<table>
<thead>
<tr>
<th>Mineral</th>
<th>1958 Thousand short tons (unless otherwise stated)</th>
<th>1958 Value (thousands)</th>
<th>1959 Thousand short tons (unless otherwise stated)</th>
<th>1959 Value (thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clays</td>
<td>576</td>
<td>$579</td>
<td>587</td>
<td>$588</td>
</tr>
<tr>
<td>Coal</td>
<td>1,629</td>
<td>10,858</td>
<td>1,441</td>
<td></td>
</tr>
<tr>
<td>Helium (thousand cubic feet)</td>
<td></td>
<td></td>
<td>93,751</td>
<td>1,541</td>
</tr>
<tr>
<td>Lead (recoverable content of ores, etc.)</td>
<td>2,392</td>
<td>864</td>
<td>275</td>
<td>65</td>
</tr>
<tr>
<td>Natural gas (million cubic feet)</td>
<td>696,504</td>
<td>70,347</td>
<td>701,500</td>
<td>72,300</td>
</tr>
<tr>
<td>Natural-gas liquids:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gasoline and cycle products (thousand gallons)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP-gases (do)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum (crude) (thousand 42-gallon barrels)</td>
<td>440,798</td>
<td>26,029</td>
<td>441,000</td>
<td>28,100</td>
</tr>
<tr>
<td>Salt (common)</td>
<td>657,114</td>
<td>25,822</td>
<td>683,300</td>
<td>27,300</td>
</tr>
<tr>
<td>Sand and gravel</td>
<td>200,699</td>
<td>504,060</td>
<td>196,704</td>
<td>570,442</td>
</tr>
<tr>
<td>Stone</td>
<td>4</td>
<td>41</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Zinc (recoverable content of ores, etc.)</td>
<td>7,232</td>
<td>5,839</td>
<td>7,700</td>
<td>6,200</td>
</tr>
<tr>
<td>Value of items that cannot be disclosed: Asphalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(native), bentonite, cement, gypsum, lime, pumice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and tripoli</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Oklahoma</td>
<td>761,087</td>
<td></td>
<td>742,282</td>
<td></td>
</tr>
</tbody>
</table>

1 Production as measured by mine shipments or mine sales (including consumption by producers).
2 Excludes bentonite, value of which is included with "value of items that cannot be disclosed".
3 Included with value of items that cannot be disclosed.
4 Total adjusted to avoid duplication in values of clays and stone.
THE MINERAL INDUSTRIES OF OKLAHOMA IN 1959
(Preliminary Report)

Peter Grandone and William E. Ham

Ten of Oklahoma's 17 minerals, including mineral fuels, showed a gain in 1959 value over 1958, and one more commodity, helium, was added to the State's mineral list in 1959.

The total value of 1959 mineral production in Oklahoma is estimated at $742 million, 2.6 percent less than the 1958 value and 8.3 percent less than the 1957 record value of $800 million. Mineral fuels accounted for nearly 95 percent of the 1959 value, nonmetals for 5 percent, and metals less than 1 percent.

MINERAL FUELS

Coal. Coal production in Oklahoma declined 12 percent from 1958. The estimated 1,441,000 tons reported in 1959 was from 9 counties. The largest tonnage was from Rogers County. The Ben Hur Co. mine near Henryetta, the only one in the area, was closed from March 1 to September 1.

Natural Gas. Marketed production of natural gas from 31 counties continued to grow. Impressive discoveries and added huge reserves were credited to the northwestern counties. Attention in the stepped-up drilling program was focused on the Hunt ton group, formerly untapped in the area, and this resulted in Oklahoma's most significant gas discovery in 5 years. Magnolia Petroleum Co.'s No. 1 Miller, first producer in Custer County. The big Laverne and Mocanac gas fields in Harper and Beaver Counties were enlarged, suggesting that they may merge into one large producing area. To market these huge gas reserves, new pipelines were completed in northwestern Oklahoma. One of these is a 52-mile, 20-inch feeder line, built by Michigan-Wisconsin Pipeline Corp. It connects Laverne, Okla., to the company's trunk line in Meade County, Kans., which supplies the Detroit-Milwaukee areas. Another gas-transmission line under construction was Northern Oklahoma Gas Co.'s 75-mile, 12-inch line from Cherokee in Alfalfa County to Ponca City in Kay County.

Because these huge gas reserves also contain large reserves of helium that otherwise would be lost to fuel markets, the United States Department of the Interior placed in operation in August a new $12-million helium-extraction plant at Keyes, Cimarron County. This plant, largest of five plants operated by the Government, is designed to extract helium from as much as 50-million cubic feet of gas daily. Helium-bearing gas from the Keyes gas field was being supplied under a long-term agreement directly from the transmission line of Colorado Interstate Gas Co.

2Commodity-Industry Analyst, Division of Mineral Industries, Region IV, Bartlesville, Oklahoma.

3Geologist, Oklahoma Geological Survey, Norman, Oklahoma.
Natural-Gas Liquids.—The value of natural-gas liquids produced in Oklahoma in 1959, estimated to be $53.4 million, gained slightly over 1958. This gain was attributed mostly to production of L.P.-gases as markets for these products remained strong.

Sun Oil Co. completed its $3.5 million natural-gasoline plant at Laverne, Harper County. The plant has capacity to process 100 million cubic feet of gas daily from the big Laverne gas field for pipeline transmission to Detroit and Milwaukee. Natural-gas liquids extracted at the Sun plant are being carried by a new 45-mile pipeline, opened August 1 by Wheat Belt Pipe Line Co., to a terminal at Harper Ranch Station in Clark County, Kans. This line, which connects with the Jayhawk Pipe Line at Harper Station, also handles condensate and crude oil from other fields in northwestern Oklahoma.

Other natural-gasoline plants constructed in 1959 include the Sunray Mid-Continent Oil Co.'s $1-million plant near Purcell in McClain County, and the Kerr-McGee Oil Industries, Inc. Laffoon plant No. 16 near Stroud in Lincoln County. The Sunray plant will process 5 million cubic feet of gas daily to recover 2,000 gallons of liquids; Kerr-McGee's plant also will process 5 million cubic feet of gas daily to recover about 20,000 gallons of liquids. Cities Service Oil Co. was expanding its Ambrose plant near Blackwell.

Petroleum—Production of crude petroleum in Oklahoma declined slightly in 1959 to an estimated 197 million barrels. This quantity made the State the fourth largest oil producer in the Nation for the 14th consecutive year. Value of petroleum produced, estimated at $570 million, was 77 percent of Oklahoma's total mineral value in 1959. Production was reported from 63 of the State's 77 counties—Osage and Garvin were the leading producers. Oklahoma's oil allowable of 560,000 barrels daily at the beginning of the year was cut to 525,000 barrels daily in July where it remained to the end of the year.

According to the Oil and Gas Journal, 5,359 wells were drilled in 1959, 16 percent fewer than in 1958. Drilling interest was continued on the north flank of the Anadarko basin in the northwestern counties. Production in the area is mostly from Morrow, Hoover, Red Fork, Chester, and Hunton pay zones at depths ranging from 3,000 to 14,000 feet. Present indications are that the area has assumed the proportions of a major gas-condensate reserve. The area's future has been enhanced by increased development of marketing and transportation facilities. At least six companies have built pipelines into the area, yet more facilities will be required to take care of present production. Elsewhere in the State, Caddo Petroleum Co. built a 47-mile, 6-inch products pipeline from Wichita Falls, Tex., to Duncan, Okla., where it connects with existing lines to move fuels to eastern markets. Sunray Mid-Continent Pipe Line Co. built a line to carry crude oil from Alfalfa and Grant Counties to the Company's refineries at Tulsa and Duncan.

In 1959, Oklahoma had 14 refineries operating. According to the Oil and Gas Journal, these refineries had a total capacity of 391,780 barrels of crude oil daily. At its West Tulsa refinery, the Texas Co. was constructing an alkylation and an isomerization unit. The first unit will have a capacity of 2,050 barrels of high-octane alkylate daily; the second will have a capacity of 600 barrels of isobutane daily.
The Air Force announced plans to keep open the Callery Chemical Co. plant at Muskogee to produce high-energy rocket fuel—"HiCal". The move reversed a previous decision to maintain the plant on a standby basis to June 30, 1960.

NONMETALS

The estimated value of nonmetals (native asphalt, cement, clays, gypsum, lime, pumice, salt, sand and gravel, stone, and tripoli) produced in Oklahoma in 1959 was $37 million, a 12-percent gain over 1958. This gain was attributed mostly to cement production and a lesser amount to stone. The only nonmetals that underwent production declines in 1959 were asphalt rock and salt. One salt plant at Sayre remained closed during the year.

The cement industry in the State took a forward step in 1959. Dewey Portland Cement Co. was building a new $13-million plant near Tulsa. This plant, to be completed in the spring of 1960, will have an initial capacity of 1.2 million barrels of cement yearly and an ultimate capacity of 3.7 million barrels yearly. Oklahoma Cement Co., a newly formed corporation, was constructing a $7-million plant near Pryor. This plant, also scheduled for completion in the spring of 1960, has a capacity of 3,000 barrels of cement daily. At Ada, Ideal Cement Co. put in operation its new $10-million plant which has a capacity of 3 million barrels of cement yearly. The older plant, recently modernized at a cost of $4 million, will be kept on a standby basis.

METALS

Mine production of recoverable lead and zinc, all from Ottawa County, underwent drastic reductions in 1959 as all mines remained closed. Concentrates recovered only from mill slimes during the last five months of the year, amounted to only 275 tons of recoverable lead and 494 tons of recoverable zinc.

Smelters.—Three retort smelters were operating in Oklahoma in 1959—the Bartlesville smelter of National Zinc Co., Inc., the Henryetta smelter of Eagle-Picher Co. and the Blackwell smelter of American Metal Climax, Inc. The Blackwell smelter cut production of slab zinc by 4,000 tons annually effective July 1. The Henryetta smelter operated 6 of its 10 furnace blocks from April to July; then 8 furnace blocks for the remainder of the year.

Tri-State District.—All mines in the Tri-State District remained closed in 1959 and only mill slimes were processed at the Central Mill during the last five months. Concentrates recovered from these slimes, credited to Kansas and Oklahoma only, amounted to only 435 tons of recoverable lead and 800 tons of recoverable zinc. Prices per pound paid for these metals averaged 11.9 cents for lead and 11.4 cents for zinc.
SPIRIFER GRIMESI FROM THE ST. JOE LIMESTONE NEAR TAHLEQUAH, OKLAHOMA

George G. Huffman and John M. Starke, Jr.

School of Geology, Norman, Oklahoma

The St. Joe limestone of Early Mississippian age is well developed in the Oklahoma Ozarks where it disconformably overlies the Chattanooga black shale (Noel equivalent) and is succeeded disconformably by the Reeds Spring formation. The St. Joe has been recognized and described in northeastern Oklahoma by several geologists including Taff (1905), Snider (1915), Cram (1930), Ireland (1930), and Montgomery (1951). It has been mapped as an independent unit by Gore (1952) in the Spavinaw and Salina Creek areas of Delaware and Mayes County and by Huffman et al. (1958) in parts of Craig, Mayes, Cherokee, Adair and Sequoyah Counties. Detailed mapping along the Illinois River northeast of Tahlequah is in progress by the authors.

The term St. Joe was applied by Hopkins (1888, p. 253) to a non-cherty development of limestone at the base of the Boone formation near St. Joe, Searcy County, Arkansas. Taff (1905 p. 3) correlated the lower part of the "Boone" of northeastern Oklahoma with the St. Joe of Arkansas. The St. Joe was raised to formational rank by Cline (1934 p. 1137) and divided into a "reef phase" and a "non-reef phase" by Laudon (1939 p. 326). The biohermal or reef phase of the upper part of the St. Joe has been described by Harbaugh (1957, p. 2530-2544) in Mayes and Delaware Counties.

Kaiser (1950 p. 2157-60) considered the St. Joe of Missouri to be equivalent to the Pierson and suggested that the latter term be suppressed as a synonym. Clark and Beveridge (1952, p. 75) raised the St. Joe to group rank in southwestern Missouri to include from bottom to top, the Compton, Northview, and Pierson formations. Huffman et al. (1958) adopted the southwest Missouri terminology for equivalent rocks in northeastern Oklahoma.

The St. Joe group in northeastern Oklahoma includes three well-defined subdivisions. The uppermost (Pierson equivalent) includes a thickness of zero to 25 feet of gray, thick-bedded, finely crystalline limestone which locally passes into a thick, crinoidal reef facies. Below this is a zone of 3 to 5 feet of olive green, calcareous shale or marlstone (Northview equivalent). The basal portion (Compton) consists of zero to 10 feet of gray nodular-weathering, heavy-bedded limestone which becomes thin bedded in upper portions. The non-reef phase has a maximum thickness of about 40 feet and averages less than 10 feet. The "reef phase" locally exceeds 50 feet in thickness; where both the reef and non-reef phases are fully developed, total thickness of the St. Joe may approximate 100 feet.

The fauna of the St. Joe of Arkansas is well known through the work of Hopkins, Girty, Weller and others. The fauna of the St. Joe of southwestern Missouri has been listed by Moore (1928 p. 163-165); that of northeastern Oklahoma by Snider (1915, p. 223), Taff (1905, p. 3), Cline (1934 p. 1140), and Laudon (1939 p. 327). A microcrinoid fauna was collected by Strimple and Koenig (1956) from the green shaly phase northeast of Tahlequah, Oklahoma.
Characteristic forms listed by Laudon (1939, p. 327) include: Cyathaxonia arcuata Weller, Schizoblastus moorei Cline, Evactinopora sexradiata M. and W., Rhizodictyon oceani Hall and Clarke, "Dictyoclostus" fergienseis (Weller), Spirifer royleyi Weller, Spirifer vernonensis Swallow, Brachythypsis subhorricularis (Hall), Athyris lamellosa (Levillée), Oliothyras prouti (Swallow), and Platyceras paratius W. and W.

One of the most striking and best preserved fossils from the St. Joe of northeastern Oklahoma is a large specimen of Spirifer grimesi Hall collected from the upper part of the St. Joe along the center of the line between secs. 18 and 19, T. 19 N., R. 21 E., Cherokee County, Oklahoma (figure 1).

Fig. 1. Two views of the pedicle valve of Spirifer grimesi from the St. Joe limestone northeast of Tahlequah, Oklahoma (approximately ½ natural size). (Photograph by Thomas W. Amsden)
This specimen consists of a well-preserved pedicle valve with only a portion of one cardinal extremity missing. This valve is highly convex and measures 120 mm in width and approximately 80 mm in length. The cardinal area is partially exposed and measures 12 mm in height. The mesial sinus is broad and slightly angular in the bottom and is filled with bifurcating plications. The lateral slopes are convex, flattened near the cardinal extremities, and covered by rounded, bifurcating plications. Concentric growth lines near the anterior margins show slight convergence as they approach the cardinal margin.

The matrix associated with this specimen is a gray, fine- to medium-crystalline, crinoidal limestone, a facies common to the upper part of the St. Joe.

The upper part of the St. Joe, the Pierson limestone, is classed as lower Osagean and correlated with the Fern Glen of eastern Missouri (Moore, 1928). The Compton-Northview equivalents are assigned to the upper part of the Kinderhook series. Microcarnoids in the Northview facies resemble those in a shale at the base of the Welden limestone near Ada (Strimple and Koenig, 1956).

BIBLIOGRAPHY

52
NEW EVIDENCE CONCERNING DALMANITES OKLAHOMAE

E. A. Frederickson

Richardson (1949, p. 43-45) described the new species, Dalmanites oklahomae from "a single, fairly well-preserved, partly exfoliated cephalon" that was found in the collections of the Chicago Natural History Museum. The specimen had been presented to the Museum in 1908 by Mr. W. W. Newberry, of Chicago, with a notation that it came from the Silurian Clinton group at Bromide, Oklahoma.

Although Richardson assigned the trilobite to the Silurian in the title of his paper, he does not make a positive statement as to the age of the specimen in the body of the paper. He examined the matrix that still adhered to the specimen and compared the lithology of the matrix to published descriptions of the rock types of the Henryhouse and Haragan formations of the Hunton group. He arrived at the following conclusion:

"Though the piece of matrix at hand is weathered and of somewhat earthy texture, it is not shaly. Such a small sample, of course, is not necessarily typical of the major features of the formation from which it was collected, so that whether this trilobite is Silurian rather than Devonian remains uncertain."

Recently, while engaged in a study of the Devonian trilobites from the Haragan formation, I found two nearly complete specimens which appear to be identical with the fragmentary cephalon illustrated and described by Richardson. The trilobites are in a collection made by Dr. Thomas W. Amsden of the Oklahoma Geological Survey and are a part of a large trilobite collection from all known Haragan exposures.

Fig. 1. Neoprobalium oklahomae (Richardson). Dorsal view of specimen from the Oklahoma collections with portion of cephalon and pygidium missing, x2.
Fig. 2. Neoprobalium oklahomae (Richardson). Dorsal view of nearly complete pygidium from the same collection showing the prominent lateral nodes, x2.

(Photographs by Thomas W. Amsden)
One of the nearly complete specimens came from Devonian Haragan exposures northeast of Bromide in the NW¼ section 33, T. 1 S., R. 8 E., Coal County, Oklahoma. The other specimen came from the Haragan formation at the old Hanton townsite, NW¼ sec. 8, T. 1 S., R. 8 E., Coal County, Oklahoma. Associated with both specimens are numerous parts of trilobites including several complete pygidia.

It is apparent, then, that the trilobite specimen in the Chicago Natural History Museum is Devonian in age and came from the Haragan formation.

In many of the genera of the Dalmanitidae, i.e. *Dalmanites*, *Syphonodites*, *Odontochile* and *Neoprobolium*, the features of the cephalon are very similar to one another and the genera are mainly distinguished on the characteristics of the pygidium and of the frontal border.

Richardson, having only a portion of the cephalon at hand, naturally assigned the specimen to the genus *Dalmanites*, which the cephalon closely resembled.

However, *Dalmanites sensu stricto* has only 6 or 7 pairs of ribs on the pygidium, whereas the conspecific specimens in the Oklahoma collections have 11 pairs of ribs. In addition, the cephalon which Richardson noted was "about twice as wide (tr.) as long (sag)", the distinctive nodes on the distal extensions of the ribs adjacent to the border, and the frontal spine are all features found in the genus *Neoprobolium*.

It is therefore proposed that the name *Dalmanites oklahomae* Richardson be revised to *Neoprobolium oklahomae* (Richardson) and that the age be changed from Silurian to Devonian.

REFERENCE

SEVENTY COUNTIES IN OKLAHOMA PRODUCE HYDROCARBONS

At the beginning of 1960, 64 counties in Oklahoma produce oil and gas and six counties produce gas only. Those counties productive of gas only are Blaine, Custer, Haskell, Latimer, Le Flore and Sequoyah. Counties without production are Adair, Cherokee, Choctaw, Delaware, Harmon, Pushmataha and Roger Mills. The production of crude oil and lease condensate in Oklahoma in 1950 amounted to 194,731,000 barrels, a decrease of 5,993,000 barrels from the previous year. Marketed production of natural gas was 680,000 million cubic feet, a 2.3 percent decrease below 1958 production. Whereas estimated proved reserves of crude oil in Oklahoma decreased 24,000,000 barrels to a total of 2,294,000,000, reserves of both natural-gas liquids and of natural gas increased. Estimated proved reserves of natural-gas liquids increased 30,493,000 barrels to a total of 337,507,000 barrels; and those of natural gas, 1,033 billion cubic feet to that of 16,240 billion cubic feet. Source: *Oil and Gas Journal*, vol. 58, no. 4 (January 25, 1960) p. 157-161.

—L. J.
PUBLISHED PAPERS ON OKLAHOMA GEOLOGY
IN THE YEAR 1959

Compiled by Neville M. Curtis, Jr.

.. 1959b, Stratigraphy and paleontology of the Hutton group in the Arbuckle Mountain region: Part V—Bois d'Arc articulate brachiopods: Okla. Geol. Survey, Bull. 82, 110 p., 18 figs., 5 pls., 2 tables. Contains descriptions of 40 species referable to 22 genera. Stratigraphic and faunal evidence indicate that the Crayvatt member and Fittstown member of the Bois d'Arc formation are facies of one another and that the Bois d'Arc is a facies of the Haragan formation.

Amsden, T. W., see: Branson, and others.

Amsden, T. W., see: Sutherland, P. K.

Bado, J. T., 1959, Are we missing carbonate pools?: Oil and Gas Jour., vol. 57, no. 8, p. 208-212, 5 figs., 1 table. North McWillie field in Alfalfa County discussed as a carbonate-type field.

Barby, B. G., 1959, Reserves study of Morrow sand, Light field, Oklahoma: Oil and Gas Jour., vol. 57, no. 28, p. 94-98, 5 figs., 2 tables. Petroleum geology and production with emphasis on the Purdy zone.

Beebe, B. W., 1959, Characteristics of Mississippian production in the northwestern Anadarko basin: Tulsa Geol. Soc. Digest, vol. 27, p. 190-205, 7 figs. Stratigraphy, structure, and Mississippian production are reviewed.

Berenst, Henry, 1959, Isopachous and paleogeologic studies in eastern Oklahoma north of the Choctaw fault: Shale Shaker, vol. 9, no. 6, p. 5-20, 3 figs., 14 pls. Maps show thickness of pre-Desmoinesian strata and pre-Chattanooga and pre-Desmoinesian paleogeology from the Kansas state line south to the Choctaw fault.

Bike, P. B., see: Rose, W. A.

Black, C. C., see: Kitts, D. B., and Black, C. C.

Bleakley, W. B., 1959, Oklahoma's Laverne field active: Oil and Gas Jour., vol. 57, no. 12, p. 164-167, 5 figs., 1 table. Résumé of geology and production in Laverne field, Harper and Beaver Counties. Isopach maps of the Hoover sand, Tonkawa sand, Marrow sand, Chester zone.

1959b, Pre-Desmoinesian isopach and paleogeologic study of northwestern Oklahoma: Shale Shaker, vol. 9, no. 10, p. 6-18, 3 figs., 15 pls. Isopach, structure, and paleogeologic maps of area, with discussion of stratigraphy and geologic history.

1959c, Generic assignment of some fossil clams: Okla. Geology Notes, vol. 19, no. 4, p. 94-95. Concerned primarily with the transfer of some species from the genera Altobrissia, Caneyella, and Posidonta.

1959e, Location of some Oklahoma type specimens: Okla. Geology Notes, vol. 19, no. 3, p. 43. Mention that the Department of Geology, Washington University (St. Louis), has deposited four type fossil specimens from Fort Washita, Bryan County, Oklahoma, in the U. S. National Museum.

1959g, Mississippian boundaries and subdivisions in Mid-Continent: Tulsa Geol. Soc., Digest, vol. 27, p. 85-89; Sixth Bienn. Geol. Symposium, Univ. Oklahoma, p. 3-7. Discussion of problems involved in classification and correlation of Mississippian units.

1959k, Some problematical fossils: Okla. Geology Notes, vol. 19, no. 4, p. 82-87, 6 figs. Taxonomy and synonymy of conical fluted bodies which have generally been referred to the genus Conostichus.

Branson, C. C., see: Elias M. K., and Branson, C. C.

Braun, J. C., see: Chenoweth, F. A., and others.

Burwell, A. L., 1959a, Changing times: Okla. Geology Notes, vol. 19, no. 7, p. 146-147. Note that ‘chat’ from the zinc-mining area and novaculite from the Ouachita Mountains might be considered for railroad ballast.

1959b, Grain size in silen sand for glass manufacture: Okla. Geology Notes, vol. 19, no. 4, p. 81. Information from the August 1958 issue of Glass Industry points out that a smaller particle size (such as is found in Oklahoma) has merit in making well-refined glass.

1959e, Rates of chemical reactions in nature: Okla. Geology Notes, vol. 19, no. 4, p. 78-79.

Busch, D. A., 1959, Prospecting for stratigraphic traps: Amer. Assoc. Petroleum Geologists, Bull., vol. 43, no. 12, p. 2829-2843, 13 figs. Discussion of four types of stratigraphic traps: (1) "strike valley" sand. (2) offshore bar. (3) channel type sandstone. and (4) shoreline beach sand. Examples are from the Pennsylvanian of the Mid-Continent region.

Champlin, S. C., 1959, The problem of the Weleden, Sycamore, and lower Caney in the eastern Arbuckle Mountains: Okla. Acad. Science, Proc., vol. 39, p. 120-124, 1 fig. Comparison of the Mississippian section in the northern Arbuckle Mountains with that on the south flank. Concludes that the Weleden formation on the south flank can be recognized.
Champlin, S. C., see: Chenoweth, P. A., and others.
Champlin, S. C., see: Curtis, D. M.
Chasteen, Kenneth, 1959, Another boom for the Panhandle: Oil and Gas Jour., vol. 37, no. 40, p. 144-145, 2 figs. Tubbs sand and Council Grove (Permian) production reviewed.

1959b, An unusual type of ripple mark: Okla. Geology Notes, vol. 19, no. 8, p. 154-156, 4 figs. Brief discussion and description of ripple marks which have formed parallel to the direction of current flow.

1959c, Is there oil and gas in the Ouachita Mountains?: Okla. Geology Notes, vol. 19, no. 10, p. 198-208, 1 fig. Discusses the six reasons given by geologists for condemning the area as a future oil-producing province and concludes that commercial deposits are present. Includes annotated list of wells in area.

1959d, Late Paleozoic Llanorian rivers in Oklahoma: Okla. Geology Notes, vol. 19, no. 11, p. 232-235, 2 figs. Discussion of the Duncan Delta and another delta (represented by upper portion of Garber-Wellington formation) indicates two rivers flowed across southern Oklahoma from the southeast.

1959e, Recumbent folding in the Velma area: Okla. Geology Notes, vol. 19, no. 10, p. 219-220, 1 fig. Shows folding of the County Line line (Missourian) encountered in the Skelly No. 1 Leonard, sec. 6, T. 2 S., R. 4 W.

1959g, and others, 1959, Sycamore and related formations of southern Oklahoma: Tulsa Geol. Soc., Digest, vol. 27, p. 113-123, 7 figs.: Sixth Bienn. Geol. Symposium, Univ. Oklahoma, p. 81-95, 5 figs. Sycamore formation of the southern Arbuckle Mountains and Ardmore basin divided into three units (in ascending order): Welden formation, pre-Sycamore formation, and the Sycamore limestone.

Cullinan, T. A., see: Reeves, C. C., and others, Southwest Enville—a development headache.
Cullinan, T. A., see: Reeves, C. C., Jr., and others, Southwest Enville: every well's a wildcat.

58

1959e, Published papers on Oklahoma geology in the year 1958: Okla. Geology Notes, vol. 19, no. 3, p. 31-71. Annotated and indexed.

Ellis, M. K., and Branson, C. C., 1959, Type section of the Caney shale: Okla. Geol. Survey, Circ. 52, 24 p., 2 figs., 4 tables. Original type locality abandoned except as the source of the name and a type section in the Arbuckle Mountain region is designated and described. Type sections of three members are established west of Viola townsite.

1959b, Pleistocene course of the South Canadian River in central western Oklahoma: Okla. Geology Notes, vol. 19, no. 1, p. 3-12. 5 figs. Geology along course of the South Canadian River in area.

dexed according to author, geographic area, stratigraphic units, and subject. There are twenty references for Oklahoma.

Gardner, F. J., 1959a, Deep Hunton strike arouses wide Anadarko interest: Oil and Gas Jour., vol. 57, no. 17, p. 169, 1 fig. Brief account of the Magnolia Petroleum Co. 1 Miller in Custer County.

1959b, Deep wildest highlights western McAlester basin: Oil and Gas Jour., vol. 57, no. 33, p. 143, 1 fig. Drilling and production data for the Midwest Oil Corp. and Frankfort Oil Co. No. 1 Orr in Latimer County.

1959c, Oklahoman's eye Anadarko wildest as key test: Oil and Gas Jour., vol. 57, no. 30, p. 157, 1 fig. Production and drilling data for the Magnolia No. 1 Young in Roger Mills County.

1959d, Panhandle operators reap a second crop: Oil and Gas Jour., vol. 57, no. 27, p. 265. Brief account of history of production from Cenovale Grove (Permian) in Beaver County.

Glick, E. E., see: Frezon, S. E.

1959b, Paleogeology of Ouachita geosyncline, Oklahoma and Texas (abs.): Tulsa Geol. Soc., Digest, vol. 27, p. 75.

1959c, The Oklahoma mineral exhibit at the St. Louis Worlds Fair: Okla. Geology Notes (1959), vol. 19, no. 7, p. 147-150. Account of Oklahoma's display in the mineral building and how the display was brought about.

Gottfried, David, see: Jafic, H. W., and others.

Ham, W. E., see: Amsden, T. W.

Ham, W. E., see: Grandone, Peter, and others.

Harbaugh, J. W., 1959. Small scale cross-lamination in limestones: Journ. Sedimentary Petrology, vol. 29, no. 1, p. 50-57, 6 figs. Examples of cross-lamination occurring in the West Spring Creek formation of the Arbuckle group are used in discussing small scale cross-lamination.

Holley, J. M., see: Pickhardt, H. E.

............. 1959d, Preliminary isopachous and paleogeologic studies. central Mid-Continent area: Shale Shaker, vol. 9, no. 8, p. 5-21, 12 figs.

............. 1959f, Isopach maps of the Arbuckle group, Smokey group, Volta-Pennsylvan limestone, Sylvan shale, Hunton group, Chattanooga-woodford shale, Mississippian system, Springer-Goddard, Morrow series, Atoka series, and paleogeologic map on base of Mississippian. Résumé of major tectonic features and stratigraphy.

Johnston, K. H., see: Riggs, C. H., and others.

Jordan, Louise, 1959a, Arkoma basin: Okla. Geology Notes, vol. 19, no. 11, p. 226-236. Discusses reasons for calling the McAlester basin and the Arkansas basin (both make up a single geologic province) the Arkoma basin.

1959d, Let’s call it Arkoma: Oil and Gas Jour., vol. 57, no. 16, p. 219. Justification of the name “Arkoma” for that area north of the Ouachita Mountains (Oklahoma and Arkansas) where the Pennsylvanian geosyncline originated at the beginning of Atokan time.

1959e, Natural gas storage in Oklahoma: Okla. Geology Notes, vol. 19, no. 9, p. 182-191, 4 figs., 2 tables. Description (area, cost, geology) of underground natural gas storage in 6 areas in Oklahoma.

1959g, Oil and gas in Creek County, Oklahoma: Okla. Geol. Survey, Bull. 81, p. 61-108, 8 figs., 1 panel, 7 tables. Contains history of petroleum development in Creek County, petroleum production statistics and stratigraphy of area relative to petroleum.

1959h, Oil and gas in Dewey County, Oklahoma: Okla. Geology Notes, vol. 19, no. 12, p. 233-236, 1 fig. History of oil and gas development.

1959i, Oil and gas in Ellis County, Oklahoma: Okla. Geology Notes, vol. 19, no. 10, p. 205-212, 1 fig., 2 tables. Petroleum history.

1959k, Second deepest hole in the world in Elk City field. Beckham County: Okla. Geology Notes, vol. 19, no. 4, p. 88-89. Brief account of drilling Shell Oil Company’s No. 5 Rumberger and rocks penetrated by the bit.

1959l, Underground storage in salt, Elk City field: Okla. Geology Notes, vol. 19, no. 2, p. 32-34, 1 fig. Account of borehole drilled for underground storage of propane. Lithology shown for lower part of hole and storage cavity.

1959b, Two new vertebrates from the Permian Fort Sill locality (a review): Okla. Geology Notes, vol. 19, no. 3, p. 72. Review of an article by Vaughn in which is described a new reptile, Colobomaster pholceter, and a review of an article in which Vaughn describes Basianodon fortissimus.

Lucas, E. L., 1959, Some relations of the shape of quartz sand grains to their crystallographic orientation: Okla. Acad. Science, Proc., vol. 39, p. 150-156, 2 figs. Many quartz grains tend to be longer and harder in the direction of the optic axis, which supports the idea of unequal wear.

Lynch, B. W., 1959, Subsurface stratigraphy of Mississippian system in McAlester basin: Sixth Bienn. Geol. Symposium, Univ. Oklahoma, p. 65-75, 5 figs. Two cross-sections and three isopach maps.

McBee, William, Jr., see: Tomlinson, C. W.

McCauslin, J. C., 1959, Try Oklahoma for size in 59: Oil and Gas Jour., vol. 37, no. 4, p. 291, 1 fig. Forecast of increased production in the northwest and west, south, and east.

MacEachern, J. P., and Seaman, Al, 1959, Oil-base mud passed test in deep, hot hole: Oil and Gas Jour., vol. 57, no. 37, p. 201-203, 2 figs. Describes use of oil-base mud in Shell Oil Co.'s No. 5 Rumberger in Beckham County.

Maxwell, R. W., see: Ryvolker, Charles, and others.

Metz, F. A., 1959, Aerial photographs and structural geomorphology: Jour. Geology, vol. 67, no. 4, p. 351-370, 18 figs., 1 pl., 1 table. The Pawhuska peneplain of central and southwestern central United States is described in an attempt to show the correlation between drainage and tectonic anomalies in elevated dissected bedrock benches of erosional origin.

63
Myers, A. J., see: Kitts, D. B., and Myers, A. J.

Oil and Gas Journal, 1959a, Beaver County fills in blank spots: Oil and Gas Jour., vol. 57, no. 26, p. 152. Production data for five new wells in southern Beaver County, Okla.

.. 1959c, Good Arbuckle production for Oklahoma's Comanche: Oil and Gas Jour., vol. 57, no. 37, p. 260, 1 fig. Report of first Arbuckle production in Comanche County, includes production data.

.. 1959d, Huntan moves into Dewey County: Oil and Gas Jour., vol. 57, no. 48, p. 132. Résumé of petroleum development in Dewey County.

.. 1959e, Oklahoma area has top success story: Oil and Gas Jour., vol. 57, no. 19, p. 63-69. 1 fig. Résumé of production data for new discoveries in Beaver, Major, Custer, Harper, Ellis, Texas, and Cimarron Counties.

.. 1959f, Panhandle map is second in series: Oil and Gas Jour., vol. 57, no. 37, p. 279. Announcement of geological pay-formation map.

.. 1959g, Sooner part of Arkoma due for action: Oil and Gas Jour., vol. 57, no. 51, p. 120, 1 fig. Report that Republic Natural Gas Co. has bought 100,000 acres in the area. Production data given for six wells.

Parks, Patricia, see: Felix, C. J.

Pate, J. D., see: Jordan, Louise, and others.

Petroleum Week, 1959a, Deep drilling sparks Dewey County: Petroleum Week, vol. 9, no. 22, p. 22. Résumé of drilling play (includes production and discovery data).

.. 1959b, Gas play builds up in two-state basin: Petroleum Week, vol. 9, no. 26, p. 22, 26. Brief account of drilling the Frankfort Oil Co.'s No. 1 Orr, which encountered five different gas pays in the Atoka (Pennsylvanian). Data on three other wells in McAlester basin area.
1059c. Large gas province is shaping up: Petroleum Week, vol. 8, no. 6, p. 21-22, 1 fig. Résumé of drilling and production and future of McAlester Basin.

1059d. New pay lifts northwest Oklahoma play: Petroleum Week, vol. 8, no. 21, p. 18-21, 1 fig. Résumé of Hunton (Devonian) discoveries in Custer and Major Counties.

Prestridge, J. D., see: Chenoweth, P. A., and others.

Probrandt, W. T., see: Reeves, C. C., Jr., and others, Southwest Enville—a development headache.

Probrandt, W. T., see: Reeves, C. C., Jr., and others, Southwest Enville: every well’s a wildcat.

Reeves, C. C., Jr., and others, 1959a, Southwest Enville—a development headache: Oil and Gas Jour., vol. 57, no. 36, p. 110-113, 2 figs. Résumé of history of discovery, geologic history, and reservoir characteristics of the Southwest Enville field.

Reeves, C. C., Jr., and others, 1959b, Southwest Enville: every well’s a wildcat: Oil and Gas Jour., vol. 57, no. 37, p. 236-260, 4 figs. Describes the structural complexities in the subsurface.

Robertson, Forbes, 1959, Perilite formed by reorganization of albite from plagioclase during potash feldspar metasomatism: Amer. Mineralogist, vol. 44, nos. 5-6, p. 605-619, 12 figs. Note of occurrence of orthoclase microperthite in Wichita Mountains.

Rowland, T. L., see: Jordan, Louise.
Scholten, Robert, 1938. Synchronous highs: preferential habitat of oil?: Amer. Assoc. Petroleum Geologists, Bull., vol. 48, no. 8, p. 1730-1834, 30 figs. Synchronous highs (hills on sea floor during sedimentation) tend to create conditions favorable to all three stages in the history of petroleum (origin, migration, and accumulation). Several examples are used from Oklahoma (West Edmond field, Garber field, and Devils Kitchen zone in Carter County).
Seaman, Al, see: MacEachern, J. P.
Shortridge, C. C., see: Ryniker, Charles, and others.

1930b, Cribroidea from the Missourian near Bartlesville, Oklahoma: Okla. Geology Notes, vol. 19, no. 6, p. 115-127. 2 text-figs., 2 pls. Description of seven species.

Sutherland, P. K., and Amsden, T. W., 1959, A re-illustration of the tribolite Lonchodomas meyehokai Decker from the Bronilde formation (Ordovician) of southern Oklahoma: Okla. Geology Notes, vol. 19, no. 10, p. 212-219, 3 figs., 2 pls., 1 table. Locality and specimen re-described.
Sykes, H. A., see: Reedy, H. J.

1950b, The importance of modes in cross-bedding data: Jour. Sedimentary Petrology, vol. 29, no. 2, p. 221-226, 6 figs. The Verden sandstone and Doe Creek sandstone are discussed with respect to their position relative to the shoreline at the time of their deposition.
Taylor, G. L., see: Widess, M. B.
ern Oklahoma, vol. 2, p. 302-334, 1 fig. List with location of 230 outcrops of 106 different stratigraphic units or rock types.

Waring, C. L., see: Jaffee, W. W., and others.

Williamson, S. R., see: Jordan, Louise, and others.

1959c, Genotype of Densosporites Berry, 1957: Okla. Geology Notes, vol. 19, no. 3, p. 47-50, 1 pl. Discussion of Densosporites and recommendation that the species in the Pennington coal be re-examined and a neotype be chosen to replace the discarded holotype.

1959b, A subsurface look at the Amarillo-Hugoton area: Oil and Gas Jour., vol. 57, no. 45, p. 124-126, 2 figs. Subsurface conditions of area and three cross-sections and an isopachous map of the Morrow-Pennsylvanian.

Worthing, H. W., see: Jaffee, H. W., and others.
Zimmerman, J. R., see: Tasch, Paul.

INDEX
PUBLISHED PAPERS ON OKLAHOMA GEOLOGY
IN THE YEAR 1959
Prepared by Neville M. Curtis, Jr.

age determinations in Wichita Mts., Jaffee, and others.
Anadarko basin: drilling future, Wheeler; Huntun oil production, Gardner (a); Oahe; Mississippian oil production, Beebe; Morrowan in., S.Bois; petroleum production, Hayden; stratigraphic traps, Fache; Sycamore formation, Brown; wildcat well, Roger Mills Co., Gardner (c)
Arbuckle Mts.: brachiopods in Bois d’Arc, Amston (b); caves in, Curtis (a); Caney in, lower, Champlin; Sycamore in, Champlin; Weelden in, Champlin
Arbuckle-Onaghitia “junction”, Flaten
Arbuckle basin: outcrops, best, Tomlinson; Pennsylvanian, Tomlinson and McBeth; petrology, Pennsylvanian, Jacobsen (a)
Arkansas: Atoka, pre-, Froson; stratigraphy and structure in western, Jackson
Arkoma basin: Jordan (a) (d); activity, petroleum, Oil and Gas Journal (g); petroleum, Rose and Bike.
badger, Pliotarsidea nevadensis, Harper Co., Kitts and Myers
bibliography: coal, Wier; crude oil analyses, Blund; Decker, C. E., of, Branson (f); Gould, C. N., Branson (j); North American geology, King, and others; Oklahoma geology, Curtis (d); uranium in marine black shales, Fiz
biography: Brant, R. A., Peterson; Decker, C. E., Huffman (a); Hill, R. T., Fay (c)
Bromide fm., trioliteite, Satherand and Amston
Brant, R. A., memorial, Peterson
Cabaniss-Apelar, Pittsburg Co., Covetti
Caney shale, type locality, Ellis and Branson
caves: Arbuckle Mts., Curtis (a); Cottonwood, Curtis (b); guano deposits. Curtis (c)
Cenozoic, Roger Mills Co., Kitts (a)
Chattanooga, pre-paleozoology, Bercuti
chemical reaction: rates in Nature, Burwell (e); reversible, removal of barium sulfate, Burwell (f)
cherts, Onaghitia facies, Goldstein (a)
col: analyses, Arresco, and others; bibliography, stratigraphy and resources. Wior
conodonts, Cambrian, Mueller
Conularia, Strimple (a)
Cordaites michiganensis. Tyman
Cottonwood Cave, Curtis (b)
County—
Alfalfa, McWillie field, North, Budo
Beaver: Council Grove (Permian) production Gardner (d); Laverne oil field, Bleakley; petroleum, Oil and Gas Journal; Spenoer's Sporites. Felts and Parks
Beckham, Elk City oil field, Jordan (k)
Blaine, Roman Nose State Park, Pay (a)
Carter: Atokan, pre-, unconformity, Reed; Brock field, West, Walker; Milroy oil field, Schneers
Comanche, Arbuckle production, Oil and Gas Journal (c)
Cotton: Oilbase; oil and gas, Jordan (g)
Custer: gas, history and discovery, Jordan (c); Hunton discoveries. Petroleum Week (d); production, first, Jordan (b)
Dewey: petroleum, Jordan (h), Oil and Gas Journal (d); drilling activity, Petroleum Week (a)
Ellis, petroleum, Jordan (i)
Garvin, Doesc group, subsurface, Gunter
Grady, Carter-Knox oil field, Reedy and Sykes
Harper: Myres; Buffalo field, North, Kornfeld, Oil and Gas Journal (b); Laverne oil field, Bleakley; petroleum, Jordan, and others; Pliocene badger, Kitts and Myers
Jackson, Altus oil field, Ryniker, and others
Jefferson, Muenster-Waurika arch, Chenoweth (a)
Kay, new rock crusher, Chandler
Latimer: deep wildcat, Gardner (b); tipple and coal analyses. Arcsco, and others
Love, Atoka, pre-, unconformity, Reed
Mclntosh, tipple and coal analyses, Arcsco, and others
Major, Hunton discoveries, Petroleum Week (d)
Marshall, Madill oil field, North, Gahring
Mayes, Atoka fm., Blithe
Muskogee, Muskogee oil field, Riggs, and others
Noble, sedimentation at Lake Carl Blackwell, Schreiber
Nowata, waterflood, Powell
Ottawa, Pickie mining unit, methods, Elizondo
Pawnee, geology, Grely
Payne, sedimentation, Lake Carl Blackwell, Schreiber
Pittsburg, Cabaniss-Arps area, Covett
Pushmataha, Medicine Springs, Johnson
Roger Mills: Cenozoic, Kitts (a); wildcat oil well, Gardner (c)
Seminole: Bunter oil field, Northwest, Duck; propane storage, Jordan.

(j) Sequoyah, Cottonwood Cave, Curtis (b)
Stephens: Carter-Knox oil field, Reedy and Sykes; Milroy oil field, Schweers
Tillman, Frederick oil field, West, Markley
Wagoner, Atoka fm., Blithe
Washington, waterflood, Powell
Woods, subsurface, Bowles
Cretaceous, Washita group, nomenclature, Curtis (d)
Crinoids, Mississippian, Stimpie (b)
cross-bedding, Doc Creek sandstone and Verden sandstone, Tanner (b)
cuttages, logging of drill, Maher
Decker, C. E.: memorial, Branson (f), Huffman (a)
Desmoinian, pre-: Mid-Continent, Huffman (c) (d); thickness and paleo-geology, Boler (a) (b), Bercutt
Duncan Delta, Chenoweth (d)
economic—
chat. use of, Burwell (a)
crusher, new in Kay Co., Chandler

69
glass sand grain size, Burwell (b)
gypsum, oxidizing agent, Burwell (c)
iron-ore resources, Carr, and others
mineral industries: producers, Ilam; statistics, Grandone, and others
mining methods, Police mining unit, Blizondo (a)
novaculite, use of, Burwell (a)
portland cement, uniformity, Burwell (g)
quicksand, control of, Burwell (d)
shales and clays in Marshall Co., Burwell (h)
Excello shale, Echinocirrus, Bronson (f)
Garber-Wellington Delta, Chenoweth (d)
geologists, photograph of students and faculty in 1911, Monnett
gemology, geological, Melton
geophysics, sonic log, Golden Trend, Pickhardt and Holley
Guatxelas, Wilson (d)
Golden Trend, sonic log, Pickhardt and Holley
Gould, C. N., bibliography, Bronson (j)
granophyres, Wichita Mts., Hamilton
gunno deposits in caves, Curtis (c)
Highway 77, geologic signs, history, Bronson (d)
Hill, R. T., biography, Fay (c)
Hugoton embayment, Worden (a) (b)
Hunton group: Arbuckle Mts., Andrews (b); petroleum production, Gardner (a); post-, unconformity, Maxwell
Indian Territory Illuminating Oil Co., Finney
iron-ore resources, Carr, and others
lamination, cross, in West Spring Creek fm., Harbaugh
Laverne fm., alligator in, Woodburn
lead-alpha age determinations in Wichita Mts., Jaffee, and others
library, geology, Univ. Oklahoma, history, Gould (b)
limestone, Mississippian, environment, Curtis, D. M. and Champlin
McAlester basin: Atoka fm., Bythe; drilling and production, Petroleum Week (c); gas in Atoka fm., Petroleum Week (b); Mississippian, Lynch; wildcat strike in Latimer Co., Gardner (b)
man, Ponca, announcement, Oil and Gas Journal (f)
Medicine Springs, Pushmataha Co., Johnson
memorial, Decker, C. E., Huffman (a)
method, determination of valid microfossil count, Wilson (a)
Midco bed, insects in, Tasch and Zimmerman
Mid-Continent region, Desmoinesian, pre-, Huffman (c) (d)
mineral exhibit, Oklahoma, at St. Louis Worlds Fair, Gould (c)
mines and mining, statistics, Malloy
Mississippian—
Anadarko basin, oil production in, Reece
limestone, environment of deposition, Curtis, D. M. and Champlin
petroleum production, Chaton
spores, Wilson (e)
substrate: Jordan and Rowland; correlation, McDuffie
Morrocan: Anadarko basin, Ahela; Light oil field, Barby
mud, oil-base, use in Rumberger No. 5, MacEachern and Seaman
Muenster-Waurika arch, Chenoweth (a)
novaculite, Ouachita facies, Goldstein (a)
Ogallala, Roger Mills Co., Kitts (a)
oil/gas fields—
Altus, Ryniker, and others
Ardmore, Southwest, Hale
Brock, West, Walker
Buffalo, North, Kornfeld
Bunter, Northwest, Duck
Carter-Knox, Reedy and Sykes
Cashing, production review, Riggs (a)
Edmond, West, synchronous high, Scholten
Elk City: propane storage, Jordan (1); second deepest hole, Jordan (k)
Enville, Southwest, Reeves, and others (a) (b)
Frederick, West, Markley
Garber, synchronous high, Scholten
Laverne, Blockley
Light field, Morrow sand, Barb
McWillie, North, carbonate type, Buda
Madill, North, Gehring
Milroy, Schweers
Muskogee, petroleum-engineering, Riggs, and others
Palacine, South, Atkinson
Velma area: recumbent folding, Chenoweth (e); Springer, Parker
Oklahoma Geological Survey, history of development, Gould (a)
Ouachita facies, cherts and novaculites, Goldstein (u)
Ouachita geosyncline, paleogeology, Goldstein (b)
Ouachita Mts.: Atoka, pre-Arkansas, Frezon; frontal belt, structure, Hendricks; oil and gas, Chenoweth (c); tectonics at Ouachita-Arkabutla “junction.” Flawn
Ozark Region: Atoka, pre-Arkansas, Frezon; Mississippian, Huffman (b)
paleogeography, Permian-Pennsylvanian, central Oklahoma, Tanner (a)
paleontology—
Atoka fm., Wagoner and Mayes Cos., Blythe
badger, Pilotaizud mecadensis, Pliocene, Kitts and Myers brachiopod, Chilodopsis, Amsden (a)
Calloconularia striemple, Strimple (a)
Captorhinidai, Seltn
condonts, Cambrian, Mueller
clam, generic assignment, Branson (c)
Conularia, Pennsylvanian, Strimple (a)
Cretaceous, types, Branson (e)
crinoids, Missourian, Strimple (b)
Echinocirrus, Exceo shale, Branson, (b)
Galatocrinus allisoni, Strimple (c)
Globigerina seminolensis, range, Branson (a)
Goniatites choctawensis: Oklahoma first described fossil, Branson (h); taxonomy, Branson, and others
Hunton group: Amsden (a); brachiopods in Bois d’Arc, Amsden (b)
Insects in Midco bed, Tschudi and Zimmermann Isotelus, Amsden and Ham
Labbideosaurkos, Illinoisy shale, Seltn
Labbidosaurus, Wellington fm., Seltn
Lonchodomas megehee, trilobite, Sutherland and Amsden problematical fossils, Conostichus, Branson (k)
Protrithecites, Elias
Pseudotritytes, Elias
Putrella, Elias
sea-scorpion, Permian, Branson (i)
Spencerisporites, Forts and Parks
types, location, Branson (e)
vertebrate: alligator, Woodburne; Permian at Fort Sill, Kitts (b); Pliocene, Roger Mills Co., Kitts and Black; Roger Mills Co., Cenozoic, Kit’s (a)
palynology: Cordaites michiganensis, Tynan; Densosporites, Wilson (c);
Gnetales, Wilson (d); Mississippian spores, Wilson (e); montmant, water-miscible, Wilson (b)
Panhandle: petroleum activity, Buchanan; production (Permian), Chasteen.
 Pawhuska peneplain, drainage and tectonics, Melton
Pennington coal, palynology, Wilson (c)
Pennsylvania: Ardmore basin, petrology, Jacobsen (a); paleogeography, central Oklahoma, Tanner (a) Permain sea-scorpion, Bunson (i) petrophyte, Wichita Mts., Robertson petrography, quartz sand grains, Lucas petrology—

air drilling technique, Stearns
Altus oil field, Rydiker, and others
Anadarko basin: drilling future, Wheeler; production, Hayden Arbuckle production in Comanche Co., Oil and Gas Journal (c)
Ardmore field, Southwest, Halc
Arkoma basin: Rose and Bike; activity, Oil and Gas Journal (g)
Beaver Co., Oil and Gas Journal (a)
bibliography, oil analyses, Blade
Buffalo field, North, Kurnick, Oil and Gas Journal (b)
Carter-Knox field, Reedly and Sykes
Congress, Fifth World, account, Oklahoma Geology Notes
Council Grove (Permian) production, Gardner (d)
Creek Co., Jordan (g)
Custer Co., first production, Jordan (b)
deep wildcard in Latimer Co., Gardner (b)
Dewey Co., Oil and Gas Journal (d), Petroleum Week (a)
Ellis Co., Jordan (i)
Enville field, Southwest, Recce and others (a) (b)
forecast for 1938, McCaslin
Frederick field, West, Markley
gas in Custer Co., Jordan (c)
Harper Co., Jordan, and others
Hogshooter field, air drilling, Stearns
Huntun: discoveries, Petroleum Week (d): production, Oke: strike in Custer Co., Gardner (a)
Indian Territory Illuminating Oil Co., Finney
Lawrence field, Bickley
McAlester basin: Petroleum Week (e); gas in Atoka, Petroleum Week (b)

McWillie field, North, Rudo
Madill field, North, Cabrini
Mississippiian: Anadarko basin, Beebe; production, Clinton
Morrow sand, Light oil field, Barby
northwest Oklahoma, Oil and Gas Journal (e)
oil-base mud in deep hole, Mecachorina and Scammon
Ouachita Mts, possibility, Chenoweth (c)
Palacine field, South, Atkinson
Panhandle: exploration and development, Buchanan; map, pay-formations, announcement, Oil and Gas Journal (f): Permian production: Chasten

reservoirs in Springer sandstone, Jacobsen (b)
Rumberger No. 5, Jordan (k)
Simpson wildcats, Bike
Springer in Velma-Camp area, Parker
statistics: Christensen; Jordan (f): National Oil Scouts and Landmen's Association; Rinehart Oil News Co.; Roberts
storage of natural gas, Jordan (e)
stratigraphic traps, Anadarko basin, Pate
synchronous highs, Schollten
wildcat in Roger Mills Co., Gardner (c)
Woods County, Bowles
Piekee mining unit, methods, Bilicando

Pleistocene, South Canadian River, Faw (b)

72
Pliocene: alligator, Woodburn; badger in Harper Co., Kitts and Myers; vertebrate fauna in Roger Mills Co., Kitts and Black
ripple mark, unusual type, Chenoweth (b)
rivers, Llanorian, deltas, Chenoweth (d)
Roman Nose State Park, Fay (a)
sand grains, quartz, shape to crystallographic orientation, Lucas
sedimentation: Lake Carl Blackwell, Schreiber; synchronous highs, Scholten shales and clays, economic, Marshall Co., Bunker (h)
shorelines, based on cross-bedding, Tennor (b)
Simpson, oil production in southern Oklahoma, Bike sonic log, Golden Trend, Pickardt and Holley Spenceriosporites, Polis and Parks Springer sandstone: reservoirs, Jacobsen (b); Velma-Camp area, Parkr State Park, Roman Nose, Fay (a)
statistics—
mineral industries in Oklahoma, Grandone, and others
mines and mining, Malloy
petroleum: Jordan (f); National Oil Scouts and Landmen's Association;
Rinehart Oil News Company; Roberts; Panhandle, Christenson
storage of natural gas: Jordan (e); propane in Elk City field, Jordan (l);
propane in Seminole Co., Jordan (f)
stratigraphic traps, type, Bush
stratigraphy—
Arkansas, western, Jackson
Atoka fm., Wagoner and Mayes Counties, Blythe
Cane y shale: Ellis and Branson; Arbuckle Mts., Champlin
Cornell Ranch member, Prestridge
Deese group, subsurface in Garvin Co., Gunter
Huntton group: Arbuckle Mts., Amedon (b); petroleum, Oxley
Mississippian: boundaries and subdivisions, Branson (g); McAlester basin, Lynch; Ozark area, Huffman (b)
names, geologic, Wilson, and others
Simpson, pre-, Berne, and others
Sycamore fn.: Chenoweth, and others; Prestridge; Anadarko basin.
Braun; Arbuckle Mts., Champlin
Welden fn., Arbuckle Mts., Champlin
Worthey member, Prestridge
tipple analyses, Arsaco, and others
uranium, marine black shales, Fix
Vannos quartzite pebbles, source, Chenoweth (f)
Velma area, recumbent folding, Chenoweth (e)
Washita group, nomenclature, Curtis (d)
waterflood: Nowata Co., Powell; Washington Co., Powell
water, surface, for irrigation, chemical, United States Geological Survey (a); surface supply, United States Geological Survey (b)
Wellington, correlation, insects, Tasch and Zimmerman
Wichita Mts.: age determinations, Jeffrey, and others; granophyres, Hamilton; Pennsylvanian facies changes, Edwards; perthite, Robertson; rhyolites, Denison; seismic reflections, Widess
Woodford, pre-, unconformity, Maxwell

73
CASHING-IN ON BASIC RESEARCH

Basic research established the fact that each mineral responds to radiant heat waves in its own particular manner. Some minerals when exposed to infrared waves have the property of absorbing heat and thus show increase in temperature. Such minerals are called diathermanous. Dolomite, anhydrite and shale fall into this class. On the other hand, some minerals allow infrared waves to pass through with little or no absorption. These minerals are called diathermanous and, of course, do not show appreciable increase in temperature. Halite (sodium chloride or common salt) is such a mineral.

What, you may ask, is such information worth in an era in which worth is measured in dollars and cents; that is, where the information finds industrial application. The basic information outlined above has now demonstrated its worth when applied to a serious problem that has bothered the rock salt industry for many years. Rock salt, being a natural mineral material, normally contains more or less impurities the removal of which has seldom been completely satisfactory. The undesirable matter commonly found associated with rock salt is dolomite, anhydrite, and shale.

Recently, International Salt Co. announced that they had a solution to the problem and that the first commercial installation to use the process would be in an underground mine at Detroit. The process is based upon research started seven years ago at Battelle Institute. The process involves subjecting crushed rock salt to radiant heat whereby the impure pieces became selectively heated and the pure pieces remained relatively cool. The actual separation of impurities from the salt takes place on a high-speed conveyor belt that has been coated with a heat-sensitive resin. After being subjected to infrared heat, the salt is run onto the coated belt. Due to the temperature difference between the pure salt and the impurities, when the crude material reaches the end of the belt the pure crystals fly off the end into a catch bin but the relatively warmer impurities cling to the resin-coated belt just long enough to drop into another bin, nearer the belt end. So—International Salt Co. "cashes-in" on basic research. Other applications of the basic information surely will follow.

—A. L. B.

INTERPRETATION OF AIR-DRILLED SAMPLES

As drilling with air and gas becomes more widespread and economic, geologists will need to become familiar with procedures for taking good samples and with methods of analysis of such samples obtained by these circulating media. J. K. Petty in *The Petroleum Engineer*, vol. 32, no. 1 (January 1960), p. B-88 to B-95, explained and illustrated an air-sampling jet. He discussed methods and problems of interpreting lithologic character of penetrated rocks and described formations in the Arkoma basin area.

—I. J.
SURVEY PUBLICATIONS PASS 20,000 PAGE MARK

With the release of Bulletin 84 on January 13, the Survey's total publication record passed 20,000 pages. The present total is 20,131 pages. In press are reports which will total approximately 600 pages. Divided into epochs of Survey existence the pages of publication are:

<table>
<thead>
<tr>
<th>Epoch</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1908-1913</td>
<td>1,031 pages</td>
</tr>
<tr>
<td>1914-1922</td>
<td>2,052 pages</td>
</tr>
<tr>
<td>1924-1933</td>
<td>4,530 pages</td>
</tr>
<tr>
<td>1935-1962</td>
<td>5,700 pages</td>
</tr>
<tr>
<td>1963-1969</td>
<td>6,209 pages</td>
</tr>
<tr>
<td>Total</td>
<td>20,131 pages</td>
</tr>
</tbody>
</table>

The publications are 84 Bulletins (12,207 pages), 50 Circulars (2,102 pages), 36 Mineral Reports (756 pages), 20 volumes of The Hopper and Oklahoma Geology Notes (2,307 pages), 8 Biennial Reports (432 pages), 9 Guide Books (555 pages), and issues not in series (1,841 pages).

PROGRESS OF TOPOGRAPHIC MAPPING

In May of 1958 topographic maps of any real value were available for about one-fourth of the State. Progress in mapping has been rapid. Six 15-minute sheets and 14 7½-minute sheets were issued by the end of 1958. In 1969 many new sheets were issued and a large number were authorized. A summary of current status of mapping shows:

<table>
<thead>
<tr>
<th>To May 1958</th>
<th>May 1960</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-minute quadrangles</td>
<td>45</td>
</tr>
<tr>
<td>7½-minute quadrangles</td>
<td>30</td>
</tr>
</tbody>
</table>

It would require 317 fifteen-minute quadrangles to cover the State. One hundred three are printed, in progress, or authorized, and 42 ½ are or will be covered by larger scale maps.

At this time no topographic maps at a scale greater than four inches to the mile have been published or are authorized for Cimarron, Texas, Beaver, Harper, Ellis, Woodward, Woods, or Grant Counties. This is the large untouched part of the State, and there is a wide unmapped belt adjacent to it in Texas and Kansas.

Mapping is done by the Topographic Branch of the U. S. Geological Survey. Work is mainly done on a match-funds basis from another agency. In Oklahoma the recent projects have been sponsored by the Tulsa Metropolitan Planning Board, the Oklahoma City water authority, the Air Force, and the Army.

—C. C. B.

ERRATUM

In Fig. 1, p. 24 of vol. 20, no. 2, Oklahoma Geology Notes, the symbol indicating sandstone was omitted from the section shown as Marlow formation.
NEW PUBLICATIONS

The final section of Dr. Amsden's report on the rocks and fossils of the Hunton group was released on January 14, 1960. The book is "Stratigraphy and paleontology of the Hunton group in the Arbuckle Mountain region, Part VI, Hunton stratigraphy": Oklahoma Geological Survey, Bulletin 84, 311 pages, 56 figures, 17 plates, 3 panels. The book is priced at $4.00 bound in blue cloth, $3.00 paper bound.

A report on the geology of northern Latimer County was released on January 25. The investigation was made by Derral T. Russell as part of his Master of Science requirements at the University of Oklahoma. The book is "Geology of northern Latimer County, Oklahoma": Oklahoma Geological Survey, Circular 56, 57 pages, 12 figures, colored geologic map, price $2.50 bound, $2.00 in paper cover.

Other Survey reports in various stages of the press are:

Bulletin 85, Late Paleozoic rocks of the Ouachita Mountains

Bulletin 86, Geology and ground-water resources of southern McCurtain County

Bulletin 87, Ground-water resources of Canadian County

Bulletin 88, Geology of the Boktukola syncline

Circular 49, Microflora of the Flowerpot shale

Circular 51, Geology of the Cavanal syncline

Circular 52, Geology of the Featherston area