Cover Picture

Dougherty Anticline, Arbuckle Mountains

The cover photograph is an aerial view of folded Paleozoic rocks, looking southeastward toward the town of Dougherty, in the north-central part of the Arbuckle Mountains in southern Oklahoma (Tps. 1 and 2 S., R. 2 E., Murray County). The major plunging fold, in the center, is the Dougherty anticline, which exposes rocks ranging from the upper Simpson Group of Middle Ordovician age to the Sycamore Limestone of Early Mississippian age. The dome structure to the right (southwest) of the anticline is variously known as Vines dome or Scotts dome; a small oil field produces along its crest.

Thousands of geology students from The University of Oklahoma and numerous other universities have taken field trips to the Arbuckle Mountains to examine textbook examples of structural geology. In fact, many professional geologists throughout the world received their early training in field methods in this area, and no doubt the photograph will call to mind fond memories of their undergraduate years.

The photograph was taken on November 25, 1973, at 4:30 p.m., at an altitude of 7,500 feet above sea level. The photographer must extend credit to the aircraft's pilot, Glenda L. Cannon, for her expert positioning of the craft, which made possible this view down the anticline's axis.

—P. Jan Cannon

Editorial staff: William D. Rose, Rosemary Croy, Elizabeth A. Ham

Oklahoma Geology Notes is published bimonthly by the Oklahoma Geological Survey. It contains short technical articles, mineral-industry and petroleum news and statistics, an annual bibliography of Oklahoma geology, reviews, and announcements of general pertinence to Oklahoma geology. Single copies, seventy-five cents; yearly subscription, $3.00. All subscription orders should be sent to the address on the front cover.

Short articles on aspects of Oklahoma geology are welcome from contributors. A set of guidelines will be forwarded on request.
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY
1973

Prepared by Elizabeth A. Ham, Rosemary L. Croy, and William D. Rose

Bibliography—pages 47-79
Index—pages 79-93

BIBLIOGRAPHY

Adams, J. A. S., see Schwarzer, T. F., and Adams, J. A. S.
Addington, J. W., see Woods, R. D., and Addington, J. W.
American Petroleum Institute, see American Gas Association, American Petroleum Institute, and Canadian Petroleum Association.

1Includes some earlier listings.
2Oklahoma Geological Survey.

Anderson, K. H., see Kurtz, V. E., Thacker, J. L., Anderson, K. H., and Gerdemann, P. E.

Augustynek, R. M., see Windle, P. N., Augustynek, R. M., and Nitecki, N. H.

Baharlou, A., see Dickey, P. A., and Baharlou, A.

Bakhtar, Daryoush, see Gray, Fenton, and Bakhtar, Daryoush
Barnes, B. B., see Kent, D. C., Naney, J. W., and Barnes, B. B.

Beck, K. C., see Weaver, C. E., and Beck, K. C.

Berg, O. R., see Cole, J. G., and Berg, O. R.

Bergström, S. M., see Sweet, W. C., and Bergström, S. M.

Bergström, S. M., see also Sweet, W. C., Bergström, S. M., and Carnes, J. B.

Boerngen, J. G., see Shacklette, H. T., Boerngen, J. G., Cahill, J. P., and Rahill, R. L.

Briggs, T. C., see Merwin, R. W., and Briggs, T. C.

Brockie, D. C., see Johnson, K. S., and Brockie, D. C.

Brown, L. F., Jr., see Galloway, W. E., and Brown, L. F., Jr.

Burman, H. R., Jr., see Shelton, J. W., Noble, R. L., and Burman, H. R., Jr.

Cahill, J. P., see Shacklette, H. T., Boerngen, J. G., Cahill, J. P., and Rahill, R. L.

Canadian Petroleum Association, see American Gas Association, American Petroleum Institute, and Canadian Petroleum Association

Carnes, J. B., see Sweet, W. C., Bergström, S. M., and Carnes, J. B.

Carter, R. W., see Benson, M. A., and Carter, R. W.

Cebull, S. E., see Keller, G. R., and Cebull, S. E.

Chenoweth, P. A., see Bennison, A. P., Chenoweth, P. A., Desjardins, Louis, and Ferris, Craig.

58. Cleveland, J. G., 1972 [1973], The air resources of Tulsa County, in
Bennison, A. P., and others (editors), Tulsa's physical environment: Tulsa Geological Society Digest, v. 37, p. 392-413, 8 illus. (including tables).

Cline, L. M., see Pičha, František, and Cline, L. M.

Cocke, J. M., see Strimple, H. L., and Cocke, J. M.

Cooper, Margaret, see Klemic, Harry, Marsh, S. P., and Cooper, Margaret

Cooper, R. A., see Bergström, S. M., and Cooper, R. A.

Cope, R. F., see Vance Rowe Reports, Cope, R. F., and McUsic, J. M.

Corley, R. K., see Thomas, W. O., Jr., and Corley, R. K.

Crow, F. R., see Mitchell, A. L., Jr., and Crow, F. R.

Cuffey, R. J., see Garihan, A. L., and Cuffey, R. J.

Cuffey, R. J., see also Warner, D. J., and Cuffey, R. J.

Culbertson, W. C., see Smith, G. I., Jones, C. L., Culbertson, W. C., Ericksen, G. E., and Dyni, J. R.

80. Denison, R. E., 1973, Blue River gneiss, in Ham, W. E., Regional

Denison, R. E., see Johnson, K. S., and Denison, R. E.

Desjardins, Louis, see Bennison, A. P., Chenoweth, P. A., Desjardins, Louis, and Ferris, Craig
Dewey, J. F., see Burke, Kevin, and Dewey, J. F.

Dolcater, D. L., see Bartolina, D. G., and Dolcater, D. L.

Dott, R. H., see Bennison, A. P., Creath, W. B., Dott, R. H., Hayes, C. L., and Knight, W. V.

Dott, R. H., see also Bennison, A. P., Knight, W. V., Creath, W. B., Dott, R. H., and Hayes, C. L.

Dyni, J. R., see Smith, G. I., Jones, C. L., Culbertson, W. C., Ericksen, G. E., and Dyni, J. R.

Ericksen, G. E., see Hubbard, H. A., and Ericksen, G. E.
Ericksen, G. E., *see also* Smith, G. I., Jones, C. L., Culbertson, W. C., Ericksen, G. E., and Dyni, J. R.

Ethington, R. L., *see* Repetski, J. E., and Ethington, R. L.

Fanelli, L. L., *see* Harper, W. B., and Fanelli, L. L.

Fanelli, L. L., *see also* Wood, S. O., Jr., and Fanelli, L. L.

Feenstra, R. E., *see* Wickham, J. S., and Feenstra, R. E.

115. Ferris, Craig, 1972 [1973], Bouguer gravity map of Tulsa County,
Oklahoma, in Bennison, A. P., and others (editors), Tulsa's physical environment: Tulsa Geological Society Digest, v. 37, p. 113-124, 5 figs., map.

Ferris, Craig, see Bennison, A. P., Chenoweth, P. A., Desjardins, Louis, and Ferris, Craig.

Fleischer, Michael, see Cox, D. P., Schmidt, R. G., Vine, J. D., Kirkemo, Harold, Tourtelot, E. B., and Fleischer, Michael

120. Friedman, S. A., 1973, Oklahoma, in State-by-state reports on coal west of the Mississippi, including Canada: Coal Age, v. 78, no. 5, p. 142-145, 148-149.

127. Gartner, Stefan, and Gentile, Richard, 1972, Problematic Pennsylvanian coccoliths from Missouri: Micropaleontology, v. 18, p. 401-404, 1 pl. (Refers to coccoliths from Oklahoma.)

Gentile, Richard, see Gartner, Stefan, and Gentile, Richard
Gerdemann, P. E., see Kurtz, V. E., Thacker, J. L., Anderson, K. H.,
and Gerdemann, P. E.
Goemaat, R. L., see Morton, R. B., and Goemaat, R. L.
Goemaat, R. L., see also Sapik, D. B., and Goemaat, R. L.
129. Gordon, Mackenzie, Jr., and Stone, C. G., 1973, Correlation of Car-
boniferous rocks of the Ouachita geosyncline with those of the
adjacent shelf [abstract]: Geological Society of America Abstracts
with Programs, v. 5, p. 259. (Reprinted in Oklahoma Geology
Notes, v. 33, p. 124-125.)
130. Gould, G. T., 1972 [1973], Water resources of Tulsa County and vicin-
ity, in Bennison, A. P., and others (editors), Tulsa’s physical
environment: Tulsa Geological Society Digest, v. 37, p. 204-207, 1
map, 1 table.
Graffham, A. A., see Fay, R. O., and Graffham, A. A.
soils associated with Cross Timbers in central Oklahoma and
granitic outcrops in south-central Oklahoma: Agricultural Ex-
periment Station, Oklahoma State University, Miscellaneous
Publication 90, 24 p., 24 figs., 24 tables.
132. Greenfield, S. M., 1972, EPA—The environmental watchman, in
Cook, T. D. (editor), Underground waste management and en-
vironmental implications: American Association of Petroleum
Geologists Memoir 18, p. 14-18. (Refers to brine migration into
Oklahoma aquifers.)
133. Haley, B. R., and Stone, C. G., 1973, Paleozoic stratigraphy and deposi-
tional environments in the Ouachita Mountains, Arkansas
[abstract]: Geological Society of America Abstracts with Pro-
Hall, R. B., see Morris, H. T., Heyl, A. V., and Hall, R. B.
Hall, R. B., see also Wedow, Helmut, Jr., Kiilsgaard, T. H., Heyl, A.
V., and Hall, R. B.
(Listed in Petroleum Abstracts, v. 13, p. 833.)
135. Ham, W. E., Asphaltic sand of Oil Creek Formation (Middle Ordovi-
cian), in Ham, W. E., Regional geology of the Arbuckle Moun-
tains, Oklahoma: Oklahoma Geological Survey, Guidebook for
GSA Field Trip No. 5 (1973 Annual Meeting), p. 54, 1 fig.
136. Ham, W. E., 1973, Collings Ranch Conglomerate (middle Virgilian), in
Ham, W. E., Regional geology of the Arbuckle Mountains, Ok-
lahoma: Oklahoma Geological Survey, Guidebook for GSA Field
137. Ham, W. E., 1973, Regional geology of the Arbuckle Mountains, Ok-
lahoma: Oklahoma Geological Survey, Guidebook for GSA Field
Trip No. 5 (1973 Annual Meeting), 56 p., 50 figs. (Compiled by T.
L. Rowland, with contributions by T. W. Amsden, R. E. Denison, J.
R. Derby, R. O. Fay, A. A. Graffham, T. L. Rowland, R. L. Squires,
and J. H. Stitt.)
of the Arbuckle Mountains, Oklahoma: Oklahoma Geological

Ham, W. E., see Denison, R. E., and Ham, W. E.

Ham, W. E., see also Johnson, K. S., and Ham, W. E.

Ham, W. E., see also Rowland, T. L., Ham, W. E., and Squires, R. L.

Harlow, F. H., see Sutherland, P. K., and Harlow, F. H.

Harp, J. F., see Laguros, J. G., and Harp, J. F.

Hatfield, L. E., see Forgetson, J. M., and Hatfield, L. E.

Hayes, C. L., see Bennison, A. P., Creath, W. B., Dott, R. H., Hayes, C. L., and Knight, W. V.

Hayes, C. L., see also Bennison, A. P., Knight, W. V., Creath, W. B., Dott, R. H., and Hayes, C. L.

Haynes, L. D., see Cocke, J. M., and Haynes, L. D.

Helmberger, D. V., see Wiggins, R. A., and Helmberger, D. V.

Helmberger, D. V., see also York, J. E., and Helmberger, D. V.

146. Henderson, B. C., 1973, Student enrollment 1972-73: Geotimes, v. 18, no. 10, p. 31-33 (Includes Oklahoma.)

59
Heyl, A. V., see Morris, H. T., Heyl, A. V., and Hall, R. B.
Heyl, A. V., see also Wedow, Helmuth, Jr., Kiilsgaard, T. H., Heyl, A. V., and Hall, R. B.

Hottman, S. D., see Crow, F. R., and Hottman, S. D.
Howe, D. A., see Harris, R. L., Lees, W. R., and Howe, D. A.

Hoyt, D. E., see Scholle, P. A., and Hoyt, D. E.

149. Hubaux, A., 1973, A new geological tool—the data: Earth Science Reviews, p. 159-196. (Refers to GIPSY on p. 181.)

152. Huff, W. D., 1972, Morphological effects on illite as a result of potassium depletion: Clays and Clay Minerals, v. 20, p. 295-301, 7 figs. (Includes tests on Beavers Bend illite.)

Hyne, N. J., see Pita, F. W., and Hyne, N. J.
Iberall, E. R., see Adams, J. W., and Iberall, E. R.

159. Isom, J. W., 1972, Subsurface stratigraphic analysis, Late Ordovician

for GSA Field Trip No. 6 (1973 Annual Meeting), 33 p., 35 figs. (Includes contributions by D. C. Brockie, H. E. Hunter, and N. L. Scofield.)

Johnson, K. S., see Melton, F. A., and Johnson, K. S.

Johnson, K. S., see also Southard, L. G., Johnson, K. S., and Roberts, J. F.

Jones, C. L., see Smith, G. I., Jones, C. L., Culbertson, W. C., Ericksen, G. E., and Dyni, J. R.

Jones, M., see Petzet, G. A., and Jones, M.

Kays, Olaf, see Calkins, J. A., Kays, Olaf, and Keefer, E. K.

Keefer, E. K., see Calkins, J. A., Kays, Olaf, and Keefer, E. K.

183. Kent, D. C., Naney, J. W., and Barnes, B. B., 1973, An approach to hydrogeologic investigations of river alluvium by the use of computerized data processing techniques: Ground Water, v. 11, no. 4, p. 30-41, 7 figs., 3 tables. (Study conducted in Washita River
valley; abstract in Petroleum Abstracts, v. 13, p. 1281.)
Kent, D. C., see Stone, J. E., Bennison, A. P., and Kent, D. C.

Kiilsgaard, T. H., see Wedow, Helmuth, Jr., Kiilsgaard, T. H., Heyle, A. V., and Hall, R. B.

Kirkemo, Harold, see Cox, D. P., Schmidt, R. G., Vine, J. D., Kirkemo, Harold, Tourtelot, E. B., and Fleischer, Michael

Knight, W. V., see Bennison, A. P., Creath, W. B., Dott, R. H., Hayes, C. L., and Knight, W. V.

Knight, W. V., see also Bennison, A. P., Knight, W. V., Creath, W. B., Dott, R. H., and Hayes, C. L.

Konig, R. H., see Chinn, A. A., and Konig, R. H.

195. Krumme, G. W., 1973, Source changes during the Marmaton

Lees, W. R., see Harris, R. L., Lees, W. R., and Howe, D. A.

Lopez, Lorreda, see Averitt, Paul, and Lopez, Lorreda

Macurda, D. B., Jr., see Breimer, Albert, and Macurda, D. B., Jr.
McUsic, J. M., see Vance Rowe Reports, Cope, R. F., and McUsic, J. M.

214. Maerz, R. H., 1972, Paleoecology of the Poolville Member, Bromide Formation (Middle Ordovician), Criner Hills, Oklahoma: Texas Christian University unpublished M.S. thesis.

Mankin, C. J., see Patrick, D. M., and Mankin, C. J.

Marsh, S. P., see Klemic, Harry, Marsh, S. P., and Cooper, Margaret.
Masroua, L., see Dickey, P. A., and Masroua, L.

Maxwell, Bruce, see McMillion, L. G., Sr., and Maxwell, Bruce.

422. (Reprinted in Oklahoma Geology Notes, v. 33, p. 82-83.)
Molinary, John, see Cocke, J. M., and Molinary, John
Moor, D. W., see Erdtmann, Bernd-Dietrich, and Moor, D. W.
Moore, B. M., see Kirby, J. G., and Moore, B. M.
224. Moore, R. C., and Strimple, H. L., 1973, Lower Pennsylvanian (Morrowan) crinoids from Arkansas, Oklahoma, and Texas: University of Kansas Paleontological Contributions, article 60 (Echinodermata 12), 84 p., 7 figs., 23 pls.
Moore, R. C., see Strimple, H. L., and Moore, R. C.
Morrow, E. H., see Hare, M. G., and Morrow, E. H.

235. Naney, J. W., see Kent, D. C., Naney, J. W., and Barnes, B. B. National Stripper Well Association, see Interstate Oil Compact Commission and National Stripper Well Association

238. Office of Community Affairs and Planning, see Oklahoma Conservation Commission, Office of Community Affairs and Planning, Oklahoma Conservation District, and Soil Conservation Service

Strimple and Moore from the Missourian of Nebraska [abstract]: Geological Society of America Abstracts with Programs, v. 5, p. 342-343. (Includes specimens from Wann Formation, Osage County; reprinted in Oklahoma Geology Notes, v. 33, p. 118.)

247. Pate, J. D., Jr., 1972, A geological engineering study of the Sooner trend, middle Layton sand unit (Pennsylvanian), Kingfisher County, Oklahoma: University of Oklahoma unpublished M.S. thesis, 86 p.

Pierce, A. P., see Ward, D. E., and Pierce, A. P.

Pratt, W. P., see Brobst, D. A., and Pratt, W. P.

Rahill, R. L., see Shacklette, H. T., Boerngen, J. G., Cahill, J. P., and Rahill, R. L.

Ramsey, R. H., see Cleveland, J. G., Ramsey, R. H., and Walters, P. R.

Reynolds, M. A., see Wright, R. J., Simms, L. A., Reynolds, M. A., and Bogard, D. D.

Roberts, J. F., see Southard, L. G., Johnson, K. S., and Roberts, J. F.

264. Rose, W. D., see Ham, E. A., and Rose, W. D.

Rowett, C. L., see Walper, J. L., and Rowett, C. L.

268. Rowland, T. L., Ham, W. E., and Squires, R. L., 1973, Deese (Desmoinesian) strata on Dry Branch of Buckhorn Creek, in Ham, W.
Sadler, P. M., see Matthews, S. C., Sadler, P. M., and Selwood, E. B.

Scofield, N. L., see Denison, R. E., and Scofield, N. L.

Selwood, E. B., see Matthews, S. C., Sadler, P. M., and Selwood, E. B.
Sever, J. R., see Haug, Pat, and Sever, J. R.

291. Simpson, H. M., 1972, Palynology and environmental analysis of Missourian strata, Tulsa County, Oklahoma [abstract], in 3rd An-

Sloat, B., see McCartney, J. A., and Sloat, B.

Soil Conservation Service, see Oklahoma Conservation Commission, Office of Community Affairs and Planning, Oklahoma Conservation District, and Soil Conservation Service.

Squires, R. L., see Rowland, T. L., Ham, W. E., and Squires, R. L.

Stone, C. G., see Gordon, Mackenzie, Jr., and Stone, C. G.
Stone, C. G., see also Haley, B. R., and Stone, C. G.
Stone, G. T., see Scofield, Nancy, and Stone, G. T.

Strimple, H. L., see Burdick, D. W., and Strimple, H. L.
Strimple, H. L., see also Moore, R. C., and Strimple, H. L.
Strimple, H. L., see also Pabian, R. K., and Strimple, H. L.

316. Sutherland, P. K., and Harlow, F. H., 1973, Pennsylvanian brachiopods and biostratigraphy in southern Sangre de Cristo Mountains, New Mexico: New Mexico Bureau of Mines and Min-
eral Resources Memoir 27, 173 p., 51 figs., 30 photos, 18 pls. (Includes correlations with Oklahoma fossil occurrences.)

Thacker, J. L., see Kurtz, V. E., Thacker, J. L., Anderson, K. H., and Gerdemann, P. E.

Thompson, T. L., see Satterfield, I. R., and Thompson, T. L.

Tillman, C. G., see Suter, D. R., and Tillman, C. G.

329. Tulsa Geological Society, 1972 [1973], General construction conditions at a glance, Tulsa County, Oklahoma, and environs [map], in Bennison, A. P., and others (editors), Tulsa's physical environment: Tulsa Geological Society Digest, v. 37, map 3, scale 1 inch = 1 mile. (Cartography by Oklahoma Geological Survey.)

330. Tulsa Geological Society, 1972 [1973], Oil and gas fields, Tulsa County, Oklahoma [map], in Bennison, A. P., and others (editors), Tulsa's physical environment: Tulsa Geological Society Digest, v. 37, map 4, scale 1 inch = 1 mile. (Cartography by Oklahoma Geological Survey.)

Twiss, P. C., see Jeppesen, J. A., Twiss, P. C., and West, R. R.

336. U.S. Board on Geographic Names, 1973, Decisions on geographic names in the United States, January through March 1973, Decision List no. 7301: U.S. Department of the Interior, 20 p. (Names and defines Elm Creek, Little Saline Creek, Saline Creek, Wickliffe Creek, and Wolf, Oklahoma; reported in Oklahoma Geology Notes, v. 33, p. 203.)

341. U.S. Department of Agriculture, Soil Conservation Service: Tulsa, Oklahoma, 1972 [1973], General soil map of Tulsa County, Oklahoma, and environs, in Bennison, A. P., and others (editors), Tulsa's physical environment: Tulsa Geological Society Digest, v. 37, map 2, scale 1 inch = 1 mile. (Cartography by Oklahoma Geological Survey.)

349. Urban, J. B., 1972, A reexamination of Chitinozoa from the Cedar Valley Formation of Iowa with observations on their morphology and distribution: Bulletins of American Paleontology, v. 63, no. 275, 43 p., 8 pls., 2 tables. (Refers to Chitinozoa from Sylvan Shale, Oklahoma.)

350. Valerius, C. N., 1973, List of wells in north Louisiana, Arkansas and east Texas, most, if not all of which, reached pre-Jurassic formations and which have above average significance in exploration for oil and gas in such formations, in Hare, M. G. (editor), and Morrow, E. H. (assistant editor), A study of Paleozoic rocks in Arbuckle and western Ouachita Mountains of southern Oklahoma: Shreveport Geological Society Field-Trip Guidebook, p. 56-59.

351. Valerius, C. N., 1973, Selected bibliographies of published papers regarding pre-Smackover formations in Arkansas, Louisiana,
Texas, southeast Oklahoma and Mississippi, in Hare, M. G. (editor), and Morrow, E. H. (assistant editor), A study of Paleozoic rocks in Arbuckle and western Ouachita Mountains of southern Oklahoma; Shreveport Geological Society Field-Trip Guidebook, p. 65-74.

Varga, L. P., see Falls, C. P., and Varga, L. P.

Vine, J. D., see Cox, D. P., Schmidt, R. G., Vine, J. D., Kirkemo, Harold, Tourtelot, E. B., and Fleischer, Michael

Visher, G. S., see Ekeheafe, S. B., and Visher, G. S.

Visher, G. S., see also Krumme, G. W., and Visher, G. S.

Waldrep, T. E., see Bednar, G. A., and Waldrep, T. E.

Walper, J. L., see Rowett, C. L., and Walper, J. L.

Walters, P. R., see Cleveland, J. G., Ramsey, R. H., and Walters, P. R.

359. Weaver, C. E., and Beck, K. C., 1970, Changes in the clay-water systems with depth, temperature, and time [abstract]; Symposium on Abnormal Subsurface Pressure Proceedings, no. 2, p. 117-119. (Includes samples from Anadarko basin.)

West, R. R., see Jeppesen, J. A., Twiss, P. C., and West, R. R.

Willis, D. G., see Hubbert, M. K., and Willis, D. G.

INDEX

ANADARKO BASIN:
 - clay-water studies, 359
 - deep drilling and production, 163, 181, 377, 378, 379
 - deep-drilling technology, 280
 - development wells, 263
 - drilling statistics, 99
 - evaluation of source rocks, 254
 - exploration and production, 43, 163, 261, 363, 377, 378, 379
 - geologic history, 48, 379
 - Hunton oil and gas fields, analysis, 320
 - Morrow reservoir sandstones, 185, 186, 289
 - Morrow sandstones, subsurface stratigraphy, 217
 - paleotemperatures, 254
 - petroleum and natural gas, statistics and reserves, 43, 99, 163, 181, 363, 377, 378, 379
 - plate tectonics, 48
 - Silurian carbonate rocks, 8, 9
 - subsurface geology, 377, 378, 379

79
subsurface paleoenvironments, Cleveland County, 3
subsurface-pressure data, 78
Washita Creek field, 331
waterflooding, 99, 331, 363
well-log evaluation, 118, 249
well-log listing, 118
annual reports: Oklahoma Department of Mines, 245; Oklahoma Geological Survey, 216
Arbuckle Dam, 162
ARBUCKLE MOUNTAINS:
Arbuckle anticline
asphaltic sands
basement rocks, 79, 80, 137, 138
biomere, 302
biostratigraphy, 7, 85, 137, 302, 317, 318
Blue River gneiss, 80
brachiopods, 4
Bromide Formation, 112
Canyon Group sediments, source, 103
Collings Ranch Conglomerate, 136
Deese Group, 257
gastropods, Early Ordovician, 381
Lower Arbuckle Group, 302
Oil Creek Sandstone, 83, 135
Ordovician biostratigraphy, 85
Ordovician, Silurian, Devonian, biostratigraphy, 7
Paleozoic rocks, 139
regional geology, 137, 138
structure, 140, 180
tectonics, 140
Timbered Hills Group, biostratigraphy, 302
Tishomingo Granite, Ten Acre Rock, 82, 239
Viola Formation, brachiopods, 4
archeology, Tulsa County, 358
Ardmore basin, 140
AREAL GEOLOGY:
Barnsdall Formation, Tulsa area, 88
central-northwest Oklahoma, 110, 240
Chanute Formation, Tulsa area, 89
Cimarron County, 269
Dewey Limestone, Tulsa area, 90
Fort Scott Limestone, Tulsa area, 19
Holdenville Shale, Tulsa area, 20
Labelle Shale, Tulsa area, 21
loess deposits, Tulsa County, 324
map, Tulsa area, 30
Nowata Shale, Tulsa area, 22
Oklahoma Panhandle, 111, 241
Oologah Formation, 23
Quaternary, Tulsa County, 304
Seminole Formation, Tulsa area, 25
Senora Formation, Tulsa area, 26
Wann Formation, Tulsa area, 92
Wewoka Formation, Tulsa area, 29
ARKOMA BASIN:
Bluejacket (Bartlesville) Sandstone, 286
clastic wedges, 114
coal, 120, 174
Desmoinesian sandstones, 174
Marmaton source changes, 195
Morrow sandstone reservoirs, 289
origin, 16
stress folds, 55
structural geology, 180
subsurface, paleoenvironments, 3
asphalt-bearing rocks: Buckhorn asphaltic limestone, 231, 267, 299, 300; Oil Creek sands, 135
Atkinson, William H., 176
bibliographies: coal, 13; Oklahoma geology, 134; pre-Smackover formations, 351; rare earths and scandium, 1
biomere, Ptychaspid, Arbuckle Mountains, 302
biometry, Climacograptus typicalis, 102
Biostratigraphy:
 Arbuckle Mountains: Cambrian, 302; general, 137; Ordovician, 7, 85, 317, 318;
 Ordovician, Silurian, Devonian, 7
 Buckhorn asphaltic limestone, 299, 300
 Clarita Formation, Price Falls Member, 270
diachronism, Oklahoma and Alberta, 86
 Francis Formation, 202
 Joins Formation, transatlantic correlation, 35
 Pennsylvanian, New Mexico, correlation with Oklahoma, 316
 Wreford megacyclothem, 126
Boktukola fault, 40
Branson, Carl C., 97
Cambrian:
 Arbuckle Mountains, 79, 137, 138, 302
 Lower Arbuckle Group, 302
 Raggedy Mountain Gabbro Group, 155, 171, 278
 Reagan Sandstone, 197
 Timbered Hills Group, 302
 traverse, Delaware County, 197
 trilobites, 264
 Wichita Mountains, igneous rocks, 171
carbonate rocks: Anadarko basin, 8, 9; facies, northwest Oklahoma, 229; Paleozoic algal banks, 122
Carboniferous: corals, 315; Ouachita geosyncline, 129
catalogs: fossil corals, 369
Cherokee basin, 34
Chimney Rock, 232, 233
Choctaw fault, 40
Cimarron River, 49, 236, 287
clay minerals, 187
Coal:
 analyses, 119
 Arkoma basin, 120
 beds, 119
 bibliography, 13
 bituminous and lignite, statistics, 364
 chemicals, statistics, 288
gasification, 141
gasification-plant site, 121
 history, 120
 production, 120, 298
 resources, 25, 26, 107, 119, 120, 174, 175, 192, 196, 245, 294
statistics, 12, 141, 175, 245, 288, 294, 291, 298, 364
Stigler coal, 174, 175
strip-mined lands, 72, 169
technology, 175, 192
Tulsa area, 192

Computerized Resources Information Bank (CRIB), 52
copper shales, 170, 171, 172, 203

COUNTIES:

Beaver: hydrology, 228, 269
Beckham: Elk City blowout, 14, 108, 109, 215; record-breaking wells, 263
Blaine: Morrow sand reservoirs, 94
Bryan: palynology, 370
Carter: Ordovician gastropods, 381; soils surveys, 131; Viola brachiopods, 4
 Cherokee: Ordovician stratigraphy, 312, 313
Cimarron: areal geology, hydrology, 269
Cleveland: Cherokee Group, subsurface stratigraphy, 3; magnetic studies, 73
Coal: Viola brachiopods, 4
Creek: cross section, 196
Delaware: Cambrian traverse, 197
Grady: soils surveys, 131; Washita River alluvium, 183
Harper: subsurface stratigraphy, 217
Haskell: Stigler coal, 174, 175
Hughes: paleontology, 380; Wewoka Formation, 164, 165
Johnston: Ordovician gastropods, 381; soils surveys, 131; Viola brachiopod, 4
Kingfisher: magnetic studies, 73; Sooner trend, 247
McCurtain: conodonts, 260
McIntosh: Stigler coal, 174, 175
Major: subsurface stratigraphy, 159, 160, 161
Marshall: palynology, 370
Murray: Arbuckle Dam, 162; biostatigraphy, 7; gastropods, 381; petroleum-impregnated rocks, 54; soils surveys, 131; Viola brachiopods, 4
Muskogee: Stigler coal, 174, 175
Oklahoma: soils, 298
Okmulgee: Checkerboard Limestone, type locality, 18; Senora Formation, type locality, 26
Payne: geology, general, 125; remote sensing, rock and soil discrimination, 276, 277
Pontotoc: soils surveys, 131; Viola brachiopods, 4
Rogers: land use, 63
Stephens: new oil discoveries, 263; Sho-Vel-Tum field, 250
Tillman: fossil fish, 292; fossil vertebrates, 76
Tulsa: air quality, 58; anthropology and archeology, 358; areal geology, 30, 32; Bouguer gravity, 30, 115; cement, 51; Chanute Formation, 89; Checkerboard Limestone, 18; coal, 192; construction conditions, 65, 329; corrosive ground water, 272; Dewey Limestone, 90; flooding and flood control, 22, 242, 328, 329, 332; Fort Scott Limestone, 19; fossil plants, 367; fossil vertebrates, 383; geologic history, 28; ground-water pollution, 273; Holdenville Shale, 20; Iola Formation, 91; Labette Shale, 21; land use, 59, 70, 71, 329; Nowata Shale, 22; Oologah Formation, 23; palynology, 234, 291, 307, 367, 383; palynology, 291; petroleum and natural gas, 31, 330; physical environment, 32; Precambrian basement rocks, 81; Quaternary geology, 304, 324; sand and limestone, 326; Seminole Formation, 25, 196, 367; Senora Formation, 26; soil conditions, landscaping, 282; soils, 15, 65, 282, 329, 341; soils map, 341; storm-water pollution, 59; structural geology, 27; underground excavation, 207; vegetation, 204; Wann Formation, 92; waste disposal, 69, 258, 259; water resources, 130, 156, 177, 182; weather, 55, 235, 282; Wewoka Formation, 29
Wagoner: land use, 63
Washington: Double Creek watershed, 17
Washita: deep-drilling technology, 280; deep test well, 181
Woods: subsurface stratigraphy, 159, 160, 161, 217
Woodward: subsurface stratigraphy, 159, 160, 161
Cretaceous: Denton Shale, palynology, 370; Kiowa Shale, 187; paleoecology, Lower Cretaceous communities, 281
data retrieval, 52, 149, 183, 319
delta systems, 101, 200, 286
DEVIonian:
 Arbuckle Mountains, biostratigraphy, 7
 brachiopods, 167
 Hunton Group, 159, 160, 181, 250, 331
 Woodford chert, 116
 Woodford Shale, 210
ECONOMIC GEOLOGY:
 aggregate, 21, 23
 brick, 25
 central-northwest Oklahoma, 106, 240
 clay and shale products, Tulsa area, 237
 coal, 25, 26, 192
 crushed stone, vanadium, uranium, Tulsa area, 19
general, 32
limestone, 26, 51
mineral statistics, see MINERAL INDUSTRIES and PETROLEUM AND NATURAL GAS
natural gas, see PETROLEUM AND NATURAL GAS
Oklahoma Panhandle, 107, 241
petroleum, see PETROLEUM AND NATURAL GAS
Southwest Oklahoma Permian rocks, 171
Elk City blowout, 14, 108, 109, 215
ENGINEERING GEOLOGY:
 Arbuckle Dam construction, 162
 coal mining, 175, 192
 highway construction, central, south-central Oklahoma, 131
 hydraulic-fracturing study, 151
 petroleum technology, 31, 94, 99, 151, 181, 208, 250
 Sooner Trend study, 247
Tulsa area, 32, 65, 68, 69, 207, 258, 259, 329
ENVIRONMENTAL GEOLOGY (other than Tulsa area):
 Arbuckle Dam, 162
 blowout, Beckham County, 14, 108, 109, 215
 clay soils, central, south-central Oklahoma, 131
 flooding and flood control, 240, 325, 332, 333
 hydraulic-fracturing study, 151
 inventory of strip-mined lands, 189
 irrigation, 228, 269
 land reclamation, 245
 land use: central, south-central Oklahoma, 131; Oklahoma County, 238; Wagoner and Rogers Counties, 63
 lithium concentration in soils, 283
 Mountain Park project, 340
 Oklahoma Panhandle, 241
 Payne County, soils, 276, 277
 reservoir sediments, 252
 stream control, 221
 subsurface salt-water disposal, 132
 underground waste disposal, 95, 132
water pollution: brine in aquifers, 132; Ogallala aquifer, 213; pesticides, 75
water quality, 189, 228, 252, 269, 272, 273

ENVIRONMENTAL GEOLOGY (Tulsa area):
 air pollution, 58, 69
 aerial-photo studies, 191
 brine migration into aquifers, 132
 clay and shale pits, 237
 coal mining, effects, 192
 conservation, 130
 construction, 22, 23, 25, 68, 329
 drainage, 67, 253, 259
 erosion, 328
 flooding and flood control, 22, 242, 328, 329, 332
 flood-plain development, 65, 242
 general, 24, 28, 32
 ground-water pollution, 132, 273
 homesites, 193
 land pollution, 69
 land use, 59, 70, 71, 193, 242
 landscaping, 282
 mined-land recovery, 72
 petroleum pollution, 31
 recoverable waste, 259
 resource development, 66
 soils, 15, 18, 20, 23, 252, 282, 329
 soils map, 341
 stream control, 221, 328
 underground excavation, 207
 vegetation, 204
 waste disposal, 69, 258, 259
 water pollution, 59, 69, 334
 water quality and control, 59, 69, 130, 156, 177, 182, 193, 273, 334

General Information Processing System (GIPSY), 52, 149

GEOCHEMISTRY:
 acid formation, Excello Shale, 145
 clay-mineral analysis, Kiowa Shale, 187
 gypsum alteration over hydrocarbons, 96
 igneous rocks, Wichita Mountains, 279
 lead-zinc mineralization, 200
 Mangum and Creta deposits, 203
 pore water, Paleozoic shales, 93
 potassium-depletion tests, 152
 Raggedy Mountain Gabbro Group, 275, 278
 skeletal carbonates, Buckhorn asphal tic limestone, 299
 volcanic-ash alteration, 248

geographic names decisions, 336

GEOLOGIC HISTORY:
 Arbuckle Mountains, 137
 central-northwest Oklahoma, 110, 240
 Oklahoma Panhandle, 111, 241
 Ouachita Mountains, 227, 265
 Tulsa area, general, 24
 Tulsa area, Pennsylvanian, 28

geological education, enrollment figures, 146

GEOMORPHOLOGY:
 Arbuckle Mountain area, 162
 central-northwest Oklahoma, 110, 240
central, south-central Oklahoma, 131
Chimney Rock, 232, 233
Lynn Mountain syncline, drainage pattern, 40
Mill Creek drainage basin, 53
Oklahoma Panhandle, 111
sandstone environments, 286
Tulsa County, 27, 204, 304

Geophysics:
- Bouguer gravity map, Tulsa County, 30, 115
- Electromagnetic radiation from storms, 322
- Geomagnetism: magnetotelluric methods, 73; West Spring Creek Formation, 301
- Helium, neon, argon measurements, Keyes chondrite, 376
- Magnetic anomalies, Ouachita system, 179
- Radiography, flysch sandstones, Ouachita Mountains, 251
- Seismic recordings: nuclear and earthquake, 366; variations, 382
- Honobia syncline, 40

Hydrology:
- Subsurface waters: Arkansas-White-Red River area, 345; artesian spring sands, 255; Beaver County, 228; brine migration, 132; central-northwest Oklahoma, 110, 240; Cimarron County, 269; general, 348; ground-water pollution, 132, 273; injection wells, 95, 213, 258; northeast Oklahoma, 344; observation wells, 225; Ogallala aquifer, 213, 347; Oklahoma Panhandle, 107, 147, 241; Payne County, 125; salt pollution, Arkansas River, 334; southwest Oklahoma, 342; Tulsa County, 130, 182, 193, 196, 222, 248, 272, 272; Washita River valley, 183
- Surface waters: Anadarko basin, clay-water systems, 359; Arkansas River, 334, 335; Arkansas-White-Red River area, 345; Beaver County, 228, 241; central-northwest Oklahoma, 240; Cimarron River, 236, 287; Double Creek watershed, 17; Flat Rock Creek, 332; general, 348; Glover Creek, flooding, 325; Keystone Lake, 104, 230; Lake Carl Blackwell, nitrogen, 327; Lake Hefner, evaporation studies, 74, 166, 223, 290, 346; Lake Thunderbird, 189, 198; Little River, flooding, 325; Mill Creek drainage basin, 53; Mountain Park project, 340; Oklahoma Panhandle, 241; pesticide pollution, 75; reservoir sediments, 252; runoff data, 77; salt pollution, 334; Skiatook Lake, 333; South Canadian River, 184; Tulsa area, 32, 33, 59, 65, 66, 130, 156, 177, 193, 242, 253, 258, 259, 328, 332, 335

Indexes:
- Oklahoma geology, 134; **Shale Shaker**, 45
- Interstate Mining Compact, history, 245
- Keystone Lake, 104, 230, 353
- Lake Carl Blackwell, limnology, 327
- Lake Hefner, evaporation studies, 74, 166, 223, 290, 346
- Lake Thunderbird, 189, 198
- Lithium, concentration in soils, 283
- Lynn Mountain syncline, 40

Maps:
- Beaver County, hydrology, 228
- Bouguer gravity, Tulsa County, 115
- Cimarron County, hydrology, 269
- Construction conditions, Tulsa County, 329
- Oil and gas fields, Tulsa County, 330
- Soils, Tulsa County, 341
- Surface geology and Bouguer gravity, Tulsa County, 30

Memorials:
- William H. Atkinson, 176; Carl A. Moore, 153, 154; John M. Ware, 128
- Meteorite, 57
- Meteorology: Oklahoma, general, 345; radiation from storms, 322; Tulsa County, 58, 235, 282, 335
Mill Creek drainage basin, 53

Mineral Industries:

history: bentonite, 323; cement in Tulsa area, 51.
resources: aggregate, 21, 23; bentonite, 106, 323; brick materials, 25; building stone, 107, 125, 199; cement, 23; central-northwest Oklahoma, 106, 240; clay, 106, 125, 237; coal, see Coal; copper, 64, 170, 171, 245, 275; crushed stone, 19, 100; dolomite, 100, 106, 150; gallium, 338; general, 42; germanium, 339; granite, 82, 171, 239; gypsum, 106, 168, 171, 245, 256, 295; helium, 107, 194, 356; lead, 226, 245; lime, 257; limestone, 26, 51, 100, 107, 150, 326; Oklahoma Panhandle, 107, 241; natural gas, see Petroleum and Natural Gas; Payne County, 125; petroleum, see Petroleum and Natural Gas; petroleum-impregnated rocks, 54; planning for development, Tulsa area, 66; pumice, 50; salt, 168, 171, 295; sand and gravel, 106, 107, 125, 171, 246, 304, 326; silica sand, 83; titanium, 190; tripoli, 245; uranium, 19; vanadium, 19; zinc, 211, 245, 298, 360.
statistics: asphalt, 188; carbon black, 296, 298; cement, 44, 51, 289; clays, 6, 297, 298; coal, see Coal; coke and coal chemicals, 288; copper, 245, 275, 298; crushed stone, 100; development costs, Tulsa area, 66; dolomite, 100; feldspar, 362; fluorspar, 371; gallium, 298, 338; general, 297, 298, 337; germanium, 298, 339; gypsum, 245, 256, 297, 298; helium, 194, 297, 298; lead, 245, 268, 298; lime, 257, 298; limestone, 150, 245, 326; natural gas, see Petroleum and Natural Gas; nitrogen, 41; petroleum, see Petroleum and Natural Gas; pumice, 298; salt, 212, 298; sand and gravel, 246, 297, 298, 326; silver, 361; stone, 100, 297, 298; sulfur, 220, 298; thorium processing, 373; tripoli, 245, 298; uranium conversion, 374; zinc, 211, 245, 298.
technology: cement manufacture, 51; clay and shale products, 6; thorium processing, 373; uranium conversion, 374; vermiculite processing, 123.

Mississippian:

blastoids, 39
Fayetteville Shale, bryozoan, 37; crinoids, 46
Jackfork Group, 206
Kinderhookian, subsurface, 160
Pitkin Limestone, crinoid, 47
Stanley Group: Lynn Mountain syncline, 40; Ouachita Mountains, 251
Sycamore Formation, oil production, 250
Upper Mississippian, ammonoids, 271, 321

Moore, Carl A., 153, 154
Nemaha ridge, Marramon Group, 34
Oakdale-Campbell trend, 159, 160, 161
Octavia fault and syncline, 40
Oklahoma Geological Survey, annual report, 216
Oklahoma geology, bibliography and index, 134
Oklahoma platform, Stigler coal, 174

Ordovician:

Arbuckle Group, 105
Arbuckle Mountains: general, 137, 138; biostratigraphy, 7, 85, 317, 318
Bromide Formation, 112, 214
Burgen Formation: paleoenvironments, 49; stratigraphy, 312, 313
correlation with Arkansas, 87
graptolites, 35, 102
Joins Formation: correlation, 35; graptolites, 35
Keel Formation, brachiopods, 285
Kindblade Formation, gastropods, 381
Oil Creek Sandstone, 83, 135
Sedgwick basin, Kansas, subsurface, 2
Signal Mountain-McKenzie Hill, trilobites, 303
Simpson Group, petrography, 284
Sylvan Shale: acritarchs, 98; chitins, 349; subsurface, 159, 160
Tyner Formation, stratigraphy, 312, 313
Viola Formation, brachiopods, 4
West Spring Creek Formation: gastropods, 381; magnetization, 301

OUACHITA MOUNTAINS:
Arkansas Novaculite, 116
Benton-Broken Bow uplift, 365
Blaylock Formation, fold structures, 113
condonts, 260
flysch sandstones, radiography, 251
fold belts, 144
geologic history, 227
geosyncline, 116, 129, 210
Jackfork Group, 205, 206
Lynn Mountain syncline, 40
magnetic anomalies, 179
Morrow sandstone reservoirs, 289
orogeny and mineralization, 200
Paleozoic rocks, general, 138
Paleozoic stratigraphy, 133
source of Eastern Shelf sediments, 124
source of Marmaton sediments, 195
source of Permian basin sediments, 143
Stanley Group, 251
stress folds, 55, 173
structure, 16, 55, 113, 140, 144, 173, 180, 219, 265, 365
tectonics, 16, 113, 114, 140, 144, 178, 179, 219, 227, 265, 355, 365
Tri Valley-Chocotaw fault, 40
turbidites, Jackfork Group, 205
Wapanucka Formation, deposition, 266

Ozark Mountains: orogeny and mineralization, 200; stress folds, 55
paleobotany: algae, Carboniferous, 315; algal banks, Midcontinent, 122; general,
Tulsa area, 32; Seminole Formation, Tulsa County, 267

PALEOECOLOGY:
blastoid phylogeny, 39
Bromide Formation, 214
Buckhorn asphaltic limestone, 299, 300
Checkerboard Limestone, Tulsa area, 18
environmental analysis, Missourian strata, 291
Francis Formation, 202
genre, Tulsa area, 28, 32
Lower Cretaceous communities, 281
Lower Ordovician glaciation, effect on brachiopods, 285
Oologah Formation, Tulsa area, 23
Wewoka Formation, 165
Wreford megacyclothem, 126

PALEOENVIRONMENTS:
Burgen Formation, 49
Cherokee sands, Cleveland County, 3
Cimarron River study, 49
Missourian, Tulsa County, 291
Ordovician glaciation, effect on brachiopods, 285
paleotemperatures, Anadarko basin, 254
Paleozoic, Ouachita Mountains, 133
Pennsylvanian delta system, 101
pre-Pennsylvanian, northwest Oklahoma, 185, 186
Stanley Group, paleocurrents, 251
Tulsa area, 32
Vamoosa Formation, 49
Wewoka Formation, 165
Wichita Mountains, 171

Paleozoic:
algal banks, 122
Arbuckle Mountains, 138
Arkoma basin, clastic wedges, 114
Ouachita Mountains, 133, 138, 260, 365
pore water, 93

Paleozoology:
ammonoids, 271, 321
blastoids, 39
brachiopods, 4, 10, 126, 167, 285, 316
bryozoans, 37, 126, 357
cephalopods, 231
chitins, 349
conodonts, 218, 260, 270, 314, 317, 354
corals, 60, 310, 315, 369
crinoids, 46, 47, 224, 243, 244, 305
echinoderms, 310
fish, 292, 384, 385, 386
Foraminifera, 209, 267
gastropods, 381
general: Arbuckle Mountains, Cambrian, 302, Ordovician, 85, 87, 318; Bromide Formation, 214; Buckhorn asphaltic limestone, 267, 299, 300; Cretaceous, Early, 281; data retrieval, invertebrates, 319; Francis Formation, 202; Labette Shale, 21; Tulsa area, 32, 38, 234
graptolites, 35, 102
ostracodes, 209
trilobites, 86, 264, 303
vertebrates, 76, 292, 383, 384, 385, 386

Palynology:
acritarchs, 98
coccoliths, 126
Denton Shale, 370
Eskridge Shale, 368
Flowerpot Formation, 56
Glabrocingulum, 380
Missourian, 291
Seminole Formation, 196

Pennsylvanian:
Barnsdall Formation, Tulsa area, 88
blastoids, 39
Bluejacket (Bartlesville) Sandstone, 286
Brownville Limestone, crinoid, 244
Buckhorn asphaltic limestone, 231, 267, 299, 300
Canyon Group, Texas, 103
Chanute Formation, Tulsa area, 89
Checkerboard Limestone: delta system, 101; Tulsa area, 18
Cherokee Group: Cleveland County, 3; north-central Oklahoma, 62
Coffeyville Formation, delta system, 101
Collings Ranch Conglomerate, 136
crinoids, 224, 306, 311
Deese Group, 267
deltaic facies, northeast Oklahoma, 229
Dewey Limestone: crinoid, 309; Tulsa area, 90
Eskridge Shale, assignment to Pennsylvanian, 368
Excello Shale, acid formation, 145
Fort Scott Limestone, Tulsa area, 19
fossil fish, 384
geologic history, Tulsa area, 24
Hale Formation, Arkansas, crinoid, 306
Hogshooter Formation, paleozoology, 310
Hogshooter Limestone, delta system, 101
Holdenville Shale, Tulsa area, 20
Iola Formation, Tulsa area, 91
Jackfork Group, 40, 205, 206
Labette Shale, Tulsa area, 21
Layton sand, 247
Lost City Limestone, corals, 60
Marmaton Group, 34, 195
Missourian: crinoids, 308; palynology, 291
Missourian and Virginian sandstones, 353
Morrow sands, 94, 185, 217
New Mexico, correlation with Oklahoma, 316
Nowata Shale, Tulsa area, 22
Oologah Formation, 23
Seminole Formation, Tulsa area, 25, 196, 367
Senora Formation, Tulsa area, 26
Shawnee Group, conodonts, 354
Vamoosa Formation, paleoenvironments, 49
Wann Formation: corals, 60; crinoid, 305; Tulsa area, 92, 243
Wapanucka Formation, facies, 266
Wewoka Formation: paleontology, 380; petrology, 164
Wichita Mountains, 171

PERMIAN:

Cement field, gypsum alteration, 96
Cimarron Series, Beckham County, 109
Cloud Chief Formation, gypsum and salt, 168
Custerian Series, Beckham County, 109
Doxey Shale, blowout, 14, 108, 109, 215
Eskridge Shale, assignment to Pennsylvanian, 368
Flowerpot Formation: Chimney Rock, 232, 233; copper shales, 203; palynology, 56
fossil fish, 292, 384
Havensville Shale, 126
Hennessey Formation, vertebrates, 76
Lower Permian, correlation with Texas, 293
Prewitt copper shale, 170
Purcell Sandstone, fossil fish, 292
southwest Oklahoma, economic geology, 171
Wellington Formation, Payne County, 125
Wichita Mountains, 171
Wreford megacyclothem, 126, 357

Permian basin: deposition, 143; gypsum and salt, 168; natural-gas statistics, 141

PETROGRAPHY:

Blue River gneiss, Arbuckle Mountains, 80
Oil Creek Sandstone, Arbuckle Mountains, 83
Raggedy Mountain Gabbro Group, 278
Simpson Group, 284
Tishomingo Granite, Arbuckle Mountains, 82
zircon crystals in granites, 142

PETROLEUM AND NATURAL GAS:
 algal-bank reservoirs, 122
 alternatives, 294
 Anadarko basin: see ANADARKO BASIN; see also PETROLEUM AND NATURAL GAS:
 statistics
 Cement field, surface evidence, 96
 central-northwest Oklahoma, 240, 261
 drilling economics, Arkansas, Louisiana, Texas, 36
 drilling technology, 181, 280
 Elk City blowout, 14, 108, 109, 215
 exploration and development, 11, 43, 94, 96, 99, 151, 157, 163, 181, 221, 250,
 giant oil fields of Oklahoma, 263
 helium, 194
 history, 31, 43, 157, 294, 331, 377, 379
 Hugoton field, 262
 Marathon area, Texas, 221
 Marmaton production, 195
 Morrow reservoir sands, 185, 186, 217
 Norge-Chickasha-Verden area, 377
 North Burbank field, 151
 northeast Texas wells, 117
 north Louisiana, Arkansas, east Texas wells, list, 350
 northern Gulf basin, 375
 Oakdale-Campbell trend, 159, 160, 161
 oil-field brines, chemical composition, 93
 Oklahoma Panhandle, 107, 241, 262
 paleotemperature gradients, 254
 Payne County, 125
 pre-Smackover formations, bibliography, 351
 reservoir-pressure data, 94
 Sho-Vel-Tum field, 250
 Sooner Trend, 247
 statistics: exploration and development, 11, 43, 94, 99, 157, 163, 181, 221, 263,
 337, 363; production, 5, 31, 32, 99, 158, 262, 263, 297, 298, 337, 352, 372,
 377, 378, 379; reserves, 5, 141, 157, 158, 250, 263, 294, 298, 337, 363, 372,
 378, 379
 subsurface storage of LPG: Elk City field, 14, 108, 109, 215; Tulsa area, 207
 Tulsa area, 23, 25, 26, 31, 32, 207, 330
 Washita Creek field, 331
 waterflood, 31, 99, 151, 208, 331, 363
 well-log evaluation, 118

PETROLOGY:
 Arbuckle Group, 105
 Boiling Springs artesian sands, 255
 Bromide Formation, 112
 Buckhorn asphaltic limestone, 267, 299
 clays, Anadarko basin, 359
 Hunton Group, 8, 9, 159, 160
 lithologic variations, magnetic studies, 73
 Mangum and Creta red-bed copper, 203
 Precambrian, Tulsa County, 81
 Raggedy Mountain Gabbro Group, 155, 279
 Stanley sandstones, Ouachita Mountains, 251
surface textures of quartz grains, 274
Viola Limestone, 4
volcanic ash, western Oklahoma, 248
Wapanucka Formation, Ouachita Mountains, 266
Wewoka Formation, 164, 165
photogrammetry, aerial-photo interpretation, 191
plate tectonics, 16, 48, 144, 178, 179, 265, 355
Precambrian: Arbuckle Mountains, 79, 80, 82, 137, 138, 239; Tulsa County, 81; zircon crystals in granites, 142
Quaternary, Tulsa County, 304, 324
rare earths, and scandium bibliography, 1
remote sensing; aerial-photo interpretation, 191; Payne County, 276, 277

Sandstones:

- Cherokee Group, analysis, 62
- Desmoinesian, Arkoma basin, 174
- genesis and trends, methodology of study, 286
- geometry of reservoir bodies, 201
- Jackfork Group, sedimentary structures, 206
- Keystone Reservoir area, 353
- Marmaton Group, sand-body types, 34
- Morrow reservoir sandstones, 185
- Morrow sands, pressure data, 94
- sand-deposition study, Cimarron River, 49
- Simpson Group, petrography, 284

Sedimentology:

- Arbuckle Mountains, general, 137, 138
- artesian-spring sand deposits, 255
- Barnsdall Formation, Tulsa area, 88
- Buckhorn asphaltic limestone, 299
- central-northwest Oklahoma, 110, 240
- Chanute Formation, Tulsa area, 89
- Cherokee sands: Cleveland County, 3; north-central Oklahoma, 62
- Checkerboard Limestone, 18
deltaic facies, Pennsylvanian, 229
deltaic sandstone deposits, 201
depositional facies, Wapanucka Formation, 269
- Dewey Limestone, Tulsa area, 90
diachronism, Oklahoma and Alberta, 86
flysch sandstones, Ouachita Mountains, 251
- Fort Scott Limestone, Tulsa area, 19
- Holdenville Shale, Tulsa area, 20
- Iola Formation, Tulsa area, 91
- Labette Shale, Tulsa area, 21
loess, Tulsa County, 324
Marmaton Group, subsurface, 34
Marmaton sediments, 195
Morrow reservoir sandstones, 185, 186
Nowata Shale, Tulsa area, 22
Oil Creek Sandstone, Arbuckle Mountains, 83
Oklahoma Panhandle, 111, 241
Oologah Formation, Tulsa area, 23
Ouachita facies, Lynn Mountain syncline, 40
Ouachita geosyncline, 116, 129, 210
Ouachita Mountains: source of Eastern Shelf sediments, 124; source of Marmaton sediments, 195; source of Permian basin sediments, 143
Ouachita system, 179, 219, 227
Paleozoic algal banks, 122
Paleozoic, Ouachita Mountains, 133
Pennsylvanian delta system, 101
Pennsylvanian, Tulsa area, 24
Quaternary deposits, Tulsa County, 34
sand deposition: Cimarron River, 236, 287; general, 236; Keystone Reservoir
area, 353
sandstones, grain orientation, trends, 49
sedimentary structures, Jackfork Group, 206
Seminole Formation, Tulsa area, 25
Senora Formation, Tulsa area, 26
South Canadian River channel deposits, 184
Tulsa area, 19, 20, 21, 22, 23, 24, 25, 26, 32, 34, 88, 89, 90, 91, 92, 304, 324
turbidites, Jackfork Group, 205
Viola Limestone, 4
Wann Formation, Tulsa area, 92
Washtita River alluvial sands, 183
Wewoka Formation, 29, 165

SILURIAN:
- Anadarko basin, carbonate rocks, 8, 9
- Arbuckle Mountains, biostratigraphy, 7
- Beavers Bend illite, depletion tests, 152
- blastoids, 39
- Blaylock Formation, folds, 113
- Clarita Formation, Price Falls Member, conodonts, 270
- Hunton Group, 7, 8, 9, 159, 160, 331

STRATIGRAPHY:
- Arbuckle facies, 180
- Arbuckle Group, 105, 302
- Arbuckle Mountains: Cambrian, 302; general, 137, 138, 162; Ordovician, Si-
 lurian, Devonian, 7, 19
- Arkoma basin, Desmoinesian, 174
- Bromide Formation, 112, 318
- Buckhorn asphalitic limestone, 299, 300
- Burgen Formation, 312, 313
- central-northwest Oklahoma, 110, 240
- Cherokee Group: Cleveland County, subsurface, 3; north-central Oklahoma, 62
- Clarita Formation, Price Falls Member, biostratigraphy, 270
- Coffeyville Formation, delta system, 101
- Desmoinesian, Marmaton Group, 34
- Elk City region, 109
- Fort Scott Limestone, Tulsa area, 19
- Holdenville Shale, Tulsa area, 20
- Lower Permian, correlation with Texas, 293
- Lynn Mountain syncline, 40
- Marathon platform, Texas, 221
- Morrow sands, 217
- Nowata Shale, Tulsa area, 22
- Oakdale-Campbell trend, subsurface, 159, 160, 161
- Oklahoma Panhandle, 111, 241
- Oklahoma platform, 174
- Oologah Formation, Tulsa area, 23
- Ordovician, Kansas, 2
- Paleozoic, Ouachita Mountains, 133
- Pennsylvanian: New Mexico, correlation with Oklahoma, 316; northwest Ok-
 lahoma, 185, 186
- Seminole Formation, Tulsa area, 25, 367
- Senora Formation, Tulsa area, 26
Tulip Creek, biostratigraphy, 318
Tulsa area, 19, 20, 22, 23, 25, 26, 32, 367
Tyner Formation, 312, 313
Viola Limestone, 4
Wreford megacyclothem, 126

STRUCTURAL GEOLOGY:
Anadarko basin, 48, 217
Arbuckle anticline, 105
Arbuckle facies, 180
Arbuckle Mountains: Bromide Formation, 112; Collings Ranch Conglomerate, 136; general, 137, 138, 140, 162
Arkoma basin, 55, 114
Cambrian, Delaware County, 197
central-northwest Oklahoma, 110, 240
fold structures, Blaylock Formation, 113
Gulf Coast basin, 16
Lynn Mountain syncline, 40
Marathon tectonic belt, 221
Nemaha ridge, 34
northwest Oklahoma, 185
Oakdale-Campbell trend, 159, 160
Oklahoma Panhandle, 111, 241
Ouachita Mountains, 16, 55, 113, 114, 144, 173, 178, 180, 219, 265, 355, 365
Ozark dome, 55
Ozark Mountains, stress folds, 55
Payne County, 125
tectonics, see TECTONICS
Ti Valley-Choctaw fault block, 40
Tulsa County, 27, 115
Wichita Mountains, 171
Windingstair fault, 40

TECTONICS:
Arbuckle Mountains, 137, 138, 139, 140
Ardmore basin, 140
Criner uplift, 140
Marathon tectonic belt, 221
Ouachita Mountains, 16, 113, 114, 140, 144, 173, 178, 179, 200, 219, 221, 227, 265, 365
Ozark Mountains, 200
Wichita Mountains, 171

Ten Acre Rock, 82, 239
Tertiary: artesian-spring sands, Boiling Springs, 255; Ogallala Formation, 213, 240, 241, 248, 347

Tulsa’s Physical Environment [book], 32; review, 148
volcanic ash, alteration, 248
Ware, John M., 128
water, see HYDROLOGY

WICHITA MOUNTAINS:
 general, 171
 igneous geology, 171
 Raggedy Mountain Gabbro Group, 155, 278, 279
 Signal Mountain-McKenzie Hill trilobites, 303
 source of Canyon Group sediments, 103
 source of Eastern Shelf sediments, 124
troctolite and anorthosite, 84
Windingstair fault, 40
Wreford megacyclothem, 126
New Mexico Symposium on Base Metals and Fluorspar

A symposium and field trip to study base-metal and fluorspar districts in New Mexico have been planned for May 22-25 by the New Mexico Geological Society. Headquarters will be the Vagabond Motel and the New Mexico Institute of Mining and Technology, Socorro.

Following registration and the society's business meeting on Wednesday evening, May 22, sessions on Thursday and on Friday morning will cover base-metal districts of southwestern, south-central, and central New Mexico. A session on New Mexico fluorspar districts is scheduled for Friday afternoon. Spencer R. Titley of the University of Arizona will speak at the society's annual banquet on Friday evening.

On Saturday, May 25, Charles E. Chapin and several colleagues will lead a trip to the Magdalena mining district to study Paleozoic and Cenozoic stratigraphy, structural and magmatic history, hydrothermal alteration, and base-metal deposits.

For further information on the meeting, contact Dr. Chapin at the New Mexico Bureau of Mines and Mineral Resources, Campus Station, Socorro, New Mexico 87801.

Texas to Sponsor Colloquium on Environmental Geology

"Approaches to Environmental Geology" is the title of a colloquium and workshop to be held May 13-14 under the sponsorship of the Texas Bureau of Economic Geology. In the form of oral presentations, workshops, and a panel discussion, the 2-day meeting will be held at the Thompson Conference Center, LBJ Library Grounds, on The University of Texas campus in Austin.

Study areas range from an entire state to a small community. Examples will include results and work in progress in flat, rolling, and steep slopes; igneous-metamorphic, carbonate, and sandstone-mudstone bedrock; coastal, fluvial, eolian, and ground-water recharge processes; arid, semiarid, humid, and subtropical climates; desert, prairie, forest, and wetland florals; cities, seaports, and rural areas; and land use for forest, mining, and recreation.

The first day's sessions will focus on a geologic perspective of the environment and on comprehensive environmental analysis; the second day's sessions will cover mapping and monitoring critical environments plus environmental inventories. The meeting will conclude with a panel discussion by three officials of the Texas state government, who will explain the usability of studies on environmental geology.

Registration for the colloquium and workshop will cost $25.00, which includes attendance at all functions as well as a bound publication of papers presented at the sessions. Because of space limitations, registration is open to a maximum of 250 participants. Further information can be obtained by writing E. G. Wermund, Bureau of Economic Geology, The University of Texas at Austin, Box X, University Station, Austin, Texas 78712.
Petroleum deposits, oil shales, coal, asphalitic sandstones, uranium ores, and examples of operations in stimulating production of natural gas through underground nuclear explosion—all are available for study in one relatively small area of western Colorado and eastern Utah. The area encompasses the Piceance basin, the Uinta basin, and the Uravan mineral belt. Scenic sites offering excellent exposures for study include the Colorado, Dinosaur, Black Canyon of the Gunnison, and Arches National Monuments.

This study area, which surrounds Grand Junction, Colorado, will be the locus of the Energy Fuels Field Course and Workshop sponsored by the School of Petroleum and Geological Engineering and offered July 29-August 16, 1974, by Kenneth S. Johnson, economic geologist with the Oklahoma Geological Survey and visiting assistant professor of geology and geological engineering at The University of Oklahoma.

The course, also led by Dr. Johnson in 1973, was initiated and directed from 1969 through 1972 by the late Carl A. Moore and has always proved interesting and rewarding to the participants. Much of its success derives from informal discussion and instruction by various professionals actively engaged in production.

For information concerning enrollment and expenses, contact Dr. Johnson at the Oklahoma Geological Survey, The University of Oklahoma, Norman, Oklahoma 73069 (phone 405/325-6541 or 325-3031).
New Regional Geologists Announced by USGS

Three new regional geologists have been named to coordinate geological investigations in the western, central, and eastern United States for the U.S. Geological Survey.

Oklahoma, in the central region, will be served by Ralph L. Erickson, a native of Egan, South Dakota. Dr. Erickson joined the USGS in 1951 and has studied the "red-bed" copper deposits and uranium deposits of the Southwest as well as the geochemistry of titanium and niobium deposits of Magnet Cove, Arkansas. Dr. Erickson will direct the central region from Denver.

The other regional geologists are David L. Jones, Menlo Park, California (western region), and Eugene H. Roseboom, Jr., Reston, Virginia (eastern region).

In announcing the new posts, Richard P. Sheldon, USGS chief geologist, said that the redefined positions will permit a closer, more meaningful liaison between his office, the regional geologists, and the state geologists, thus promoting a more responsive relationship between the USGS Geologic Division and the state surveys. He explained that the regional geologists will have broad responsibilities for review and analysis of Geologic Division programs in the context of regional needs and will make recommendations relating to planning and operations in the regions directly to his office.

New Theses Added to OU Geology Library

The following M.S. theses have been added to The University of Oklahoma Geology and Geophysics Library:

OKLAHOMA GEOLOGY NOTES

Volume 34 April 1974 Number 2

IN THIS ISSUE

Bibliography and Index of Oklahoma Geology, 1973

ELIZABETH A. HAM, ROSEMARY L. CROY, AND WILLIAM D. ROSE ... 47

Dougherty Anticline, Arbuckle Mountains 46
New Mexico Symposium on Base Metals and Fluorspar 94
Texas to Sponsor Colloquium on Environmental Geology 94
OU Offers Summer Energy-Fuels Field Course 95
New Regional Geologists Announced by USGS 96
New Theses Added to OU Geology Library 96