of small dark round spots (one per segment) on each lateral flank of the axial lobe. Bivariate plots of measured dimensions indicate rectilinear ontogenetic growth in this trilobite population. Neither qualitative nor quantitative characters show any microevolutionary (stratigraphic), clinal (geographic), or ecotypic (lithologic) variations within Wreford *Ditomopyge scitula*. Found all across Kansas, and from uppermost Speiser up through middle Schroyer horizons, *Ditomopyge scitula* is concentrated in calcareous shale, cherty limestone, and
brachiopod-molluscan limestone, and thus clearly preferred off-shore, deeper-water (but still rather shallow), normal-marine paleoenvironments within the Early Permian Mid-Continent shelf sea. However, these Wreford trilobites exhibit nothing obviously premonitory of the impending extinction which later overtook their entire class.

Plate Margins Cross-Sections

JOHN C. MAXWELL, Reporter, Plate Margins Group, U.S. Geodynamics Committee

Cross-sections have been prepared for the western continental margin of the United States, including Alaska, and for the Ouachita-Wichita-Marathon orogenic system by participants in the Plate Margins Group of the U.S. Geodynamics Committee. The sections are designed to demonstrate the actual state of mapping and available geophysical work in the area of the section. One or more interpretative sections will also be provided to accompany each actualistic section. The objective is to demonstrate the state of present knowledge, to indicate problems of interpretation resulting from gaps in the data or inconclusiveness of existing data, and to point out problem areas requiring additional work. It is hoped that the cross-sections will provide a basis for correlation of geological and geophysical phenomena bearing on crustal adjustment processes which have occurred within ancient and modern converging plate boundaries.

Participants and Area of Cross-Section:
4. Gregory A. Davis: Central Klamath Mountains approximately through Cecilville, California.
5. W. Porter Irwin: Southern Klamath Mountains and extensions.
8. Benjamin M. Page, Eli A. Silver, Holly C. Wagner, David McCulloch, John Spotts: From edge of continental shelf northeastward, passing near San Luis Obispo and Avenal to point near mouth of King's River on east side of San Joaquin Valley.
11. Eldridge M. Moores and colleagues: Longitudinal section in the western Sierra Nevada.
12. Paul C. Bateman and Donald Ross: Point Sur to 37N, 120W, then eastward across the Sierra Nevada.
13. B. C. Burckfiehl, Bennie W. Troxel, and Lauren Wright: Southern Sierra Nevada across Death Valley area and thrust belt of southern Nevada.
15. Jay M. Zimmermann, Dietrich Roeder, Robert C. Morris and David P. Evansin: Section through Ouachita Mountains of western Arkansas, from a point north of Fort Smith through the Crystal Mountains to Caddo Gap, and thence south to Cretaceous overlap.
17. William R. Muehlberger: Section through the Marathon Mountains and hinterland.
18. Dr. Rodger E. Denison: Section through N. Texas, Muenster Arch near Bonita, NE across Marietta Basin, Wichita-Criner axis, Ardmore Basin, Arbuckle uplift, to vicinity of Sulphur, Oklahoma.

[p. 1002-1003]

Sedimentology of the Braided-to-Meandering Transition Zone of the Red River in Texas and Oklahoma

DANIEL E. SCHWARTZ, Program for Geosciences, The University of Texas at Dallas, P.O. Box 688, Richardson, Texas

The Red River system was studied between Burk Burnett, Texas and Terral, Oklahoma. The river changes from a braided to a meandering pattern within a fluctuating transition zone that is dependent upon variations in discharge and sediment input.

Medium sand and gravel dominate the upper and middle reach, with fine-to-medium sand dominating the lower reach. Clast b-axis length for the largest clasts ranged from 2 to 13.5 cm. Clasts consist of rock fragments, quartz, and armored and unarmored mud balls. Channel bed forms are predominantly transverse-to-linguoid bars. Lateral, braid, and longitudinal bars occur in straight channel segments and large radius meander bends. Channel bar slip faces rarely exceed 1 m. in height and wave lengths vary between 10 and 200 m., generally increasing downstream. Point bar frequency remains constant throughout the reach while height increases downstream.

Stratification in the transition reach is variable. Channel deposits of the upper and middle reach are characterized by graded large- and small-scale trough and foreset cross-stratification and basal clast lag. Channel deposits of the lower reach have a small proportion of large-scale trough, with increased tabular cross-stratification. Lower point bars of the transition reach have large-scale trough and tabular cross-stratification, with upper point bars dominated by small-scale trough and tabular cross-stratification. Small-scale trough cross- and climbing ripple stratification
characterize the overbank deposits. Horizontal stratification is present with variable frequency throughout the reach.

Similar downstream trends of grain size and sedimentary structures can be seen in Pleistocene terraces which flank the present flood plain.

[p. 1092]

The Cambrian-Ordovician Boundary in North America

JAMES H. STITT, Department of Geology, University of Missouri-Columbia, Columbia, Missouri; JAMES F. MILLER, Department of Geography and Geology, Southwest Missouri State University, Springfield, Missouri; and JAMES R. DERBY, Amoco Production Company, P.O. Box 591, Tulsa, Oklahoma

No international agreement exists on the position of the Cambrian-Ordovician boundary. Detailed faunal information on trilobites, conodonts and brachiopods gathered in the past decade from 18 measured sections in Texas, Oklahoma, the Great Basin, Montana and Alberta has resulted in agreement on the definition of the boundary in North America at the Saukia-Missisquaïta Zone boundary. In none of these areas does this faunal boundary coincide with formational boundaries.

Near the top of the Saukiella serotina Subzone, many diverse taxa of Trempealeauan trilobites and conodonts become extinct. The thin overlying Corbinia apopsis Subzone (top of Saukia Zone) is characterized by Corbinia, Apatokephaloides, Leiobienvillia, Nanorthis and new lineages of conodonts (Cordylopus, Hirsutodontus and usually Oneotodus). The top of the C. apopsis Subzone marks the ultimate extinction of the major families of Trempealeauan trilobites. Conodont and brachiopod species cross this boundary unaffected. Species of Missisquaïta, Ptychopleurites and Plethoptelis mark the base of the Missisquaïta Zone (basal Ordovician), followed shortly by Fryxellidontus, Apheoorthis, Syntraphina, Apoplanias and later Symphysurina. Trilobite and conodont families then diversify rapidly in the earliest Ordovician.

International correlations using conodonts indicate that the Australian and North American systemic boundaries may be closer to the base of the Tremadocian than previously believed. We suggest for international standardization of the boundary that the lowest occurrence of the widespread conodont genus Cordylopus (= base of C. apopsis Subzone) provides a correlative horizon that is distinctive and recognizable on several continents.

[p. 1123]

New Theses Added to OU Geology Library

The following M.S. theses have been added to The University of Oklahoma Geology and Geophysics Library:

The Palynology of the Eocene Wilcox Group Associated with Arkansas Bauxite, by Suchit Suthirachartkul Hart.
AAPG Reprints Papers on Deltas

The American Association of Petroleum Geologists has reissued a number of papers on deltas. No. 18 in AAPG's Reprint Series, Modern Deltas, contains 8 papers; no. 19, Ancient Deltas, has 12 papers, grouped as "Local Oil Field and Outcrop Studies" (4 articles), "Deltaic Facies of Entire Basins" (7 articles), and "Pennsylvanian Deltas of Oklahoma" (1 article). Both numbers were compiled by Rufus J. Le Blanc.

Two contributions from no. 19 should be of special interest to Oklahoma geologists: "Genetic Units in Delta Prospecting," by Daniel A. Busch, and "Pennsylvanian Delta Patterns and Petroleum Occurrences in Eastern Oklahoma," by G. S. Visher, Sandro Saitta B., and R. S. Phares.

These publications can be ordered from The American Association of Petroleum Geologists, P.O. Box 979, Tulsa, Oklahoma 74101. The price is $5.00 each to AAPG or SEPM members and $6.00 each to nonmembers.

INDEX

Volume 36, 1976

abstracts

AAPG-SEPM annual meetings 120
AAPG-SEPM Gulf Coast Section meeting 210
AAPG-SEPM Mid-Continent Section meeting 24
AAPG-SEPM Southwest Section meeting 63
GSA Annual Meetings 29, 242
GSA Northeastern and Southeastern Sections meeting 73
GSA Northeastern Section meeting 34
GSA North-Central Section meeting 127
GSA South-Central Section meeting 67
Oklahoma State University 35
University of Oklahoma, The 38, 128

Adams, Scott R., see Al-Shaieb, F. Zuhair; Hanson, Richard E.; and Adams, Scott R.
Agatson, Robert S., see Rouse, John T.; Agatson, Robert S.; Bright, Jerlene; and Procter, Richard M.
Agnew, Allen F.—Communicating with the Congress: The Geological Scientist Must Provide Greater Input [abs.] 242

Al-Shaieb, F. Zuhair; Hanson, Richard E.; and Adams, Scott R.—Geochemistry of Wichita Mountain Igneous Rocks as Related to Copper and Uranium Mineralization in Southeastern Oklahoma [abs.] 243

1Reference is to first page of article containing indexed item
American Association of Petroleum Geologists, The

- *Ancient Deltas* 251
- annual meetings 62, 120
- *Carbonate Rocks III: Organic Reefs* 18
- continuing-education programs 143
- digitized oil and gas fields map 121
- *Exploration Methods and Concepts I, II* [review] 196
- film index 166
- *Modern Deltas* 251
- new officers 144
- *North American Oil and Gas Fields* [review] 145
- northeastern region geological highway map 170
- oil and gas field data bank 123
- publications 18, 121, 145, 170, 196, 251
- sectional meetings 24, 63, 210

American Institute of Professional Geologists

- name change 23
- see Association of Professional Geological Scientists

Amsden, Thomas W., author of OGS Hunton bulletin 118, 215

Amsden, Thomas W.—Early Late Silurian Biofacies in South-Central Oklahoma as Determined by Point Counting [abs.] 29

Anadarko basin

- evolution of basin 65
- Hunton study, OGS Bulletin 121 118, 215
- lower Morrow reserves 26
- Morrow-Springer-Chester section 67
- Pennsylvanian low-velocity deposits 246
- tectonics 34, 65
- Virgilian sedimentation 27

annual report, Oklahoma Geological Survey 215

Anthony, James Michael—Structural Analysis of Assymetrical Folds Using the Finite Element Method [abs.] 128

Arbuckle Mountains

- Arbuckle-Group dolomites
 - chemical study 124
 - stratigraphic traps 66
- field trip 171
- magnetic survey 41
- Mill Creek drainage basin 3
- Mill Creek syncline 39, 124
- Precambrian rocks 67
- remote-sensing survey 71
- tectonics 34, 39

Ardmore Geological Society, officers 204

Arkansas Novaculite

- metamorphism 31
- varves 32

Arkoma basin 24, 129, 210, 215

Association of American State Geologists, annual meeting 152
Association of Earth Science Editors
annual meetings 42, 149
officers 42
Association of Professional Geological Scientists
annual meeting, Oklahoma Section 202
new name 23
officers, Oklahoma Section 204
Astarita, Arthur Michael—Depositional Trends and Environments of
"Cherokee" Sandstones, East-Central Payne County, Oklahoma [abs.] 35
Bergström, Stig M.—Late Canadian-Whiterockian Strata in Eastern
North America: New Data of Distribution and Biostratigraphy [abs.] 243
bibliographies
nuclear raw materials 54
Oklahoma geology, 1975 79
uranium occurrences 19
Bloustein, Donald A.—A Subsurface Presentation and Producing Charac-
teristics of the Lower Morrow Sandstone in Southern Ellis County,
Oklahoma [abs.] 26
Bright, Jerlene, see Reuse, John T.; Agatson, Robert S.; Bright, Jerlene;
and Procter, Richard M.
Burgess, William J.—Geologic Evolution of Mid-Continent and Gulf Coast
Areas: Plate Tectonics View [abs.] 210
Cambrian
Arbuckle Group 66
Cambro-Ordovician Boundary 250
Wichita Mountains 68, 69, 70, 243
Cannon, P. Jan—Generation of Explicit Parameters for a Quantitative Geomor-
phic Study of the Mill Creek Drainage Basin 3
Cardinal Creek 3
Cargill, Simon M., see Carter, M. Devereux; Medlin, Antoinette L.; Cargill,
Simon M.; and Olson, Allison C.
see also Olson, Allison C., and Cargill, Simon M.
Carter, M. Devereux; Medlin, Antoinette L.; Cargill, Simon, M.; and Olson,
Allison C.—The National Coal Resource Data System—New Tool for
Coal-Resource Assessment [abs.] 73
Central Stable Region, seismicity 30
Choctaw anticlinorium, Choctaw fault 129
Cleaves, Arthur W.—Upper Strawn Depositional Systems (Late Desmoinesian)
of North Central Texas [abs.] 64
coal
coal-geology short course 150
coal-preparation plant, LeFlore County 133, 134
coal-quality controls 211
Coal Resources of the United States, January 1, 1974, USGS estimates 42
coal-slurry pipeline 158
computer analysis of resource data 123
effect on reserves estimates of adverse mining conditions 245
federal coal-lease tracts 207
Map of Eastern Oklahoma Showing Active Coal Mines (January 1, 1976) 151
mined-land reclamation
National Coal Resource Data System (NCRDS) 73
OGS projects 215
ONG purchase of Alabama coal 41
Rocky Mountain symposium 53
SWREC conference on coal utilization 208
Tulsa Geological Society field trip 52, 116

Coleman, S. L.; see Medlin, J. H.; Coleman, S. L.; Wood, G. H., Jr.; and
Englund, K. J.

Colorado ground-water conference 52
copper 36, 141, 243, 245

counties
Atoka, fossil fish 175
Beaver
exploration 28
Laverne gas district 27
water report 141
Caddo, Washita River alluvium 38
Canadian
earthquake 135
Washita River alluvium 27
Carter
earthquake 135
fossil fish 175
magnetic survey 41
Cherokee, fossil fish 175
Choctaw, OGS Bulletin 120, Geology and Mineral Resources of
Choctaw County 215
Cimarron
earthquake 135
water report 141
Cleveland, earthquake 135
Craig, fossil fish 175
Ellis, lower Morrow sandstone 26
Garfield, "Cherokee" Group 41
Garvin
earthquake 135
waste-water treatment 168
Grady
oil entrapment 27
Washita River alluvium 38
Greer, Blaine Formation, Plainview syncline 173, 174
Harper, Laverne gas district 27
Haskell, OGS Hartshorne coal study 215
Hughes, fossil fish 175
Johnston, fossil fish 175
Kingfisher, "Cherokee" Group 41
Kiowa
gold recovery 214
intrusion breccia 1, 2
LeFlore
 coal-preparation plant 133, 134
 OGS Hartshorne coal study 215
 Lincoln, fossil fish 175
Logan
 Cleveland sand reservoir 38
 ground water 206
 surface geology 36
 McClain, oil entrapment 27
 McCurtain
 Arkansas Novaculite 31
 Ozan Formation 39
 McIntosh, earthquake 135
 Major, pond fauna 74
 Mayes, fossil fish 175
 Murray, magnetic survey 41
 Noble, Permian red beds and copper 36
 Oklahoma, Garber-Wellington aquifer 206
Osage
 OGS Circular 76, Shale and Carbonate-Rock Resources of Osage County, Oklahoma 193
 trilobites 228
Pawnee
 fossil fish 175
 Lecompton Member, Pawhuska Formation 40
 Permian red beds and copper 36
Payne
 "Cherokee" sandstones 35, 37
 fossil fish 175
 Permian red beds and copper 36
 Pittsburg, fossil fish 175
 Pontotoc, fossil fish 175
 Roger Mills, earthquake 135
 Texas, water report 141
 Tillman, paleontology 131, 175
 Tulsa, ammonoid 47
Washington
 crinoid 161
 fossil fish 175
Cretaceous, Ozan Formation, nannofossils 39
Cuffey, Roger J., see Lutz-Garihan, Anne B., and Cuffey, Roger J.
Denison, Rodger E.—Evolution of Anadarko Basin [abs.] 65
 Precambrian Rocks in the Eastern Arbuckle Mountains of Oklahoma [abs.] 67
Derby, James R., see Stitt, James H.; Miller, James F.; and Derby, James R.
Devonian
 Arkansas Novaculite 31, 32
 Hunton study, OGS Bulletin 121 118, 215
D'Lugosz, J. J.—Degradation of Water Quality by Salt Water Infiltration in East-Central Oklahoma [abs.] 244
Dolton, Gordon L.; Powers, Richard B.; and Sable, Edward G.—New Approach
to Geologic Estimates of Oil and Gas Resources by U.S. Geological Survey [abs.] 120
DuBois, Robert L., see Lawson, Jim, and DuBois, Robert L.
Dunagan, Joseph F., Jr.—Geology of the Lower Ordovician Rocks of the Choctaw Anticlinorium, Southeastern Oklahoma [abs.] 129
earthquakes 30, 74, 135, 139, 215
Energy Research and Development Administration (ERDA)
 enhanced-recovery program 25
 heavy-oil-recovery project 25, 215
 maps 54
 National Uranium Resource Evaluation (NURE) programs 54, 158, 232
 nuclear-waste symposium 55
 publications 17, 54, 158
see energy resources, ERDA
energy resources
 AAPG Exploration Methods and Concepts [review] 196
 AAPG North American Oil and Gas Fields [review] 145
 AAPG petroleum exploration schools 141
 Arbuckle Group stratigraphic traps 66
 aulacogenic reservoirs 126
 biogenic carbonate bank reservoirs 64
 coal property purchases in Alabama 41
 conference on energy, UMR-MEC 166
 Dibble-Mustang area 27
 energy indexes 17, 230
ERDA A Subjective Probability Appraisal of Uranium Resources in the State of New Mexico 54
ERDA Atomindex 17
ERDA contract for magnetic survey 158
ERDA National Uranium Resources Evaluation, Preliminary Report 158
ERDA Nuclear Raw Materials—A Selected Bibliography 54
ERDA Nuclear Science Abstracts 17
ERDA Oklahoma uranium-potential report 158
ERDA Potential Uranium Host Rocks and Structures in the Central Great Plains 54
ERDA Red River uranium survey 158
ERDA Research Abstracts 17
ERDA Williston basin reports 158
Exxon exploration computer control 127
heavy oil 25, 26, 215
IHRDc short courses 165
industry directory 44
LANDSAT data applied to exploration 121
Laverne gas district 27
lower Morrow gas reserves 26
National Coal Resources Data System 73, 123
NRC Natural Gas from Unconventional Geologic Sources 158
Oklahoma City field 127
Oklahoma Geological Survey programs 215
OU coal geology short course 150
OU energy-fuels field course 119
Panhandle area 28
Petroleum Data System 123
production statistics 20, 233
south-central Oklahoma discoveries 28
Southwest Regional Energy Council conference 208
USGS-AAPG digitized oil and gas field map 121
USGS bibliography of uranium 19
USGS estimates 120, 122
well-log instruction guide reprinted 57

Englund, K. J., see Medlin, J. H.; Coleman, S. L.; Wood, G. H., Jr.; and Englund, K. J.

environmental geology
brine pollution, east-central Oklahoma 244
coal mining and utilization regulations 208
coal mining under adverse conditions 245
coal-quality controls 211
earthquakes 30, 74, 135, 139
effect of mining on ground water, Colorado conference 52
federal coal-lease policy 207
flood-depth measurements 206
GSA environmental reports 167
nuclear-waste symposium 55
OAS Oklahoma Reservoir Resources 56
OGS projects 215
strip-mined land reclamation 141, 200, 215
waste-water treatment, Pauls Valley project 168
water-quality study, northeastern Oklahoma 155

Fay, Robert O., Gold in Oklahoma [cover-photo description] 214

Feenstra, Roger, and Wickham, John S.—Computer Models of Simple Shear Deformation Superposed on Symmetric Folds Applied to Deformation in the Ouachita Mountains [abs.] 68

Fernandez, Louis A., see Twyman, James D., and Fernandez, Louis A.
Fischer, Joseph F., see Giddens, Joe D. III; Gregory, Charles W.; Smith, Cynthia K. B.; and Fischer, Joseph F.
see also Roggenthen, William; Fisher, A. G.; Napoleone, Giovanni; and Fischer, J. F.

Fisher, A. G., see Roggenthen, William; Fisher, A. G.; Napoleone, Giovanni; and Fischer, J. F.

Friedman, S. A.
author of coal-activity map 151, 215
leader of coal-geology short course 150

Friedman, S. A.—Effect on Recoverable Coal Reserves by Surface Mining under Adverse Geological and Engineering Conditions [abs.] 245
Southwest Regional Energy Council Meets in Dallas 208

Gann, Delbert E., see Hagni, Richard D., and Gann, Delbert E.
Gatewood, Lloyd E.—Stratigraphic Trap Possibilities in the Arbuckle Group [abs.] 66

Generalized Information Processing System (GIPSY)
Computerized Resources Information Bank (CRIB) 59
Petroleum Data System (PDS) 123

Geological Society of America, The annual meetings 29, 242
environmental reports

Geochronology of Precambrian Rocks in the St. Francois Mountains, Southeastern Missouri, sectional meetings 34, 53, 67, 73, 127

Geophysical Society of Oklahoma City, officers 204

Geophysical Society of Tulsa, officers 204

Giddens, Joe D. III; Gregory, Charles W.; Smith, Cynthia K. B.; and Fischer, Joseph F.—Igneous Rock Relationships of the Medicine Creek Area, Wichita Mountains, Oklahoma [abs.]

Glomar Challenger 133, 134
gold, Wichita Mountains 213, 214

Grayson, Robert C., *see* Sutherland, Patrick K., and Grayson, Robert C.

Gregory, Charles W., *see* Giddens, Joe D. III; Gregory, Charles W.; Smith, Cynthia K. B.; and Fischer, Joseph F.

Gulf Coast Association of Geological Societies, field trips 171

Guthrie North quadrangle, surface geology 36

Hagni, Richard D., and Gann, Delbert E.—Character of Copper Ore in Prewitt Shale (Permian) at Creta Mine, Southwestern Oklahoma [abs.]

Haigh, Martin J.—Environmental Problems Associated with Reclamation of Old Strip-Mined Land 200

Halbouty, Michel T.—Application of Remote Sensing (LANDSAT Data) to Petroleum Exploration [abs.]

Ham, Elizabeth A., and Rose, William D.—Bibliography and Index of Oklahoma Geology, 1975

Hanson, Richard E., *see* Al-Shaieb, F. Zuhair; Hanson, Richard E.; and Adams, Scott R.

Harrison, William E.—*Exploration Methods and Concepts I, II, A Review Glomar Challenger, Drill Ship for DSDP’s Leg 48 [cover-photo description]*

Heath, Lamar J.—Stimulating Recovery from Heavy Oil Resources, Mid-Continent Area [abs.]

Heine, Richard Ralph—Geochemistry and Mineralogy of the Permian Red Beds and Related Copper Deposits, Payne, Pawnee, and Noble Counties, Oklahoma [abs.]

Hollis basin, evaporites 24

indexes

AAPG energy-exploration films 166

Oklahoma geology, 1975 101

Oklahoma Geology Notes 251

International Petroleum Exposition 78

International Stratigraphic Guide 167

Jacobs, Alan M., and LaFountain, Lester J.—Seismicity and Glacial Rebound in the Central Stable Region [abs.]

Johnson, Carlton R., *see* Jones, Thomas A.; Johnson, Carlton R.; and Phillips, Danny C.

Johnson, Clayton H., *see* Keller, W. D.; Viele, George W.; and Johnson, Clayton H.

Johnson, Kenneth S., leader of energy-fuels field course 119

Johnson, Kenneth S.—Geology of the Permian Blaine Formation and Associated Strata in Southwest Oklahoma [abs.]

OGS Exhibit at International Petroleum Exposition [cover-photo description] 78
Ridges and Valleys of the Ouachita Mountains [cover-photo description] 46

Sharp Flexure in Permain Rocks of Southwestern Oklahoma [cover-photo description] 174

Keller, W. D.; Viele, George W.; and Johnson, Clayton H.—Texture of Arkansas Novaculite Indicates Thermally-Induced Metamorphism [abs.] 31

Kessler, L. G. II; Koinm, D. N.; and Lundy, W. L.—Recognition and Paleoenvironmental Significance of Low Velocity Current Deposits in Ancient Submarine Canyon and Fan Channel Sequences [abs.] 246

Koinm, D. N., see Kessler, L. G. II; Koinm, D. N.; and Lundy, W. L.

Kousparis, Dimitrios—Quantitative Geophysical Study of the Cleveland Sand Reservoirs (Pennsylvanian) in Eastern Part of Logan County, Oklahoma [abs.] 38

Krancer, Anthony Edward—Nannofossils of the Ozan Formation (Cretaceous), McCurtain County, Oklahoma [abs.] 39

LaFountain, Lester J., see Jacobs, Alan M., and LaFountain, Lester J.

Lawson, Jim, and DuBois, Robert L.—Recent Field Studies of Felt Earthquakes in Oklahoma 135

LeBlanc, R. J., see Thompson, Alan, and LeBlanc, R. J.

Loomis, Edward C., see Sargent, Kenneth A., and Loomis, Edward C.

Longman, Mark W., and Sprinkle, James—Facies and Communities of an Ordovician Aulacogen Deposit: The Bromide Formation of Southern Oklahoma [abs.] 246

Lowe, Donald R.—Non-Glacial Varves in the Arkansas Novaculite (Devonian-Early Mississippian), Arkansas and Oklahoma [abs.] 32

Luke, Robert Franklin—The Structure of the Eastern Part of the Mill Creek Syncline [abs.] 39

Lundy, W. L., see Kessler, L. G. II; Koinm, D. N.; and Lundy, W. L.

Lutz-Garihan, Anne B., and Cuffey, Roger J.—Ditomopyge and Ameura, Trilobites in the Permian Wreford Megacyclothem of Kansas, Nebraska, and Oklahoma [abs.] 247

Luza, Kenneth V.—Pauls Valley Waste-Treatment Project Dedicated Water-Quality Study Initiated in Northeastern Oklahoma 168

Lyons, Paul, see Wickham, John; Lyons, Paul; and Morris, Robert C.

McQuillan, Michael William—Contemporaneous Faults: A Mechanism for the Control of Sedmentation in the Arkoma Basin, Oklahoma [abs.] 129

Mallory, William W.—USGS-AAPG Digitized Oil and Gas Field Map of North America—Status Report [abs.] 121

Mankin, Charles J., AASG president 152

259
Mapes, Royal H.—An Unusually Large Pennsylvanian Ammonoid from
Oklahoma
maps
AAPG-USGS northeastern region geological highway map 170
ERDA uranium-occurrence maps 54
OGS central Ouachita Mountains map 56
OGS coal-activity map 151
OGS-USGS Hydrologic Atlas 5 193
OWRB Rush Springs Sandstone atlas 195
USGS-AAPG digitized oil and gas field map 121
USGS aeromagnetic map 197
USGS earthquake-hazard map 139
USGS Oklahoma topographic map 58
Maxwell, John C.—Plate Margins Cross-Sections [abs.] 248
Medlin, Antoinette L., see Carter, M. Devereux; Medlin, Antoinette
L.; Cargill, Simon M.; and Olson, Allison C.
Medlin, J. H.; Coleman, S. L.; Wood, G. H., Jr.; and Englund,
K. J.—Evaluation of Quality and Quantity Controls on
Coal-Resource Assessment and Utilization [abs.] 211
Melton, Frank A., author of Stereoscopic and MOSaic Aerial-Photo-
graph Study of the Structure of the Central Ouachita Mountains
in Oklahoma and Arkansas 56
Meyer, Gary Dean—The Surficial Geology of the Guthrie North
Quadrangle, Logan County, Oklahoma [abs.] 36
Mill Creek, drainage-basin study 3
Miller, Betty M., and Thomsen, Harry L.—Probabilistic and
Computer Methodologies Used by U.S. Geological Survey for
Estimates of Undiscovered Oil and Gas Resources in United
States [abs.] 122
Miller, James F., see Stitt, James H.; Miller, James F.; and Derby, James R.
mineral resources
barite circular reprinted 57
copper mineralization 36, 141, 243, 245
gold 213, 214
mineral needs, USGS report 22
production statistics, Oklahoma 20
resources data bank 59
standardized classification system 205
trace-metal studies 215
Mississippian
Arkansas Novaculite 31, 32
fossil fish 175
Jackfork Formation 33
Johns Valley Formation 33
Springer-Chester relation 67
Stanley Formation, Stanley Group 33, 46
Mistretta, Suzanne Barrere—Carbonate Petrology and Lithostratigraphy
of the Lecompton Member (Pawhuska Formation),
Jennings-Shamrock Area, Oklahoma [abs.] 40
Morris, Robert C., see Wickham, John; Lyons, Paul; and
Morris, Robert C.
Morrison, L. S.—Developments in South Central Oklahoma [abs.] 28
Napoleone, Giovanni, see Roggenthen, William; Fisher, A. G.;
Napoleone, Giovanni; and Fischer, J. F.
National Academy of Sciences
Board on Mineral Resources natural-gas study 158
National Research Council Earthquake Prediction and
Public Policy 74
National Uranium Resource Evaluation Programs 54, 158, 232
New Mexico Geological Society field trip 150
Oceanic-resources conference 154
Office of Water Research and Technology (OWRT), seeks research scholar officers 241
American Association of Petroleum Geologists, The 144
Ardmore Geological Society 204
Association of American State Geologists 152
Association of Professional Geological Scientists,
Oklahoma Section 204
Geophysical Society of Oklahoma City 204
Geophysical Society of Tulsa 204
Oklahoma City Geological Society 204
Tulsa Geological Society 204
Oklahoma City Geological Society, officers, 204
Oklahoma Geological Survey
annual report, July 1, 1975-June 30, 1976 215
cal-geology course 150
cal studies 52, 150, 151, 215
energy-fuels field course 119
exhibit, IPE 77, 78
heavy-oil studies 215
mapping programs 215
new zip code 132
public service 215
publications 43, 46, 56, 57, 118, 151, 193, 194, 195, 215,
seismicity study 215
staff 52, 75, 116, 119, 134, 149, 150, 152, 155, 171, 208, 215
surface-mining impact studies 215
trace-metal studies 215
water-quality, water-resource studies 155, 193, 215
Oklahoma geology, 1975, bibliography and index 79
Oklahoma State University, abstracts 35
Oklahoma Water Resources Board Ground Water Resources of
the Rush Springs Sandstone of Southwestern Oklahoma 195
Olson, Allison C., and Cargill, Simon M.—Interactive Computer Program
to Analyze Coal-Energy Resources (PACER) [abs.] 123
Olson, Allison C., see Carter, M. Devereux; Medlin, Antoinette L.; Cargill, Simon M.; and Olson, Allison C.
Ordovician
Arbuckle Group 66, 124
Bromide Formation 246
Cambro-Ordovician boundary 250
Choctaw anticlinorium, Lower Ordovician 129
Early-Middle Ordovician unconformity 243

261
Hunton study, OGS Bulletin 121 sandstones, northern Arkansas 118, 215

Ouachita Mountains
aerial-photographic study 56
Arkansas Novaculite 31, 32
Carboniferous flysch facies 33
Choctaw anticlinorium 129
cross section 248
field trip 171
structure and tectonics 35, 46, 68, 129, 210 Wapanucka Limestone facies 125

Overbey, W. K., Jr., see Shumaker, R. C.; Pierce, C. I.; and Overbey, W. K., Jr.

Pabian, Roger K., and Strimple, Harrell L.—Some Missourian Trilobites from Northeastern Oklahoma 228

paleontology
ammonoid, Seminole Formation 47
brachiopods 250
Bromide Formation communities 246
conodonts 243, 250
corals 246
crimoid 161
Early Late Silurian biofacies 29
Garber Formation 131
nannofossils, Ozan Formation 39
palynology
age evidence for Atoka Formation 72
copper replacement of spores 245
Ozan Formation 39
trilobites 228, 247, 250
vertebrates 131, 175

Pennsylvanian
Atoka Formation 33, 72, 129
Bartlesville Sandstone 35, 37
Cherokee sandstones 24, 25, 35, 37, 41
Cleveland sand 38
ERDA uranium report 158
fossil fish 175
Heebner Shale 27
Jackfork Group 46
"Laverty-Hoover" sandstones 27
low-velocity current sand, Anadarko basin 246
Morrow sandstones 26, 67, 129
Pawhuska Formation, Lecompton Member 40
Seminole Formation 47
Skinner Sandstone 24, 35, 37
Strawn deposition, Texas 64
Wann Formation, trilobites 228
Wapanucka Limestone facies 125

Permian
Blaine Formation 24, 173, 174
copper mineralization 36, 243, 245
Creta copper ore 245
Dog Creek Formation 24
ERDA uranium report 158
Flowerpot Formation 24
fossil fish 131, 175
Garber Formation 131, 175, 206
Garber-Wellington aquifer 206
Hennessey Group 175
Prewitt Shale, copper ore 245
San Angelo Formation 24
Wreford Megacyclothem, trilobites 247

petroleum and natural gas
AAPG Exploration Methods and Concepts [review] 196
AAPG North American Oil and Gas Fields [review] 145
Anadarko basin 26, 27
Dibble-Mustang area 27
heavy-oil studies 25, 26, 215
LANDSAT exploration 121
lower Morrow discoveries 26
OGS projects 215
Oklahoma statistics, 1975 20, 215, 233
Panhandle report 28
south-central Oklahoma report 28
USA Oil-Industry Directory, 1976 44
USGS-AAPG digitized oil and gas fields map 121

Phelps, David—Mineral Chemistry and Petrography of the Layered Series of the Raggedy Mountain Gabbro Group, Wichita Mountains, Oklahoma [abs.] 69

Phillips, Danny C., see Jones, Thomas A.; Johnson, Carlton R.; and Phillips, Danny C.

Pierce, C. I., see Shumaker, R. C.; Pierce, C. I.; and Overbey, W. K., Jr.

Plate Margins Group, U.S. Geodynamics Committee—Plate Margins Cross-Sections [abs.], see Maxwell, John C.

Pleistocene
pond fauna 74
Red River terraces 249

Powell, Benjamin N.—Relation of the Layered Series to Other Rocks of the Wichita Complex, Oklahoma, and Resulting Precambrian Structural Implications [abs.] 69

Powers, Richard B., see Dolton, Gordon L.; Powers, Richard B.; and Sable, Edward G.

Precambrian
eastern Arbuckle Mountains 67
Wichita Mountains 69, 70

Procter, Richard M., see Rouse, John T.; Agatson, Robert S.; Bright, Jerlene; and Procter, Richard M.

Pruatt, M. A., and Reiter, Leon—Geologic and Petrologic Interpretations of Geophysical Anomalies over the Southern Oklahoma Aulacogen [abs.] 70

263
Pruatt, Martin, see Wickham, John; Pruatt, Martin; Reiter, Leon; and Thompson, Tommy

Rascoe, Bailey, Jr.—Sedimentary Cycles and Depositional Environments in Virgilian (Pennsylvanian) Rocks in the Anadarko Basin [abs.] 27

Red River, sedimentology 249

Reiter, Leon, see Pruatt, M. A., and Reiter, Leon
see also Wickham, John; Pruatt, Martin; Reiter, Leon; and Thompson, Tommy

remote sensing
aerial photography 71
Arbuckle Mountains
Ouachita Mountains 56
infrared imagery, Arbuckle Mountains 71
LANDSAT data, application in exploration 121
magnetic survey, Arbuckle Mountains 41
southeastern Kansas, structural study 125

Roggenthin, William; Fisher, A. G.; Napoleone, Giovanni; and Fischer, J. F.—Paleomagnetism and Age of Wichita Mountain Basement [abs.] 70

Rose, William D., see Ham, Elizabeth A., and Rose, William D.

Rouse, John T.; Agatson, Robert S.; Bright, Jerlene; and Procter, Richard M.—AAPG Oil and Gas Field Data Bank Project, United States and Canada [abs.] 123

Ryan, Patrick Joseph—A Vertical Intensity Magnetic Survey of the Western Part of the Arbuckle Mountains [abs.] 41

Sable, Edward G., see Dolton, Gordon L.; Powers, Richard B.; and Sable, Edward G.

Sargent, Kenneth A.—Chemical and Isotopic Investigation of Stratigraphic and Tectonic Dolomites in Arbuckle Group, Arbuckle Mountains, South-Central Oklahoma [abs.] 124

Sargent, Kenneth A., and Loomis, Edward C.—Comparison of Thermal-Infrared Imagery with Aerial Photography as a Geologic Mapping Tool in Carbonate Terrain [abs.] 71

Schwartz, Daniel E.—Sedimentology of the Braided-to-Meandering Transition Zone of the Red River in Texas and Oklahoma [abs.] 249

seismicity
Central Stable Region 30
earthquake prediction publication 74
Nemaha ridge seismicity study 215
Oklahoma earthquakes 74, 135, 139
Southeastern Kansas 125
USGS A Probabilistic Estimate of Maximum Acceleration in Rock in the Contiguous United States 139

Shaak, Graig D.—Diversity and Succession in a Late Pleistocene Pond Fauna, Major County, Oklahoma [abs.] 74

Shelby, Jerry M.—Report—Oklahoma and Texas Panhandle [abs.] 28

Shipley, Raymond Dale—Local Depositional Trends of “Cherokee” Sandstones, Payne County, Oklahoma [abs.] 37
Shumaker, R. C.; Pierce, C. I.; and Overbey, W. K., Jr.—Lineament
ment and Structural Analysis of Southeastern Kansas [abs.] 125
Silka, Lyle Ramsay—Hydrogeochemistry of the Wichita River
Alluvium in Caddo and Grady Counties, Oklahoma [abs.] 38
Silurian
Clarita Formation, Fitzhugh Member 29
Hunton study, OGS Bulletin 121 118, 215
Simpson, Larry C.—Paleontology of the Garber Formation (Lower
Permian), Tillman County, Oklahoma [abs.] 131
Smith, Cynthia K. B., see Giddens, Joe D., III; Gregory, Charles
W.; Smith, Cynthia K. B.; and Fischer, Joseph F.
Society of Economic Paleontologists and Mineralogists
annual meetings 62
Gulf Coast Section meeting 210
Louisiana Tertiary field trip 171
Permian Basin Section field trip 52
southern Oklahoma aulacogen, Wichita aulacogen 34, 63, 69, 70, 126, 246
Sprinkle, James, see Longman, Mark W., and Sprinkle, James
Stereo Creek 3
Stitt, James H.; Miller, James F.; and Derby, James R.—The
Cambro-Ordovician Boundary in North America [abs.] 250
Strimple, Harrell L.—The Inadunate Crinoid Genus Mooreocrinus
in Oklahoma 161
Strimple, Harrell L., see Pabian, Roger K., and Strimple, Harrell L.
Suhm, Raymond W.—Trends and Origins of Ordovician Sandstones,
Northern Arkansas [abs.] 28
Sutherland, Patrick K., and Grayson, Robert C.—Basinward Facies
Changes in Wapanucka Limestone (Lower Pennsylvanian),
Indian Nations Turnpike, Ouachita Mountains, Oklahoma [abs.] 125
Takken, Suzanne—Morrow-Springer-Chester Relationships in the
Anadarko Basin of Oklahoma [abs.] 67
North American Oil and Gas Fields, A review 145
Taylor, John Allen—The Current Dibble to Mustang Area Hunton
Play, McClain, Grady, and Canadian Counties, Oklahoma [abs.] 27
Thompson, Alan, and LeBlanc, R. J.—Carboniferous Deep-Sea Fan
Facies of Arkansas and Oklahoma [abs.] 33
Thompson, Thomas L., visiting professor in petroleum geology 60
Thompson, Tommy, see Wickham, John; Pruatt, Martin; Reiter, Leon;
and Thompson, Tommy
Thomsen, Harry L., see Miller, Betty M., and Thomsen, Harry L.
Thornton, Edward C.—Anorthosite-Gabbro-Granophyre Relationships,
Mount Sheridan Area, Oklahoma [abs.] 71
Tri-State area, heavy oil 25
Tulsa Geological Society
field trips 52, 116
guidebooks 52, 116
officers 204
Twyman, James D., and Fernandez, Louis A.—Anorthosite-Gabbro-
Diorite Petrogenesis, Mt. Sheridan Area, Oklahoma [abs.] 72
Underwood, Sondra, designs OGN cover 43
U.S. Board on Geographic Names Decisions 19, 76, 192, 268

265
U.S. Bureau of Mines, mineral-resource classification system 205
U.S. Geological Survey
aeromagnetic maps 197
Clinton quadrangle hydrologic atlas 193
coal-resources report 42
computerized oil and gas estimates 122
Computerized Resources Information Bank (CRIB) 59
copper report 141
digitized oil and gas fields map 121
earthquake-hazard report and map 139
Garber-Wellington aquifer report 206
geological highway map, northeastern U.S. 170
land-use planning guide 141
mineral-needs report 22
mineral-resources classification bulletin 205
Oklahoma ground-water records 206
Oklahoma Panhandle water-resources report 141
Oklahoma topographic map 58
Pennsylvanian paleotectonic report 141
petroleum-resource estimates 120
surface-mined area reclamation guide 141
topographic-map price increase 118
U.S. Paleozoic-Mesozoic rock discussion 206
uranium-bearing Triassic rocks cross section 141
uranium-occurrence bibliography 19
water-resources investigations 18
University of Oklahoma, The
abstracts 38, 128
coal-geology short course 150
energy-fuels field course 119
theses and dissertations 23, 117, 170, 250
visiting petroleum-geology professor, Thomas L. Thompson 60
uranium
arkosic rocks, southwestern Oklahoma 243
bibliographies 19, 54
ERDA journals 17
ERDA maps 54
ERDA Michigan and Wisconsin study 232
ERDA OSU grant 232
ERDA nuclear-waste symposium 55
ERDA stream-sediment survey 232
ERDA uranium-assessment reports 54, 158, 232
ERDA uranium-bearing Triassic rocks cross section 141
Wichita Mountains 243
Van Dyke, Richard—Depositional Environments of Cherokee Reservoir Sands, Kincaid Oil Field, Southeastern Kansas [abs.] 24
Viele, George W., see Keller, W. D.; Viele, George W.; and Johnson, Clayton H.
Walper, Jack L.—Aulacogens and Megashears—Natural Habitat for Oil and Mineral Deposits [abs.] 126
Geotectonic Evolution of Wichita Aulacogen, Oklahoma [abs.] 63
Washita River 3, 38
water resources

Antlers (Trinity) sandstone aquifer study 215
Clinton quadrangle hydrologic atlas 193
Colorado ground-water conference 52
east-central Oklahoma, brine pollution 244
flood-depth measurements 206
Garber-Wellington aquifer 206
Grand (Neosho) River basin 18
ground-water records 206
Middle Arkansas River basin 18
Mill Creek drainage basin 3
northeastern Oklahoma water-quality study 155
OAS Oklahoma Reservoir Resources 56
OGS projects, 1975 215
Oklahoma Panhandle 141
Pauls Valley waste-water treatment project 168
Rush Springs aquifer 195
Vamoosa aquifer study 215
Verdigris River basin 18
zinc-mines-water study 215

Webb, Gregory W.—Preservation Window as Subunconformity Petroleum Source [abs.] 127
Wells, Jack—Heavy Oil in Western Missouri—Update [abs.] 25
Wichita aulacogen, see southern Oklahoma aulacogen
Wichita Mountains
copper 243
cross-sections 248
gold 213, 214
geochemistry of igneous rocks 243
intrusion breccia 1, 2
Layered Series 69, 70
Medicine Creek area, igneous rocks 68
Mount Sheridan area
rock origins 72
rock relations 71
paleomagnetism 70
Raggedy Mountain Gabbro Group 69
southern Oklahoma aulacogen
Wichita aulacogen 34, 63, 69, 70, 126, 246
uranium 243

Wickham, John; Lyons, Paul; and Morris, Robert C.—Ouachita
Mountains of Oklahoma, Arkansas Basin, Potato Hills, Broken
Bow Uplift, and South to the Sabine Uplift [abs.] 248
Wickham, John; Pruatt, Martin; Reiter, Leon; and Thompson, Tommy—
The Southern Oklahoma Aulacogen [abs.] 34
Wickham, see Feenstra, Roger, and Wickham, John
Willhite, G. Paul—Engineering and Geological Challenges in
Heavy Oil Recovery [abs.] 26
Wilson, L. R.—Palynological Evidence for the Origin of the Atoka
Formation (Pennsylvanian) Rocks in the Type Area [abs.] 72
Wood, G. H., Jr., see Medlin, J. H.; Coleman, S. L.; Wood, G. H.,
Jr.; and Englund, K. J.
U.S. Board on Geographic Names Decision

The following Oklahoma place name was approved by the U.S. Board on Geographic Names and was published in the July through September 1976 issue of Decisions on Geographic Names in the United States (Decision List 7603).

Heyburn Reservoir (variant: Lake Heyburn—former decision) is a statutory adoption for a reservoir formed by damming Polecat Creek 4 kilometres (2.5 miles) north of Heyburn, Creek County, Oklahoma, sec. 13, T. 17 N., R. 9 E., and sec. 18, T. 17 N., R. 10 E., Indian Meridian (35°56'55" N., 96°17'40" W., at dam). Named by Congressional action, Public Law 80-290, 1946, this decision revises a 1950 geographic names decision.