DECEMBER 1965 Volume 25, Number 12 \$2.00 PER YEAR • \$0.25 PER COPY

OKLAHOMA GEOLOGY NOTES

ROBERT THOMAS HILL

OKLAHOMA GEOLOGICAL SURVEY . THE UNIVERSITY OF OKLAHOMA . NORMAN, OKLAHOMA

Cover Picture

ROBERT THOMAS HILL

Robert T. Hill, the great reconnaissance geologist, is known throughout the world for his publications on the Cretaceous System, especially the Lower Cretaceous, or Comanchean Series, of the southwestern United States, Mexico, West Indies, and Central America. Six articles relating to Oklahoma were published between 1888 and 1895 and included such subjects as the Trinity Formation, explorations along the Red River, the Ouachita Mountains, and artesian water.

Hill's study of the outcrops of the Comanche south of the Ouachita and Arbuckle Mountains resulted in a report entitled *Geology of Parts* of Texas, Indian Territory, and Arkansas Adjacent to Red River, published in 1894. His manuscript map for this report, drawn with pen and ink, was presented to his close friend, C. N. Gould, founder of the Oklahoma Geological Survey.

Dr. Hill gave the following names to formations exposed in Oklahoma: Tishomingo Granite, Trinity Sand, Goodland Limestone, Kiamichi Formation, Woodbine Sand, Eagle Ford Shale, and Bingen formation. The type localities of the Tishomingo, the Goodland, and the Kiamichi are in the State.

As early as the 1870's, Hill, then a young man working for a newspaper, *The Comanche Chief*, became interested in geology. On Round Mountain, 7 miles west of Comanche, Texas, he first found fossil shells. From the white limestones there exposed, he expanded and worked out the Comanche Series.

Hill was a student of all the earth sciences. His lively curiosity led him to study geology, paleontology, history, physiography, hydrology and archaeology. He was graduated from Cornell University in 1886, joined the U. S. Geological Survey, and helped to establish the Texas Geological Survey when, in 1888, he became an assistant professor of geology at The University of Texas. In 1892 he returned to the Federal Survey in Washington where he remained until 1903 when he resigned to become a consulting geologist in New York City until 1911.

In later years he lived in Los Angeles and Dallas. His bibliography of 330 titles includes the classic *Geography and Geology of the Black and Grand Prairies of Texas.* His death in 1941, when he was 83 years old, closed a brilliant career. His ashes were scattered over Round Mountain in fulfillment of his desire.

Sources drawn upon for this article are a memorial by T. W. Vaughan, published in the Proceedings Volume of the Geological Society of America for 1943 and a memorial by C. N. Gould, published in the Proceedings of the Oklahoma Academy of Science for 1941. The photograph shown on the cover was recently donated to the Division of Manuscripts of the Bizzell Memorial Library of The University of Oklahoma by Dr. Don B. Gould, Geophoto Service, Inc., Denver, Colorado.

-E. L. F.

OKLAHOMA BOARD ON GEOGRAPHIC NAMES

CARL C. BRANSON

For some years the U. S. Board on Geographic Names, originally formed in 1890, has wisely sought local help. The Oklahoma State Legislature of 1965 assigned to the Oklahoma Geological Survey the duty to "act as the Oklahoma Board on Geographic Names and make recommendations to the United States Board on Geographic Names" (HB 810, sec. 310 (b), (4)). The Federal board consists of 12 members, representing State, Army, Navy, Post Office, Interior, Agriculture, Commerce, Printing Office, Library of Congress, Air Force, Defense, and Central Intelligence Agency. The executive secretary is J. O. Kilmartin, for domestic geographic names. Donald J. Orth, chief, Geographic Names Section, U. S. Geological Survey, visited in October and clarified the activities of a board.

The newly formed Oklahoma Board on Geographic Names is starting out with five members: Dr. C. C. Branson, director of the Oklahoma Geological Survey, chairman; Muriel Wright of the Oklahoma Historical Society; Dr. Arrell M. Gibson, curator of the Phillips Collection of The University of Oklahoma; Dr. John J. Hidore, Department of Geography of Oklahoma State University; and Dr. John W. Morris, Department of Geography of The University of Oklahoma.

The board will proceed cautiously. It is easy to make a learned decision, but this decision means nothing if the name is not accepted by the residents of the area. The Federal board has made but 62 decisions on Oklahoma names, of which five are revisions of earlier decisions and three are considered erroneous (Branson, 1965). The need for a local board is obvious.

Current desired decisions are:

- Granite Gap: certainly should be Grants Gap (Hendricks, Knechtel, and Bridge, 1937, p. 23).
- Comet Creek: an involved situation dating from the Pacific Railroad Expedition.
- Bokchito Creek: two creeks currently so named, one in Bryan County and one in Choctaw County.
- Pharoah: not Pharaoh, the correct spelling if it were a Biblical name, but it appears to have been named for O. J. Pharoah (Shirk, 1965, p. 166).
- Gypsum Creek: not Boggy Creek. Currently on the Decision Docket No. 83.
- Tesesquite Creek: no information on origin or correct spelling. Similar to Texas name Tequesite Creek.
- Keyes: not Keys. T. 4 N., R. 7 ECM, Cimarron County. Originally Willowbar post office "name changed to Keyes on October 15, 1926. Named for Henry Keyes, president of the Santa Fe Railway" (Shirk, 1965, p. 116).

A large program of topographic mapping is under way: one 15minute quadrangle, 179 7.5-minute quadrangles in progress, 64 selected. The Oklahoma board is considering the several hundred names involved in order to help in preventing printed errors on the maps. Largely because there has been no state board, such errors as Roger County, Oolagah, Granite Gap, and Choteau have appeared. In Rogers County is Oowala Township, variously spelled Oawala, Oo-wa-la. Round Mountain is apparently the same as Catoos Hill, Old Catoos.

Such trite and overused names as Sand Creek, Sandy Creek, Walnut Creek, Blue Hill, Bitter Creek, Squaw Creek, and Dry Creck should be eliminated if distinctive and locally acceptable names can be found.

The Federal board issues "dockets" which give notice of pending decisions. The current ones are Grand Lake O'The Cherokees (objected to by me because it is long and the name of the river is Neosho), Gypsum Creek instead of Boggy Creek (Jackson County), and Breckinridge (not Breckenridge). A good sign of acceptance for the Oklahoma board is the fact that it was consulted on the naming of Lake Thunderbird about three weeks before the name was amounced. Because the name was the winning cntry in a contest and was confidential, I acted for the board and wrote that "we do not object."

Oklahoma Geological Survey is preparing maps and reports on Lincoln, Rogers, Bryan, Woodward, Payne, Canadian, McIntosh, Pushmataha, Custer, Wagoner, and Noble Counties and hopes to use distinctive, authentic, and acceptable names on its maps. The formation of a State Board on Geological Names should help it to do so.

References

Branson, C. C., 1965, Decisions on Oklahoma place names: Okla. Geol. Survey, Okla. Geology Notes, vol. 25, p. 82-85.

Gould, C. N., 1933, Oklahoma place names: Univ. Okla. Press, 146 p.

Hendricks, T. A., Knechtel, M. M., and Bridge, Josiah, 1937, Geology of Black Knob Ridge, Oklahoma: Amer. Assoc. Petroleum Geologists, Bull., vol. 21, p. 1-29.

Morris, J. W., 1965, Historical atlas of Oklahoma: Univ. Okla. Press, 70 maps, 26 p.

Shirk, G. H., 1965, Oklahoma place names: Univ. Okla. Press, 233 p.

Serpula in the Caddo Limestone of Choctaw County

CARL C. BRANSON

The generic name *Serpula* is used for a vast variety of fossils of tube-building Polychaeta and was described from a modern species. The geologic range is given as Silurian to Recent. Cretaceous species are numerous, but individual specimens are few. Twenhofel described

Figure 1. Serpula cragini? (OU 4550), x4, from the Caddo Limestone of Choctaw County, Oklahoma. (Photograph by) Phillip W. Blackwell)

S. cragini from the Champion Bed of the Kiowa Shale near Belvidere, Kiowa County, Kansas (1924, p. 52, pl. 7, fig. 1). Winton and Adkins (1919, p. 58) listed Serpula sp. from the Fort Worth Limestone of Texas. Gibbs (1950, p. 42) listed Serpula cragini from the Washita Group in SW¹/₄ sec. 1, T. 7 S., R. 19 E., Choctaw County, Oklahoma.

A specimen of Serpula attached to a specimen of Macraster (fig. 1) was collected from the beds of the Caddo Limestone, which is equivalent in age to the Fort Worth Limestone. The specimen was collected by me in the east bank of Bokchito Creek 100 yards south of the Frisco railway bridge (SE¹/₄ SW¹/₄ sec. 18, T. 6 S., R 16 E., Choctaw County, Oklahoma), a locality shown to me by Allen Graffham and R. O. Fay.

The specimen is entirely cemented to the surface of the echinoid. It is incomplete but is looped so as to make a nearly circular specimen 1.3 cm in diameter. The tube is 1 mm in diameter. The small narrow unit at the right in the figure appears to be the immature portion, a portion observed in few specimens.

The specimen is best referred with doubt to S. cragini, the species described from the Kiowa Shale of Kansas.

References Cited

- Gibbs, H. D., 1950, A field study of the Goodland Limestone and the Washita Group in southeastern Choctaw County, Oklahoma: Okla., Univ., unpublished Master of Science thesis, 72 p.
- Twenhofel, W. H., 1924, The geology and invertebrate paleontology of the Comanchean and "Dakota" formations of Kansas: Kans., State Geol. Survey, Bull. 9, 135 p.
- Winton, W. M., and Adkins, W. S., 1919 [1920], The geology of Tarrant County [Tex.]: Texas, Univ., Bull. 1931, 122 p.

EPHEDRAN POLLEN GRAINS IN PLEISTOCENE SEDIMENTS OF CENTRAL AND SOUTHEASTERN OKLAHOMA*

T. A. BOND

INTRODUCTION

Ephedran pollen of unknown origin occurs in Pleistocene clay in the terrace deposits of the Washita River in central Oklahoma and of the Red River in southeastern Oklahoma. The following may account for these occurrences: (1) the pollen grains are from extant species of *Ephedra* growing in the drainage basins of the two rivers, or (2) the grains are from extinct species preserved in older sediments, particularly Permian, Triassic, or Cretaceous of western Oklahoma and Texas, and recycled into the younger Pleistocene sediments.

Fossil ephedran pollen has been reported from rocks of Permian to Recent age in many parts of the world. It has been reported from Permian deposits in Russia (Samoilovich, 1953), Australia (Balme and Hennelly, 1956), Oklahoma (Wilson, 1962), and Kansas (Shaffer, 1964). North American Triassic deposits containing ephedran pollen occur in Arizona (Scott, 1960) and in Canada (Jansonius, 1962).

Ephedran pollen grains were reported by Hedlund (1963) from the Woodbine Formation (Upper Cretaceous) of Bryan County, Oklahoma. Potter (1963), working with the Omadi coal (Lower Cretaceous) of the Oklahoma Panhandle, did not report the presence of ephedran pollen grains. The ephedran pollen grains reported here from Pleistocene sediments were found in association with Cretaceous-Tertiary hystrichosphaerids (Bond, 1965). Therefore it is possible that the pollen grains are undescribed Cretaceous forms.

The genus *Ephedra* has approximately 42 living species distributed widely in arid tropic and temperate regions (Wilson, 1959). Eighteen species of *Ephedra* occur in the Canary Islands, the Mediterranean region, India, China, Persia, and Siberia. Fifteen species are distributed in North America and are most abundant in California, Arizona, New Mexico, and Mexico. Seven species grow as far east as eastern Texas, with one species in southwestern Oklahoma. In South America are eleven species, distributed from Bolivia to Patagonia.

Ephedra antisyphilitica, the one species native to Oklahoma, is restricted to the southwest corner of the State, part of which is in the Red River drainage basin. Three other species, Ephedra torreyana, E. trifurca, and E. aspera, occur in Texas and New Mexico. The pollen grains found in Pleistocene terrace deposits of the Washita and Red Rivers do not resemble grains of E. antisyphilitica as described by Steeves and Barghoorn (1959), nor the specimens of that species illustrated here (pl. I, figs. 5-12). Also they do not resemble the Texas and New Mexico species.

The Washita and Red Rivers traverse Permian and Triassic rocks,

^{*} One project supported by National Science Foundation Grant G19593.

and the ephedran fossils reported here may be recycled because they are unlike those of the native extant species of the area, or grains described by Wilson (1962) from the Flowerpot Formation. Since these may be recycled forms and the source rocks are not known, no new specific names are assigned.

POLLEN DESCRIPTIONS

Class GYMNOSPERMAE Order GNETALES Family Ephedraceae

Genus Ephedra Tournefort ex Linnaeus, 1737 Ephedra antisyphilitica Berland Plate I, figures 5-12

Pollen grains bilateral, fusiform, polycolpate; polar axis 42 to 59 microns; equatorial diameter 33 to 49 microns; ridges number 12 to 18, 2.5 microns in height and 2.5 to 5 microns in width at the equator, colpi indistinct between ridges; wall smooth, thickness averages 1 micron.

The pollen grains of *Ephedra antisyphilitica* were recovered from strobili of a single herbarium specimen (G. J. Goodman, Bebb Herbarium 2053, University of Oklahoma). The number of ridges on the pollen grains shows all gradations from a few ridges (pl. I, fig. 5) up to 14 ridges (pl. I, fig. 12). The colpi are equally gradational, ranging from straight (pl. I, fig. 5) to irregular and wavy between ridges (pl. I, figs. 6-9).

Variation of structure may be related to stages of maturation or position of the pollen grains in the microsporange. Therefore the designation of specific epithets for fossils of the genus upon the basis of number of ridges or of number, shape, and visibility of the colpi should be undertaken cautiously.

Ephedra antisyphilitica, placed in Type B by Steeves and Barghoorn (1959), has the largest pollen grains in this group. It is further characterized by the presence of an extremely tenuous excexine, which easily becomes disassociated from the endoexine. The excexine may become free at one pole, both poles, or irregularly around the grain (Steeves and Barghoorn, 1959).

Anteturma POLLENITES R. Potonié, 1931 Turma POLYPLICATES Erdtman, 1952

Genus Ephedripites Bolchovitina, 1953 Type species.—Ephedripites mediolobatus Bolchovitina, 1953, p. 60, pl. 9, fig. 15; pl. 11, fig. 120.

Ephedripites sp.

Plate I, figures 1-4

Pollen grains bilateral, fusiform, polycolpate?; colpi absent or not visible; numerous ridges with sinuous unbranched furrows commonly visible in one surface view; ridges rounded at termini and not forming distinct polar thickenings, 2 to 3 microns wide, smooth to minutely granular under oil immersion; length 55 to 65 microns, equatorial diameter 30 to 50 microns.

These grains are similar to the Type D grain of Steeves and Barghoorn (1959) and resemble *Ephedra trifurca* which occurs in New Mexico, but differs in wall thickness, number of ridges, and overall size. *E. trifurca* has a polar axis measuring 39 to 63 microns and an equatorial diameter of 28 to 30 microns. The Type D grain is characterized by low, wide, gently rounded ektexinous ridges 2 to 3 microns in height and 3.5 to 9 microns in width. Within this group occur species which possess the greatest number of ridges. The furrows flanking the ridges are narrow, unbranched, and straight. No colpi are visible.

Explanation of Plate I

Ephedripites sp.

- Figure 1. OPC 1004 H-3-3. Length 62.5 microns, equatorial diameter 37.5 microns; 7 ridges; furrows at base of ridges indistinct.
- Figure 2. OPC 1004 E-4-2. Length 60 microns, equatorial diameter 35 microns. Poorly preserved form; ridge number or furrow type not determinable.
- Figure 3. OPC 1062 T-3-3. Length 57.5 microns, equatorial diameter 32.5 microns; exine almost completely smooth; poorly developed small ridges; no colpi visible.
- Figure 4. OPC 1004 C-1-1. Length 57.5 microns, equatorial diameter 35 microns; one large sulcus? from pole to pole.

Ephedra antisyphilitica

- Figure 5. Bebb Herbarium 2053 (SP 1322-1-1). Length 51 microns, equatorial diameter 33 microns; 6 ridges; simple, straight furrows 17 microns in length.
- Figure 6. Bebb Herbarium 2053 (SP 1322-1-2). Length 54 microns, equatorial diameter 35 microns; 7 ridges; short, wavy furrows 19 microns in length.
- Figure 7. Bebb Herbarium 2053 (SP 1322-1-3). Length 60 microns, equatorial diameter 37 microns; 7 ridges; wavy furrows 25 microns in length.
- Figure 8. Bebb Herbarium 2053 (SP 1322-1-4). Length 54.5 microns, equatorial diameter 36 microns; 9 ridges; wavy furrows 27 microns in length.
- Figure 9. Bebb Herbarium 2053 (SP 1322-1-5). Length 59 microns equatorial diameter 35 microns; 7 ridges; highly contorted branching furrows 50 microns in length.
- Figure 10. Bebb Herbarium 2053 (SP 1322-1-6). Length 50 microns, equatorial diameter 15 microns, compressed and highly folded; furrow type and ridge number indistinct.
- Figure 11. Bebb Herbarium 2053 (SP 1322-1-7). Twisted, compressed form encountered in some fossil forms; ridge number or furrow type indistinct.
- Figure 12. Bebb Herbarium 2053 (SP 1322-1-8). Pollen grain showing ridges in profile.

DISCUSSION

Recycling in palynological assemblages has been discussed in detail by Wilson (1964). Within the last few years recycling of palynological fossils has become recognized as important. Cushing (1964) has reported recycled Cretaceous pollen and hystrichosphaerids in Pleistocene sediments in east-central Minnesota, and Bond (1965) found recycled hystrichosphaerids in Pleistocene sediments in Oklahoma.

The present study further demonstrates the need for palynologists to be aware of the possibilities of recycling in materials with which they are working. The occurrence of ephedran pollen grains in Pleistocene sediments of southwestern Oklahoma generally would not be considered out of place because a species of *Ephedra* is native to the area of study. However, the grains found in the terrace deposits show little similarity to those taken from herbarium specimens collected in the area. Also the terrace-deposit specimens are dark brown and are stain-resistant, two characters of many fossil pollen grains.

The fossil pollen grains from the terrace deposits do not resemble those of the Oklahoma Ephedra species, nor do they resemble E. torreyana or E. aspera of Texas and New Mexico; consequently they are considered to be recycled from Permian, Triassic, or Cretaceous rocks which crop out within the area drained by the two rivers.

References Cited

- Balme, B. E.; and Hennelly, J. P. F., 1956, Monolete, monocolpate, and alete sporomorphs from Australian Permian sediments: Australian Jour. Botany, vol. 4, p. 54-67.
- Bolkhovitina, N. A., 1953, Sporov-pyl'tsevaya kharakteristika melovykh otlozheniy tsentral'nykh oblastey SSSR: Akad. Nauk SSSR, Instituta Geologicheskikh Nauk, Trudy, vol. 145, Geologicheskai Seriya (no. 61), 184 p., 16 pls., 10 text-figs.
- Bond, T. A., 1965, Recycled hystrichosphaerids in Pleistocene sediments in central Oklahoma: Okla. Geol. Survey, Okla. Geology Notes, vol. 25, p. 126-130, 1 pl.
- Cushing, E. J., 1964, Redeposited pollen in late-Wisconsin pollen spectra from east-central Minnesota: Amer. Jour. Science, vol. 262, p. 1075-1088, 1 fig.
- Hedlund, R. W., 1963, Palynology of the Red Branch Member of the Woodbine Formation (Upper Cretaceous) in Bryan County, Oklahoma: Okla., Univ., unpublished doctoral dissertation, 147 p.
- Jansonius, Jan, 1962, Palynology of Permian and Triassic sediments, Peace River area, western Canada: Palaeontographica, Abt. B, vol. 110, no. 1-4, p. 35-98, 3 figs., 16 pls.
- Potter, D. E., 1963, Spores and pollen in a Cretaceous coal in the Omadi Formation, Dakota Group of Cimarron County, Oklahoma: N. Y. Univ., unpublished Master of Science thesis, 80 p.
- Samoilovich, S. R., 1953, Pollen and spores from the Permian deposits of the Cherdyn' and Aktyubinsk areas, Cis-Urals, translated by Elias, M. K., 1961: Okla. Geol. Survey, Circ. 56, 103 p., 17. pls. (from Paleobotanicheskii Sbornik: Leningrad, Vsesoiuznyi Nauchno-issledovatel'skii Geologo-razvedochnyi Institut, Trudy, new ser., no. 75, p. 5-57, pls. 1-17).

- Scott, R. A., 1960, Pollen of Ephedra from the Chinle Formation (Upper Triassic) and the genus Equisetosporites: Micropaleontology, vol. 6, p. 271-276, 1 pl., 2 text-figs.
- Shaffer, B. L., 1964, Stratigraphic and paleoecologic significance of plant microfossils in Permian evaporites of Kansas, in Palynology in oil exploration, a symposium: Soc. Econ. Paleontologists Mineralogists, Spec. Pub. 11, p. 97-115, 4 pls., 3 figs.

Steeves, M. W., and Barghoorn, E. S., 1959, The pollen of Ephedra: Harvard Univ., Arnold Arboretum, Jour., vol. 40, p. 221-225.

Wilson, L. R., 1959, Geological history of the Gnetales: Okla. Geol. Survey, Okla. Geology Notes, vol. 19, p. 35-40, 1 pl.

_____1962, Permain plant microfossils from the Flowerpot Formation, Greer County, Oklahoma: Okla. Geol. Survey, Circ. 49, 50 p., 3 pls., 2 figs., 1 table.

_____1964, Recycling, stratigraphic leakage, and faulty techniques in palynology: Grana Palynologica, vol. 5, p. 425-436.

Dates of Some Recent Publications Concerning Goniatites

Owing to the requirements of the Code of Zoological Nomenclature insofar as it pertains to laws of priority with respect to names, it appears necessary to provide the exact dates of publications of the following papers which deal with related taxa. In each case data were provided, on request, by the publisher or agent responsible for the publication.

McCaleb, J. A., Quinn, J. H., and Furnish, W. M., 1964, The ammonoid family Girtyoceratidae in the southern Midcontinent: Okla. Geol. Survey, Circ. 67. Published July 15, 1964.

Furnish, W. M., Quinn, J. H., and McCaleb, J. A., 1964, The Upper Mississippian ammonoid Delepinoceras in North America: Palaeontology, vol. 7, pt. 2. Published July 21, 1964.

Gordon, Mackenzie, Jr., 1964, California Carboniferous cephalopods, in Contributions to paleontology: U. S. Geol. Survey, Prof. Paper 483A. Published July 31, 1964 (information supplied by the then acting director of the U. S. Geological Survey).

Gordon, Mackenzie, Jr., 1965, Carboniferous cephalopods of Arkansas: U. S. Geol. Survey, Prof. Paper 460. Published February 12, 1965 (title page gives year of publication as 1964).

-J. H. Q.

228

3

6.11

INDEX*

Volume 25, 1965

Arkansas Atoka Formation basement, test drilled to

*Reference is to first page of article containing indexed item.

bibliographies, Another Oklahoma road log	201	
Bibliography and index of Oklahoma geology, 1964	55	
Field-trip guidebooks of Oklahoma geology	136	
Big Branch Formation	274	
Black Mesa	119	
Bloyd Formation, Arkansas	228	
Boggy Formation 247,	274	
Bond, T. A., Ephedran pollen grains in Pleistocene sediments of		
central and southeastern Oklahoma	302	
Recycled hystrichophaerids in Pleistocene sediments		
in central Oklahoma	126	
Boyt, Richard, see Strimple, Harrell L.	222	
Branson, Carl C., Another Oklahoma road log	201	
Charles William Honess	118	
Checkerboard Limestone	113	
Color on an Oklahoma rugose coral	86	
Decisions on Oklahoma place names	82	
Field-trip guidebooks of Oklahoma geology	136	
Geology of Byars fossil site	98	
Holotype of type species of <i>Mortoniceras</i>	252	
Luther Crocker Snider	206	
Names of Oklahoma coal beds	160	
New names for some Oklahoma brachiopods	204	
New species of <i>Conocardium</i>	247	
New specimens of <i>Homotelus</i> from the Bromide Formation	294	
Noah Fields Drake	278	
Oklahoma Board on Geographic Names	299	
Oklahoma Pennsylvanian Conularida	18	
Ordovician condonts of the Leningrad region	133	
Petrodus in Oklahoma	274	
Schizophoria oklahomae	50	
Serpula in the Caddo Limestone of Choctaw County	300	
Sponge borings or snail borings	132	
Status of paleontological treatises	170	
Status of topographic mapping in Oklahoma	87	
Ten-year volume of Bibliography of North American Geology		
Trilobite from the Lenapah Formation	27	
Volume twelve of Russian paleontological treatise	5	
Brentwood Member, Arkansas	228	
Bromide Formation	294	
Buckhorn asphalt	175	
	300	
Canadian River	275	
Caney River arch	279	
Carter County 34, 274,		
Carter County [Murray County, see Branson, C. C., p. 294]	207	
cement	31	
Checkerboard Crossing	113	
Checkerboard Limestone	113	
chemical analyses, granite	263	
gypsum	78	
P' L'ours	.0	

public water supplies	226
Chenoweth, Philip A., A boulder in the Gunter Sandstone,	
northeastern Oklahoma	3
Caney River arch, a pre-Seminole uplift in northeastern	
Oklahoma	279
Cherokee County	204
Chimneyhill Formation	247
Choctaw County	252, 300
Cimarron County	119, 257
clay	31
climate	99
Cloud Chief Formation	78
coal	31, 160
Comanche County	10, 78
Conkin, Barbara M., see Conkin, James E.	207
Conkin, James E., and Conkin, Barbara M., Ordovician	
(Richmondian) Foraminifera from Oklahoma,	
Missouri, Illinois, and Kentucky	207
Craig County	86
Cretaceous	126, 300
crushed-limestone plant	10
Decker, Charles Elijah	150
Deese Group	274
Devonian	20
Dewey Formation	279
Doerr, Arthur H., Arid and semiarid climates in Oklahoma,	00
1923-1958 Delege Brothers Company	99
Dolese Brothers Company Drake, Noah Fields	10
electron microscopy, cephalopod shells	278
	175
Engleman, Rolf, Block diagram of Ouachita structure Excello Shale	203
Fay, Robert O., Edward Oscar Ulrich	$\begin{array}{c} 274 \\ 54 \end{array}$
Fayetteville Shale	86, 204
Fernyale Formation	$\frac{86}{204}$
Finnerty, Lucy, New theses added to O. U. geology library	20
Flood, Edith L., Robert Thomas Hill	290
Francis Shale	258
Frisco Formation	214
Gasconade-Van Buren Formation	20
geography, climate	99
highest point in Oklahoma	119
place names 81, 82, 113,	
geophysics	210, 235
Gould, Charles Newton	2.
gravel	31
Grégoire, Charles, and Teichert, Curt, Conchiolin membranc	
in shell and cameral deposits of Pennsylvanian	·
cephalopods, Oklahoma	175
Grigsby, Ronald D. [translation by], A new Early Ordovician	
condont genus of the family Prioniodinidae	133

	6, 201
Gunter Sandstone	3
gypsum	31, 78
quarry	78
Hale Formation, Arkansas	228
Ham, W. E., Charles Weldon Tomlinson	174
Dolese Brothers plant at Richards Spur described	10
Joseph Alexander Taff	90
Hampton Formation, Iowa	222
Haragan Marlstone	247
Harper County	168
Harris, Beth, see Harris, R. W.	34
Harris, R. W., and Harris, Beth, Some West Spring Creek	
(Ordovician Arbuckle) conodonts from Oklahoma	34
Haskell County	31
Hedlund, Richard W., Palynological assemblage from the Perm	ian
Wellington Formation, Noble County, Oklahoma	236
helium	31
Hendricks, Thomas A., Section of beds overlying the Springer	(?)
Formation in Ti Valley, Pittsburg County, Oklahoma	6
Hill, Robert Thomas	298
Hogshooter Formation	279
	7, 279
Hollis basin	20
Honess, Charles William	118
Hoover, F. Mabry (memorial)	48
Huffman, G. G., Charles Elijah Decker	150
F. Mabry Hoover, 1902-1964	48
Hugh Dinsmore Miser	30
Hughes County	274
Illinois	207
Iowa	222
Jackson County	20
Johnson, Kenneth S., Bibliography and index of Oklahoma	
geology, 1964	55
Gypsum quarry operating at Fletcher, Comanche County,	
Oklahoma	78
	74, 287
Joins Formation	34
Jordan, Louise, Chemical quality of public water supplies	
in Oklahoma	226
Frisco Formation (Devonian) in borehole, Jackson County	·. ·.
Oklahoma	20
Heavy-crude-oil reservoirs in Oklahoma	276
Statistics of Oklahoma's petroleum industry, 1964	151
Upper-mantle study and Oklahoma	242
Kentucky	207
lead	31
	27, 279
lime	31
limestone	10

mong tone we lit	
maps, topographic	87
Maquoketa Shale, Missouri, Illinois	207
Mayes County McClain County	31
McClain County	91, 98
McDougal, Robert B., The mineral industry of Oklahoma in (preliminary)	
McIntosh County	31
Merritt, C. A., Mt. Scott Granite, Wichita Mountains, Okla	31
mineral industries	
crushed limestone	10, 31 10
gypsum	10 78
statistics	
Miser, Hugh Dinsmore	31, 151
Missississi	30 6 204 222
Missouri	6, 204, 222 207
Moorefield Formation	207
Morgan, George Dillon	262
Morrowan	11
Mt. Scott Granite	263
Murray County	175
Murray County [given as Carter County]	207, 294
Muskogee County	201, 294
Myers, Arthur J., Highest point in Oklahoma	119
Late Wisconsinan date for the Bar M local fauna	168
Nassichuk, W. W., see Strimple, H. L.	287
natural gas, production in 1964	31
natural-gas liquids	31
Noble County	236
Nowata County	27
Nowata Formation	279
Oakes, M. C., Charles Newton Gould	2
George Dillon Morgan	262
Okfuskee County	18, 274
Oklahoma Geological Survey, New theses added	
to O. U. geology library 10, 49, 88, 115, 203	3, 244, 296
Uologah is now Uologah	81
Résumé of new nomenclature published in	
Oklahoma Geology Notes	51
Scribe-drafting at the Oklahoma Geological Survey	272
Okmulgee County	113, 274
Olson, Everett C., Zatrachys serratus Cope (Amphibia:	
Labyrinthodontia) from McClain County, Oklahom	a 91
Oologah	81
Orchard Creek Shale, Missouri, Illinois	207
Ordovician 3, 20, 34, 133	
Osage County Ottawa County	279
Quashita Mauntaina	31
paleontology	6, 11, 203
Acanthotriletes sp.	11 222
Acodus	11, 236
1200463	34

A. auritus, n. sp.	34
Alisporites zapfei	236
Amphibia	5, 91
Apiculatisporis sp.	236
Aves	5
Axinolobus quinni	287
Baltisphaeridium sp.	126
Bathysiphon	207
Blastammina sp.	207
borings	132
Brachiopoda	204
Calamospora ct. C. breviradiata	236
Calloconularia	18
Camarophoria cestriensis	204
Cannosphaeropsis sp.	126
Cephalopoda	175, 228, 252, 287, 307
Chosonodina	34
C.? lunata, n. sp.	34
Cirratriradites saturni	11
C. sp.	11
Clavatasporites irregularis	236
Coelenterata	86
Coledium	204
C. erugatum	204
C. torvum	204
Conocardium	247
C. lanterna, n. sp.	247
Conodonta	34, 133
Conularida	18.
Convolutispora sp.	11
Cordaianthus	76
Crinoidea	132, 222
Dasypus bellus	168
Densosporites covensis	11
D. sp.	anna 11 ann 11
Ditomopyge parvulus	27
Endosporites angulatus	11
E. ornatus	11
Ephedra antisyphilitica	302
Ephedripites sp.	302
Florinites	76
F. pellucidus	11
Foraminifera	207
Gaitherites, n. gen.	228
G. solidum, n. comb.	228
Gastropoda	132
Granulatisporites adnatus	11
G. granularis	
G. sp.	11
Hamiapolleniles saccatus	236
Homotelus bromidensis	294

Hymenozonotriletes sp.				236
Hyperammina				207
Hystrichosphaerida				126
Hystrichosphaeridium sp.				126
Incertae sedis				236
Jugasporites cf. J. schaubergoides				236
Kerionammina				207
Knoxisporites sp.				11
Labyrinthodontia				91
Laevigatosporites ovalis				11
Lenodus				133
L. clarus				133
L. falodiformis				133
Lunulasporites vulgaris				236
Lycospora sp.				236
L. torquifer				11
Mammalia				168
Marsipella				207
Mollusca			168,	
Monosulcites sp.			100,	236
Mortoniceras vespertinum				252
Multioistodus				34
Neomultioistodus, n. subgen.				34 34
N. compressus, n. sp.				34
Neozaphrentis				34 86
Paraconularia				18
P. magna, n. comb.				18
Petrodus				274
P. occidentalis				
Pisces				274
Plantae (microfossils)		1 000	057	170
Porifera		1, 236,	297,	
Potonieisporites simplex				132
primitive chordates				236
Protozoa				170
Pteracontiodus, n. gen.				126
P. aquilatus, n. sp.				34
P. exilis, n. sp.				34
Punctatisporites sp.			11	34
Pygmaeoceras			11,	236
P. pygmaeum				228
Radiaspora sp.				228
Raibosammina				11
				207
Raistrickia sp.				11
Reptilia	had in			5
résumé of new nomenclature publis Oklahoma Geology Notes	nea m			el.
Rhabdammina Geology Notes				51
				207
Rhizophagites R. butleri				257
R. outleri Rhodocrinites				257
Knouocrinites				222

R. beanei, n. sp.	in the last in the	222
Savitrisporites sp.		11
Schizophoria oklahomae		50
Schopfipollenites sp.	्राज्य के देखा कि छु	236
Scolopodus		34
S. striolatus, n. sp.		34
Serpula		300
S. caragini?	106 - 2 ¹⁰ - 200	300
snail borings		132
Spinozonotriletes sp.		11
sponge borings		132
Stenozonotriletes sp.		11
Striatites sp.		236
Tholosina	·····································	207
Thuramminoides sphaeroidalis		207
Thymospora cf. T. pseudothiesse	nii	236
Tolypammina sp.		207
Trilobita		27
Ulrichodina	A starting to a	34
U. cristata, n. sp.		34
Vermes		300
Vittatina sp.		236
Webbinella	A REAL POINT AND AND A REAL	207
Wilsonites sp.		11
Zatrachys serratus	the state of the second	91
Palo Duro basin		20
palynology, staining medium	 A. P. A. M. M. B. 	130
nomenclatural procedure	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	76
Pennsylvanian 6, 11, 18, 2'	7, 50, 113, 175, 204, 274, 279,	
Permian 0, 11, 10, 2	78, 91, 98,	236
Perry Farm Shale Member	,	27
petrography, Fernvale Formation	- 10 Parts 10 Parts	20
Frisco Formation		20
Mt. Scott Granite	医肠肌炎 医二乙酰胺原因	263
petroleum		31
petroleum industry, heavy-crude-oil r	eservoirs	276
natural gas	coertoins	31
petroleum production		31
statistics		151
Pitkin Limestone	204,	
Pittsburg County		3, 11
place names	81, 82, 113, 275,	
Pleistocene	126, 257,	
Pontotoc County	50, 207, 274,	
pumice	se, _e,,	31
Quaternary	126.	168
Quinn, James Harrison, Dates of son		
concerning goniatites	r i i i i i i i i i i i i i i i i i i i	307
Reevaluation of Pygmaeoceras		228
radiocarbon dating		168
Red River		302
314		

reviews, Chemical quality of public water supplies in Oklahoma	226
Dolesc Brothers plant at Richards Spur described	10
Heavy-crude-oil reservoirs in Oklahoma	276
New names for some Oklahoma brachiopods	204
Ordovician conodonts of the Leningrad region	133
Status of paleontological treatises	170
Ten-year volume of Bibliography of North American Geology	221
Upper-mantle study and Oklahoma	242
Volume twelve of Russian paleontological treatise	5
Rogers County 3, 274	
Russia 5, 133	/
salt	, 170
sand	
Seminole Formation	31
	18
Sergeeva, S. P., A new Early Ordovician conodont genus	
of the family Prioniodinidae [abridged translation]	133
Snider, Luther Crocker	206
	6, 11
stone	31
stratigraphy, Atoka Formation	6, 11
Checkerboard Limestone	113
Fernvale Formation	20
Frisco Formation	20
Gunter Sandstone	3
names of coal beds	160
Permian	98
Springer Formation	6, 11
Strimple, Harrell L., and Boyt. Richard. Rhodocrinites beanei.	-,
new species, from the Hampton Formation	
(Mississippian) of Iowa	222
Strimple, H. L., and Nassichuk, W. W., Correlation notes on the	
upper Wapanucka Limestone in southeastern Oklahoma	287
	, 279
Sylvan Shale	207
Taff, Joseph Alexander	90
techniques, scribe-drafting	272
Teichert, Curt, see Grégoire, Charles	175
theses added to O. U. geology library 10, 49, 88, 115, 203, 244	
TT: X7-11	6, 11
Tomlinson, Charles Weldon	174
topographic mapping, status of	87
tripoli	31
Tri-State district	31
Tulsa County 31.	279
Ulrich, Edward Oscar	54
Union Valley Formation	247
Wann Shale	247
Wapanucka Limestone 50.	287
Washington County	247
117 - 1 ' D'	302
water supplies	226
	220

Waynesville Formation, Kentucky	207
Wellington Formation	236
West Spring Creck Limestone	34
Wetumka Shale	274
Wewoka Formation 247	, 274
White, Charles David	246
Wichita Mountains	263
Wilson, L. R., Charles David White	246
Florinites versus Cordaianthus-A problem in nomenclatura	l ·
procedure	76
Palynological age determination of a rock section in Ti Valle	у,
Pittsburg County, Oklahoma	11
Rhizophagites, a fossil fungus from the Pleistocene	
of Oklahoma	257
Stained mounting medium for palynological fossils	130
zinc	31

Publication Dates, Oklahoma Geology Notes, Volume 25

The twelve numbers of this volume of the Notes were issued on the following dates during 1965:

NUMBER	PAGES	MONTH	DATE	NUMBER	PAGES	MONTH	ΓE
1	1-28	January	1	7	173-204	July 9	J .
2	29- 52	February	2	8	205-244	August 4	L i
3	53- 88	March	1. 3	9	245-260	September 1	11
4	89-116	April	5	10	261-276	October 1	211
5	117-148	May	7	11	277-296	November 3	3
6	149-172		2	12	297-316	December 1	

OKLAHOMA GEOLOGY NOTES

Volume 25

December 1965

Number 12

IN THIS ISSUE

Page

Oklahoma Board on Geographic Names	299
CARL C. BRANSON	299
Serpula in the Caddo Limestone of Choctaw County	
CARL C. BRANSON	
Ephedran Pollen Grains in Pleistocene Sediments	
of Central and Southeastern Oklahoma	
T. A. BOND	
Robert Thomas Hill	298
Dates of Some Recent Publications Concerning Goniatites	
Index to Volume 25	307