Arkoma Basin Symposium

The Seventh Biennial Geological Symposium, sponsored by the School of Geology, The University of Oklahoma; the Arkansas Geological and Conservation Commission; and the Department of Business and Industrial Services, Extension Division, The University of Oklahoma, will be held on March 7-8, 1961. The symposium, under the chairmanship of Dr. Carl A. Moore, will be dedicated to the memory of C. W. Tomlinson, and its theme will be *The Arkoma Basin*.

The two-day symposium will consist of four technical sessions at which the following thirteen papers will be presented and discussed.

Tectonics of the Ouachita Mountains of Arkansas and Oklahoma, by Clifford B. Branan, petroleum geologist, Oklahoma City, Okla.

Evidence and distribution of normal faulting in the east-central portion of the Arkoma basin, by John P. Shields, consultant geologist, Fort Smith, Ark.

Pre-Des Moines correlations from Arbuckle Mountains to western Arkansas, S. E. Frezon, U. S. Geological Survey, Denver, Colo.

A subsurface correlation of the gas producing formations of northwestern Arkansas, by Andrew B. Bacho, Jr., Gulf Oil Corp., Fort Smith, Ark.

The Viola limestone of the Oklahoma portion of Arkoma basin, by Tom Mairs, graduate student, The University of Oklahoma.

The Hunton group of the Oklahoma portion of Arkoma basin, by Richard England, graduate student, The University of Oklahoma.

Regional geology of the pre-Des Moines Pennsylvanian of Arkansas, by E. E. Glick, U. S. Geological Survey, Denver, Colo.

A comparison of Plio-Miocene sedimentation of the Gulf Coast with the Atoka sedimentation of the Arkoma basin, by B. J. Scull, Sun Oil Co., Richardson, Texas.

Pennsylvanian system of McAlester basin and of the Mid-Continent platform, by Carl C. Branson, School of Geology, The University of Oklahoma.

Palynological evidence of low-grade metamorphism in the Arkoma basin, by L. R. Wilson, professor of geology, The University of Oklahoma.

Application of logging techniques in the Arkansas Valley, by Roger N. Planalp, Athletic Mining and Smelting Co., Fort Smith, Ark.

Some drilling programs and problems in the Arkoma basin, by Gene A. Bowman, Big Chief Drilling Co., Oklahoma City, Okla.

A dinner will be given on the evening of the 7th. The speaker being William J. Geary, Peak Petroleum Co., Denver, Colo., whose topic will be *Modern techniques applied to fractured shale production.*

The registration fee of $10.00 will cover admission to the sessions and the cost of the published proceedings which will be made available at a later date. Non-registrants may obtain the proceedings from the Extension Division, The University of Oklahoma, at a price to be determined by the cost of printing.

54
ANNOTATED BIBLIOGRAPHY AND INDEX OF
OKLAHOMA GEOLOGY
1960

Prepared by NEVILLE M. CURTIS, JR.

Bibliography—pages 55-72
Index—pages 72-81

BIBLIOGRAPHY

Amsden, T. W., 1960a, Lissatrypoidea concentrica (Hall), emend Boucot and Amsden: Illustrations of the lectotype: Okla. Geology Notes, vol. 20, no. 6, p. 138-139, 1 fig. Specimen is re-illustrated in five different views.

Ausburn, Brian, see Reid, G. W., and others.

55

Barrett, Edward. 1960, Mississippian or Pennsylvanian: that is the question: Shale Shaker, vol. 11, no. 2. p. 14-17. Discussion of Mississippian and Pennsylvanian correlation problems and general aspects of the two periods.

Bennison, Allan, see Tomlinson, C. W.

Bike, Peter, 1960. Independents can play the deep country, too: Oil & Gas Jour., vol. 58, no. 44. p. 195, 1 fig. Resume of production from exploratory Ordovician strike in Grady County. Oklahoma.

see Strimple and Blythe

1960b. Southeast Oklahoma reawakens as potential gas giant: Oil & Gas Jour., vol. 58, no. 32. p. 120-122. 1 fig. Resume of petroleum exploration in the Ouachita Mountains and Arkoma basin.

1960c. Beyond the Panhandle: Okla. Geology Notes. vol. 20,

1960h. Local fossil assemblage in the Seminole formation: Okla. Geology Notes, vol. 20, no. 1, p. 16-17. Faunal list and number of specimens from sample collected in Tulsa County, Oklahoma.

Brush, B. M., and others, 1960a. Oklahoma, in Internat. Oil and Gas

_________ 1960c. 1960's will be Hugoton's decade: Oil & Gas Jour., vol. 58, no. 14, p. 162, 164. Résumé of North Buffalo field in Harper County.

Chenoweth, P. A., 1960a. Ouachita Mountains do have oil and gas potential: World Oil, vol. 151, no. 2, p. 94-100. 2 figs. The six reasons cited by many geologists for reluctance to explore the area for oil and gas are refuted by Dr. Chenoweth.

Clarke, R. T., see Wilson and Clarke (a) (b)

Cochrane, E. M., see Abernethy, R. F.

Cocke, J. M., see Sutherland, P. K.

Conant, G. D., see King, R. R.

formation in Nowata County, Oklahoma.

_________ see Ham and Curtis.

Davis, L. V., 1960. Geology and ground-water resources of southern McCurtain County, Oklahoma: Okla. Geol. Survey, Bull. 86, 108 p., 19 figs., 8 tables, 1 plate. Surface strata are Cretaceous and bulletin is primarily a ground-water report.

_________ see Ham, W. E. and others (a)

Eng. Harvard. see Rollman, H. E.

Ferguson, W. S., see Baker and Ferguson.
Fine, M. M., see Hahn, A. D.
Gelpman, N. R., 1960. West Sentinel oil field. Washita County, Oklahoma: sedimentology of the “granite wash” and structural geology: Shale Shaker. vol. 10, no. 6, p. 2-16, 11 figs., 1 table. A sedimentation study relative to the “granite wash” in the field.
Gilley, E. R., see Brush, B. M.
Greenkorn, R. A., see Johnson, C. R.
of micropaleontology in the United States and includes Chouteau fauna from the Welden of Oklahoma.

Ham. W. E., 1960a, Glassy pebbles in southwestern Oklahoma—obsidian vs. tektite: Okla. Geology Notes, vol. 20, no. 4, p. 92-95, 3 figs., 1 table. Black glassy pebble from Kiowa County found to be obsidian and not a tektite. The Delhi tektite is discredited and it is concluded that no tektite has been described from Oklahoma.

Ham, W. E., see Grandone, Peter

——— see Howery, S. D.

Harris, R. W., 1960a. An index ostracode from the Arbuckle limestone, Oklahoma: Okla. Geology Notes, vol. 20. no. 9, p. 211-216, 1 fig., 1 pl. Description of new genus Ceratoleperditia and genotype Ceratoleperditia arbucklenalis from outcrop on south side of Arbuckle Mountains.

Hendricks, T. A., see Miser, H. D.

——— 1960d. Regional relations of pre-Desmoinesian rocks, central Mid-Continent region: Kansas Geol. Soc. Guidebook 25th Field Conf., North-eastern Oklahoma, p. 48-71. 12 figs. Isopachous and paleogeologic maps are used to study the major tectonic features and pre-Desmoinesian stratigraphy and isopachous relations.

Notes, vol. 20, no. 7. p. 159-163. 2 figs. Résumé of lithology, paleontology, and distribution of Noel shale.

Hunter, H. E., 1960, Topographic control by primary igneous structures in the Raggedy Mountains, southwestern Oklahoma: Okla. Geology Notes, vol. 20, no. 5, p. 112-115, 5 figs. Difference in susceptibility to weathering of different igneous rocks results in characteristic topographic features. The gross topographic features in area appear to be a result of preferred orientation of plagioclase and layered character of intrusive body.

see Hiss, W. L.

Jaster, M. C., see Withington, C. F.

1960b, Helium plant completed at Keyes: Okla. Geology Notes, vol. 20, no. 1, p. 15. Description of opening ceremony, production of plant, and processes used.

Jordan, Louise. see Branan and Jordan (a) (b)

Jussen, V. M., see King, R. R.

Kent, L. S., see Brann, D. C.

1960b. Las Animas arch—promising oil and gas frontier: World Oil, vol. 151, no. 4. p. 87-92. 3 figs., 1 table. Includes subsurface geologic map contoured on top of Mississippian in the Oklahoma Panhandle.

Lang, R. C., 1960. Western limits of Oil Creek sand in southern Oklahoma and northern Texas [abs.]: Amer. Assoc. Petroleum Geologists. Bull., vol. 44, no. 1. p. 129. Western limit along a line from Stephens County, Oklahoma, to Grayson County, Texas. In Oklahoma, the limit is a result of facies change.
Laughbaum, L. R., 1960, A paleoecologic study of the upper Denton formation, Tarrant, Denton, and Cooke Counties, Texas: Jour. Paleontology, vol. 34, no. 6, p. 1183-1197. 3 figs. Environmental interpretations can be applied to southern Oklahoma along the Red River.

Link. The. 1960, $250,000 strait jacket for salt water: The Link. vol. 25. no. 5, p. 10-11, 1 fig., 4 photos. Salt water disposal system in the Greater Seminole (Oklahoma) oil fields is described.

Loud. E. S., see King, R. R.

Mankin, C. J. see Cassidy, M. M.

__________ see Ham, W. E., and others (b)

__________ see Howery, S. D.

__________ 1960b. Oklahoma’s Kingfisher blossoms with success: Oil & Gas Jour., vol. 58, no. 27. p. 159. 1 fig. Résumé of exploration and production (petroleum) in Kingfisher County.

__________ 1960e. Sooner eyes focusing on Arkoma basin: Oil & Gas Jour., vol. 58. no. 31. p. 214. 1 fig. History of petroleum exploration in the Arkoma basin.

65

Mount, J. R., see Reeves and Mount.

Murphy, Naomi. see Manley, Frederick, Jr.

Nicholson, Alexander. see Wilson and Nicholson

Oil and Gas Journal. 1960a, Drill uncovers more Sooner secrets: Oil & Gas Jour., vol. 58, no. 10, p. 162-164. History of Sinclair Oil & Gas Co.'s No. 1 A. H. Reneau in Latimer County in the Arkoma basin.

——— 1960d, Sooner state buzzes with drilling action: Oil & Gas
Jour., vol. 58, no. 47, p. 267-270. Résumé of recent oil activity by county.

1960a. Texas County jumps into Hugoton lead: Oil & Gas Jour., vol. 58, no. 15, p. 186-188. A tally of discoveries (oil-gas) in northwestern Oklahoma.

Petroleum Week, 1960a. Activity moves into high gear at Northeast Purdy waterflood: Petroleum Week. vol. 11, no. 17, p. 24-26. 5 photos. Estimated that 83 million bbl of oil will be unlocked due to waterflood. Includes depths to tops of various oil zones.

1960b. County gets ten new fields in a year: Petroleum Week. vol. 10, no. 3, p. 35. 1 fig. Review of petroleum developments in Kingfisher County, Oklahoma.

1960c. Manning trend play enlivens Oklahoma: Petroleum Week. vol. 11, no. 4, p. 22-23. 1 fig. Developments in Major and Kingfisher Counties indicate multipay possibilities from stratigraphic traps.

Pitt, W. D., 1960a. Dig deeper for Ouachita reserves: Oil & Gas Jour., vol. 58, no. 46, p. 214-217. 2 figs. Oil and gas potential for four areas is discussed. Includes brief review of structure and stratigraphy.

1960b. What lies beneath the Lukfata sandstone?: Okla. Geology Notes, vol. 20, no. 11, p. 290-291. Discussion as to thickness, character, and oil potential of strata below the Lukfata sandstone in the core of the Ouachita Mountains.

Quinn, J. H., 1960, Correlation of Pennsylvanian strata on the basis of northwestern Arkansas goniatites [abs.]: Geol. Soc. America, Program 1960 Ann. Mtgs., p. 183. Winslow formation is not equivalent to the Atoka but is older and the southeastern Oklahoma Morrowan appears to fit between the Brentwood and Kessler members of the Boyd formation. Hale formation and Caney shale also discussed.

Reed, E. W., see Mogg, J. L.

Reeves, C. C., Jr., 1960a, A closer look at Love County: Oil & Gas Jour., vol. 58, no. 1, p. 116-121, 1 table, 3 figs. History of petroleum development and structure in county.

Reeves, C. C., Jr., 1960b, Love County: Oil & Gas Jour., vol. 58, no. 2, p. 124-130, 3 figs., 1 table. Data relative to individual oil fields and future prospects.

Research Oil Reports, 1960, Analysis of available data on secondary recovery in Oklahoma: Research Oil Reports, 233 p. Pool, operator, formation, depth, number of input wells, oil production, and water injected reported.

Respress, M. C., 1960, Mid-Continent hot spot owes success to modern well-stimulation techniques: Oil & Gas Jour., vol. 58, no. 37, p. 93-96, 3 figs., 3 tables. Résumé of production and fracture treatments required for various producing zones.

Roy, Mihir, see Reid, G. W., and others.

Sadlick, Walter, 1960, New name for *Spirifer occidentalis* (Girty) and its geologic history: Jour. Paleontology, vol. 34, no. 6, p. 1210-1214, Relates to *Spirifer matheri* and *Spirifer leidyi* in Oklahoma.

__________ see Ham, W. E., and others (b)

Schoff, S. L., see Mogg, J. L.

Shaw, C. A., 1960. Better double check the Cimarron: Oil & Gas Jour., vol. 58, no. 50, p. 164-167. 5 figs. Résumé of development and production in the Keyes and Griggs fields. Seventeen pay zones at less than 5,000 feet.

Starke, J. M., Jr., see Huffman, G. G., and Starke (a) (b) (c) (d)

Strimple, H. L., 1960a, Regressive evolution among eristicoids. Okla. Geology Notes, vol. 20, no. 6, p. 151-155. 2 figs. *Endelocrinus* and *Delocrinus* are used in study to show regressive evolution: also used is *Paradelocrinus*.

__________ 1960c. The posterior interradius of Carboniferous inadunate crinoids of Oklahoma: Okla. Geology Notes, vol. 20, no. 10. p. 247-253, 3 figs. Mississippian and Pennsylvanian crinoids which are known to occur in Oklahoma are used in this study.

Thompson, Robert, see Reid, G. W., and others
Thrift, L. S., Jr., see Brush, B. M.

Trimble, J. K., see Baker, D. R.

Waddell, D. E., see Frederickson, E. A.

West, A. E., 1960, Geology of northeastern Lincoln County, Oklahoma: Shale Shaker, vol. 11, no. 3, p. 2-12, 7 figs., 3 pls. Late Pennsylvanian and early Permian stratigraphy and faunal lists for various units.

Wilson, L. R., 1960a, A Permian hystrichosphaerid from Oklahoma: Okla. Geology Notes, vol. 20, no. 7, p. 170. 1 fig. Description and photograph of specimen from the Flowerpot shale, Greer County, Oklahoma.

Wilson, L. R., and Clarke, R. T., 1960a, A Mississippian chitinozoan from Oklahoma: Okla. Geology Notes, vol. 20, no. 6, p. 143-150, 4 figs. Description of one specimen from the Goddard shale in Johnston County, Oklahoma.

Wynn, L. L., 1960, Simpson group of south-central Kansas [abs.]: Amer. Assoc. Petroleum Geologists, Bull., vol. 44, no. 1, p. 131. Study indicates that Simpson has a normal sequence of deposition and that anomalous or erratic characteristics northward are a result of tectonic movements.

INDEX

Alabaster Caverns. Myers (a) (b)
Amarillo-Hugoton area. Worden
Anadarko basin: cross section. Adkison, Jordan (j); oil and gas environment. Schluikjer; petroleum. McCaslin (d); stratigraphy. Rascoe anhydrite: annotated bibliography. Withington and Jaster.
Anisocyanus, Martinsson
Arbuckle Mts.: generalized section. Wheeler; Hunton group. Amsden (c); ostracod in Arbuckle ls. Harris (a)
Arkoma basin: petroleum. Branam and Jordan (a) (b), McCaslin (d) (e)
Axiolobus modulus, Gordon
Bar M fauna. Hibbard and Taylor
basement rock, southern Oklahoma. Ham and others (a)
Bear Creek, defined. Oklahoma Geological Survey (a)
Beattie ls., cyclic sedimentation. Imbrie
Berends fauna. Hibbard and Taylor
bibliographic citations, correct form. Branson (d)
biofacies, restricted. Nowata Co. Branson (a)
Boktukola syncline. Shelburne
Buis Ranch. molluscan fauna. Taylor
California Road. Dott
Cambrian: basement rocks. Ham and others (a); pre-Upper, age in Wichita Mts. Kulp
Carboniferous: cephalopods, Branson (n), Gordon; crinoids, Strimple (c); Mid-Continent problems, Branson (b)
Cavanal syncline, Webb, P. K.
caves. Alabaster Caverns, Myers (a) (b)
cement plant, new, Pryor, Huffman (b)
Cenozoic, molluscan fauna, Taylor
Ceratoolepidita, ostracod, Harris (a)
Chazyan fauna, Cherokee Co., Huffman and Starke (a)
Cherokee group: cyclic deposition, Baker and Trimble; organic geochemistry, Baker and Ferguson
clay: clue to oil, Weaver; technique of mineral analysis, Cassidy and Mankin
climate, High Plains, Pliocene and Pleistocene, Hibbard
coal, fusibility of ash, Abernethy and Cochrane
Conostichus, Branson (e)
Cordania. Whittington

COUNTY:

Beaver: Big Mocane and Laverne fields, Chasteen (a); gas, Light field, Barby; molluscan fauna, Taylor; Planorbula vulcanata, Frankel
Bryan: lignite, Cretaceous, Curtis (b)
Caddo: apatite and magnesite clay, Ilowery and others: Pennsylvanian subsurface, Harlton; uranium, Dean
Canadian, ground water, Mogg and others
Carter: Caddo oil field, Nance, Rouget; foraminifer Tubertina, Branson (m)
Cherokee: oil and uranium in black shale, Swanson; paleobotany, Huffman and Starke (b); paleontology and stratigraphy, Huffman and Starke (a); Spirifer grimesi, Huffman and Starke (d)
Cimarron: geology adjacent in New Mexico, Branson (c); helium plant, Jordan (b); soil survey, Murphy and others; uranium in ground and surface water, Landis
Coal, Dalmanites oklahomae, Frederickson
Comanche, rock slide. Mt. Scott, Denison
Creek, soil survey, Oakes and others
Grady: Ordovician oil production, Bike; Pennsylvanian subsurface, Harlton
Greer, hystrichospherid, Wilson (a)
Harper: Big Mocane and Laverne fields, Chasteen (a); Buffalo field, North. Chasteen (c); Ophiurosaurus attenuatus, Etheridge, paleontology, Stephens; salt beds in Laverne gas area, Jordan (f); soil survey, Nance and others
Jefferson, Canyon reef, Chenoweth (b)
Johnston, chitinozoan, Wilson and Clarke (a)
Kingfisher, petroleum, Jordan (e), McCaslin (b) (c), Petroleum Week (b) (c)
Kiowa: ilmenite, Hahn and Fine; obsidian or tektite, Ham (a); Raggedy Mts., igneous topography, Hunter
Latimer: Russell; petroleum. Oil and Gas Journal (a)
Le Flore, Shelburne
Lincoln: Chandler area, Strachan; northeastern, West
Logan: Layton sandstone, Bross, Wessman; soil survey, Galloway and others
Love: crinoid, Pennsylvanian, Frederickson and Waddell; petroleum, Reeves (a) (b), Reeves and Mount
Major, Petroleum Week (c)
Mayes: cement plant, new, Huffman (b); Spavinaw granite, Merritt
McCurtain, Shelburne; ground water, Davis
McIntosh, Eufaula-Texanna area, Branan, Webb, F. S.
Murray, oil and uranium, black shale, Swanson
Muskegee, Azinolobus modulus, Gordon
Nowata: restricted biofacies, Branson (a); crinoid, Cronoble
Okfuskee, Valley-Grove oil field, Wilshire
Osage: electric log cross-section, Kornfeld (a); Gastriocras, Branson (f); petroleum, Clinton; star-fish, Branson (r)
Pawnee: Bear Creek defined, Oklahoma Geological Survey (a); Cowskin Creek defined, Oklahoma Geological Survey (a)
Payne, electric log cross-section, Kornfeld (a)
Pittsburg: Eufaula-Texanna area, Branan, Webb, F. S.; Featherston area, Vanderpool
Pontotoc, paleobotany, Wilson and Clarke (b)
Pushmataha, Shelburne
Roger Mills,apatite and clay minerals, Lovett and others
Rogers, Sutherland and Cocke
Seminole, star-fish, Chenoweth (c)
Sequoyah, Silurian and Devonian, Amsden (b)
Texas, uranium, ground and surface water, Landis
Tillman, ilmenite, Hahn and Fine
Tulsa, Seminole fm., Branson (n)
Washington, waterflood, Faxon, Powell
Washita, "granite wash," Gelphman
Woodward: Alabaster Caverns, Myers (a) (b); gas fields. Jordan (k): karst topography, Myers (b)
Cowskin Creek. defined, Oklahoma Geological Survey (a)
Cretaceous: lignite, Curtis (b); paleoecology, Laughbaum: stratigraphy, Davis
cyclic sedimentation. Beattie ls., Imbrie
Dalmanites oklahomae, Frederickson
datum planes, how to choose, Kornfeld (a)
deep wells, statistics, Adams
Devonian, Sequoyah County, Amsden (b)
directory, geologist and geophysicists. Manley and Murphy
Doby Springs. vertebrate paleontology, Hibburt and Taylor, Stephens

ECONOMIC GEOLOGY:

air-drilled samples, Jordan (c)
cement plant, new, Pryor, Huffman (b)
coal, fusibility of ash, Abernethy and Cochrane
gas storage in salt beds, Jordan (f)
helium plant. Keyes, Jordan (b)
ilmenite, Kiowa and Tillman Counties, Hahn and Fine
petrochemical plants, *Oklahoma Geological Survey*
pumice, new use, *Burwell* (a)
refractories, novaculite, *Rollman and Eng*
rock wool from volcanic ash, *Burwell* (b)
statistics: mineral industries, *Grandone and Ham*; petroleum, *Jordan*
(g) (h) (m); mines and mining, *Malloy*
sulfur, percent in coal, *Abernethy and Cochrane*
Tri-State, structural features, *Fowler*
educational, *Ham and Curtis*
erisocrinids, evolution, *Strimple* (a)
Eufaula-Texanna area, *Branan, Webb, F. S.*
evaporites, Permian, *Ham* (b); *Jordan* (f)
field trip: northeastern Oklahoma, *Oklahoma Geological Survey* (d);
paleobotanical, *Oklahoma Geological Survey* (e) (f), *Wilson and Nicholson*
Gastrioceras, Osage Co., *Branson* (f)
geochemistry: black shale, technique, *Cassidy and Mankin*; gypsum,
Schleicher; organic, Cherokee group, *Baker and Ferguson*
geologists, directory, *Manley and Murphy*
geomorphology: caves, *Myers* (a); igneous rock topography, *Hunter*;
karst topography, *Myers* (b); rock slide, *Denison*
geophysicists, directory, *Manley and Murphy*
geophysics, electric logging, *Doll and others, Millard* (a) (b)
ground water: Canadian County, *Mogg and others*; McCurtain County,
Davis; permeability measurements, *Johnston and Greenkorn*; uranium
content, *Landis*
gypsum, topography, *Myers* (b)
helium plant, Keyes, *Jordan* (h)
Hugoton-Amarillo, *Worden*
Hunton group: stratigraphy and paleontology, *Amsden* (c); unconformity, *Gussow*
ilmenite. Kiowa and Tillman Counties, *Hahn and Fine*
insects, Permian, *Branson* (i)
International Geological Congress, 21st, *Jordan* (l)
Jackfork sandstone, age, *Miser and Hendricks*
Johns Valley shale, age, *Miser and Hendricks*
karst topography, Woodward County, *Myers* (b)
lakes, northeast Oklahoma, *Huffman* (f)
Las Animas Arch. *Kornfeld* (b)
Layton sandstone. Logan County, *Bross, Wessman*
lignite. Cretaceous. *Curtis* (b)
Lissatrypoidea concentrica, *Amsden* (a)
Manning trend, petroleum, *Petroleum Week* (c)
marine transgressions, Paleozoic boundaries, *Huffman* (e)
mineral industries, *Grandone and Ham*

MINERAL/MINERALOGY:
anhydrite, bibliography, *Withington and Jaster*
apatite, authigenic: *Howery and others; Lovett and others*
borate. *Ham and others* (b)
clay: magnesium. *Howery and others*: minerals. *Lovett and others*
educational, *Ham and Curtis*
gypsum; analysis, *Schleicher*; bibliography, *Withington and Iaster*
ilmenite, *Hahn and Fine*
obsidian, *Ham* (a)
priceite, *Ham and others* (b)
probertite, *Ham and others* (b)
Spavinaw granite, *Merritt*
tektite, *Ham* (a)
ulexite, *Ham and others* (b)

Mississippian: *Jordan* (d); chitinozoan, *Wilson and Clarke* (a); Chouteau
fauna, *Gutschick* (b); Foraminifera, *Gutschick* (a); Johns Valley—
Stanley sequence, *Miser and Hendricks, Cline*; oil/gas, Osage County,
Clinton; Ouachita Mts., *Cline*; Panhandle, *Kornfeld* (b); plant local-
ity, *Huffman and Starke* (b); problems, *Barrett*

Missourian, crinoid, *Cronoble*
Monograpthus nilssonii, *Berry*
Morrow sand, resistivity-velocity log, *Millard*

Museum of the Great Plains, *Oklahoma Geological Survey* (c)
Noel shale, *Huffman and Starke* (c)
obsidian, *Ham* (a)
Oil Creek sand, western limit, *Lang*
Ophisaurus attenuatus, *Etheridge*

Ordovician: ostracods, *Martinsson, Harris* (a) (b); graptolites, *Branson*
(j)
Orthoretiolites hami, *Skewington*

Ouachita Mts.: petroleum, *Branan and Jordan* (a) (b); *Chenoweth* (a),
Pitt (a) (b); refractory material, novaculite, *Rollman and Eng*;
sedimentary basin, *Barrabé*; Mississippian and Pennsylvanian, *Cline*

Ozark area, *Huffman* (a) (f)

PALEOBOTANY:

bibliography, *Wilson* (d)
cordaitean wood, siliceous spherules, *Wilson and Clarke* (b)
field trip, *Oklahoma Geological Survey* (e) (f), *Wilson and Nicholson*
history in Oklahoma, *Wilson* (d)

microfossils, *Geology Notes cover*, *Wilson* (b) (c)

Mississippian, Cherokee County, *Huffman and Starke* (b)

Paleontological Institute, Oklahoma collection, list, *Bran and Kent*

PALEONTOLOGY:

Anisocystus, Martinsson

Atoka fm., *Blythe*

biofacies, restricted. Nowata County, *Branson* (a)
brachiopod, *Lissatrypoidea concentrica*, *Amsden* (a)
cephalopods, *Carboniferous, Branson* (n), *Gordon*
Ceratoleperditia, *Arbuckle ls., Harris* (a)

Chazy, Cherokee County, *Huffman and Starke* (a)
chitinozoan, *Mississippian, Wilson and Clarke* (a)

Chouteau fauna. Welden ls., *Gutschick*
collection. Paleontological Institute. *Bran and Kent*
conodonts. Goddard fm., *Tomlinson and Bennison*

Conostichus, Branson (e)
Cordania falcata, Whittington

crinoid: Cronoble; Strimple (a) (b) (c); Strimple and Blythe;
Pennsylvanian, Frederickson and Waddell
Dalmanites oklahomae, Coal County, Frederickson
erisocrinids, evolution, Strimple (a)
Gastrioceras, Osage County, Branson (f)
goniatites. Pennsylvanian correlation. Quinn
graptolite: correlation, Berry; Texas, Oklahoma Ordovician, Branson (j)

Hunton group, Arbuckle Mts., Amsden (c)
hystrichosphaerid, Wilson (a)
insects, Permian, Branson (i)
microfossils: Wilson (b) (c); foraminifer, Tubiritina, Branson (m);
Mississippian foraminifera, Gutschick (a)
molluscan fauna. Beaver County, Taylor
Neoprololium oklahomae, Frederickson
Orthoretiolites humi, Skevington
ostracods: Harris (a); Ordovician, Martinsson; primitiospid, Harris
Ozark region, Huffman (a)
Paragassizocrinus; Strimple (b); Strimple and Blythe
Planorbula vulcanata, Beaver County, Frankel
Productoida, Wood-Muir and Cooper
Pseudozaphrentoides, Sutherland and Cocke
Seminole fm., Branson (h)
Spirifer grimesi, Huffman and Starke (d)
Spirifer occidentalis, Sadlick
starfish: Hilltop shale, Chenoweth (c); Cottonwood limestone, Branson (k)

vertebrate: High Plains, Hibbard: Ophisaurus attenuatus, Etheridge
Palaeozoic: boundaries. Huffman (e); cross section. Adkinson, Jordan (j);
Ouachita Mts., Cline

Panhandle. petroleum. McCaslin (a). Chasteen (b). Corrod, Kornfeld (b)
Paragassizocrinus, Strimple (b). Strimple and Blythe
Pennsylvanian: coral. Sutherland and Cocke; crinoid, Frederickson and Waddell; facies change. Edwards: goniatites, Quinn: Johns Valley—
County. Chenoweth (b); stratigraphy, Rascoe: subsurface. Caddo and
Grady Counties. Harlon

Permian: authigenic minerals. Howery and others; borate minerals. Ham
and others (b); correlation. Dunbar and others; evaporites. Ham
(b); ground water in Canadian County, Mogg and others: hystrichosphaerid. Wilson (a); insects, Branson (i); karst topography. Myers
(b); limestone facies, Imbrie; salt beds. Jordan (f); starfish in Osage
County. Branson (k); stratigraphy. Branson (l). Rascoe

petrochemical plants. list. Oklahoma Geological Survey (g)

Petrology:

activity. Oil and Gas Journal (c) (d) (e)
air-drilled samples. Jordan (c)
Anadarko basin *McCaslin* (d)
Arkoma basin, *Branan and Jordan* (a) (b), *McCaslin* (d) (e)
Big Mocane field, developments, *Chasteen* (a)
Blackdog field, electric log cross section, *Kornfeld* (a)
Buffalo field, North, *Chasteen* (c)
Caddo County, Pennsylvanian, *Harlton*
Caddo field, *Nance, Rouget*
Cement pool, stratigraphy, *Harlton*
clay facies, *Weaver*
cost of well, *Jordan* (a)
Cushing, Southeast, *Kornfeld* (a)
deep wells, statistics, *Adams*
environment, *Schlaikjer*
Grady County, Ordovician, *Bike*; Pennsylvanian, *Harlton*
Greasy Creek field, *Kornfeld* (a)
Griggs field, *Shaw*
Keys field, *Shaw*
Kingfisher County, *Jordan* (e), *McCaslin* (b) (c), *Petroleum Week* (b) (c)
Las Animas arch, Panhandle, *Kornfeld* (b)
Latimer County, *Oil and Gas Journal* (a)
Laverne: *Doll and others*; developments, *Chasteen* (a); salt beds for
storage, *Jordan* (f)
Light field, *Barby*
Logan County, *Bross*
Love County, *Reeves* (a) (b), *Reeves and Mount*
Major County, *Petroleum Week* (c)
Manning trend, *Petroleum Week* (c)
Osage County, Mississippian, *Clinton*
OUachita Mts.: *Branan and Jordan* (a) (b), *Chenoweth* (a), *Pitt* (a) (b)
Panhandle, *Chasteen* (b). *Corrod. McCaslin* (a) *Oil and Gas Journal* (b)
permeability measurements, *Johnson and Greenkorn*
petrochemical plants, *Oklahoma Geological Survey* (g)
production: Arkoma basin, *Branan and Jordan* (a) (b); OUachita
province. *Branan and Jordan* (a) (b)
Purdy, Northeast, waterflood, *Petroleum Week* (a)
salt-water disposal: *Link*: Arkansas and Red River basin, *Reid and others*
secondary recovery. *Research Oil Reports*
Sentinel field, West, "granite wash." *Gelpman*
shale, in black, *Swanson*
sonic log, Morrow sand, *Millard* (b)
statistics, *Brush and others*. *High Plains Gas and Oil Scouts. Assoc.,
Jordon* (g) (h) (m), *Lawson and others*. *Roberts. Adams*
stimulation, well, *Respess*
Valley-Grove field, *Wilshire*
waterflood: *Research Oil Reports*: Washington County, *Faxon. Petroleum Week* (a), *Powell*
Woodward County, *Jordan* (k)
Petrology:
basement rocks, southern Oklahoma. Ham and others (a)
cyclic deposition, Cherokee group, Baker and Trimble
educational, Ham and Curtis
evaporites, Permian, Ham (b)
"granite wash," Sentinel field, Gelphman
Huron group, Arbuckle Mts., Amsden (c)
limestone, chemical analyses, Huffman (b)
magnetite-pyroxene textures, Hiss and Hunter
Spavinaw granite, Merritt
Wichita Mts., Mt. Scott. Denison
Planorbula vulcanata, Frankel
Pleistocene: climate, Hibbard; Ophisaurus attenuatus, Etheridge; vertebrates, Hibbard and Taylor; Stephens
Pliocene, climate, Hibbard
Precambrian, southern Oklahoma. Ham and others (a)
Productoidea, Wood-Muir and Cooper
Pseudozaphrentoides, Sutherland and Cocke
pumice, new use, Burwell (a)
Raggedy Mts., igneous topography. Hunter
Red River, tributaries named. Oklahoma Geological Survey (h)
reef, Canyon, in Jefferson County, Chenoweth (b)
resistivity-velocity log, Morrow sand, Millard
rock wool from volcanic ash. Burwell (b)
salt beds, Harper County. Jordan (f)
salt-water disposal, Seminole fields, Link
Seminole fm., paleontology, Branson (h)
Silurian: Monograptus nilssonii. Berry; Sequoyah County, Amsden (b)
Simpson group. Wynn
soil survey: Creek County. Oakes and others; Cimarron County, Murphy and others; Harper County, Nance and others; Logan County, Galloway and others
sonic log. Morrow sand. Millard (b)
Spavinaw granite, Merritt
Spirifer grimesii, Huffman and Starke (d)
Spirifer occidentalis, Sadlick
Stanley shale, age, Miser and Hendricks
starfish. Seminole County, Chenoweth (c); Osage County, Branson (k)
storage, gas in salt bed, Jordan (f)

Stratigraphy:
Amarillo-Hugoton area. Worden
Atoka. Blythe
Boktukola syncline, Shelburne
Carboniferous, problems. Branson (b)
Cavanal syncline, Webb. P. K.
Cherokee group, cyclic deposition. Baker and Trimble
Desmoinesian, pre-. Jones
Devonian. Sequoyah County. Amsden (b)
Featherston area. Pittsburg County. Vanderpool
Huron group, Amsden (c), Gussow
isopachous study, eastern Oklahoma, Bercutt; north-central Oklahoma, Jones
Jackfork sandstone, age, Miser and Hendricks
John Valley shale, age, Miser and Hendricks
Layton sandstone. Logan County, Bross, Wessman
Mayes County, Huffman (b)
Mid-Continent, Huffman (c) (d)
Mississippian: Jordan (d); Ouachita Mts. area, Cline; problems, Barrett
names, Branson (g)
Noel shale, Huffman and Starke (c)
Oil Creek sand. Lang
Ouachita Mts., Cline
Ozark region. Huffman (a)
paleogeologic study, eastern Oklahoma, Bercutt; north-central Oklahoma, Jones
Paleozoic: cross section. Adkinson, Jordan (j); boundaries, Huffman (e)
Pennsylvanian: Anadarko basin. Roscoe: Caddo and Grady Counties, Harlton; correlation, Quinn; northern Latimer County, Russell; north flank Wichita Mts., Edwards; Ouachita Mts. area, Cline; problems, Barrett
Permian: correlation. Dunbar and others; evaporites. Ham (b); limestone facies. Imbrie; nomenclature, history, Branson (l); Mid-Continent, Roscoe
Silurian, Sequoyah County, Amsden (b)
Stanley shale, age. Miser and Hendricks
Tiff member. Goddard fm., Tomlinson and Bennison
Tyner fm.. Huffman and Starke (a)
surface water. uranium content. Landis

TECHNIQUE:
interpretation of air-drilled samples. Jordan (c)
organic, removal from black shale. Cassidy and Mankin
palynology, Wilson (c)
resistivity-velocity log. Millard (a)
sonic log. evaluate sand. Millard (b)
stimulation of oil well. Respess
wire-line well logging. Doll and others

TECTONICS:
Arbuckle Mts., Wheeler
Desmoinesian. pre-. Jones
Mid-Continent. Huffman (c) (d)
Ouachita Mts. area, Barrassé
Ozark region. Huffman (a)
Paleozoic boundaries. Huffman (e)
Simpson group, Wynn
Tri-State mining area. Fowler
Wichita Mts. area, Barrassé
tektite. Ham (a)
Tiff member, Goddard fm.. Tomlinson and Bennison
Ulocrinus buttsi. Cronoble
uranium: black shale. Swanson; Caddo County, D-an; ground and surface
water, Landis
Viola limestone, Orthoretiolites hamii. Skevington
volcanic ash-rock wool. Burwell (b)
water: chemical. U. S. Geological Survey (a) (b); drawdown data,
Johnson and Greenkorn; mineral springs. Ward; statistics, U. S.
Geological Survey (c); uranium content, Landis
waterflow, Washington County, Faxon, Petroleum Week (a), Powell
Well Log Analysts, Society of, Jordan (i)
Wichita Mts.: age, Kulp; facies changes, Edwards; igneous topography,
Hunter; magnetite-pyroxene textures, Hiss and Hunter; rock slide,
Denison, sedimentary basin. Barrabé

Arkoma Basin Field Trip

The Tulsa Geological Society and the Fort Smith Geological Society
will sponsor a joint field trip through the Arkoma basin on April 14-15,
1961. The first day of the trip, under the guidance of James C. Perry-
man and Roger N. Planalp, Fort Smith Geological Society, will be spent
surveying the area west of Fort Smith as far as Wilburton and Quinton
and studying several large anticlines that are currently of interest. The
group will return to Fort Smith in the evening.

The trip, on the second day, under the direction of H. H. Hall. Tulsa
Geological Society, will cover some anticlines south of Fort Smith and will
extend as far south as Kiamichi Mountain. Return to Fort Smith will be
via Heavener, Howe, and Hartford.

A guidebook, including road logs and pertinent articles, will be
prepared.

New Theses Added to O. U. Geology Library

The following Master of Science theses were added to The University
of Oklahoma Geology Library during the month of January, 1961:
Stratigraphic relations of the Sycamore limestone (Mississippian)
in southwestern Oklahoma, by Chesley Key Culp, Jr.
Areal geology of the Moyers quadrangle, Pushmataha County, Okla-
ahoma, by Harry W. Todd.
Stratigraphy and sedimentation of the Pennsylvanian-Permian Foun-
tain formation, Fremont County, Colorado, by Tom Hillary Warren.

One doctoral dissertation, Stratigraphy and paleontology of the Elwins
formation, southeast Missouri, by Vincent Ellsworth Kurtz, was also added
to the library.
SALT SPRINGS IN OKLAHOMA
PORTER E. WARD*

The salt springs in western Oklahoma are of local importance because they are unusual, and of regional importance to water supply because they contaminate surface- and ground-water supplies downstream from their sources. Figure 1 shows the location of the major salt springs in western Oklahoma. Brine flowing from the springs saturates the valley alluvium and evaporation from the alluvial surface produces a thin crust of salt that is dissolved during rainstorms but reforms soon after the rain stops.

Before the coming of the white man, Indians collected salt at the springs and used it as an article of trade. When the pioneers began moving west many of them stopped at the salt springs to collect salt. Initially, the pioneers collected only enough salt for their personal needs by scraping up the salt crust that formed around the springs (fig. 2). Soon after settlers began moving into the region attempts were made to process the salt commercially. Jesse Chisholm, of Chisholm Trail fame, produced salt at the Blaine County Salt Plain before the Civil War. A few such attempts were moderately successful for short periods, and today salt is produced on a small scale at two spring sites in Oklahoma. One of these is on the Big Salt Plain of the Cimarron River near Edith in Woods County (fig. 3) and the other is in Salton Gulch on Elm Fork

EXPLANATION

1 Great Salt Plain
2 Big Salt Plain
3 Little Salt Plain
4 Blaine County Salt Plain
5 Beckham County Salt Plain
6 Salton Gulch
7 Robinson’s Gulch
8 Kiser Gulch
9 Jackson County Salt Plain

Figure 1. Map of western Oklahoma showing the location of major salt-spring areas.
Red River in Harmon County (fig. 4). At both localities salty spring water is collected in ponds where solar evaporation of the water causes the salt to concentrate and precipitate (fig. 4). After a layer of salt several inches thick forms on the bottom of the ponds it is scraped out and dried. The salt is then ready for market without further treatment.

Recently much attention has been focused on the salt springs, not because of the economic value of the salt but because of the adverse effect of the salt springs upon the water supply of Oklahoma. The U. S. Public Health Service, assisted by the U. S. Geological Survey, is conducting a special study of pollution caused by the salt springs in the Arkansas and Red River Basins, including the springs in western Oklahoma. The objectives of the Public Health Service project are to locate the natural salt sources, to determine the importance and type of pollutants entering the Arkansas and Red Rivers, and to devise practical means of containing or controlling them. The efforts of the U. S. Geological Survey are directed toward the determination of the source and occurrence, geologic conditions, and hydrology of natural saline pollution in these river basins.

The major saline springs in Oklahoma are in the western part of the State in the outcrop area of rocks of Permian age. The spring water is of the sodium chloride type, and the chloride concentrations range from about 20,000 ppm (parts per million) to 200,000 ppm. The springs in the nine areas shown on figure 1 bring sodium chloride salt to the surface at a total rate estimated to be more than 6,000 tons per day (table I).

Studies in progress indicate that the salt in the spring water is derived from beds of subsurface salt in the Permian redbeds. Recent
Table I.—Approximate Flow and Total Salt Contributed by Nine Salt Spring Areas in Western Oklahoma

<table>
<thead>
<tr>
<th>Map No.</th>
<th>Name</th>
<th>Approximate flow (c/f/s)</th>
<th>Salt (NaCl) contributed (tons per day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Great Salt Plain</td>
<td>...</td>
<td>3,000</td>
</tr>
<tr>
<td>2</td>
<td>Big Salt Plain</td>
<td>3.4</td>
<td>2,500</td>
</tr>
<tr>
<td>3</td>
<td>Little Salt Plain</td>
<td>0.2</td>
<td>150</td>
</tr>
<tr>
<td>4</td>
<td>Blaine Co. Salt Plain</td>
<td>5.4</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>Beckham Co. Salt Plain</td>
<td>...</td>
<td>few</td>
</tr>
<tr>
<td>6</td>
<td>Salton Gulch</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Robinson’s Gulch</td>
<td>0.3</td>
<td>500</td>
</tr>
<tr>
<td>8</td>
<td>Kiser Gulch</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Jackson Co. Salt Plain</td>
<td>...</td>
<td>few</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>6,300</td>
</tr>
</tbody>
</table>

Drilling has shown that at places the salt beds are less than 100 feet below the surface. Where the salt is shallow and geologic conditions are favorable, water will circulate beneath the ground to the salt-bearing beds and dissolve large quantities of the salt. The salty ground water then emerges through salt springs.

Figure 3. Big Salt Plain of the Cimarron River, near Edith, between Woods and Woodward Counties.
Paleogeologic Maps

The use of various types of paleogeologic maps for interpretation of sedimentary history and of patterns of potential oil-bearing rock bodies is discussed and illustrated in a new book. Dr. A. I. Levorsen of Tulsa has written a book which is needed in each geologist's library. Paleogeologic maps are defined as maps of the overlapped strata at a surface of unconformity as these strata were at the time of overlap. Subcrop maps in some instances are paleogeologic maps, in most instances are not in whole or in part.

The book is excellently illustrated by black-and-white maps and cross sections used to explain the types of maps employed and to show the development of structures and of sedimentary columns in many areas. Oklahoma geologists will find many illustrations from the State: Thomas oil field. Apache oil field. West Edmond oil field. Fox field. Oklahoma City region. and northeastern Oklahoma. Oklahoma also enters into several more general maps.

Dr. Levorsen uses paleogeologic maps to show the unlikelihood of continental drift. Paleogeologic maps of the world are an interesting innovation. The distinction between basins of deposition and structural basins is pointed out and most basins are said to be of structural origin.

—C. C. B.
Polydeltoides a New Silurian Blastoid from Oklahoma

Irving G. Reimann* and Robert O. Fay

A new blastoid genus, Polydeltoides, from the Silurian Henryhouse shale of Oklahoma, is provisionally placed in the family Phaenoschismatidae. Although similar to Pleuroschisma Reimann in most details, it differs significantly in having two paradeltoid plates (new term) in conjunction with the hypodeltoid, and in having a steeply conical shape in side view.

The writers are indebted to Drs. G. Arthur Cooper and A. R. Loeblich, Jr., for the loan of material from the U. S. National Museum, to Mr. Harrell L. Strimple, who donated the type specimens, and to Dr. H. A. Lowenstam, who furnished other specimens.

Systematic Descriptions

Family Phaenoschismatidae (recte) Etheridge and Carpenter 1886

Polydeltoides new genus

Type species.—Polydeltoides enodatus, new species.

Description.—Theca an attenuate cone with slightly concave sides. Summit broad, gently convex. Greatest width across the radial shoulders near top of the theca. Base narrow, attenuate. Cicatrix of stem small. Basals more than half the length of the theca, narrow below, slightly wider above for about a third of their height, and then widening more rapidly above to about three times the width at the stem. Lower part of base strongly depressed and flat along the interbasal sutures. The depression diminishing adorally. Radials comprising remainder of the height of the theca; shallowly notched for reception of the ambulacra;

*Director. The Exhibit Museum. University of Michigan

Explanation of Plate I

Polydeltoides enodatus n. sp., from Henryhouse shale, Oklahoma. The figured types are on deposit in the Museum of Paleontology, University of Michigan.

(Photographs by R. O. Fay)

An—anal opening
Au—anal deltoid plate, unnamed
D—deltoid
H—hypodeltoid
L—lancet
Pa—paradeltoid
R—radial
Sup—superdeltoid

Figures 1, 3, 5. Holotype. No. 37.805, oral. ambulacral (D), aboral views (all x4.6), and anal view x12.0, respectively.

Figures 4, 6. Paratype. No. 37.806. (B) ambulacral tip showing outer side plates (x25.0), and anal view from (C) ambulacral side, showing a paradeltoid in place (x17.0).
somewhat spade-shaped, wider above, convex in the upper part with
greatest convexity toward the summit.

Radial tips bent slightly inward. Interradial areas rather flat along
the lower part of the interradial sutures, depressed along the upper part.

Deltoids confined to the summit, except in the posterior interradius,
elevated and angular along the deltoid crest; crest lowest adorally, in
some specimens sloping inward. Lip elevated, with a shallow groove
separating it from the main body of the plate; laterally and a little
aborally notched for reception of the adoral end of the lancet plate.

The posterior region around the anal opening is composed of
at least six plates, a superdeltoid, hypodeltoid, two large unnamed anal
deltoid plates, and two paradeltoids (new term). The superdeltoid is
exposed adorally, bordered posteriorly by the anus, and is rounded
hexagonal. The two large unnamed deltoid plates, on either side of the
anal opening, rest upon the aboral face of the superdeltoid, are each
notched by three to four or more hydrospire slits, and are each overlapped
aborally by the adjacent radial limbs, and in part by the lateral corners
of the hypodeltoid. The hydrospire slits extend across the adjacent radial
limbs, nearly at right angles to the sutures. The hypodeltoid is thick,
broadly hexagonal, abutting against the truncated radial limbs, and
resting upon the aboral upper edges of the unnamed deltoid plates;
strongly bevelled adorally, giving the body of the plate a wide diamond
shape. There are two small paradeltoid plates (new term), called accessary plates by Reimann (1948), one on each side of the midline
of the anal area, each resting upon the outer edge of the aboral part
of each unnamed deltoid plate, and abutting aborally against the hypo-
deltoid. The anal opening is bordered adorally by the superdeltoid,
laterally by the unnamed deltoid plates, and aborally by the paradeltoids.
The oral opening is stellate, surrounded by the upturned tips of the
deltoids. Deltoid tips not elevated above side plates, but at the same
level as their surfaces; tips strongly elevated above ambulacral areas
where side plates are missing.

Ambulacra lanceolate-subpetaloid. composed of broad side plates com-
pletely covering the stout and elevated lancet plates. Outer side plates
subtriangular along ambulacral margins. Ten groups of hydrospires: those on the anal side slightly reduced in number. Hydrospire slits
increasing in number with age; ten (the maximum observed) on either
side of each ambulacrum (except on anal side) in the largest specimen.
Some of the lowermost slits covered by the side plates; the remainder,
about half, exposed.

Remarks.—In Polydeltoides the adoral edges of the paradeltoids
are bevelled as though other small plates may have adjoined them. al-
though such small plates have not been observed on any of the specimens
studied. With the exception of the superdeltoid and unnamed deltoid
plates, the deltoid complex is loosely articulated, and the hypodeltoid
and paradeltoids have been lost from many specimens. Other small
movable plates, perhaps functioning together as a valve, may have been
attached to the unnamed deltoid plates but were not preserved because
of their weak articulation.

The name is compounded from Greek polys, many; and deltoid, for
deltoid plates, which is from Greek delta plus eidos, form.
POLYDELTOIDEUS ENODATUS n. sp.
Plate I, figures 1-6

Description.—General characters of the genus. The deltoid crests are acute, meeting the upper ends of the radial tips at an angle of 10 degrees, measured with mouth as center, as seen from the side of the calyx. Hydrospire slits extending nearly to extreme tips of the radials. The holotype is 21 mm long by 11 mm wide.

Types.—Holotype, No. 37,805; paratypes, No. 37,806 (one specimen) and No. 37,807 (one polished section), donated by Mr. Harrell L. Strimple to Museum of Paleontology, University of Michigan. All from the Henryhouse shale, SE 1/4 SE 1/4 SE 1/4 NE 1/4 sec. 5, T. 2 N., R. 6 E., east side of road, Pontotoc County, Oklahoma.

Four specimens, as yet unnumbered, are on deposit in the collection of the Oklahoma Geological Survey. They are from Chimneyhill Creek, NW 1/4 NW 1/4 sec. 33. T. 3 N., R. 6 E., collected by W. E. Ham; from SW 1/4 NW 1/4 sec. 33. T. 2 N., R. 6 E., collected by A. Graffham; from glade east edge of road, NW 1/4 NW 1/4 sec. 33. T. 3 N., R. 6 E., collected by P. K. Sutherland and T. W. Amsden; and from NW 1/4 SW 1/4 sec. 4, T. 2 N., R. 6 E. All are from the Henryhouse shale of Pontotoc County, Oklahoma.

Other specimens, one of which shows both paradeltooids in place, are on deposit at the U. S. National Museum.

The trivial name of this species is from Latin enodatus, from enodatio. development.

REFERENCES CITED

Permophorus CHAVAN, 1954, A NEW NAME FOR Pleurophorus KING, 1848

Robert O. Fay

The name Permophorus was proposed by Chavan in 1954 to replace the homonym Pleurophorus King, 1848, not Pleurophorus Mulsant, 1842, in an obscure reference. The present note is written in order to bring this name change to the attention of workers on Permian rocks and fossils. Thanks are due Dr. Ellis Yochelson of the U. S. National Museum and to Dr. David Nicol of Southern Illinois University for information which led to the finding of the reference. The paper is:

39
THE TYPE OF *Tricoelocrinus* MEEK AND WORTHEN

ROBERT O. FAY

The type specimen of *Tricoelocrinus woodmani* (Meek and Worthen) 1868, the type species for the genus *Tricoelocrinus*, is on deposit at the American Museum of Natural History. catalog number 7225/1. The label reads “Geol. Ill., pl. 16, figs. 4a-d. Keokuk Is. ?. Salem, Ind., purchase.” Meek and Worthen (1868, p. 356) stated. "The specific name of this form is given in honor of Mr. H. T. Woodman, of Dubuque, Iowa, to whom we are indebted for the use of the only specimen we have seen.” In 1873 the same authors figured the type specimen and used the same description as that of the original article. The American Museum trustees purchased the H. T. Woodman collection in 1881. The specimen is silicified, weathered, and cracked, as shown in plate I and text-figure 1.

Tricoelocrinus Meek and Worthen 1868 (emend.)

Calyx subconical or subpyramidal in ventral half, subspherical in dorsal half, truncated at summit; maximum width below midheight; basals 3, hexagonal, indented along basiradial sutures, with two ridges (A-B) on azygous basal and three ridges (B-C-D and D-E-A) on each of the other two basals; radials 5, elongate, overlapping bevelled edges of deltoids, with narrow, elongate radial sinus; deltoids 4, short, confined to summit, each with a paired spiracle; anal side with epideltoid similar to the other four deltoids with a paired spiracle, separate from anal opening, with hypodeltoid resting on bevelled edge of two unnamed plates and abutting against radial limbs; anal opening between epideltoid and hypodeltoid on adoral and aboral sides respectively, with two unnamed plates on either side; unnamed plates overlapped by radial limbs on anal side; oral opening surrounded by 5 deltoid lips and 5 lancet stipes between each deltoid lip; ambulacra narrow, linear, with about 28 side plates in 10 mm; secondary side plates broadly triangular, resting on abmedial-adoral corner of adjacent primary side plate. with small brachiolar pit on admedial portion leading to side food groove: main food groove with approximately 4 cover-plate sockets per side plate; pores between outer margins of secondary side plate, adjacent aboral portion of the next adoral primary side plate, and adjacent radial wall; hydrospires presumed to be 3 on each side of an ambulacrum, thick. Range, Mississippian, North America.

Type species: *Pentremites (Troostocrinus) woodmani* Meek and Worthen. 1868, later figured by Meek and Worthen in 1873.

EXPLANATION OF PLATE I

Tricoelocrinus woodmani (Meek and Worthen), the type specimen

Above: Side view showing anterior ambulacrum. x1.9.

Below: Aboral view, with anterior ambulacrum toward bottom of page and B ambulacrum to right, with suture patterns drawn in ink. x2.2.
Text-Figure 1. Tricoelocrinus woodmani (*Meek and Worthen*), anal area of type specimen, x14.

Tricoelocrinus woodmani (*Meek and Worthen*) 1868

Plate I, text-figures 1-3

Characters same as that of genus. The epideltoïd is pierced at its lateral aboral extremities by two hydrospore canals, one on either side of the thin median deltoid septum. These canals converge into a notch in the outer surface of the deltoid septum, giving the appearance of one spiracle with elongate aboral extremities along the ambulacral margins. This type of opening is termed a *paired spiracle*; it is one opening in which the deltoid septum is thin and exposed externally for a short distance, thus exposing the hydrospore canals, giving the appearance of two separate spiracles in weathered specimens. The type specimen is weathered and thus shows 10 openings that are partly convergent.

92
Text-Figure 2. Tricoelocrinus woodmani. Diagram of view shown in text-figure 1.

A—anal opening
Db—deltoid body
Dl—deltoid lip
Ds—deltoid septum
Ed—epideltoid

Ilc—hydraspire canal
O—oral opening
Rl—radial limb*
S—spiracle
U—unnamed plate

*Cross-hatch shading indicates hypodeltoid sutures.

into the normal 5 paired spiracles. The hypodeltoid is large, roughly pentagonal (missing in the type specimen, but with definite suture pattern preserved showing its outline), resting laterally on two unnamed plates which are overlapped by adjacent radial limbs, presumably not in contact with the epideltoid, with the anal opening between the hypodeltoid, unnamed plates, and the epideltoid. The unnamed plates on the anal
side bend along the sides of the hypodeltoid and in back of the hypodeltoid internally, resting on top of the bevelled edge of the epideltoid. Thus the epideltoid is homologous in shape and function to the other four deltoids in the other interradial areas. The paired spiracle on the anal side is separate from the anal opening, the deltoid septum bifurcating aborally to meet the adjacent infolded walls of the unnamed plates. The lancet plate is completely covered by the side plates. The description of the side plates and associated structures was taken from observations of another specimen (Illinois Dept. Geol., 2102, Warsaw beds, Salem, Indiana). The type specimen loaned to Meek and Worthen came from the Keokuk limestone?, Salem, Indiana. Thus it appears that the range of this species is Keokuk? to Warsaw, or upper Osagean to lower Meramecian series of the Mississippian system.
UNDERGROUND LPG STORAGE IN OKLAHOMA

LOUISE JORDAN

The capacity of underground storage caverns for LPG in the United States has increased from less than 10 million barrels to more than 60 million barrels in the seven-year period, 1954-1960 (Biazl, 1960, p. 85). The seventh annual survey of the Oil and Gas Journal reports that capacity to store LPG in underground formations in the United States will reach 60,785,000 barrels when projects now underway or planned are completed. The greater part of the storage capacity, 50,595,850 barrels, or 83 percent, is in salt domes and salt layers. Mined caverns in shale, limestone, or granite have a capacity for 6,464,800 barrels; sandstones, which have contained oil, gas, or water, account for 3,725,000 barrels.

In Oklahoma, capacity for storage will reach 633,000 barrels when the Continental Oil Company completes its mined limestone cavern near Ponca City in April 1961. Table I is a summary of the LPG underground storage facilities in Oklahoma.

<table>
<thead>
<tr>
<th>Year completed</th>
<th>Company, county</th>
<th>Type of storage</th>
<th>Formation, age</th>
<th>Storage capacity (bbls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
<td>Humble Oil & Refg. Co., Pontotoc</td>
<td>Abandoned oil wells</td>
<td>Hunton limestone (Silurian)</td>
<td>175,000</td>
</tr>
<tr>
<td>1953</td>
<td>Shell Oil Co., Beckham</td>
<td>Salt layer</td>
<td>Blaine formation (Permian)</td>
<td>15,000</td>
</tr>
<tr>
<td>1955</td>
<td>Sinclair Oil & Gas Co., Seminole</td>
<td>Mined shale</td>
<td>Nellie Bly formation (Late Pennsylvanian)</td>
<td>110,000</td>
</tr>
<tr>
<td>1960</td>
<td>Texaco Inc. et al., Beaver</td>
<td>Salt layer</td>
<td>Flowerpot formation (Permian)</td>
<td>33,000</td>
</tr>
<tr>
<td>1961</td>
<td>Continental Oil Co., Kay</td>
<td>Mined limestone</td>
<td>(Early Permian)</td>
<td>300,000</td>
</tr>
</tbody>
</table>

The geology of the storage facilities in Beckham, Seminole, and Beaver Counties has been described by Jordan (1959a, 1959b, 1961.) The Kay County facility will be described when the cavern is completed.

The earliest underground storage was in an abandoned oil well in the Fitts Field of Pontotoc County. The Carter Oil Company, now a division of the Humble Oil & Refining Company, started storing butane in November 1940 in well "A" in the Fitts Field when liquid products from their natural-gasoline plant were produced in excess of demand.

95
The well had been completed to produce oil from the lower oolite member of the Chimneyhill formation (Hunton group, Silurian) in March 1937. At that time, the initial production of the well was 96 barrels of 38.4° gravity oil and 350,000 cubic feet of gas in the first eight hours.

In March 1952, a second well, "B", was converted to a storage well. It had originally been completed to produce from Hunton limestone in October 1936, and had tested 532 barrels of oil in the first 2.5 hours with an estimated 5,000,000 cubic feet in 24 hours. Total production figures for the two wells are not known because oil production for the entire lease, including that from Ordovician sandstones, was comingle.

During the period from November 1940 to November 1960, both butane and propane were injected and withdrawn from storage, butane being stored in the earlier years and propane in the later years (date of change not available). Table II gives the statistics on injection and withdrawal for each well obtained from Humble Oil & Refining Company.

| Table II—LPG Injections and Withdrawals, Pontotoc County, Oklahoma, 1940-1960 |
|---------------------------------|-----------------|-----------------|
| | Injected (gals) | Withdrawn (gals) |
| "A" well | | |
| Butane | 6,336,750 | 3,289,504 |
| Propane | 4,202,375 | 1,630,700 |
| "B" well | | |
| Butane | 375,903 | 191,984 |
| Propane | 3,115,150 | 1,408,091 |

In June 1960, the "A" well was converted to a water disposal well. From the above data it must be concluded that the withdrawal efficiency of this reservoir was low because less than 50 percent of the injected liquid was recovered.

REFERENCES CITED

