ROBERT THOMAS HILL

Robert T. Hill, the great reconnaissance geologist, is known throughout the world for his publications on the Cretaceous System, especially the Lower Cretaceous, or Comanchean Series, of the southwestern United States, Mexico, West Indies, and Central America. Six articles relating to Oklahoma were published between 1888 and 1895 and included such subjects as the Trinity Formation, explorations along the Red River, the Ouachita Mountains, and artesian water.

Hill’s study of the outcrops of the Comanche south of the Ouachita and Arbuckle Mountains resulted in a report entitled Geology of Parts of Texas, Indian Territory, and Arkansas Adjacent to Red River, published in 1894. His manuscript map for this report, drawn with pen and ink, was presented to his close friend, C. N. Gould, founder of the Oklahoma Geological Survey.

Dr. Hill gave the following names to formations exposed in Oklahoma: Tishomingo Granite, Trinity Sand, Goodland Limestone, Kiamichi Formation, Woodbine Sand, Eagle Ford Shale, and Bingen formation. The type localities of the Tishomingo, the Goodland, and the Kiamichi are in the State.

As early as the 1870’s, Hill, then a young man working for a newspaper, The Comanche Chief, became interested in geology. On Round Mountain, 7 miles west of Comanche, Texas, he first found fossil shells. From the white limestones there exposed, he expanded and worked out the Comanche Series.

Hill was a student of all the earth sciences. His lively curiosity led him to study geology, paleontology, history, physiography, hydrology and archaeology. He was graduated from Cornell University in 1886, joined the U. S. Geological Survey, and helped to establish the Texas Geological Survey when, in 1888, he became an assistant professor of geology at the University of Texas. In 1892 he returned to the Federal Survey in Washington where he remained until 1903 when he resigned to become a consulting geologist in New York City until 1911.

In later years he lived in Los Angeles and Dallas. His bibliography of 330 titles includes the classic Geography and Geology of the Black and Grand Prairies of Texas. His death in 1941, when he was 83 years old, closed a brilliant career. His ashes were scattered over Round Mountain in fulfillment of his desire.

Sources drawn upon for this article are a memorial by T. W. Vaughan, published in the Proceedings Volume of the Geological Society of America for 1943 and a memorial by C. N. Gould, published in the Proceedings of the Oklahoma Academy of Science for 1941. The photograph shown on the cover was recently donated to the Division of Manuscripts of the Bizzell Memorial Library of The University of Oklahoma by Dr. Don B. Gould, Geophoto Service, Inc., Denver, Colorado.

—E. L. F.
OKLAHOMA BOARD ON GEOGRAPHIC NAMES

CARL C. BRANSON

For some years the U. S. Board on Geographic Names, originally formed in 1890, has wisely sought local help. The Oklahoma State Legislature of 1965 assigned to the Oklahoma Geological Survey the duty to "act as the Oklahoma Board on Geographic Names and make recommendations to the United States Board on Geographic Names" (HB 810, sec. 310 (b), (4)). The Federal board consists of 12 members, representing State, Army, Navy, Post Office, Interior, Agriculture, Commerce, Printing Office, Library of Congress, Air Force, Defense, and Central Intelligence Agency. The executive secretary is J. O. Kilmartin, for domestic geographic names. Donald J. Orth, chief, Geographic Names Section, U. S. Geological Survey, visited in October and clarified the activities of a board.

The newly formed Oklahoma Board on Geographic Names is starting out with five members: Dr. C. C. Branson, director of the Oklahoma Geological Survey, chairman; Muriel Wright of the Oklahoma Historical Society; Dr. Arrell M. Gibson, curator of the Phillips Collection of The University of Oklahoma; Dr. John J. Hidore, Department of Geography of Oklahoma State University; and Dr. John W. Morris, Department of Geography of The University of Oklahoma.

The board will proceed cautiously. It is easy to make a learned decision, but this decision means nothing if the name is not accepted by the residents of the area. The Federal board has made but 62 decisions on Oklahoma names, of which five are revisions of earlier decisions and three are considered erroneous (Branson, 1965). The need for a local board is obvious.

Current desired decisions are:

Granite Gap: certainly should be Grants Gap (Hendricks, Knechtel, and Bridge, 1937, p. 23).

Comet Creek: an involved situation dating from the Pacific Railroad Expedition.

Bokchito Creek: two creeks currently so named, one in Bryan County and one in Choctaw County.

Pharoah: not Pharaoh, the correct spelling if it were a Biblical name, but it appears to have been named for O. J. Pharoah (Shirk, 1965, p. 166).

Gypsum Creek: not Boggy Creek. Currently on the Decision Docket No. 83.

Tesesquite Creek: no information on origin or correct spelling. Similar to Texas name Tecquise Creek.

A large program of topographic mapping is under way: one 15-minute quadrangle, 179 7.5-minute quadrangles in progress, 64 selected.
The Oklahoma board is considering the several hundred names involved in order to help in preventing printed errors on the maps. Largely because there has been no state board, such errors as Roger County, Oolagah, Granite Gap, and Choteau have appeared. In Rogers County is Oowala Township, variously spelled Oawala, Oo-wa-la. Round Mountain is apparently the same as Catoos Hill, Old Catoos.

Such trite and overused names as Sand Creek, Sandy Creek, Walnut Creek, Blue Hill, Bitter Creek, Squaw Creek, and Dry Creek should be eliminated if distinctive and locally acceptable names can be found.

The Federal board issues "dockets" which give notice of pending decisions. The current ones are Grand Lake O'The Cherokees (objected to by me because it is long and the name of the river is Neosho), Gypsum Creek instead of Boggy Creek (Jackson County), and Breckinridge (not Breckenridge). A good sign of acceptance for the Oklahoma board is the fact that it was consulted on the naming of Lake Thunderbird about three weeks before the name was announced. Because the name was the winning entry in a contest and was confidential, I acted for the board and wrote that "we do not object."

Oklahoma Geological Survey is preparing maps and reports on Lincoln, Rogers, Bryan, Woodward, Payne, Canadian, McIntosh, Pushmataha, Custer, Wagoner, and Noble Counties and hopes to use distinctive, authentic, and acceptable names on its maps. The formation of a State Board on Geological Names should help it to do so.

References

Serpula in the Caddo Limestone of Choctaw County

Carl C. Branson

The generic name Serpula is used for a vast variety of fossils of tube-building Polychaeta and was described from a modern species. The geologic range is given as Silurian to Recent. Cretaceous species are numerous, but individual specimens are few. Twenhofel described
S. cragini from the Champion Bed of the Kiowa Shale near Belvidere, Kiowa County, Kansas (1924, p. 52, pl. 7, fig. 1). Winton and Adkins (1919, p. 58) listed Serpula sp. from the Fort Worth Limestone of Texas. Gibbs (1950, p. 42) listed Serpula cragini from the Washita Group in SW¼ sec. 1, T. 7 S., R. 19 E., Choctaw County, Oklahoma.

A specimen of Serpula attached to a specimen of Macraster (fig. 1) was collected from the beds of the Caddo Limestone, which is equivalent in age to the Fort Worth Limestone. The specimen was collected by me in the east bank of Bokchito Creek 100 yards south of the Frisco railway bridge (SE¼ SW¼ sec. 18, T. 6 S., R 16 E., Choctaw County, Oklahoma), a locality shown to me by Allen Graffham and R. O. Fay.

The specimen is entirely cemented to the surface of the echinoid. It is incomplete but is looped so as to make a nearly circular specimen 1.3 cm in diameter. The tube is 1 mm in diameter. The small narrow unit at the right in the figure appears to be the immature portion, a portion observed in few specimens.

The specimen is best referred with doubt to S. cragini, the species described from the Kiowa Shale of Kansas.

References Cited

EPHEDRAN POLLEN GRAINS IN PLEISTOCENE SEDIMENTS OF CENTRAL AND SOUTHEASTERN OKLAHOMA

T. A. BOND

INTRODUCTION

Ephedran pollen of unknown origin occurs in Pleistocene clay in the terrace deposits of the Washita River in central Oklahoma and of the Red River in southeastern Oklahoma. The following may account for these occurrences: (1) the pollen grains are from extant species of Ephedra growing in the drainage basins of the two rivers, or (2) the grains are from extinct species preserved in older sediments, particularly Permian, Triassic, or Cretaceous of western Oklahoma and Texas, and recycled into the younger Pleistocene sediments.

Fossil ephedran pollen has been reported from rocks of Permian to Recent age in many parts of the world. It has been reported from Permian deposits in Russia (Samoilovich, 1953), Australia (Balme and Hennelly, 1956), Oklahoma (Wilson, 1962), and Kansas (Shaffer, 1964). North American Triassic deposits containing ephedran pollen occur in Arizona (Scott, 1960) and in Canada (Jansonius, 1962).

Ephedran pollen grains were reported by Hedlund (1963) from the Woodbine Formation (Upper Cretaceous) of Bryan County, Oklahoma. Potter (1963), working with the Omadi coal (Lower Cretaceous) of the Oklahoma Panhandle, did not report the presence of ephedran pollen grains. The ephedran pollen grains reported here from Pleistocene sediments were found in association with Cretaceous-Tertiary hystrichosphaerids (Bond, 1965). Therefore it is possible that the pollen grains are undescibed Cretaceous forms.

The genus Ephedra has approximately 42 living species distributed widely in arid tropic and temperate regions (Wilson, 1959). Eighteen species of Ephedra occur in the Canary Islands, the Mediterranean region, India, China, Persia, and Siberia. Fifteen species are distributed in North America and are most abundant in California, Arizona, New Mexico, and Mexico. Seven species grow as far east as eastern Texas, with one species in southwestern Oklahoma. In South America are eleven species, distributed from Bolivia to Patagonia.

Ephedra antisypilitica, the one species native to Oklahoma, is restricted to the southwestern corner of the State, part of which is in the Red River drainage basin. Three other species, Ephedra torreyana, E. trifurca, and E. aspera, occur in Texas and New Mexico. The pollen grains found in Pleistocene terrace deposits of the Washita and Red Rivers do not resemble grains of E. antisypilitica as described by Steeves and Barghoorn (1959), nor the specimens of that species illustrated here (pl. I, figs. 5-12). Also they do not resemble the Texas and New Mexico species.

The Washita and Red Rivers traverse Permian and Triassic rocks,
and the ephedran fossils reported here may be recycled because they are unlike those of the native extant species of the area, or grains described by Wilson (1962) from the Flowerpot Formation. Since these may be recycled forms and the source rocks are not known, no new specific names are assigned.

POLLEN DESCRIPTIONS

Class GYMNOSPERMAE
Order GNETALES
Family EPHEDRACEAE

Genus Ephedra Tournefort ex Limnaeus, 1737

Ephedra antisypophilita Berland

Plate I, figures 5-12

Pollen grains bilateral, fusiform, polycolpate; polar axis 42 to 59 microns; equatorial diameter 33 to 49 microns; ridges number 12 to 18, 2.5 microns in height and 2.5 to 5 microns in width at the equator, colpi indistinct between ridges; wall smooth, thickness averages 1 micron.

The pollen grains of Ephedra antisypophilita were recovered from strobili of a single herbarium specimen (G. J. Goodman, Bebb Herbarium 2053, University of Oklahoma). The number of ridges on the pollen grains shows all gradations from a few ridges (pl. I, fig. 5) up to 14 ridges (pl. I, fig. 12). The colpi are equally gradational, ranging from straight (pl. I, fig. 5) to irregular and wavy between ridges (pl. I, figs. 6-9).

Variation of structure may be related to stages of maturation or position of the pollen grains in the microsporangium. Therefore the designation of specific epithets for fossils of the genus upon the basis of number of ridges or of number, shape, and visibility of the colpi should be undertaken cautiously.

Ephedra antisypophilita, placed in Type B by Steeves and Barghoorn (1959), has the largest pollen grains in this group. It is further characterized by the presence of an extremely tenuous exoexine, which easily becomes disassociated from the endoexine. The exoexine may become free at one pole, both poles, or irregularly around the grain (Steeves and Barghoorn, 1959).

Anteturma POLLENITES R. Potonié, 1931
Turma POLYLPICATES Erdtman, 1952

Genus Ephedripites Bolchovitina, 1953
Type species.—Ephedripites mediolobatus Bolchovitina, 1953, p. 60, pl. 9, fig. 15; pl. 11, fig. 120.

Ephedripites sp.

Plate I, figures 1-4

Pollen grains bilateral, fusiform, polycolpate?; colpi absent or not visible; numerous ridges with sinuous unbranched furrows commonly visible in one surface view; ridges rounded at termini and not
forming distinct polar thickenings, 2 to 3 microns wide, smooth to minutely granular under oil immersion; length 55 to 65 microns, equatorial diameter 30 to 50 microns.

These grains are similar to the Type D grain of Steeves and Barghoorn (1959) and resemble Ephedra trifurca which occurs in New Mexico, but differs in wall thickness, number of ridges, and overall size. E. trifurca has a polar axis measuring 39 to 63 microns and an equatorial diameter of 28 to 30 microns. The Type D grain is characterized by low, wide, gently rounded ektyexinous ridges 2 to 3 microns in height and 3.5 to 9 microns in width. Within this group occur species which possess the greatest number of ridges. The furrows flanking the ridges are narrow, unbranched, and straight. No colpi are visible.

Explanation of Plate I

Ephedripites sp.

Figure 1. OPC 1004 H-3-3. Length 62.5 microns, equatorial diameter 37.5 microns; 7 ridges; furrows at base of ridges indistinct.

Figure 2. OPC 1004 E-4-2. Length 60 microns, equatorial diameter 35 microns. Poorly preserved form; ridge number or furrow type not determinable.

Figure 3. OPC 1062 T-3-3. Length 57.5 microns, equatorial diameter 32.5 microns; exine almost completely smooth; poorly developed small ridges; no colpi visible.

Figure 4. OPC 1004 C-1-1. Length 57.5 microns, equatorial diameter 35 microns; one large sulcus? from pole to pole.

Ephedra antisyphilitica

Figure 5. Bebb Herbarium 2053 (SP 1322-1-1). Length 51 microns, equatorial diameter 33 microns; 6 ridges; simple, straight furrows 17 microns in length.

Figure 6. Bebb Herbarium 2053 (SP 1322-1-2). Length 54 microns, equatorial diameter 35 microns; 7 ridges; short, wavy furrows 19 microns in length.

Figure 7. Bebb Herbarium 2053 (SP 1322-1-3). Length 60 microns, equatorial diameter 37 microns; 7 ridges; wavy furrows 25 microns in length.

Figure 8. Bebb Herbarium 2053 (SP 1322-1-4). Length 54.5 microns, equatorial diameter 36 microns; 9 ridges; wavy furrows 27 microns in length.

Figure 9. Bebb Herbarium 2053 (SP 1322-1-5). Length 59 microns equatorial diameter 35 microns; 7 ridges; highly contorted branching furrows 50 microns in length.

Figure 10. Bebb Herbarium 2053 (SP 1322-1-6). Length 50 microns, equatorial diameter 15 microns, compressed and highly folded; furrow type and ridge number indistinct.

Figure 11. Bebb Herbarium 2053 (SP 1322-1-7). Twisted, compressed form encountered in some fossil forms; ridge number or furrow type indistinct.

Figure 12. Bebb Herbarium 2053 (SP 1322-1-8). Pollen grain showing ridges in profile.
Recycling in palynological assemblages has been discussed in detail by Wilson (1964). Within the last few years recycling of palynological fossils has become recognized as important. Cushing (1964) has reported recycled Cretaceous pollen and hystrichosphaerids in Pleistocene sediments in east-central Minnesota, and Bond (1965) found recycled hystrichosphaerids in Pleistocene sediments in Oklahoma.

The present study further demonstrates the need for palynologists to be aware of the possibilities of recycling in materials with which they are working. The occurrence of ephedran pollen grains in Pleistocene sediments of southwestern Oklahoma generally would not be considered out of place because a species of Ephedra is native to the area of study. However, the grains found in the terrace deposits show little similarity to those taken from herbarium specimens collected in the area. Also the terrace-deposit specimens are dark brown and are stain-resistant, two characters of many fossil pollen grains.

The fossil pollen grains from the terrace deposits do not resemble those of the Oklahoma Ephedra species, nor do they resemble E. torreyana or E. aspera of Texas and New Mexico; consequently they are considered to be recycled from Permian, Triassic, or Cretaceous rocks which crop out within the area drained by the two rivers.

References Cited

Scott, R. A., 1960, Pollen of Ephedra from the Chinle Formation (Upper Triassic) and the genus Equisetosporites: Micropaleontology, vol. 6, p. 271-276, 1 pl., 2 text-figs.

1962, Permain plant microfossils from the Flowerpot Formation, Greer County, Oklahoma: Okla. Geol. Survey, Circ. 49, 50 p., 3 pls., 2 figs., 1 table.

Dates of Some Recent Publications Concerning Goniatites

Owing to the requirements of the Code of Zoological Nomenclature insofar as it pertains to laws of priority with respect to names, it appears necessary to provide the exact dates of publications of the following papers which deal with related taxa. In each case data were provided, on request, by the publisher or agent responsible for the publication.

—J. H. Q.

INDEX*

Volume 25, 1965

Arkansas 228
Atoka Formation 6, 11
basement, test drilled to 3

*Reference is to first page of article containing indexed item.
bibliographies, Another Oklahoma road log 201
Bibliography and index of Oklahoma geology, 1964 55
Field-trip guidebooks of Oklahoma geology 136
Big Branch Formation 274
Black Mesa 119
Bloyd Formation, Arkansas 228
Boggy Formation 247, 274
Bond, T. A., Ephedran pollen grains in Pleistocene sediments of central and southeastern Oklahoma 302
Recycled hystrichophaerids in Pleistocene sediments in central Oklahoma 126
Boyt, Richard, see Strimple, Harrell L. 222
Branson, Carl C., Another Oklahoma road log 201
Charles William Honess 118
Checkerboard Limestone 113
Color on an Oklahoma rugose coral 86
Decisions on Oklahoma place names 82
Field-trip guidebooks of Oklahoma geology 136
Geology of Byars fossil site 98
Holotype of type species of Mortoniceras 252
Luther Crocker Snider 206
Names of Oklahoma coal beds 160
New names for some Oklahoma brachiopods 204
New species of Conocardium 247
New specimens of Homotelus from the Bromide Formation 294
Noah Fields Drake 278
Oklahoma Board on Geographic Names 289
Oklahoma Pennsylvanian Conularida 18
Ordovician conodonts of the Leningrad region 133
Petrodus in Oklahoma 274
Schizophoria oklahomae 50
Serpula in the Caddo Limestone of Choctaw County 300
Sponge borings or snail borings 132
Status of paleontological treatises 170
Status of topographic mapping in Oklahoma 87
Ten-year volume of Bibliography of North American Geology 221
Trilobite from the Lenapah Formation 27
Volume twelve of Russian paleontological treatise 5
Brentwood Member, Arkansas 228
Bromide Formation 294
Buckhorn asphalt 175
Caddo Limestone 252, 300
Canadian River 275
Caney River arch 279
Carter County 34, 274, 294
Carter County [Murray County, see Branson, C. C., p. 294] 207
cement 31
Checkerboard Crossing 113
Checkerboard Limestone 113
chemical analyses, granite 263
gypsum 78
public water supplies

Chenoweth, Philip A., *A boulder in the Gunter Sandstone, northeastern Oklahoma*

Caney River arch, a pre-Seminole uplift in northeastern Oklahoma

Cherokee County

Chimneyhill Formation

Choctaw County 252, 300

Cimarron County 119, 257

clay 31

climate 99

Cloud Chief Formation 78

can 31, 160

Comanche County 10, 78

Conkin, Barbara M., *see Conkin, James E.* 207

Craig County 86

Cretaceous 126, 300

crushed-limestone plant 10

Decker, Charles Elijah 150

Deese Group 274

Devonian 20

Dewey Formation 279

Dolese Brothers Company 10

Drake, Noah Fields 278

electron microscopy, cephalopod shells 175

Engleman, Rolf, *Block diagram of Ouachita structure* 203

Excello Shale 274

Fay, Robert O., Edward Oscar Ulrich 54

Fayetteville Shale 86, 204

Fernvale Formation 20

Finnerty, Lucy, *New theses added to O. U. geology library* 296

Flood, Edith L., Robert Thomas Hill 298

Francis Shale 274

Frisco Formation 20

Gasconade-Van Buren Formation 3

gEOGRAPHY,climate 99

highest point in Oklahoma 119

place names 81, 82, 113, 275, 299

gcophysics 242

Gould, Charles Newton 2

grawel 31

Grégoire, Charles, and Teichert, Curt, *Conchiolin membranes in shell and cameral deposits of Pennsylvanian cephalopods, Oklahoma* 175

Grigsby, Ronald D. [translation by], *A new Early Ordovician conodont genus of the family Prioniodinidae* 133
guidebooks 136, 201
Gunter Sandstone 3
gypsum 31, 78
 quarry 78
Halc Formation, Arkansas 228
Ham, W. E., Charles Weldon Tomlinson 174
 Dolese Brothers plant at Richards Spur described 10
 Joseph Alexander Taff 90
Hampton Formation, Iowa 222
Haragan Marlstone 247
Harper County 168
Harris, Beth, see Harris, R. W. 34
Harris, R. W., and Harris, Beth, Some West Spring Creek 34
 (Ordovician Arbuckle) conodonts from Oklahoma
Haskell County 31
Hedlund, Richard W., Palynological assemblage from the Permian 236
 Wellington Formation, Noble County, Oklahoma
helium 31
Hendricks, Thomas A., Section of beds overlying the Springer (?) 6
 Formation in Ti Valley, Pittsburg County, Oklahoma
Hill, Robert Thomas 298
Hogshooter Formation 279
Holdenville Formation 247, 279
Hollis basin 20
Honest, Charles William 118
Hoover, F. Mabry (memorial) 48
Huffman, G. G., Charles Elijah Decker 150
 F. Mabry Hoover, 1902-1964 48
 Hugh Dinsmore Miser 30
Hughes County 274
Illinois 207
Iowa 222
Jackson County 20
Johnson, Kenneth S., Bibliography and index of Oklahoma 55
 geology, 1964
 Gypsum quarry operating at Fletcher, Comanche County, 78
 Oklahoma
Johnston County 274, 287
Joins Formation 34
Jordan, Louise, Chemical quality of public water supplies 226
 in Oklahoma
 Frisco Formation (Devonian) in borehole, Jackson County, 20
 Oklahoma
 Heavy-crude-oil reservoirs in Oklahoma 276
 Statistics of Oklahoma's petroleum industry, 1964 151
 Upper-mantle study and Oklahoma 242
Kentucky 207
lede 31
Lenapah Limestone 27, 279
lime 31
limestone 10
maps, topographic
Maquoketa Shale, Missouri, Illinois 87
Mayes County 31
McClain County 207, 98
McDougall, Robert B., The mineral industry of Oklahoma in 1964 (preliminary) 31
McIntosh County 31
Merritt, C. A., Mt. Scott Granite, Wichita Mountains, Oklahoma 263
mineral industries
 crushed limestone 10, 31
 gypsum 78
 statistics 31, 151
Miser, Hugh Dinsmore 30
Mississippian 6, 11, 86, 204, 222
Missouri 207
Moorefield Formation 204
Morgan, George Dillon 262
Morrowan 11
Mt. Scott Granite 263
Murray County 175
Murray County [given as Carter County] 207, 294
Muskogee County 204
Myers, Arthur J., Highest point in Oklahoma 119
 Late Wisconsinan date for the Bar M local fauna 168
Nassichuk, W. W., see Strimple, H. L. 287
natural gas, production in 1964 31
natural-gas liquids 31
Noble County 236
Nowata County 27
Nowata Formation 279
Oakes, M. C., Charles Newton Gould 2
 George Dillon Morgan 262
Okfuskee County 18, 274
Oklahoma Geological Survey, New theses added to O. U. geology library 10, 49, 88, 115, 203, 244, 296
Oologah is now Oologah 81
Résumé of new nomenclature published in Oklahoma Geology Notes 51
Scribe-drafting at the Oklahoma Geological Survey 272
Okmulgee County 113, 274
Olson, Everett C., Zatrachys serratus Cope (Amphibia: Labyrinthodontia) from McClain County, Oklahoma 91
Oologah 81
Orchard Creek Shale, Missouri, Illinois 207
Ordovician 3, 20, 34, 133, 207, 294
Osage County 279
Ottawa County 31
Ouachita Mountains 6, 11, 203
paleontology
 Acanthotriletes sp. 11, 236
 Acodus 34
A. auritus, n. sp. 34
Alisporites zapfei 236
Amphibia 5, 91
Apiculatisporis sp. 236
Aves 5
Axinolobus quinni 287
Baltisphaeridium sp. 126
Bathysiphon 207
Blastammina sp. 207
borings 132
Brachiopoda 204
Calamospora cf. C. breviradiata 236
Calloconularia 18
Camarophoria cestriensis 204
Cannosphaeropsis sp. 126
Cephalopoda 175, 228, 252, 287, 307
Chosonodina 34
C.? lunata, n. sp. 34
Cirratiradites saturni 11
C. sp. 11
Clavatasporites irregularis 236
Coelenterata 86
Cooledium 204
C. erugatum 204
C. tortum 204
Conocardiun 247
C. lanterna, n. sp. 247
Conodonta 34, 133
Conularida 18
Convolutispora sp. 11
Cordaianthus 76
Crinoidea 132, 222
Dasypus bellus 168
Densosporites covensis 11
D. sp. 11
Ditomopyge parvulus 27
Endosporites angulatus 11
E. ornatus 11
Ephedra antisyphilitica 302
Ephedripites sp. 302
Florinites 76
F. pellucidus 11
Foraminifera 207
Gaitherites, n. gen. 228
G. solidum, n. comb. 228
Gastropoda 132
Granulatisporites adnatus 11
G. granularis 11
G. sp. 11
Hamiapollenites saccatus 236
Homotelus bromidensis 294
Hymenozonotriletes sp. 236
Hyperammina 207
Hystrichosphaerida 126
Hystrichosphaeridium sp. 126
Icertae sedis 236
Jugasporites cf. J. schaubergoides 236
Kerionammina 207
Knoxisporites sp. 11
Labyrinthodontia 91
Laevigatosporites ovalis 11
Lenodus 133
L. clarus 133
L. falodiformis 133
Lunulasporites vulgaris 236
Lykospora sp. 236
L. torquifer 11
Mammalia 168
Marsipella 207
Mollusca 168, 247
Monosulcites sp. 236
Mortoniceras vespertinum 252
Multiioistodus 34
Neomullioistodus, n. subgen. 34
N. compressus, n. sp. 34
Neozaphrentis 86
Paraconularia 18
P. magna, n. comb. 18
Petrodus 274
P. occidentalis 274
Pisces 170
Plantae (microfossils) 11, 236, 257, 302
Porifera 132
Potonieisporites simplex 236
primitive chordates 170
Protozoa 126
Pteracontiodus, n. gen. 34
P. aquilatus, n. sp. 34
P. exilis, n. sp. 34
Punctatisporites sp. 11, 236
Pygmaecoceras 228
P. pygmaeum 228
Radiaspora sp. 11
Raibosammina 207
Raiistrickia sp. 11
Reptilia 5
résumé of new nomenclature published in Oklahoma Geology Notes 51
Rhabdammina 207
Rhizophagites 257
R. butleri 257
Rhodocrinites 222
R. beanei, n. sp. 222
Savitrissorites sp. 11
Schizophoria oklahomae 50
Schopfipollenites sp. 236
Scolopodus 34
S. striolatus, n. sp. 34
Serpula 300
S. caragini? 300
snail borings 132
Spinozonotriletes sp. 11
sponge borings 132
Stenozonotriletes sp. 11
Striatites sp. 236
Tholosina 207
Thuramminoides sphaeroidalis 207
Thymospora cf. T. pseudothiessenii 236
Toalypammina sp. 207
Trilobita 27
Ulrichodina 34
U. cristata, n. sp. 34
Vermes 300
Vittatina sp. 236
Webbinella 207
Wilsonites sp. 11
Zatrachys serratus 91

Palo Duro basin
palynology, staining medium 130
nomenclatural procedure 76

Pennsylvaniaian 6, 11, 18, 27, 50, 113, 175, 204, 274, 279, 287
Permian 78, 91, 98, 236
Perry Farm Shale Member 27
petrography, Fernvale Formation 20
Frisco Formation 20
Mt. Scott Granite 263
petroleum 31
petroleum industry, heavy-crude-oil reservoirs 276
natural gas 31
petroleum production 31
statistics 151

Pitkin Limestone 204, 247
Pittsburg County 6, 11
place names 81, 82, 113, 275, 299
Pleistocene 126, 257, 302
Pontotoc County 50, 207, 274, 287
pumice 31
Quaternary 126, 168

Quinn, James Harrison, Dates of some recent publications
concerning goniatitites 307
Reevaluation of Pygmaeoceras 228
radiocarbon dating 168
Red River 302

314
reviews, Chemical quality of public water supplies in Oklahoma 226
Dolese Brothers plant at Richards Spur described 10
Heavy-crude-oil reservoirs in Oklahoma 276
New names for some Oklahoma brachiopods 204
Ordovician conodonts of the Leningrad region 133
Status of paleontological treatises 170
Ten-year volume of Bibliography of North American Geology 221
Upper-mantle study and Oklahoma 242
Volume twelve of Russian paleontological treatise 5
Rogers County 3, 274, 279
Russia 5, 133, 170
salt 31
sand 31
Seminole Formation 18
Sergeeva, S. P., A new Early Ordovician conodont genus of the family Prioniodinidae [abridged translation] 133
Snider, Luther Crocker 206
Springer Formation 6, 11
stone 31
stratigraphy, Atoka Formation 6, 11
 Checkerboard Limestone 113
 Fernvale Formation 20
 Frisco Formation 20
 Gunter Sandstone 3
 names of coal beds 160
 Permian 98
 Springer Formation 6, 11
Strimple, Harrell L., and Boyt, Richard, Rhodocrinites beanei, new species, from the Hampton Formation (Mississippian) of Iowa 222
Strimple, H. L., and Nassichuk, W. W., Correlation notes on the upper Wapanucka Limestone in southeastern Oklahoma 287
structure 203, 279
Sylvan Shale 207
Taff, Joseph Alexander 90
techniques, scribe-drafting 272
Teichert, Curt, see Grégoire, Charles 175
theses added to O. U. geology library 10, 49, 88, 115, 203, 244, 296
Ti Valley 6, 11
Tomlinson, Charles Weldon 174
topographic mapping, status of tripoli 87
Tri-State district 31
Tulsa County 31, 279
Ulrich, Edward Oscar 54
Union Valley Formation 247
Wann Shale 247
Wapanucka Limestone 50, 287
Washington County 247
Washita River 126, 302
water supplies 226
Waynesville Formation, Kentucky 207
Wellington Formation .. 236
West Spring Creek Limestone 34
Wetumka Shale .. 274
Wewoka Formation ... 247, 274
White, Charles David ... 246
Wichita Mountains ... 263
Wilson, L. R., Charles David White 246

Florinites versus Cordaitanthus—A problem in nomenclatural procedure 76

Palynological age determination of a rock section in Ti Valley, Pittsburg County, Oklahoma 11

Rhizophagites, a fossil fungus from the Pleistocene of Oklahoma .. 257

Stained mounting medium for palynological fossils ... 130

zinc .. 31

Publication Dates, Oklahoma Geology Notes, Volume 25

The twelve numbers of this volume of the Notes were issued on the following dates during 1965:

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>PAGES</th>
<th>MONTH</th>
<th>DATE</th>
<th>NUMBER</th>
<th>PAGES</th>
<th>MONTH</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-28</td>
<td>January</td>
<td>1</td>
<td>7</td>
<td>173-204</td>
<td>July</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>29-52</td>
<td>February</td>
<td>2</td>
<td>8</td>
<td>205-244</td>
<td>August</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>53-88</td>
<td>March</td>
<td>1</td>
<td>9</td>
<td>245-260</td>
<td>September</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>89-116</td>
<td>April</td>
<td>5</td>
<td>10</td>
<td>261-276</td>
<td>October</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>117-148</td>
<td>May</td>
<td>7</td>
<td>11</td>
<td>277-296</td>
<td>November</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>149-172</td>
<td>June</td>
<td>2</td>
<td>12</td>
<td>297-316</td>
<td>December</td>
<td>1</td>
</tr>
</tbody>
</table>

Oklahoma Board on Geographic Names

CARL C. BRANSON .. 299

Serpula in the Caddo Limestone of Choctaw County

CARL C. BRANSON .. 300

Ephedran Pollen Grains in Pleistocene Sediments of Central and Southeastern Oklahoma

T. A. BOND ... 302

Robert Thomas Hill ... 293

Dates of Some Recent Publications Concerning Goniatites .. 307

Index to Volume 25 .. 307

Page

Oklahoma Geology Notes

Volume 25 December 1965 Number 12

In This Issue

Page

Okahoma Board on Geographic Names

CARL C. BRANSON .. 299

Serpula in the Caddo Limestone of Choctaw County

CARL C. BRANSON .. 300

Ephedran Pollen Grains in Pleistocene Sediments of Central and Southeastern Oklahoma

T. A. BOND ... 302

Robert Thomas Hill ... 293

Dates of Some Recent Publications Concerning Goniatites .. 307

Index to Volume 25 .. 307

316