Cover Picture

MINERAL INDUSTRIES OF OKLAHOMA

PORTLAND CEMENT

Oklahoma’s portland cement industry began in 1906 when two plants were established, one at Ada in Pontotoc County and one at Dewey in Washington County. These were the only plants to operate successfully in the State until 1960 when a new installation was completed at Pryor in Mayes County, followed by still another in 1961 near Tulsa in Rogers County. The plants at Ada, Pryor, and Tulsa are currently active, but the one at Dewey was closed during 1963.

From an initial production of about 2 million barrels of cement in 1906, the industry in Oklahoma has grown to an annual capacity of nearly 9 million barrels. Of the mineral industries in Oklahoma, cement has been the leading nonmetal product (excluding fuels) in terms of value during five of the last six years.

Rocks being quarried for cement production in the State include: Fernvale Limestone and Sylvan Shale of Ordovician age at Ada, limestone from the Hindsville Formation and shale and limestone from the Fayetteville Formation of Mississippian age at Pryor, and Oologah Limestone and Labette Shale of Pennsylvanian age near Tulsa. Additional sources of material for cement manufacture are found in the Arbuckle Mountains, the Limestone Hills of the Wichita Mountains area, the outcrop belt of the Cretaceous Goodland Limestone in southeastern Oklahoma, and in wide areas of limestone and shale outcrop in northeastern Oklahoma. Also of great importance to the existing plants and to the future of cement production in Oklahoma is the proximity of extensive gypsum and anhydrite deposits in the western part of the State, and the availability of abundant natural gas and coal for fuel.

Shown on the cover is the $12-million plant of the Dewey Portland Cement Co., Division of the American-Marietta Co., in Rogers County, east of Tulsa.

—K. S. J.
BIBLIOGRAPHY AND INDEX OF OKLAHOMA GEOLOGY

1963

Prepared by KENNETH S. JOHNSON

Bibliography—39-52
Index—52-60

BIBLIOGRAPHY

Bowles, J. P. F., Jr., see Mackey, F. L., and Bowles, J. P. F., Jr.
Bozion, C. N., see Heyl, A. V., and Bozion, C. N.
Brandt, Robert, see McGinnes, Douglas, and Brandt, Robert.

1963d, Type species of Edestus Leidy: Okla. Geol. Survey, Okla. Geology Notes, vol. 23, p. 275-280, 3 figs. E. vorax, fragment of Pennsylvanian shark originally believed to have been found at a Muskogee County locality, now thought to be from Illinois.

Briggs, Garrett, see Agterberg, F. P., and Briggs, Garrett.
Bromery, R. W., see Andreasen, G. E., and Bromery, R. W.

Buck, K. L., see Cannon, R. S., Jr., Buck, K. L., and Pierce, A. P.

Crane, H. R., and Griffin, J. B., 1963, University of Michigan radiocarbon dates VIII: Radiocarbon, vol. 5, p. 228-253. Conch shell fragments from Spiro site, Le Flore County, are 580 ± 75 years old; charcoal from three levels at Harlan site, Cherokee County, range from 610 to 820 years old.

Davis, L. V., see Tanaka, H. H., and Davis, L. V.

Dodd, C. G., see Mankin, C. J., and Dodd, C. G.

Gatlin, Leroy, see Cramer, R. D., Gatlin, Leroy, and Wessman, H. G. [eds.].

Glass, J. J., see Roy, S. K., Glass, J. J., and Henderson, E. P.

vol. 11, p. 211-224, 6 tables. Study of 11 soil profiles developed on Pennsylvanian and Permian strata in eastern and central Oklahoma.

Griffin, J. B., see Crane, H. R., and Griffin, J. B.

Ham, W. E., see McDougal, R. B., and Ham, W. E.

Henderson, E. P., see Roy, S. K., Glass, J. J., and Henderson, E. P. Henderson, J. R., see Keller, Fred, Jr., and Henderson, J. R.

Hoskinson, A. J., see Cook, K. L., Hoskinson, A. J., and Shelton, G. R.
Huang, W. T., leader, 1962, Precambrian igneous rocks of the Wichita Mountains, Oklahoma: Texas Christian Univ. and Baylor Geol. Soc. (Field Trip Guidebook), Mar. 3-4, 1962, Waco, Texas, 27 p., 4 figs., 1 pl., 3 tables.

Humphrey, J. E., see Huffman, G. G., Cathey, T. A., and Humphrey J. E.

Kinningham, Russell, see Chandler, J. B., Kinningham, Russell, and Massey, D. S.

--------- 1963b, The Meramec trend—it points to SW Oklahoma: Oil and Gas Jour., vol. 61, no. 30 (July 29), p. 210-216 incl. ads, 5 figs. Review of eastern Palo Duro basin.

Leonard, A. B., see Frye, J. C., and Leonard, A. B.

Little, C. B., see Sharp, W. R., and Little, C. B., also Epperson, C. M., and Little, C. B.

Lynn, R. D., see Roark, J. J.

Malloy, J. M., see Padgett, Ward, and Malloy, J. M.

Mankin, C. J., see Cronoble, W. R., and Mankin, C. J.

Massey, D. S., see Chandler, J. B., Kinningham, Russell, and Massey, D. S.
Matthews, T. A., 1963, The South Burbank unit—a comparison of oil recoveries by various type drives: Jour. Petroleum Technology, vol. 15, no. 11 (Nov.), p. 1180-1182, 4 figs. Gas injection and water flooding have both been used to develop reservoir in Osage County.

Merrill, G. K., 1963, Polygnathodella Harlton, 1933, or Idiognathoides Harris & Hollingsworth, 1933?: Jour. Paleontology, vol. 37, p. 504-505. The Pennsylvanian conodont Idiognathoides is a junior synonym of Cavusgnathus, not of Polygnathodella as has been previously assumed.

Merritt, C. A., see Branson, C. C., and Merritt, C. A.

Miller, R. D., see Munnerlyn, R. D., and Miller, R. D.

Molthan, H. D., see Gray, Fenton, Reed, L. W., and Molthan, H. D.
Moore, L. E., 1962 [1963], Natural gas in Oklahoma, in Tulsa Geologi-
cal Society, Symposium on natural gas in Oklahoma: Tulsa Geol.
Motts, W. S., 1963, Water resources of Okmulgee County, Part II of
Oklahoma Geological Survey, Geology and water resources of
Okmulgee County, Oklahoma: Okla. Geol. Survey, Bull. 91, p. 5-6,
81-123, 9 figs., 1 table.
Munnerlyn, R. D., and Miller, R. D., 1963, Helium-bearing natural
gases of the United States: analyses. Second supplement to Bulle-
analyses of 314 samples from Oklahoma.
Muir-Wood, H. M., 1962, On the morphology and classification of the
brachiopod suborder Chonetidea: British Museum (Natural
History), 132 p., 24 figs., 16 pls. Includes chonetids from Oklaho-
ma.
Myers, A. J., 1963, Oklahoma—a geological sketch: Earth Science,
vol. 16, no. 3., p. 126-130, 5 figs. Popularized account of geologic
history of Oklahoma.
National Petroleum Bibliography, 1963, Geological maps—Oklahoma
oil & gas, vol. II: Amarillo, Texas, Natl. Petroleum Bibliography,
216 p. Maps of selected oil and gas fields throughout Oklahoma.
Nichols, J. D., see Burgess, D. L., Nichols, J. D., and Henson, O. G.
Norden, J. A. E., and Langton, J. M., 1963a, Magnetic delineation of
the basement surface, Christie-Westville area, Adair County, Oklaho-
3 figs., 1 table.
———, 1963b, Magnetic profile control of basement configuration,
northern Cherokee County, Oklahoma: Okla. Geol. Survey, Okla.
Geology Notes, vol. 23, p. 261-266, 2 figs., 1 table.
Norden, J. A. E., Langton, J. M., and Hancock, J. M., Jr., 1963, Mag-
netic profile across the Watts reef, Adair County, Oklahoma: Okla.
Investigation of bioherm in St. Joe Group (Mississippian).
Oakes, M. C., 1963, Geology of Okmulgee County, Part I of Oklahoma
Geological Survey, Geology and water resources of Okmulgee
County, Oklahoma: Okla. Geol. Survey, Bull. 91, p. 4-5, 7-80,
129-160, 10 figs., 2 pls., 6 tables. Surface study of Pennsylvanian
strata.
Oklahoma City Geological Society, 1962, The Shale Shaker digest III:
457 p. A compilation of unaltered geologic papers from the Shale
Oklahoma Geological Survey, 1963a, Early Devonian brachiopods of
Oklahoma; Part I, Articulate brachiopods of the Frisco Formation
(Devonian), by T. W. Amsden and W. P. S. Ventress; Part II, Articulate
brachiopods of the Sallisaw Formation (Devonian), by
T. W. Amsden; Part III, Supplement to the Haragan (Devonian)
p., 51 figs., 21 pls., 10 tables.

Reed, L. W., see Gray, Fenton, Reed, L. W., and Molthan, H. D.

Reesman, A. L., see Keller, W. D., and Reesman, A. L.

Rowett, C. L., 1963, Wapanucka-Atoka contact in the eastern and northeastern Arbuckle Mountains, Oklahoma: Okla. Geol. Survey,

Scott, H. W., see Lundin, Robert, and Scott, H. W.

Seilacher, Adolf, 1963, Umlagerung und Rolltransport von Cephalopoden-Gehäusen: Neues Jahrbuch Geologie und Paläontologie, Monatshefte, no. 11, p. 593-615, 9 figs. Includes discussion of impact marks left in Johns Valley Shale (Ouachita Mountains) by corroded goniatite shells carried in turbidity currents.

Sheldon, M. G., see Adkison, W. L., and Sheldon, M. G.

Shelton, G. R., see Cook, K. L., Hoskinson, A. J., and Shelton, G. R.

Stacy, B. L., see Wood, P. R., and Stacy, B. L.

Geology Notes, vol. 23, p. 101-107, 4 figs., 1 pl. D. aulicus; new crinoid species from Mississippian Fayetteville Formation, Craig County.

Sullivan, C. W., see Bergman, D. L., and Sullivan, C. W.

Sykes, H. A., see Reedy, H. J., and Sykes, H. A.

Urban, J. B., see Wilson, L. R., and Urban, J. B.
Venkatachala, R. S., see Wilson, L. R., and Venkatachala, B. S.
Ventress, W. P. S., see Amsden, T. W., and Ventress, W. P. S.
Vosburg, D. L., see Jordan, Louise, and Vosburg, D. L.

Wessman, H. G., see Cramer, R. D., Gatlin, Leroy, and Wessman, H. G. [eds.]

Westphal, J. A., see Tucker, P. M., and Westphal, J. A.

Willman, H. B., see Templeton, J. S., and Willman, H. B.

Woncik, John, 1962 [1963], Kinta gas field, Haskell County, Oklahoma, in Tulsa Geological Society, Symposium on natural gas in

INDEX

ANADARKO BASIN:
Carter-Knox field, Reedy and Sykes
Endicott sand, Ellis County, Winter
Laverne gas area, Pate
Lenora field, Gatlin
Permian salt and associated evaporites, Jordan and Vosburg
petroleum, Cramer, Gatlin, and Wessman
salt, El Reno Group, Johnson (c)
south flank, frontal Wichita fault system, Harlton
well-sample descriptions, Adkison and Sheldon

ARBUCKLE MOUNTAINS:
brachiopods, Amsden (c), Amsden and Ventress
field trip, Ham (a)
geologic history, Ham (b)
oölites and algal aggregates, petrography, Schramm
Ordovician beds correlated with Illinois section, Templeton and Willman
stratigraphy, Silurian, Amsden (b)
Wapanucka-Atoka contact, Rowett

ARKOMA BASIN:
drilling problems, McLennon
Kinta field, Wonchik
logging and interpretation techniques, Irvin
petroleum, Cramer, Gatlin, and Wessman, Brooks
Red Oak-Norris field, Six
statistical analysis of ripple marks, Agterberg and Briggs
Atokan rocks, Arkoma basin, statistical analysis of ripple marks, Agterberg and Briggs
Atoka-Wapanucka contact, Arbuckle Mountains, Rowett
Beavers Bend State Park, Pitt and others

BIBLIOGRAPHIES:
clays, U. S. A., Mark
conodonts, Ellison
hydrology, Riggs
natural gas in Oklahoma, Cramer
new taxa published in Oklahoma Geology Notes, *Oklahoma Geological Survey* (c)

Oklahoma geology, 1962, *Johnson* (a)

Blaine Formation, stratigraphy, southwestern Oklahoma, *Pendery*

brine well, Beckham County, *Johnson* (b)

CAMBRIAN:

Wichita Mountains, *Huang*

Wichita and Arbuckle Mountains, *Ham* (a)

clays: formation and accumulation in soils, *Gray, Reed, and Molthan*;

high-alumina kaolinitic, bibliography, *Mark*; reference illite,

Ouachita Mountains, *Mankin and Dodd*

coal bed, igneous cobble in, *Branson and Merritt*

Coffeyville Formation: genesis of limestones, *Cronoble and Mankin*;

limestone buildups, *Cronoble*

COUNTIES:

Adair: magnetic delineation of basement surface, *Norden and Langton* (a); magnetic profile across Watts reef, *Norden, Langton, and Hancock*

Beaver: camel, *Hibbard*; Laverne gas area, *Pate*; petroleum production, *Epperson and Little*

Beckham, salt, *Johnson* (b) (c)

Caddo: ground-water resources, Rush Springs Sandstone, *Tanaka and Davis*; Pond Creek basin, hydrology, *Clark*; radiocarbon dating, *Chandler, Kinningham, and Massey*

Carter, fracture-treatment log, *Dunlap* (a)

Cherokee: magnetic profile of basin, *Norden and Langton* (b);

radiocarbon dating, *Crane and Griffin*

Cimarron: petroleum production, *McGinness and Brandt*; sporomorphs, *Potter*

Cleveland, South Norman area, petroleum, *McDaniel*

Cotton, meteorite, *Roy, Glass, and Henderson*

Craig, crinoid, *Stripple* (c)

Dewey, Lenora field, *Gatlin*

Ellis, Endicott sand, subsurface, *Winter*

Garvin, Purdy field, *Dunlap* (b)

Grady: Carter-Knox field, *Reedy and Sykes*; Southeast Bradley field, *Dunlap* (b)

Harmon, salt deposits, *Ward*

Harper, Laverne gas area, *Pate*

Haskell, Kinta field, *Woncik*

Latimer: Red Oak-Norris field, *Six*; Sinclair No. 1 Reneau, *Unruh*

Le Flore: igneous cobble in coal bed, *Branson and Merritt*; radiocarbon dating, *Crane and Griffin*; Red Oak-Norris field, *Six*;

surface geology, Ouachita Mountains, *O. D. Hart, Seely*

Logan, natural-gas storage, *Wallace*

McClain, South Norman area, petroleum, *McDaniel*

McCurtain: Beavers Bend State Park, *Pitt and others*; reference
illite, Mankin and Dodd; thickness variation in Mazarn-Womble Shales, Pitt
Murray: ostracodes, Lundin and Scott; palynomorph, Wilson and Urban
Muskogee, shark fragment, Branson (d)
Nowata, Coffeyville and Hogshooter Formations, Cronoble, Cronoble and Mankin
Okmulgee: surface geology and stratigraphy, Oakes; water resources, Motts
Osage: crinoid, Strimple (a); South Burbank unit, Matthews
Ottawa: aeromagnetic map, Keller and Henderson; lead-isotope study of galena, Cannon, Buck, and Pierce
Pawnee, petroleum geology, Clare
Pontotoc: hystrichospherid, Eisenack; silicified wood, Wilson (b); trilobite, Hessler
Roger Mills: recent channel changes in Sandstone Creek, Bergman and Sullivan; soil survey, Burgess, Nichols, and Henson
Rogers, spores, Wilson and Venkatashala (b)
Sequoia, brachiopods, Amsden (a), Amsden and Ventress
Stephens, Carter-Knox field, Reedy and Sykes
Texas, petroleum production, Sharp and Little
Tillman, Trimue-Frederick area, petroleum, Helton
Tulsa, spores, Wilson and Venkatashala (c)
Washington, Coffeyville and Hogshooter Formations, Cronoble, Cronoble and Mankin
Washington, salt in El Reno Group, Johnson (c)
Woods, Northeast Waynoka field, Barby
Woodward, geology and ground-water resources, Wood and Stacy
Cretaceous:
- deposition and paleotectonics, Gulf Coast area, Forgetson
- Foraminifera, Maslakova
- sporomorphs, Potter
- cyclothem, Pennsylvanian, Midcontinent, Wanless and others
- Desmoinesian rocks, Arkoma basin, statistical analysis of ripple marks, Agterberg and Briggs
Devonian:
- brachiopods, Amsden (a) (c), Amsden and Ventress
- crinoids, Strimple (b)
- ostracodes, Lundin and Scott
- palynomorph, Wilson and Urban
- eastern Palo Duro basin: petroleum, Laing (b); seismic problems and profiles, Laing (a); Trimue-Frederick area, petroleum, Helton
Economic Geology:
- mineral industries, statistics, McDougal (a) (b), McDougal and Ham
- mines and mining, statistics, Padgett and Malloy
- salt: brine-well production, Johnson (b); western Oklahoma, Jordan and Vosburg
- zinc, Tri-State area, Heyl and Bozion
El Reno Group, salt, Elk City area, *Johnson* (c)
Endicott sand, computer study of, Ellis County, *Winter*
field trips: Wichita Mountains, *Huang*; Wichita and Arbuckle Moun-
tains, *Ham* (a)
Flowerpot Shale, salt, *Ward*
fracture orientation and rock stresses, south-central Oklahoma, *Dunlap*
(b)
Frisco Formation, brachiopods, *Amsden and Ventress*
galena, lead-isotope study, *Cannon, Buck, and Pierce*
gems and minerals of Oklahoma, *Gilmore*
geologic history of Oklahoma, outline, *Barrett, Myers*
geomorphology, recent channel changes in Sandstone Creek, *Bergman*
and *Sullivan*

GEOPHYSICS:
areomagnetic map, Tri-State area, *Keller and Henderson*
gravity survey, northeastern Oklahoma, *Cook, Hoskinson, and Shelton*
magnetic delineation of basement surface, *Norden and Langton* (a)
magnetic profiles: basement configuration, *Norden and Langton*
(b); Watts reef, *Norden, Langton, and Hancock*
seismic problems and profiles, eastern Palo Duro basin, *Laing* (a)
seismograph profiles near Tulsa, *Roark, Tucker and Westphal*
total-intensity aeromagnetic profiles, northeastern Oklahoma,
Andreasen and Bromery
gravity survey, northeastern Oklahoma, *Cook, Hoskinson, and Shelton*

Haragan Formation, brachiopods, *Amsden* (c)
helium, in natural gases, analyses, *Munnerlyn and Miller*
Hogshooter Formation: genesis of limestones, *Cronoble and Mankin;*
limestone buildups, *Cronoble*
Hugoton embayment, petroleum production, *Epperson and Little, Mc Ginness and Brandt, Sharp and Little*
Hunton Group, crinoids, *Strimple* (b)

HYDROLOGY
bibliography, *Riggs*
ground water: levels, *D. L. Hart* (a) (b), *Marine; Okmulgee*
County, *Motts*; summary of State resources, *A. R. Leonard*
Pond Creek basin, *Clark*
recent channel changes in Sandstone Creek, *Bergman and Sullivan*
Rush Springs Sandstone, Caddo County, *Tanaka and Davis*
surface waters, chemical analyses, *United States Geological Survey*
Woodward County, ground-water resources, *Wood and Stacy*
igneous rocks: cobble in coal bed, *Branson and Merritt*; dissolved pro-
ducts of, *Keller and Reesman*
illite, reference, Ouachita Mountains, *Mankin and Dodd*
insoluble residues, *McCracken*
linear sandstone trends, eastern Oklahoma, *Tanner* (a)
magnetic delineation of basement surface, Adair County, *Norden and Langton* (a)
magnetic map, aero-, Tri-State area, *Keller and Henderson*
magnetic profiles: aero-, northeastern Oklahoma, *Andreasen and*
Bromery; basement configuration, Norden and Langton (a) (b); Watts reef, Norden, Langton, and Hancock

maps: aeromagnetic, Tri-State area, Keller and Henderson; oil and gas fields of Oklahoma, Cramer, Gatlin, and Wessman, Brooks, National Petroleum Bibliography

Mazorin-Womble Shales, thickness variation, Pitt
meteorite, Roy, Glass, and Henderson
mineral industries, statistics, McDougal (a) (b), McDougal and Ham

Mineral/Mineralogy:
clays in soils, Gray, Reed, and Molthan
guide to gems and minerals of Oklahoma, Gilmore
lead-isotope study of galena, Cannon, Buck, and Pierce
meteorite, Roy, Glass, and Henderson
reference illite, Ouachita Mountains, Mankin and Dodd
zinc, Tri-State area, Heyl and Bozian

mines and mining: coal-mine disasters, Keenan; statistics, Padgett and Malloy

Mississippian:
crinoid, Strimple (c)
hystrichosphaerid, Eisenack
Springer Formation, fracture orientation and rock stresses, Dunlap (b)
stratigraphy, Ouachita Mountains, O. D. Hart, Seely
trilobite, Hessler
Watts reef, magnetic profile across, Norden, Langton, and Hancock

Ordovician:
Mazorin-Womble Shales, thickness variation, Pitt
oolites and algal aggregates, Arbuckle Mountains, Schramm
Simpson Group and Viola-Fernvale Limestones correlated with Illinois section, Templeton and Willman
structure and stratigraphy, South Norman area, McDaniel

Ouachita Mountains:
Beavers Bend State Park, Pitt and others
eastern Winding Stair Range, O. D. Hart
goniatite impact marks in Johns Valley Shale, Seilacher
Mazorin-Womble Shales, thickness variation, Pitt
Potato Hills, Sinclair No. 1 Reneau, Unruh
reference illite, Mankin and Dodd
Rich Mountain area, Seely
structure and vein quartz, Miser
tectonic patterns, Tanner (b)

Ozark Mountains, geology of state parks, Huffman, Cathey, and Humphrey

Paleobotany:
algae aggregates and oolites, Schramm
Arcellites hexapartitus, Potter
Dadoxylon adaense, Wilson (b)
geological history of Oklahoma’s vegetation, Wilson (a)
Quisquilites buckhornensis, Wilson and Urban
Tasmanites noremi, Eisenack
Thymospora pseudothiessenii, Wilson and Venkatatachala (c)
Vesicaspora, Wilson and Venkatatachala (a)
Vestispora, Wilson and Venkatatachala (b)

Paleontology:
arthropods, new taxa, Branson (b)
brachiopods, Amsden (a) (c), Amsden and Ventress, Branson
(a), Muir-Wood
camel, Hibbard
chonetid brachiopods, Branson (a), Muir-Wood
conodonts, Branson (c), Merrill, bibliography, Ellison
crinoids, Strimple (a) (b) (c)
Dasciocrinus aulicus, Strimple (c)
Edestus vorax, Branson (d)
Foraminifera, Maslakova
Globigerina seminolensis, Maslakova
goniatite impact marks in Johns Valley Shale, Seilacher
Graphiocrinus lineatus, Strimple (a)
Hedbergella, Maslakova
Idiognathoides, Merrill
new taxa published in Oklahoma Geology Notes, Oklahoma Geologi
cal Survey (c)
ostracodes, Lundin and Scott
Phanassymetria, Lundin and Scott
Proetus (Pudoproetus) chappelensis, Hessler
radiocarbon dating of fossils, Chandler, Kinningham, and Massey,
Crane and Griffin
shark fragment, Branson (d)
Tanapolama vera, Hibbard
trilobite, Hessler

Panhandle: petroleum production, Epperson and Little, McGinness and
Brandt, Sharp and Little; petroleum statistics, Lacer; water-level
fluctuations, Marine

Pennsylvanian:
Bartlesville sand, natural-gas storage, Wallace
Coffeyville and Hogshooter Formations, Cronoble, Cronoble and
Mankin
conodonts, Merrill
crinoid, Strimple (a)
cyclothems, Midcontinent, Wanless and others
Endicott sand, Ellis County, Winter
Hart sand, fracture orientation and rock stresses, Dunlap (b)
igneous cobble in coal bed, Branson and Merritt
isopach and lithofacies study, north-central Oklahoma, Fambrough
linear sandstone trends, eastern Oklahoma, Tanner (a)
shark fragment, Branson (d)
silicified wood, Wilson (b)
soil profiles on, clay mineralogy, Gray, Reed, and Molthan
spores and pollen, Wilson and Venkatatachala (a) (b) (c)
statistical analysis of ripple marks, Arkoma basin, Agterberg and
Briggs
stratigraphy: north-central Oklahoma, Fambrough; Okmulgee County, Oakes; Ouachita Mountains, O. D. Hart, Seely
Wapanucka-Atoka contact, Arbuckle Mountains, Rowett
water resources, Okmulgee County, Motts

PERMIAN:
El Reno Group, salt, Johnson (c)
Rush Springs Sandstone, ground-water resources, Tanaka and Davis
salt: brine-well production, Johnson (b); Harmon County, Ward soil profiles on, clay mineralogy, Gray, Reed, and Molthan stratigraphy, Blaine Formation, southwestern Oklahoma, Pendery western Oklahoma, salt and evaporites, Jordan and Vosburg

PETROLEUM:
Anadarko basin, Cramer, Gatlin, and Wessman
Arkoma basin, Cramer, Gatlin, and Wessman, Brooks
Beaver County, pre-Permian production, Epperson and Little Carter-Knox field, Reedy and Sykes
Cimarron County, pre-Permian production, McGinness and Brandt drilling problems, Arkoma basin, McLernon
Ellis County, Endicott sand, Winter fracture-treatment log, Carter County, Dunlap (a) helium-bearing natural gases, analyses, Munnerlyn and Miller Hennessey area, Mogharabi
Kinta field, Woncik
Laverne gas area, Pate
Lenora field, Gatlin
linear sandstone trends, eastern Oklahoma, Tanner (a) logging and interpretation techniques, Arkoma basin, Irvin maps, oil and gas fields, National Petroleum Bibliography Meramec trend, eastern Palo Duro basin, Laing (b) natural gas: bibliography, Cramer; chemical analyses, Munnerlyn and Miller; statistics, Moore; symposium, Tulsa Geological Society
north-central Oklahoma, Fambrough
North Dover area, Hurley
Northeast Waynoka field, Barby
Pawnee County, Clare
Purdy field, fracture systems, Dunlap (b)
Red Oak-Norris field, Six
sample descriptions, wells in Anadarko basin, Adkison and Sheldon seismic problems and profiles, eastern Palo Duro basin, Laing (a) Sinclair No. 1 Reneau, drilled in Potato Hills, Unruh South Burbank unit, Matthews
Southeast Bradley field, fracture systems, Dunlap (b)
South Norman area, McDaniel
statistics: natural gas, Moore; oil and gas, Atkins, Jordan, Lacer, Lahee, Machey and Bowles, Sowers and others
Texas County, pre-Permian production, Sharp and Little Trimue-Frederick area, Helton
West Edmond field, natural-gas storage, Wallace

Petrology/Petrography:
- Coffeyville and Hogshooter Formations, Cronoble, Cronoble and Mankin
- dissolved products of igneous rocks, Keller and Reesman
- igneous cobble in coal bed, Branson and Merritt
- meteorite, Roy, Glass, and Henderson
- oölites and algal aggregates, Arbuckle Mountains, Schramm

Pleistocene:
- geology of Red River basin, Frye and Leonard
- mammoth tusk, radiocarbon dating, Chandler, Kinningham, and Massey

Pond Creek basin, hydrology, Clark

Potato Hills anticlinorium, Sinclair No. 1 Reneau well, Unruh

Precambrian:
- Arbuckle Mountains, field trip, Ham (a)
- magnetic delineation of, Adair County, Norden and Langton (a)
- magnetic profile of, Cherokee County, Norden and Langton (b)
- quartz, in Ouachita Mountains, Miser
- radioactivity, lead-isotope study of galena, Cannon, Buck, and Pierce
- radiocarbon dating, Chandler, Kinningham, and Massey, Crane and Griffin

Recent, radiocarbon dating, Crane and Griffin

Red River basin, Pleistocene geology, Frye and Leonard

residues, insoluble, McCracken

Rich Mountain area, Ouachita Mountains, surface geology, Seely
- ripple marks, statistical analysis, Arkoma basin, Agterberg and Briggs
- Rush Springs Sandstone, ground-water resources, Caddo County, Tanaka and Davis
- Sallisaw Formation, brachiopods, Amsden (a)
- salt: brine well, Beckham County, Johnson (b); El Reno Group, Elk City area, Johnson (c); shallow deposits, Harmon County, Ward; western Oklahoma, Jordan and Vosburg
- sample descriptions, wells in Anadarko basin, Adkison and Sheldon
- sandstone trends, linear, eastern Oklahoma, Tanner (a)
- sedimentary environments, Pennsylvanian cyclothems, Midcontinent, Wanless and others
- sedimentation: Coffeyville and Hogshooter Formations, Cronoble, Cronoble and Mankin; Cretaceous, Gulf Coast area, Forgetson; insoluble-residue studies, application, McCracken

Silurian:
- crinoids, Strimple (b)
- reference illite, Ouachita Mountains, Mankin and Dodd
- stratigraphy, Arbuckle Mountains, Amsden (b)

Sinclair No. 1 Reneau, well drilled in Potato Hills, Unruh

soil survey, Roger Mills County, Burgess, Nichols, and Henson

state parks, geology: Beavers Bend State Park, Pitt and others; Ozark
- Mountains region, Huffman, Cathey, and Humphrey
STRATIGRAPHY:
Anadarko basin, well-sample descriptions and correlations, Adkison and Sheldon
Blaine Formation, southwestern Oklahoma, Pendery
El Reno Group, Elk City area, Johnson (c)
insoluble-residue studies, application, McCracken
Mazarn-Womble Shales, thickness variation, Pitt
Mississippian and Pennsylvanian: Hennessey area, Mogharabi;
North Dover area, Hurley; Ouachita Mountains, O. D. Hart,
Seely
Ordovician: rocks in Arbuckle Mountains correlated with Illinois
section, Templeton and Willman; South Norman area,
McDaniel
Ordovician through Pennsylvanian, Pawnee County, Clare
Pennsylvanian: cyclothsms, Midcontinent, Wanless and others;
north-central Oklahoma, Fambrough; Okmulgee County,
Oakes
Permian, western Oklahoma, Jordan and Vosburg
rock-stratigraphic units, North American craton, Sloss
Silurian, Arbuckle Mountains, Amsden (b)
Wapanucka-Atoka contact, Arbuckle Mountains, Rowett
structure: frontal Wichita fault system, Harlton; Ouachita Mountains,
O. D. Hart, Miser, Seely, Tanner (b); parameters of subsurface
reconnaissance, South Norman area, McDaniel
tectonics: fracture orientation and rock stresses, south-central Okla-
homa, Dunlap (b); Ouachita Mountains, Tanner (b); paleo-
Cretaceous, Gulf Coast area, Forgetson
TERTIARY, camel, Hibbard
Trinity Stage, deposition and paleotectonics, Gulf Coast area, Forget-
son
Tri-State area: aeromagnetic map, Keller and Henderson; oxidized zinc
deposits, Heyl and Bozion
Wapanucka-Atoka contact, Arbuckle Mountains, Rowett
West Spring Creek Formation, oölites and algal aggregates, Schramm
WICHITA MOUNTAINS:
clay deposits, bibliography, Mark
field trips, Ham (a), Huang
frontal fault system, Harlton
Winding Stair Range, Ouachita Mountains, surface geology, O. D. Hart
zinc, Tri-State area, Heyl and Bozion
MAGNETIC DELINEATION OF THE BASEMENT SURFACE AT
GREENLEAF LAKE, MUSKOGEE COUNTY, OKLAHOMA

J. A. E. NORDEN, D. A. KOTILA, AND G. C. GLASER

INTRODUCTION

One problem encountered in a recent biostratigraphic study of reef facies in the Bloyd Formation (Pennsylvanian, Morrowan) in northeastern Oklahoma (Kotila, 1963) was the determination of the lateral extent and thickness of discontinuous reef development in the dominantly shale formation. One area of partly exposed Bloyd reef development is in the valley of Greenleaf Creek below Greenleaf Lake dam, Muskogee County, Oklahoma (fig. 3). Because of the success of an earlier vertical-magnetic-intensity survey in delineating a reef in Adair County (Norden and others, 1963), the same method was used in an attempt to map the reef facies at Greenleaf Lake. Field observations were made by the authors on July 10, 1963, along a line which crossed the reef exposures from Atoka Formation outcrops on the south to the northwest end of the dam (figs. 1, 3). The instrument used was a Ruska type V-3 vertical magnetometer with a sensitivity setting of 10.45 gammas per scale division.

Magnetic-susceptibility measurements of samples of the Bloyd reef rock and of the Atoka sandstone, made with a magnetic-susceptibility bridge, model MS-3*, yielded values of 0.39×10^4 cgs unit for the reef rock and 8.9×10^4 cgs unit for the sandstone. The resultant susceptibility contrast of 8.51×10^4 cgs unit would produce, in a magnetic field of $H = 0.516$ oersted, a polarization contrast of 4.39×10^4 cgs unit so that the magnetic relief to be expected to be produced by the reef rock would be only about 3 gammas. In contrast, the actual magnetic relief detected along the profile was 36 gammas.

*Geophysical Specialties Co., Hopkins, Minn.

![Figure 1. Vertical-magnetic-intensity profile 1. Measurements taken across Greenleaf Lake dam.](image-url)
(fig. 1), a value far in excess of the effect attributable to the presence of the reef rock alone. The character and magnitude of the anomaly indicate that it is, instead, an effect due to basement relief with erosional entrenchment below the Greenleaf Lake dam site.

Examination of aerial photographs of the area revealed the presence of fine linear features related to the microfracture pattern of the surface rocks, and it was decided to run two more magnetic profiles across the strike of a northwestward-trending linear which passes through the reef exposures at the Greenleaf Lake dam site.

MAGNETIC DELINEATION OF THE BASEMENT SURFACE

Profile 2 (figs. 2, 3) was selected to run west of the reef exposures and to intersect the linear. At stations 6 and 14 it shows vertical-magnetic-intensity drops of about 25 and 70 gammas, respectively. These are believed to reflect the configuration of the basement surface. Magnetic studies in northeastern Oklahoma (Norden and Langton, 1963) have demonstrated the utility of the magnetometer in basement-surface mapping. This utility derives from the fact that the basement complex and the overlying sedimentary rocks exhibit a susceptibility contrast of more than $1,000 \times 10^{-6}$ cgs unit. The magnetic anomaly in

![Figure 2. Vertical-magnetic-intensity profile 2. Measurements taken along south-north line west of Greenleaf Lake dam.](image-url)
the Greenleaf Lake area is considered to be caused by a geophysical condition of similar nature.

The basement relief at the entrenchment between stations 14 and 20 was computed to be 0.862 kilo-feet (862 feet). Applying a susceptibility contrast of $1,180 \times 10^4$ cgs unit between the basement rocks and the overlying sediments in a field of $H = 0.516$ oersted, the polar-

Figure 3. Map of vicinity of Greenleaf Lake dam, showing locations of stations along the three magnetic profiles. Line of profile 1 (fig. 1), stations R-1 to R-10, is shown in detail in inset map at upper right. Profile 2 (fig. 2) is from station 1 to station 23, and profile 3 (fig. 4) is from station 24 to station 37.
ization contrast was found to be 6.0888×10^{-4} cgs unit. By the analogy of a faulted escarpment (Nettleton, 1942) between stations 14 and 20, the depth to the center of the buried escarpment was found to be 1.5 kilo-feet (1,500 feet).

Theoretical magnetic effect of a buried escarpment

$$V = 2 \times I \times t \left(x^2 + z^2 \right)^{-1}$$

$$= K \times f \left(\frac{x}{z} \right)$$

where $f \left(\frac{x}{z} \right) = \frac{x}{z} \left(1 + \frac{x^2}{z^2} \right)^{-1}$

and $K = 2 \times 10^8 \frac{I}{z} \times t$

I is the polarization contrast
t is the thickness of the buried escarpment
z is the depth in kilo-feet to the center of the buried escarpment
x is the distance in kilo-feet from the ledge of the buried escarpment

Applying for $x = 1.65$ kilo-feet (1,650 feet) which is one-half of the distance between stations 14 and 20 and with the value of $z = 1.5$ kilo-feet (1,500 feet)

$$f \left(\frac{x}{z} \right) = 0.498$$

$$K = 2 \times 10^8 \times \frac{6.0888}{1.5} \times \frac{10^{-4}}{8.62} = 70 \text{ gammas}$$

For a distance of 1,650 feet from the ledge of the buried escarpment the relative magnetic relief

$$V = 35 \text{ gammas}$$

The theoretical value of 70 gammas total relief across the escarpment accords with the actual field value of 70 gammas observed between stations 14 and 20.

Profile 3 (fig. 4) at stations 30 and 31 shows about a 33-gamma drop of the vertical magnetic intensity. This drop of the gamma values may be correlated in trend with the drop of vertical magnetic intensity at stations R-5, R-6, and R-7 of profile 1 (fig. 1) and with the drop in magnetic intensity at stations 14 and 15 of profile 2 (fig. 2). This trend of correlation coincides with the linearity of the depression of the southeast branch of Greenleaf Lake along which the back flooding of water is noticed. On profile 2 (fig. 2) at station 6, the 25-gamma drop of magnetic values may indicate another entrenchment in the basement surface. This drop in the vertical magnetic intensity ties to the low magnetic values at stations R-5, R-6, and R-7 on profile 1 (fig.
1). Greenleaf Creek along its upper section follows the trend of this entrenchment which may continue east-northeast across Greenleaf Lake.

GEOLOGICAL INTERPRETATION OF THE MAGNETIC PROFILES

The considerable magnetic-susceptibility contrast between the basement rocks and the overlying sediments may support the assumption that the magnetic profiles are the geophysical indications of the basement surface. Correlation between the profiles points toward a linear tie along the erosional entrenchment on the basement surface. The fact that this linear trend is reflected by the photogeologically recognized linears in the surface formations may contribute to the assumption that the erosional entrenchment on the basement surface was oriented by fracture and fault systems. Perhaps the basement surface was fractured and faulted prior to the erosion, and the erosional forces could work deeper along the fracture and fault zones. The surface linears may be interpreted as a small-scale adjustment in the sediments overlying linear erosional and fracture zones on the basement surface. Epeirogeny and tectonic small-scale adjustments along the fracture zones of the eroded basement surface may also have contributed to originate microadjustments in the overlying sediments and give an explanation for the trend correlation of photogeological surface linears and the basement surface tectonic and erosional configuration. The two magnetically delineated possible fault lines (fig. 3), by their intersection at the Greenleaf Lake dam site, suggest a conjugate shear pattern. The lower section of Greenleaf Creek follows a trend parallel to the possible fault line and erosional entrenchment magnetically de-

Figure 4. Vertical-magnetic-intensity profile 3. Measurements taken along west-east line southeast of Greenleaf Lake Dam.
ected between stations R-5, R-6, and R-7 of profile 1 and stations 30 and 31 of profile 3.

CONCLUSION

A vertical-magnetic-intensity survey across a Morrowan (Pennsylvanian) reef mass in the Bloyd Formation at the Greenleaf Lake dam site, Muskogee County, Oklahoma, delineated below the reef an erosional entrenchment in the basement surface. Two other magnetic-profile lines to delineate the trend of this basement entrenchment confirmed the assumption that, at the Greenleaf Lake dam site, shear-pattern-oriented erosional entrenchments characterize the basement relief. These erosional entrenchments, owing to their tectonic linearity, seem to be fracture controlled. A definite correlation can be established between the photogeologically recognized linears in the surface formations and the trend of this erosional basement entrenchment. This correlation may be explained by the tectonic adjustments of younger series overlying the fracture- and erosion-controlled basement relief.

References Cited

L. R. Wilson and B. S. Venkatachala†

Palynological studies in Oklahoma during the last several years have revealed many specimens of the sporomorph genus Potonieisporites Bhardwaj, 1954. These discoveries led to a detailed study of the genus and of the type species, *P. novicus*, the holotype of which is deposited in the collections of the Geologisches Landesamt, Krefeld, Germany. Upon completion of this study, the generic assignment of the species *Florinites elegans* Wilson and Kosanke, 1944, was found to be with *Potonieisporites* rather than with *Florinites*; therefore the following transfer is proposed.

Potonieisporites elegans (Wilson and Kosanke, 1944) comb. nov.

*One project supported by National Science Foundation Grant G-22083.
†Birbal Sahni Institute of Palaeobotany, Lucknow, India.

Figure 1. High focal plane showing smooth outer surface of saccus.
Figure 2. Low focal plane showing the infrareticulate nature of the saccus.

67
Appreciation is expressed to Dr. Robert Potonié and Dr. Hilde Grebe of the Geologisches Landesamt, for courtesies to the writers while we conducted the examinations of the type material in Krefeld, Germany.

References Cited

New Theses Added to O. U. Geology Library

The following Master of Science theses have been added recently to The University of Oklahoma Geology Library:

Foraminifera of the Brownstown Formation (Cretaceous) of southwestern Arkansas, by Jesse L. Tuttle, Jr.

Pre-Chester Mississippian rocks of northwestern Oklahoma, by Edward Arthur Hoffmann, Jr.