New Theses Added to O. U. Geology Library

The following Master of Science theses were added to The University Oklahoma Geology Library during the month of October, 1960:

- Subsurface geology of south-central Pawnee County, Oklahoma, by Richard A. Berryhill.
- Subsurface geology of a portion of southern Hughes County, Oklahoma, by Ralph Leon Harvey.
- The Mesaverde formation of the northern and central Powder River basin, Wyoming, by Tom E. Purcell.
- Areal geology of the Cretaceous area, Jackson County, Oklahoma, by Robert W. Richter.
- Areal geology of the eastern Mount Ida area, Montgomery County, Arkansas, by Marion G. Robb.
- A subsurface study of the "Cherokee" group, Grant County, and a portion of Alfalfa County, Oklahoma, by Gregory E. Stanbro, Jr.
- A geologic study of the post-Mississippian pre-Missouri sediments of Bradley area in central Oklahoma, by Ronald C. Withers.
- Dimensional grain orientation studies of recent Canadian River sands, by Leonard M. Young.
- Subsurface geology of east Pauls Valley area, Garvin County, Oklahoma, by Robert T. Young.
- One doctoral dissertation, The subsurface geology of the McAlester Basin, Oklahoma, by Ralph W. Disney, was also added to the library, but will be restricted until June 15, 1962.

Common Minerals, Rocks, and Fossils of Oklahoma

Guide Book X of the Oklahoma Geological Survey, Common minerals, rocks, and fossils of Oklahoma, by William E. Ham and Neville M. Curtis, Jr., was issued on November 7, 1960. The guide book is especially designed to accompany a set of twenty specimens of rocks, minerals, and fossils which are being made available to teachers in Oklahoma schools. These sets and the guide book will be sent free of charge to qualified schools in the Oklahoma school system. Inquiry should be made of the Director, Oklahoma Geological Survey, Norman.

The guide book alone, may be purchased by the general public for $1.00 per copy. The purpose of the guide book is to introduce the pre-college student to the science of geology and to make him aware of the importance of the mineral resources of his State. It consists of 22 pages, containing descriptions of nine mineral species, eight rock types, and three fossil types. The book also gives a brief account of the geologic history of Oklahoma as well as a summary of the status of the mineral industry of the State. It is illustrated by 27 photographs and a colored geologic map of Oklahoma.
OIL AND GAS IN KINGFISHER COUNTY

LOUISE JORDAN

Exploration and development for oil and gas production has been rapid in Kingfisher County during the year 1960. Such a pace is the culmination of the last four years of exploration during which 25 wildcats were drilled and three old holes were reinvestigated resulting in 17 discoveries (table I). Already this year twelve wildcats have found reserves in new areas or in extensions of earlier discoveries. Two new field discoveries are the result of working over holes drilled in 1947 and 1950. Only four wildcat tests have been dry. Several fields named in 1950 have merged. More than 85 development wells increased the areas of production and found new zones of accumulation. No development wells have been unsuccessful. Average cost per well, including drilling and equipping, is more than $70,000. At North Okarche, the cost of a gas well is reported as $112,000 with Chester production at 8,200 feet (Bike, 1960).

Oil or gas or both have been found in commercial quantities in 14 of the 25 townships of the county. Four townships have not been explored and nine have less than three tests each in their 23,920-acre areas (or 13 tests in 297,360 acres). Figure 1 shows the locations and field names of productive areas and gives the names of the producing zones which range in age from Ordovician to Late Pennsylvanian. Hydrocarbon production has been found in sandstone or limestone at ten stratigraphic positions in the county. These are, in ascending order: Wilcox (Ordovician); Hunton (Silurian-Devonian); Meramec, Manning, and Parvin (Mississippian); Bartlesville, Red Fork, Oswego, Cleveland, and True Layton (Pennsylvanian).

Geology. Kingfisher County is located on the eastern flank of the Anadarko basin in a down-faulted area just west of the north-south trending Nemaha Ridge fault zone which defines the westward extent of the Central Oklahoma arch. Rock units dip and, with a few exceptions, thicken southwestward toward the basin.

More than 10,000 feet of rock, ranging in age from Permian to Ordovician, has been penetrated in the search for oil. The deepest well of the county, located in the southwest (sec. 14, T. 15 N., R. 8 W.), penetrated the upper part of the Simpson group and was abandoned as a dry hole at 10,110 feet. Three wells in the eastern tier of townships (Tps. 17, 18, and 19 N., R. 5 W.) have been drilled into the Arbuckle group.

Permian formations from Garber sandstone to Dog Creek shale, crop out successively to the west and southwest. Permian rocks increase in thickness from 2,200 feet in the northeast to about 4,000 feet in the southwest. A structure map (Arnold, 1956, pl. 1) at the base of the Wellington anhydrite shows a dip of 30 to 35 feet per mile.

Pennsylvanian rocks of the Virgil, Missouri and Des Moines series are about 2,500 feet thick in the northwest and 5,000 feet thick in the southwest. A map contoured at the base of the Pennsylvanian (Arnold, 1956, pl. 3) illustrates an average regional dip of approximately 75 feet per mile. Producing oil and gas reservoirs are in the lower 1,000 to 1,200 feet of the Pennsylvanian section. In descending order, the producing units are: Layton (below the Hogshooter) and Cleveland sands in the lower part of the Missouri series;
Oswego lime, Red Fork, and Bartlesville sands in the Des Moines series. The Oswego lime, described as an oolitic brown to tan limestone which is locally oolitic, is the principal Pennsylvanian reservoir being developed. Reserves are estimated at 100 barrels per acre-foot (Respess, 1960, p. 94).

In general, Mississippian rocks dip and increase in thickness toward the southwest. The approximate eastern extent of the uppermost series, Chester, is shown in figure 1. Because erosion previous to Pennsylvanian deposition beveled the Chester series eastward, the thickness increases generally westward to approximately 600 feet in the northwest corner of the county and possibly as much as 700 feet in the southwest corner. The section decreases in thickness northward in the northwestern part of the county toward the regional line of truncation as shown by Pate (1959, fig. 10, p. 50). As a result of beveling, the two productive levels in Chester rocks, Parvin* and Manning zones of limestone or, at places, sandstone, are truncated along a general north-south line across the county. Greater than normal thickness is preserved in the northeast corner of the county and extends into southeast Garfield County as the result of either downwarping or faulting previous to Desmoinesian deposition. The west-east cross section (fig. 2) shows eastward decrease in thickness of the Chester series and truncation of the Parvin and Manning units due to pre-Desmoinesian erosion.

Accumulation of oil or gas in Chester rocks is primarily stratigraphic with reservoirs existing where a sandstone or limestone unit becomes less permeable updip or is in contact with and sealed by Pennsylvanian shale. Most fields exist on small structural noses contoured at the base of the Pennsylvanian. Secondary porosity in limestone members appears to be, in part, the result of weathering at the updip limit of the members, and some primary porosity is probably due to the oolitic character of the limestone. Fracturing is also present (Respess, 1960, p. 95). Production from the Manning is primarily oil at North Dover Field and in the Hennessey district. West and south of Kingfisher Manning production is gas. The Manning gas producer in sec. 5, T. 15 N., R. 7 W. is outstanding with 25 million cubic feet per day. Oil potentials range from 90 to over 800 barrels per day, some wells producing naturally (Respess, 1960, p. 95). Parvin zone production is gas with some condensate.

* Name published in Oil and Gas Journal, vol. 55, no. 47 (Nov. 25), 1967, p. 107, in reference to new pay discovery in Southwest Lucy Field, Kingfisher County.

Name from the small community of Parvin in NW¼ sec. 32, T. 19 N., R. 9 W., an early trading center near a famous crossing of the Cimarron River. Pay discovered in the Utah Southern Oil Company No. 1 Pope (SW¼ SE¼ NW¼ sec. 16, T. 18 N., R. 9 W.) and mistakenly called Manning zone. Name applied in January 1957 in an unpublished geological report by H. W. Biggart, after consultation with other geologists, to the pay zone in the Utah Southern Oil Company No. 1 Hill (C NE¼ SW¼ sec. 3, T. 18 N., R. 9 W., elevation 1,121 feet).

The Parvin zone consists of two limestone members separated by shale: upper from 7,444-7,517 feet; lower from 7,415 to 7,555 feet in Utah Southern No. 1 Hill. Base of Pennsylvanian at 7,349 feet, top of Manning zone at 7,588 feet. Because of high gas pressure and introduced lost-circulation material it was impossible to be certain of the type of limestone of the Parvin zone in this well (letter from R. W. Biggart, December 31, 1957).

Type log is shown on figure 2, well No. 1.
Oil and gas are being found in calcareous siltstones or highly silty limestones which are Meramec in age and are called "Mississippi lime" by some operators. A thin section of limestone made from a core taken from 6,225 to 6,234 feet (two feet recovery) in Big Chief Drilling Company No. 2 Oltmann's (sec. 25, T. 18 N., R. 5 W.) is illustrated (fig. 4) and the rock is described by C. J. Mankin, School of Geology, The University of Oklahoma. First production in the area from this stratigraphic level was found by the Big Chief Drilling Company in the East Columbia Field (T. 18 N., R. 5 W.), where Pennsylvanian rocks directly overlie the Meramec. Here oil has accumulated beneath the pre-Depositional unconformity under structural and stratigraphic conditions. Cores taken from Meramec rocks at East Columbia exhibit strong vertical fractures and no porosity has been observed in rock cuttings (Miller, 1959, p. 43).

Figure 1. Map of Kingfisher County showing oil and gas fields (October 1960) and productive pays in field areas.
Figure 2. West-east cross section showing generalized lithology of Mississippian rocks in Kingfisher County. Datum is top of Woodford shale. Name and location of wells listed in appendix. (Modified after T. L. Rowland, 1958)
Figure 3. North-south cross section showing generalized lithology of Mississippian rocks and thinning and/or truncation of rocks assigned an Osagean age from north-central Kingfisher County into Canadian County. Datum is top of Woodford shale. Name and location of wells listed in appendix.

Table 1: Exploratory Holes and Footage Drilled, Kingfisher County, 1930-1959

<table>
<thead>
<tr>
<th>Year</th>
<th>Oil</th>
<th>Gas-condensate</th>
<th>Dry</th>
<th>Total</th>
<th>Footage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1939</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>27,675</td>
</tr>
<tr>
<td>1940</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>9,123</td>
</tr>
<tr>
<td>1941</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>....</td>
</tr>
<tr>
<td>1942</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8,225(^1)</td>
</tr>
<tr>
<td>1943-44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>....</td>
</tr>
<tr>
<td>1945</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>37,852</td>
</tr>
<tr>
<td>1946</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>7,205</td>
</tr>
<tr>
<td>1947</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>38,649</td>
</tr>
<tr>
<td>1948</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>9,028</td>
</tr>
<tr>
<td>1949</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>12,974</td>
</tr>
<tr>
<td>1950</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>35,154</td>
</tr>
<tr>
<td>1951</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>37,871(^1)</td>
</tr>
<tr>
<td>1952</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>13,717(^1)</td>
</tr>
<tr>
<td>1953</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>24,541</td>
</tr>
<tr>
<td>1954</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>8,308</td>
</tr>
<tr>
<td>1955</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6,888</td>
</tr>
<tr>
<td>1956</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>36,881</td>
</tr>
<tr>
<td>1957</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>28,255</td>
</tr>
<tr>
<td>1958</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>55,017(^2)</td>
</tr>
<tr>
<td>1959</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>46,766(^3)</td>
</tr>
</tbody>
</table>

| Total | 14 | 7 | 41 | 62 | 441,627 |

\(^1\) Dry hole re-investigated, resulting in discovery of hydrocarbon in late 1950's.
\(^2\) Footage of re-investigated hole, resulting in Northwest Dover discovery, excluded.
\(^3\) Footage of two re-investigated holes, resulting in East Lincoln and North Hennessey discoveries, excluded.

During current exploration, production is being found at North Hennessey, East Hennessey, and North Dover Fields near or at the top of the Meramec where it is overlain by Chester rocks. Respes (1900, p. 96) states that horizontal and vertical fractures "form the reservoir and establish the drainage pattern for migration of oil into the well bore." Some type of well stimulation is normally required for production from the Meramec. Initial potentials of more than 1,500 barrels of oil have been recorded. At East Hennessey, most wells are dually completed in Manning and Meramec zones. C. M. Cole (1960) advocates drilling into the Meramec with air and the use of parallel strings of tubing and of a side-winder jet gun for perforating the Manning zone.

The term "Mississippi lime" is used in northern Oklahoma to refer either to a section which includes rocks of Meramec, Osage, and Kinderhook age, or to one containing only Osage and Kinderhook rocks where the Meramec has been removed. Thickness of the section in Kingfisher County in the area where Meramec is overlain by Chester ranges from 440 to 550 feet. Because of limited control available, no discernible pattern can be seen in the distribution of the thickness. In eastern townships where Chester rocks are absent, thickness depends upon pre-Desmoinesian structure and erosion. Rowland (1958) divided the "Mississippi lime" into four lithologic units in
Kingfisher County and concluded that unconformities exist at the top and at the base of the Meramec as he, McDuffie (1958), and Thornton (1958) defined the unit. Such unconformities are present at these horizons in northeastern Oklahoma (Huffman, 1958, p. 52, 62).

Three divisions of the Mississippian section (basal Kinderhook unit, not everywhere present, is included with the Osage) are shown in figures 2 and 3. In the north-south cross section (fig. 3) the Osage unit thins southward to extinction and Meramec rock rests upon the Chattanoogaan Woodford. Jordan and Rowland (1950, p. 129) demonstrated that the Osage unit thickens northward in northern Oklahoma. The Meramec unit is thickest in western Oklahoma. It must be admitted that the division of the "Mississippi lime" is arbitrarily based on lithology, and that it is difficult to make the division even where well cuttings are studied. The possible presence of unconformities within and at the top of the limestone section poses a problem in making true structure maps and in interpreting a thickness pattern in the area. Weathering of the Meramec unit may have taken place before the deposition of Chester shale. Secondary porosity as well as fractures may be present at places near or at the top of the "Mississippi lime."

Rock units below the Mississippian include (descending order): Woodford and underlying Missener pay, Huntun, Sylvan, Fernvale-Viola, Simpson, and Arbuckle. All units dip to the southwest. A map contoured at the top of the Fernvale-Viola shows a regional dip of approximately 100 feet to the mile (Arnold, 1956, pl. 6). Thickness of the Woodford in western Kingfisher County ranges from 25 feet in the north to 75 feet in the south, but increases to about 150 feet (Arnold, 1956, pl. 9) in the northeastern townships (Tps.

![Figure 4](image-url) - Thin section of "Mississippi lime," Meramecian age, from a core fragment taken at a depth of approximately 6,280 feet in Big Chief Drilling Co. No. 2 Oilman (NE NW NW 25-18N-5W), Kingfisher County, Oklahoma.

Left: 4 mm diameter, ordinary light
Right: 0.9 mm diameter, crossed nicols

Description: Very coarse siltstone; calcite-cemented pellet-bearing orthoquartzite (Folk classification). Rock is composed of well-sorted angular quartz silt (45%) and carbonate pellets (10%), each with a median diameter of 0.05 mm. Feldspar and other accessory minerals amount to less than 3 percent. The calcite (42%) is very coarse grained (polikilitic); locally the feldspar (plagioclase) has been replaced by calcite.

(Photographs by R. E. Denison, description by C. J. Mankin)
18 and 19 N. R. 5 W.) in the area where Hunton rocks are absent (Tarr, 1955, p. 1855).

Because the older rocks are not being explored in Kingfisher County at the present time, these units will not be discussed. As noted on figure 1, oil production has been found at West Edmond and Northwest Cashlon in Hunton rocks, and at Southwest Dover Field in Misener, Hunton, and Simpson. An unpublished Master of Science thesis at The University of Oklahoma by B. M. Arnold, Sr. (1956) describes stratigraphy and structure of the entire rock section penetrated in Kingfisher County, and illustrates the geologic knowledge at that time with 10 structure and isopach maps. Acknowledgment is made to Mr. Arnold for the assistance that his study gave to the writer in preparing this limited report on the geology of the county.

History of exploration. Early records show that approximately 20 tests were drilled in Kingfisher County during the years 1917-1938. Most of the holes are stratigraphically shallow and are not shown on figure 1. All the dry holes shown in figure 1 tested the entire Pennsylvanian section and some were drilled into the upper part of the Ordovician rock section. Among these, two wells drilled in 1930 (sec. 6, T. 16 N., R. 7 W. and sec. 25, T. 19 N., R. 5 W.), one in 1934 (sec. 16, T. 15 N., R. 6 W.), and two in 1939 (sec. 20, T. 19 N., R. 5 W. and sec. 34, T. 17 N., R. 6 W.) were early exploratory tests of rocks as old as Ordovician and increased geologic knowledge of the area.

In 1939, the first production for the county was found by Anderson-Prichard in its No. 1 Gels (C NW1/4 SW1/4 sec. 15, T. 18 N., R. 9 W.) with an estimated 10 to 12 barrels of condensate and three million cubic feet of gas per day perforated at 7,230-7,352 feet in a Pennsylvanian limestone which is correlated at present with Inola limestone. The test was deepened to the Wilcox (Ordovician) to a total depth of 8,507 feet in 1940 and was the deepest hole in Kingfisher County (Arnold, 1956, p. 71). Gas production of such an amount and distance from a pipe line was not considered important at that time and the well was plugged in 1940 and recorded as dry in the Corporation Commission report. This test might be called the discovery well of the Southwest Lacy Field rather than the Utah Southern Oil Company No. 1 Pope completed one mile to the north in 1956 and producing a similar amount of gas from the same stratigraphic level.

The West Edmond Field was discovered in 1943 in adjacent Oklahoma County, and by 1945 drilling had extended production from Bois d'Arc limestone of the Hunton group into Kingfisher County. Also in 1945, the Northwest Cashlon Field, a few miles north of the West Edmond Field, was opened by the Phillips Petroleum Company No. 1 Jirick (C SW1/4 SW1/4 sec. 25, T. 16 N., R. 5 W.); and Southeast Pleasant Ridge, producing oil from the Bartlesville sand, was found that year also by Phillips Petroleum in the No. 1 Hasley (C SE1/4 SE1/4 sec. 28, T. 16 N., R. 5 W.).

As a result of these Hunton discoveries, six exploratory holes were drilled in the 1946-1947 period. In 1948, Southwest Dover was opened by Superior Oil Company No. 1 Long (SE1/4 SE1/4 SE1/4 sec. 16, T. 17 N., R. 7 W.). The well was dually completed in Bois d'Arc limestone and Simpson dolomite flowing 11 barrels of condensate and an estimated 8.2 million cubic feet of gas per day. Subsequently production was found in Misener, a sandstone below the Woodford shale and above the Hunton limestone. Development of the field has yielded 14 commercial wells out of 18 tests (Arnold, 1956, p. 72).
In the seven-year period, 1939-1945, 37 exploratory tests totaling 274,908 feet discovered two oil and two gas-condensate productive areas. Of these, only Northwest Cashion and Southwest Dover were developed. Table I lists 19 dry tests amounting to 137,153 feet drilled after the 1948 discovery in the seven years, 1949-1955. However, in the four-year period, 1956-1959, exploratory activity resulted in 12 new oil areas, five gas-condensate fields and eight dry holes from 166,719 feet of new hole. Fracture treatment and acidization of reservoirs has been an important factor in the discoveries. M. C. Respess (1960) discusses the modern well-stimulation techniques used in Kingfisher County for the Oswego, Manning, and Meramec pays. Three holes, abandoned as dry previous to 1956, were reinvestigated and three new areas of production (North Hennessey, Northwest Dover, and East Lincoln) were thus discovered. The footage of these reinvestigated holes is included in Table I in the year when the test was originally drilled and not in the year to which the discovery is credited under the oil or gas-condensate column.

The following record of 1956-1959 discoveries (new fields, new pays, and extensions) and results are listed, with a few minor changes, from the annual yearbooks of National Oil Scouts and Landmen’s Association.

1956

East Columbia

(a) Discovery Layton oil pay. Tennessee Gas Transmission No. 1 Oilman, NE SW NE 24-18N-5W. Elev. 1053. Pay top 5,394, net pay 22 feet. IP fig. 241 b/d oil, gvtv 41.3°, choke 18/64, tbz. press. 250.

(b) New oil pay, Oswego and Meramec. Big Chief Drlg. Co. No. 1 Oilman, NE NE NW 25-18N-5W. Elev. 1117. Pay top Oswego 5,540, net pay 20 feet, Meramec 6,219, net pay 6 feet. IP fig. Oswego 170, Meramec 240 b/d oil, gvtv. 45°/49°, choking 20/64, 12/64, tbz. press. 100, csg press./600.

Southwest Lacy

South Dover

Discovery Manning (Chester) gas-condensate pay. L. H. Armer No. 1 Gazin, NE NW 14-17N-7W. Elev. 1020. Pay top 7,100, perforated 7,115-7,125, net pay 10 feet. IP 1,050 MCF/d gas, cond. 3 b/d, gvtv. 56.8°, tubing press. 2,250, csg. press. 2,280.

1957

Southeast Columbia

Discovery Meramec oil pay. Big Chief Drlg. No. 1 Koch, NE NE SE 35-18N-5W. Elev. 1,140. Pay top 6,807, net pay 26 feet. IP fig. 4 b/d oil, wtr 1 b/d, choke open.

Southwest Lacy

Extension Inola and discovery Parvin gas zones. Utah Southern Oil No. 1 Hill, C NE SW 3-18N-9W. Elev. 1,121. Pay top 7,254,

311

1958

East Columbia

Extension Meramec oil pay 0.5 miles south. Big Chief Drlg. No. 1 Smith, NE NW NE 36-18N-5W. Elev. 1,155. Pay interval 6,290-6,332, net pay 42 feet. IP fig. 7 b/d oil, gvtty. 39°.

North Dover

Northwest Dover

Discovery Manning (Chester) gas-condensate pay. L. H. Armer No. 1 Hobbs, C NW NE 30-18N-7W, originally drilled by Allied Materials in 1951. Elev. 1086. Pay interval 7,300-7,340, net pay 31 feet. IP 1,780 MCF/d gas, cond. 6 b/MMCF, choke 1/2, SITP 2240.

Southeast Lincoln

Discovery Oscego oil pay. Texas No. 1 Ash, SE NW NE 19-17N-5W. Elev. 1,018. Pay interval 6,292-6,312, net pay 20 feet. IP fig. 292 b/d oil, gvtty. 44°, water 83 b/d, choke 22/64, tbg. press. 425, gas-oil ratio 870/1.

North Okarche

1959

Northeast Dunlap

Discovery Oscego oil pay. Calvert Drlg. No. 1 Perdue, NW SE 23-17N-7W. Elev. 1,086. Pay interval 6,787-6,789; 6,795-6,801, 6,713-15, 6,806, net pay 11 feet. IP fig. 320 b/d oil, gvtty. 43°, water 5 b/d, choke 24/64, tbg. press 290.

Southeast Dover

East Hennessey

(a) Discovery Meramec oil pay. Jones & Pellow No. 1 Schimanek, NE NE 16-18N-8W. Elev. 1,122. Pay interval 6,769-6,836, net pay 67 feet. IP fig. 176 b/d oil, gvtty. 39°, choke 15/64, tbg. press. 300.

(b) New Manning (Chester) oil pay. Jones & Pellow No. 1 Rickey, C NE SE 16-19N-6W. Elev. 1,134. Pay interval 6,600-15, net pay 6 feet. IP fig. 206 b/d oil, gvtty. 38°, choke 16/64, tbg. press. 450.

North Hennessey

Discovery Meramec oil pay. Slats Honeymoon No. 1 Brown, SW SE NW 11-19N-7W, originally drilled by Union Oil in 1942. Pay interval 7,016-7,026, net pay 10 feet. IP fig. 168 b/d oil, gvtty. 88°, choke 14/64, tbg. press. 850.

312
East Lincoln

Discovery Oswego oil pay. Bilinda Petr. No. 1 Shuttler, SW SW 16-17N-5W, originally drilled by Shamrock Drlg. in 1952. Elev. 1,062. Pay interval 6,279-6,281, 6,257-6,262, net pay 7 feet. IP fig. 40 b/d oil, gvy. 42", water 1 b/d, choke 1/4, lb. press. 750.

Middle Dover

Discovery Manning (Chester) oil pay. King Stevenson No. 1 Wells, NW NW 27-18N-TW. Elev. 1,067. Pay interval 7,050-7,060, net pay 10 feet. IP fig. 35 b/d oil, gvy. 39", choke 24/64, lb. press. 520.

1960

The final count for Kingfisher County in 1960 cannot be made at the present time (October) but previously named fields, North and Middle Dover, Southeast and East Lincoln, and South Kingfisher and North Okarche, have merged. Decisions of the Oklahoma Nomenclature Committee are necessary to determine what names these producing areas will have in the future. College Corner and Southeast Hennessey in T. 19 N., R. 6 W., West Kingfisher in T. 16 N., R. 8 W., Waudell, in T. 16 N., R. 5 W. (a re-investigated hole) have been discovered and named. Unnamed areas of new production are found in the southwest corners of T. 18 N., R. 5 W.; T. 18 N., R. 9 W.; and T. 10 N., R. 5 W., and near the center of T. 16 N., R. 6 W. (a re-investigated hole) and T. 10 N., R. 7 W. New pays, Cleveland and Red Fork, have been discovered with development drilling. Only five tests, one drilled in West Edmond Field and four wildcats, have resulted in dry holes in the entire county area. With the assurance that crude and gas pipelines will be laid by Champlin Oil and Refining Company and Oklahoma Natural Gas Company respectively (Petroleum Week, 1960, p. 23) development as well as exploratory drilling will continue in the sixties to extend and increase in number the areas where multiple pay zones are present.

References Cited

Appendix

List of Wells used in Figures 2 and 3

1. Utah Southern Co., No. 1 Hill, NE SW sec. 3, T. 18 N., R. 9 W.
2. Atlantic Refining Co., No. 1 Choate Unit, C SE SW sec. 26, T. 10 N., R. 9 W.
3. Champlin Refining Co., No. 1 Wiley, C NW NE sec. 10, T. 18 N., R. 8 W.
4. L. H. Armer (Allied Materials), No. 1 Hobbs, C NW NE sec. 30, T. 18 N., R. 7 W.
5. Foundation Oil Co. et al., No. 1 Martin, C NW SE sec. 1, T. 17 N., R. 7 W.
6. Amerada Petroleum Co., No. 1 Oltmanns, SW SW SW sec. 23, T. 18 N., R. 5 W.
7. Slats Honeymoon Drig. Co. (Union Oil Co.), No. 1 Brown, SW SE NW sec. 11, T. 19 N., R. 7 W.
8. Magnolia Petroleum Co., No. 1 Kuntz, C SW SW sec. 27, T. 17 N., R. 7 W.
9. Cauco Oil & Trust Co., No. 1 Parrington, NW NW NE sec. 14, T. 15 N., R. 8 W.
10. Southern Union Gathering Co., No. 1 Schumacher, C NE NE sec. 22, T. 13 N., R. 7 W.

Oklahoma Geologists and Geophysicists

A Directory of Oklahoma geologists and geophysicists, containing the names and addresses of approximately 2,500 Oklahoma members of 14 national and 7 local professional societies related to the geological sciences, was issued by the Survey in November. Copies of the directory may be purchased from the Survey at $1.00 each.

314
THE TYPE SPECIES OF ORBITREMITES AUSTIN AND AUSTIN 1842, AND ELLIPTICOBLASTUS, A NEW MISSISSIPPIAN GENUS

ROBERT O. FAY

The type species of Orbitremites Austin and Austin 1842 is Pentremites derbiensis Sowerby 1825, many specimens of which are in the British Museum of Natural History. Four specimens were loaned to the author by Dr. Harold Beaver, Humble Oil & Refining Co., Houston, Texas. The type species occurs in the Carboniferous limestone of Derbyshire and Lancashire, England. The name Orbitremites, as first used by Gray (1840, p. 64), is here considered to be a nomen nudum.

Orbitremites derbiensis (Sowerby) 1825
Plate I, figures 1-6

An excellent description of Orbitremites derbiensis is given by Etheridge and Carpenter 1886 (p. 250), but certain points of morphology of the anal side and the nature of contact of the radials with the deltoids along the suture were not clear. The deltoid plates, which extend to the aboral side of the specimens, overlap the radial plates at a low angle. The anal interradius is occupied by an epideltoid plate and a hypodeltoid plate, with the anal opening between. There appear to be two small unnamed plates, one on either side of the anal opening, which are overlapped by the aboral part of the hypodeltoid. The stem is about 1 mm in diameter with about 50 crenellae extending about one-half the radial distance from the periphery toward the small rounded central lumen. The lancet plate is exposed along the medial one-third of its length except near the extreme aboral tip where it is covered by the side plates. The four spiracles pierce the aboral ends of the deltoids and are elliptical in outline, with thick raised margins. The anispiracle is about twice the size of any one of the other four and is bluntly rounded aborally. The oral opening is concavo-convex, with the concave surface toward the anal side, surrounded by the five deltoid lips. There is one hydropo- spire fold on each side of an ambulacrum, with a large rounded loop and relatively short walls that form a hydropoire plate that ends beneath the margins of the side plates. There are approximately twice as many pores as side plates, with one pore located near the middle of a side plate and the other placed even with a suture between side plates. The pores appear to be well within the substance of the margins of the deltoid and radial plates, and the thickened portions next to the radial plate are above the admedial wall of the hydropoire fold (medial referring the line of the food groove). This thickened portion is what would be termed the "hydropoire plate," but actually the hydropoire plate is the thin wall of the hydropoire next to the lancet plate and it is slightly thicker at the line of contact between the lancet plate and the radial or deltoid plates, and is actually beneath the thickened portion that is pierced by the hydropoire pores. There are about 30 side plates in 10 mm, each broadly rectangular, with broadly triangular secondary side plates resting upon the bevelled aboral and admedial edges of the primary side plates. A pore canal or furrow is prominent, extending
from the center of each primary side plate to the adjacent marginal aboral pore, and a smaller canal or depression extends laterally to a pore near the center of the marginal face of each of the side plates. The brachiolar pit is near the center of the admedian suture between the primary and secondary side plates, with approximately three side cover-plate sockets per side food groove, and five main cover-plate sockets per side plate along the main food groove. The basals are three, small, normal, occurring in a small depression but not deeply impressed.

The stratigraphic range and geographic distribution of species of this genus are not well understood. It is here suggested that the range is limited to the Mississippian and the distribution to England and surrounding area. Further research on other species may extend these limits. The author doubts that *Orbitremites* occurs in North America.

The closest related genus to *Orbitremites* is *Globoblastus*, which is similar to *Orbitremites* in many respects, but differs in that *Globoblastus* has short deltoids, the radials overlap the deltoids, the lancet plate is completely

Plate I

Figure 1. *Orbitremites dorbiensis* (Sowerby) 1825. Oral view x3.3, after Etheridge & Carpenter 1886.

Figure 2. Same, left posterior ambulacral (D) view, x3.3.

Figure 3. Same, aboral view, x3.3.

Figure 4. Same, plate layout showing B and C radials only, x3.3.

Figure 5. Same, cross-section of an ambulacrum, x6.0.

Figure 6. Detailed view of side plates, drawn from specimen loaned by Dr. Beaver, specimen no. 4, given to him by Dr. Joysey of Cambridge University, x90.0.

Figure 7. Cross-section of an ambulacrum of *Ellipisicoblastus orbicularis* (Sowerby) 1834, approximately x3.3, after Etheridge and Carpenter 1886.
covered by the side plates for most of its length, and there are two hydropigle folds beneath each side of an ambulacrum. Orbitremites ellipticus (Sowerby) 1825 probably belongs to Orbitremites. In this species the deltoids are much shorter than in O. derbiensis, but the deltoids overlap the radials and there is one short hydropigle fold with a broadly rounded inner fold. I examined only one specimen of O. ellipticus, kindly loaned to me by Dr. Beaver.

Concerning Orbitremites orbicularis (Sowerby) 1834, the radials overlap the deltoids, and the one hydropigle fold on each side of an ambulacrum is elongate, with a small rounded inner fold. I have examined two specimens of O. orbicularis in the collection of the Philadelphia Academy of Natural Sciences. On the basis of my observations I would strongly recommend that a new genus, here termed Ellipticoblastus, be erected to receive similar blastoids, with the type being Pentatremites orbicularis (Sowerby) 1834, pl. 33, fig. 5. This species is essentially identical in all respects to Orbitremites ellipticus, except for the above characters. A more complete description will be given in a paper on the blastoids in the collection of the Philadelphia Academy of Natural Sciences. A cross section of an ambulacrum is shown for this species in plate 1, fig. 7. Ellipticoblastus differs from Globoblastus in that the deltoids are long, there is one hydropigle fold on each side of an ambulacrum, and the lancet plate is exposed almost to the top of the ambulacrum in Ellipticoblastus, but not in Globoblastus.

REFFERENCES CITED

Austin, T., and Austin, T., 1842, Proposed arrangement of the Echinoderma particularly as regards the Crinoidea, and a subdivision of the Class Adelostella (Echinoidea): Annals and Magazine Natural History, vol. 10, p. 111.

Paragassizocrinus in Oklahoma

Circular 55, The genus Paragassizocrinus in Oklahoma, by Harrell L. Strimpe, was issued by the Survey in November. The book consists of 37 pages, 2 text-figures, and 3 plates. Eight new species of Paragassizocrinus are described. Copies of the report may be purchased from the Survey at $0.75 each.
XXI International Geological Congress

The Norden countries of Denmark, Finland, Iceland, Norway and Sweden were hosts to about 8,000 geologists and accompanying wives from 90 countries at the Twenty-First Session of the International Geological Congress held in Copenhagen, Denmark, August 10 through 25, 1960. Seventy field trips to study the geology of Norden were taken by geologists previous to and following the session. The volume of abstracts lists 688 papers which were presented before the members of the Congress during the six and one-half days of technical meetings. Meetings were divided into 20 sections according to the geological subjects which had been selected for discussion.

All the arrangements for the Congress sessions and the field trips were accomplished by some 400 geologists of the five Norden countries. Probably the greatest accomplishment of these men and women was the editing and publishing of all the presented technical papers, and the preparation of guidebooks of the field trips by August first. Thus, for the first time in the history of the Congress, an attending member could purchase guidebooks for all the field trips, and receive the proceedings of the Congress upon arrival. The Proceedings consisted of 21 volumes, one for each section, a volume of abstracts and the Proceedings of the International Paleontological Union. The set weighed eight pounds, and contained 4,416 pages of technical papers with illustrations. Each volume is called a part of the Report of the Twenty-First Session, Norden.

The titles and numbers of pages of the parts, and the authors and titles of papers which deal with or contain illustrations of Oklahoma geology are listed below.

 Application of wire-line well logging to subsurface geology, by H. G. Doll, Maurice Martin, and M. P. Tixier.
Part III. Pre-Quaternary absolute age determination, 45 p.
 The geological time scale, by J. L. Knip.
Part IV. Chronology and climatology of the Quaternary, 167 p.
Part VI. Pre-Quaternary micropaleontology, 143 p.
 Early Mississippian (Lower Carboniferous-Tournaisian) micropaleontology in the United States, by Raymond C. Gutschick.
Part VII. Ordovician and Silurian stratigraphy and correlations, 157 p.
Part VIII. Late pre-Cambrian and Cambrian stratigraphy, 118 p.
 Early Paleozoic tectono-stratigraphic patterns in the United States, by H. E. Wheeler.
Part IX. Pre-Cambrian stratigraphy and correlations, 206 p.
Part X. Submarine geology, 72 p.
Part XI. Regional and structural problems in oil geology, 123 p.
Part XII. Regional paleogeography, 212 p.
 Middle Permian evaporites in southwestern Oklahoma, by William E. Ham.

318
Silicic differentiates of lopoliths, by Warren Hamilton.

Part XV. Genetic problems of uranium and thorium deposits, 614 p.

Part XVI. Genetic problems of ores, 260 p.

Part XVIII. Structure of the earth's crust and deformation of rocks, 464 p.

Part XIX. Caledonian orogeny, 165 p.
The pre-Devonian unconformity in North America, by W. C. Gussow.

Part XX. Applied geology, 93 p.

Part XXI. Other subjects (includes planets, glaciology and glacial geology, regional geology and geomorphology, petrography and sedimentation, palaeontology and stratigraphy), 294 p.

Part XXII. International Palaeontological Union, 123 p.

Meetings of the Council and of the Bureau of the IGC were held daily after the technical sessions. The official languages of the Congress, as determined by statute, are English, French, German, Italian, Russian, and Spanish. The Organizing Committee of the Norden Congress encouraged the use of English, which is understood by more than twice as many members of the Congress than is any other official language. However, at the meetings of the Council, which consisted of official delegates from member countries and societies, delegates spoke in any one of the official languages and simultaneous translation was given through ear phones as in done at the United Nations.

The International Palaeontological Union, Association of Sedimentology, International Association of Hydrogeologists, International Mineralogical Association, The Geochemical Society, Association des Services Géologiques Africains, Committee for the 2nd International Symposium on Arctic Geology, and a micropaleobotanical group held meetings during the Congress sessions.

In the Council of the Congress, it was agreed that an International Union of Geology be formed. Invitations to hold the 22nd Session of the Congress in 1964 were extended by India and by New Zealand, and India's invitation was accepted. The place and exact dates have not been decided.

There were 145 official delegates from the United States. Five from Oklahoma were R. H. Dott and A. R. Denison, representing the American Association of Petroleum Geologists; W. E. Ham, the Oklahoma Geological Survey; Louise Jordan, Oklahoma City Geological Society, B. H. Parker, Government of the United States and American Association of Petroleum Geologists. Other Oklahoma Geologists who were listed as attending the IGC in Copenhagen are R. W. Edmund, B. M. Kerr, and Marcelle Mousley
from Oklahoma City; H. M. Geham, C. H. Keplinger, J. A. Kornfeld, R. A. Pohly, and G. H. Westby from Tulsa; W. F. Gouin from Duncan; J. M. Westheimer from Ardmore; and J. A. Norden from The University of Oklahoma, Norman.

W. E. Ham took the field trip into central Sweden where Cambrian, Ordovician, and Silurian rocks were examined. Two field trips were made by Louise Jordan, one to study the geomorphology and general geology of parts of western Norway and another to examine the geology of northeastern Jutland, the islands of Sjaelland (Zealand) and Mön (Moen), Denmark.

—L. J.

INDEX

Volume 20, 1960
Prepared by Neville M. Curtis, Jr.

air-drilling, technique, samples 74
Alabaster Caverns 10, 182
Ansdell, T. W., Lissatrypoida concentrica (Hall) emend Boucot and Ansdell 135
apatite, authigenic, Caddo County 187
authigenic, Roger Mills County 190
apology to U. S. Bureau of Mines 132
Arbuckle limestone, index ostracod 211
Arkoma basin, petroleum exploration 140
Bear Creek, decision on name 239
Bennison, Allan, see Tomlinson, C. W. 123
bibliographic citations 18
bibliography, addenda for Oklahoma geology, 1959 102
announcement, North American Geology, 1960 20, 156
Oklahoma geology, 1959 55
paleobotany in Oklahoma 217
theses, new, at University of Oklahoma Geology Library 155, 223, 299
biofacies, restricted, Nowata County 259
biography, Darcy, H. P. G. 165
Motts, W. S. 233
Nicholson, Alexander 104
Oakes, M. C. 184
Boktnoia syncline, new publication, announcement 267
Brannan, C. B., Jr., and Jordan, Louise, Recent exploration in the Arkoma basin and Ouachita province, southeastern Oklahoma 140
Branson, C. C., A restricted biofacies 259
Beyond the Panhandle 186
Bibliographic citations 18
1957 bibliography 156
Conostichus 185
Darcy 185

320
Gastricoceras in Red Eagle limestone
Index to geologic names of Oklahoma
Introducing the Editor
John Tipton Lonesdale (1895-1900)
Key Wolf (1886-1900)
Local fossil assemblage in the Seminole formation
Malcolm C. Cates retires
More Oklahoma Permian insects
New data on graptolites
Permian ophiuroid occurrences
Progress of topographic mapping
Proposed American standard of early Permian (?) rocks, a century-old controversy
Reclassification of an Oklahoma foraminifer
Some Oklahoma Carboniferous cephalopods
Summer schedule of Geological Survey
Treatises of paleontology
Branson, C. C., see Elias, M. K.
Broken Bow, topographic map, new, announcement
Ryan County, lignite in Cretaceous
Burwell, A. L., A new use for punicite
Cashing-in on basic research
Coal
Recovery of lime and sulfur from gypsum and anhydrite
Rock wool from volcanic ash
Caddo County, apatite, authigenic magnesium clay, authigenic
Canadian County, announcement of publication
Carboniferous, cephalopods, a review
crinoids
Carter County, foraminifer, reclassification
Cassidy, M. M., and Mankin, C. J., Chlordex used in preparation of black shale for clay-mineral analysis
Cassidy, M. M., see Mankin, C. J.
caves, Alabaster Caverns

cement plant, new in Pryor, Oklahoma
Ceratoleperditta, new genus, index ostracod
Chazyan faunule, Cherokee County
Chenoweth, P. A., A Canyon reef in southern Oklahoma
Starfish impressions from the Hilltop shale
Cherokee County, Chazyan faunule
palaeobotany
chlorite, X-ray study, North Carolina
Clarke, R. T., see Wilson, L. R.
clay, authigenic, Roger Mills County
clay-mineral analysis, technique
coal, review
Coat County, Dalmanites oklahomae
Coke, J. M., see Sutherland, P. K.
Cole, F. W., Distillate or condensate?
Comanche County, Museum of the Great Plains
Rock slide on Mt. Scott
condensate, definition 126
Conostichus 195
Cowskin Creek, decision on name 239
Creek County, announcement of publication 20
Creek County, soil survey announcement 111
Cretaceous, lignite in Woodbine formation 240
Cronoble, W. R., An occurrence of Utocrinus buttsi Miller and Gurley in Oklahoma 96
cross section, central Oklahoma, Paleozoic, a review 183
Curtis, N. M., Jr., Addenda to published papers on Oklahoma geology in the year 1959 102
Lignite in the Red Branch member, Woodbine formation, Oklahoma 240
Published papers on Oklahoma geology in the year 1959 55
Daimanites oklahomae 53
Darcy, H. P. G., biography 165
Denison, R. E., Rock slide on Mount Scott 130
Dickey, J. W., One hundred years of the petroleum industry 14
distillate, definition 126
economic geology, lime from gypsum 210
mineral industries statistics 46
petrochemical plants, list 9
pumicite, new use of 175
rock wool from volcanic ash 207
salt, separation 74
sulfur from gypsum 210
electric-log cross section, Pennsylvanian, Jefferson County 3
Ellis, M. K., Genotype of Schauagorina 7
Ellis, M. K., and Branson, C. C., Russian stratigraphic names 287
Ellipticothalamus 315
Endosporites ornatus 29
erosocrinids, regressive evolution in 151
Fay, R. O., The pores of Stephanocrinus Conrad 236
The type of Nuclocrinus Conrad 236
The type species of Globoblastus Hambach 202
The type species Orbitremites Austin and Austin 1842, and Ellipticothalamus, a new Mississippian genus 315
Florinites pelucidus 29
foraminifer, reclassification, Carter County 139
Frederickson, E. A., New evidence concerning Daimanites oklahomae 53
Gastrioceras 22
dgeochemistry, black shale preparation 275
gypsum, temperature and purity 37
geomorphology, gypsum karst topography 10
igneous structures, topography in Raggedy Mountains 112
Globoblastus 292
Grandon, Peter, and Ham, W. E., The mineral industries of Oklahoma in 1959 (Preliminary Report) 46

322
granite, Spavinaw
Greer County, hystrichosphaerid
gypsum, method of analysis
Hamm, W. E., Glassy pebbles in southwestern Oklahoma—
obsidian vs. tektite
Hamm, W. E., see Grandone, Peter
Hamm, W. E., see Howery, S. D.
Hamm, W. E., see Lovett, F. D.
Harper County, Permian salt beds, Laverne gas area
soil survey, announcement
Harris, R. W., An index ostracode from the Arbuckle limestone,
Oklahoma
Review of systematics and recent research of primitiospid
Ostracoda
Hedlund, R. W., see Wilson, L. R.
helium plant at Keyes
Hilltop shale, starfish
Hiss, W. L., and Hunter, H. E., Magnetite-pyroxene textures in basic
rocks from the Wichita Mountains
Hoffmeister, W. S., Sodium hypochlorite, a new oxidizing agent for
the preparation of microfossils
Howery, S. D., and others, Authigenic apatite and magnesium clay
from Caddo County, Oklahoma
Huffman, G. G., Oklahoma Cement Company opens new plant
near Picher
Relationship of Paleozoic boundaries to marine transgressions
and orogenic movements
Huffman, G. G., and Stacke, J. M., Jr., A Chazyean faunule from the
lower Tyner, northeastern Oklahoma
A new fossil plant locality in the Sylamore member, Chattanooga
formation, northeastern Cherokee County, Oklahoma
Noel shale in northeastern Oklahoma
Spirifer primus from the St. Joe limestone near Tahlequah,
Oklahoma
Hunter, H. E., Topographic control by primary igneous structures in
the Raggedy Mountains, southwestern Oklahoma
Hunter, H. E., see Hiss, W. L.
hystrichosphaerid, stains used for study
igneous rocks, granite, Spavinaw
magnetite-pyroxene textures, Wichita Mts.
Insects, Permian
International Geological Congress, XXI, review
Jefferson County, Pennsylvanian Canyon reef
Johnston County, chitinozoan, Mississippian
Jordan, Louise, An apology to the U. S. Bureau of Mines
Cost of wells in Oklahoma
Helium plant completed at Keyes
Interpretation of air-drilled samples
Masjid-I-Sulaiman field, Iran
Oil and gas in Kingfisher County
Permian salt beds in Laverne gas area, Harper County, Oklahoma
Petroleum facts and figures 160
Seventy counties in Oklahoma produce hydrocarbons 54
SPWLA, first annual meeting 174
U. S. G. S. publishes cross section through central Oklahoma 188
Woodward County's gas fields 83
XXI International Geological Congress 818
1930 statistics of Oklahoma's petroleum industry 120
Jordal, Louise, see Branam, C. B., Jr. 140
Keyes, new helium plant 15
Kingfisher County, oil and gas 303
Klawa County, obsidian vs. tektite 92
Raggedy Mountains, igneous topography 112
lignite, Cretaceous 240
Lissatrypoidea concentrica 138
Logan County, soil survey, announcement 228
Loudsdale, John Tipton, 1865-1969, memorial 274
Love County, Paradoclocrinus 172
Lovett, F. D., and others, Authigenic apatite and clay minerals from 190
Roger Mills County, Oklahoma 290
Lukfata sandstone 387
magnesium, clay, authigenic, Caddo County 183
Mankin, C. J., and Cassidy, M. M., Chlorite, vermiculite, and talc 261
from Webster, North Carolina 275
Mankin, C. J., see Cassidy, M. M. 187
Mankin, C. J., see Howery, S. D. 190
Mankin, C. J., see Lovett, F. D. 266
Mankin, C. J., see Young, L. M. 282
Mayes County, cement plant, new 224
Spavinaw granite, petrography 224
meeting, Society Professional Well Log Analysts 174
Merritt, C. A., Petrography of the Spavinaw granite 224
micropaleontology, foraminifer, Carter County 130
microfossils on cover of Oklahoma Geology Notes 2.99
ostracod, Arbuckle limestone 211
ostracods, primitiosid. systematics 176
Schwagerina 7
Mississippian, chitinozoan, Johnston County 148
Ellipticoblastus 315
Orbitromites 315
plant locality 80
Missourian, Ulocrinus buttisi 96
Mount Scott, rock slide 130
Motts, W. S., biography 253
Museum of the Great Plains, Comanche County 158
Myers, A. J., Alabaster Caverns 132
An area of gypsum karst topography in Oklahoma 10
Nicholson, Alexander, biography 104
Unpaid advertisement 208
Noel shale, northeastern Oklahoma 159
North Carolina, chlorite, vermiculite, and talc 261
Nowata County, restricted biofacies

Ulocrirus buttsi 259

Nucriscinus 238

Oakes, M. C., biography 154

obsidian 92

oil/gas field

Kingfisher County 303
Laverne area, Permian salt beds 23
Masjid-I-Sulaiman, Iran 6
Woodward County 83

Oklahoma Geological Survey, Bear Creek and Cowskin Creek

Bibliography of North American Geology 1956, review 20
Boltukola syncline bulletin issued 297
Broken Bow area mapped 299
Canadian County report issued 127
Common minerals, rocks, and fossils of Oklahoma 302
Creek County bulletin available 20
Dr. Motta joins Survey staff 253
Kansas Geological Society Field Conference 158
Museum of the Great Plains 158
new publications 76, 156, 194
New theses added to O. U. Geology Library 155, 223, 299, 392
New topographic maps 225
Northeastern Oklahoma Field Conference 272
Oklahoma geologists and geophysicists 314
Paleobotanical field trip 158, 246

Paragassiscinus in Oklahoma 317
Petrochemical plants in Oklahoma 9
Recent U. S. G. S. documents 244
Red River tributaries named 171
Soil survey of Creek County 111
Soil surveys in Oklahoma 228
Southern McCurtain County bulletin issued 104
summer schedule 164
Tulsa Rock Show 253
U. S. G. S. projects in Oklahoma 124

Oologah formation, coral 78

Orbitremites 315

Osage County, _Gastrioceras_ 22
star-fish, Permian 22

ostracods, Arbuckle limestone, index 211
primitiopaid, systematics 170

Onacita Mts., Lukifta sandstone 200
petroleum exploration 140

paleobotany, bibliography of Oklahoma 217
development in Oklahoma 217
fossils on cover of Oklahoma Geology Notes 2.99
Mississippian, Cherokee County 89
siliceous spherules in cordaitean wood 106
paleontology, biofacies, restricted
cephalopods
Chazyan faunule
coral, Oologah formation
Conostichus
crinoids, Carboniferous
conodonts in Goddard formation
Dalmanites oklahomae
Ellipticoblastus
eriscrinids, regressive evolution in
Gastroceras
Globoblastus
Goddard formation
graptolites, a review
insects, Permian
Listatrupoides concentrica
Nucleocrinus
ophiurid occurrences
Orbitremites
Paradelocinthus
review of Russian treatises
Seminole formation
Spirifer primesi
starfish
Stephanocrinus
Ulocrinus buttii
palynology, chitinozoan, Mississippian, Johnston County
Endosporites ornatus
Florinutes pelucidus
Hystrichosphaerid, Permian
technique, preparation
stain
Paradelocinthus
Pennsylvanian, Canyon reef, Jefferson County
coral
Paradelocinthus
Permian, controversy
historical and bibliography
hystrichosphaerid
insects
ophiurid occurrences
salt beds, Laverne gas area
stratigraphy
Woodward County, geomorphology
petrography, igneous, Mt. Scott, Comanche County
Wichita Mountains
Spavinaw granite, Mayes County
petroleum, Arkoma basin
cost of well
distillate and condensate definition
equipment, historical 208
Kingfisher County 308
Masjid-I-Sulaiman field 6
Ouachita Mts. 140, 290
petrochemical plants, list 9
review of industry development, reference books 14
salt beds in Laverne gas area 23
statistics 54, 120, 169
Woodward County 83
Pitt, W. D., What lies beneath the Lukfata sandstone? 230
Ponotoc County, paleobotany, siliceous, spherules 106
publications, new, Boktukola syncline bulletin 267
Canadian County bulletin 127
Creek County bulletin 20
Creek County, soil survey 111
Oklahoma Geological Survey 156, 194
Southern McCurtain County bulletin 104
uranium, U. S. G. S. studies 244
Red Branch member, lignite 240
Red River, tributaries named 171
reviews, rock wool from volcanic ash 207
Bibliography of North American Geology, 1957 20, 156
Carboniferous cephalopods 128
coral 15
cost of oil well 19
graptolites 119
New Mexico Bureau Mines bulletin, Union County, N. Mex. 186
Subsurface cross section of Paleozoic rocks, central Oklahoma 188
rock slide on Mt. Scott 130
Roger Mills County, apatite, authigenic 190
clay minerals, authigenic 190
Rogers County, coral 78
salt beds, Permian, Harper County 23
Schlechter, J. A., A study of the temperature necessary to 37
determine the purity of gypsum by dehydration
Schwagerina 7
Seminole County, paleontology, starfish 56
Spavinaw granite, petrography 224
Spirifer grimesi 50
St. Joe limestone, Spirifer grimesi 50
starfish 56
Starke, J. M., Jr., see Huffman, G. G., and Starke, J. M., Jr., 50, 89, 159, 268
Stephanocrinus 256
stratigraphy, geologic names 42
Goddard formation 123
Noel shale 159
northeast Oklahoma 282
Paleozoic 116
Permian 229
Strimple, H. L., Regressive evolution among eriscoerinids 151
The posterior Interradix of Carboniferous inadunate crinoids 247
of Oklahoma
Sutherland, P. K., and Cocke, J. M., A solitary rugose coral of 78
talc, X-ray study, North Carolina 261
exceptional size from the Middle Pennsylvanian of techniques, black shale, removal of organic matter for clay study 275
texas, Paleozoic boundaries 116
orientation, use of "Bio-Plastic" 266
grain orientation, use of "Bio-Plastic" 34
oxidizing agent for preparation of microfossils 101
samples air-drilled, interpretation 74
palynology, stain used in

theses, new, at University of Oklahoma Geology Library 155, 223, 296, 302
Tomlinson, C. W., and Bennison, Allan, Tiff member of Goddard
textite 92
formation

Topographic maps, new 228, 299
topography and rock slide, Mt. Scott 130
Uranium, U. S. G. S., new publications 244
U. S. G. S. projects in Oklahoma 124
Vermiculite, X-ray study, North Carolina 261
Wichita Mts., magnetite textures 254

Ulocribus buttai 96

U. S. G. S. projects in Oklahoma 124

Vermiculite, X-ray study, North Carolina 261

Velletri, G., A Permian hystichosphecerid from Oklahoma 170

Cover fossils 2
Cover microfossils 99
Development of paleobotany in Oklahoma 217

Florinite petulidus and Endosporites ornatus with observations on their morphology 29

Wilson, L. R., and Clarke, R. T., A Mississippian chitinozoan from Oklahoma 148

Siliceous spherules in tracheids of cordaitalean wood 106

Wilson, L. R. and Hedlund, R. W., Two techniques for staining hystichosphecerids 101

Wolf, Key, (1886-1960), memorial 300
Woodward County, Alabaster Caverns 132
gas fields 83

Gypsum geomorphology 10

X-ray studies, chlorite, vermicuclidean, and talc 261

Young, L. M., and Mankin, C. J., Impregnation of sand with "Bio-Plastic" for grain orientation studies 266