ISSN 0078-4397 # EFFECTS OF BRINE ON THE CHEMICAL QUALITY OF WATER IN PARTS OF CREEK, LINCOLN, OKFUSKEE, PAYNE, POTTAWATOMIE, AND SEMINOLE COUNTIES, OKLAHOMA ROBERT B. MORTON Prepared by the United States Geological Survey in cooperation with the Oklahoma Geological Survey The University of Oklahoma Norman 1986 . # CONTENTS | Pa_{ℓ} | | |---|----| | Abstract Introduction | 1 | | Background | 1 | | Purpose and scope | 1 | | Location and general description of the study area | 1 | | Previous studies | 3 | | Conventions | 3 | | Acknowledgments | 3 | | Geology of the Vamoosa–Ada aquifer | 3 | | Hydrology of the Vamoosa-Ada aquifer | 3 | | Brine-detection methods | 4 | | Chemical-graphical method | 4 | | Basis for use of brine-effect indexes | 4 | | Brine-effect indexes and their limitations | 5 | | Statistical analysis | 12 | | Geophysical method | 13 | | Possible sources of brines | 16 | | Conclusions | 18 | | Selected references | 19 | | Appendix 1: Glossary of technical terms | 22 | | Appendix 2: Conversion factors | 23 | | Appendix 3: Chemical analyses of water | 24 | | Index | 38 | | | | | ILLUSTRATIONS | | | Figures | | | 1. Location of study area | 2 | | 2. Site-numbering system | 3 | | 3. Relationship between sodium/bromide ratios and bromide concentrations | 7 | | 4. Relationship between sodium/chloride ratios and bromide concentrations | 8 | | 5. Relationship between bromide/chloride ratios and chloride concentrations | 9 | | 6. Relationship between sodium/chloride ratios and chloride concentrations | 10 | | 7. Relationship between sodium/chloride ratios and chloride | | | concentrations resulting from the hypothetical mixing of two solutions | 11 | | 8. Relationship between lithium/bromide ratios and chloride concentrations | 11 | | 9. Relationship between lithium/bromide ratios and chloride | | | concentrations from the hypothetical mixing of two solutions | 12 | | Relationship between ratios of sodium plus chloride to dissolved
solids (residue at 180°C) and chloride concentrations | | | solids (residue at 180°C) and chloride concentrations | 14 | | | | | Plate | | | 1. Geohydrologic maps pocke | et | | | • | | | | | TABLES | | | 1.77 | | | 1. Five relative concentration changes of some dissolved ions | | | during evaporation of sea water and brine | 6 | | 2. Water-sample analyses used in constructing Figures 7 and 9 | 13 | | 3. Summary of brine indexes | 15 | | 4. Values of the R ² statistic (%) | 15 | | o. Tuasime fiae of interface between fresh water and sait water | | # EFFECTS OF BRINE ON THE CHEMICAL QUALITY OF WATER IN PARTS OF CREEK, LINCOLN, OKFUSKEE, PAYNE, POTTAWATOMIE, AND SEMINOLE COUNTIES, OKLAHOMA ### ROBERT B. MORTON¹ Abstract.—A study of water-quality degradation due to brine contamination was made in an area of $\sim 1,700 \text{ mi}^2$ in east-central Oklahoma. The study area coincides in part with the outcrop of the Vamoosa–Ada aquifer of Pennsylvanian age. Water samples collected from 180 wells completed in the Vamoosa–Ada aquifer and at 167 sites from streams draining the Vamoosa–Ada aquifer show scattered occurrences of water-quality degradation by brine. Degradation of water quality by brine is indicated where (1) chloride concentration is \geq 400 mg/L, (2) bromide concentration is \geq 2 mg/L, (3) the ratio of sodium plus chloride to dissolved solids is \geq 0.64. Ratios of secondary importance that also indicate water-quality degradation by brine in the area are (1) a ratio of lithium to bromide \leq 0.01, when the chloride concentration is \geq 400 mg/L, (2) a sodium/chloride ratio of \sim 0.46, (3) a sodium/bromide ratio of \sim 92, and (4) a bromide/chloride ratio of \sim 0.0048. Values for bromide, lithium, strontium, dissolved solids, calcium, magnesium, sodium, chloride, and sulfate concentrations were subjected to analysis of variance based on use of the index values in partition data sets. The analysis of variance showed the significance of the indexes for all constituents except sulfate. The two most reliable brine indicators are chloride and bromide. Statistically, chloride is a slightly more reliable index than bromide. The developed indexes can be used to indicate water-quality degradation by brine. Accuracy is improved if both indexes are used. When geophysical logs from 133 pairs of oil and gas wells were analyzed, data from 5 pairs of wells indicated a possible rise in the interface between fresh water and salt water in the Vamoosa—Ada aquifer. Therefore, any rise of the interface is local rather than regional. The criteria developed in this study indicate that brine has degraded water quality at 63 sites on streams draining the Vamoosa-Ada aquifer, at 15 water wells completed in the Vamoosa-Ada aquifer, and at 5 oil and gas wells penetrating the Vamoosa-Ada aquifer. # INTRODUCTION ### **Background** An earlier study by D'Lugosz and McClaflin (1986) indicated that the water resources in the area of the Vamoosa–Ada aquifer may be affected by brines. On-site observations and analysis of water samples collected by D'Lugosz and McClaflin indicate that activities related to oil-and-gas operations may cause incursions of such brines. Their hydrologic work, recently published (1986), is the basis for the present study. # Purpose and Scope This study, conducted in cooperation with the Oklahoma Geological Survey, was to determine areas where water quality has been degraded and the potential sources of the degradation. Chemical-graphical and geophysical methods were used to identify areas and sources of degraded water. Parts of Creek, Lincoln, Okfuskee, Payne, Pottawatomie, and Seminole Counties are included in the study area (Fig. 1), which generally coincides with the areal extent of the Vamoosa–Ada aquifer (Pl. 1). # Location and General Description of the Study Area The study area, slightly less than 1,700 mi², extends about 90 mi from the Cimarron River on the north to the Canadian River on the south, and about 30 mi from east to west. The area described includes T5–19N and R5–9E. The study area is part of the Osage Plains section of the Central Lowlands physiographic prov- ¹U.S. Geological Survey, Oklahoma City, Oklahoma. Figure 1. Location of study area. ince (Fenneman and Johnson, 1946). The mean annual temperature is about 61°F (16°C), and the mean annual precipitation is about 37 in. The land surface slopes generally eastward and is gently rolling and well drained by the four principal streams—the Cimarron, North Canadian, and Canadian Rivers, and Deep Fork—and their numerous tributaries. Most of the major streams are perennial, whereas the smaller streams are dry during extended periods of little or no precipi- tation. Altitude of the land surface ranges from slightly less than 800 ft in the larger stream valleys to more than 1,100 ft in the uplands, but generally the higher altitudes range from 950 to 1,000 ft. The petroleum industry, including many supportive enterprises, is the dominant industry in the study area. Oil and gas fields range in size from one or two wells to such huge fields as Cushing, Seminole, and Bowlegs, which had 1,605, 255, and 175 active wells, respectively, in 1976 (McCaslin, 1977). Few sizeable areas are without some evidence of oil and gas operations. The cattle and farm industries are next in importance. ### **Previous Studies** The chemistry of oil-field brines and degradation of water resources by brines have been widely studied in other areas. Except for the preliminary work of D'Lugosz and McClaflin (1986), a review of the literature indicates that this investigation is the first study of brine degradation of water resources in the project area. # Conventions Land descriptions in this report are a modification of the U.S. Bureau of Land Management system of land subdivisions: township, range, section, and quarter-quarter-quarter section (Fig. 2). The number following the quarter-quarter-guarter section is the well sequence number. A glossary of technical terms is presented in Appendix 1, and conversion factors for units of measurement are presented in Appendix 2. Figure 2. Site-numbering system. # Acknowledgments Many farmers and ranchers interrupted their work to supply requested information on their water wells and in many instances to aid in the collection of water samples. Without their cooperation, this study would not have been possible. # GEOLOGY OF THE VAMOOSA-ADA AQUIFER Most of the geologic descriptions and the following section on hydrology are condensed from D'Lugosz and McClaflin (1986). The outcrop area of the Vamoosa-Ada aquifer is shown on Plate 1. The bedrock is of Pennsylvanian age and is overlain locally by alluvial and terrace deposits of Quaternary age. The Vamoosa-Ada aquifer is part of the bedrock sequence and includes the Vamoosa Group and underlying and overlying Pennsylvanian formations that are lithologically similar and hydrologically connected. In the study area the Vamoosa-Ada aquifer comprises, in ascending order of units, the uppermost part of the Barnsdall Formation, the Tallant Formation, the Vamoosa Group, the Ada Group, and the lower part of the Vanoss Group. Lithologically, the Vamoosa-Ada aquifer consists of a complex sequence of fine- to very fine-grained sandstone, siltstone, shale, and conglomerate, with very thin interbedded limestones. Individual sandstone units are 1–5 ft thick and are limited in areal extent. Structurally, the Vamoosa—Ada aquifer is part of a homocline which dips westward at 30—90 ft/mi; thus, the aquifer is a source of ground water west of its outcrop area. A series of NW-trending en echelon normal faults extends from southern Seminole County across Okfuskee County into Creek County (and farther north). Few faults exceed 3 mi in length, and most average about 1 mi. Displacement
commonly is about 50 ft and rarely is more than 100 ft. # HYDROLOGY OF THE VAMOOSA-ADA AQUIFER In the outcrop area, water in the Vamoosa—Ada aquifer is under water-table conditions, whereas west of the western edge of the outcrop belt confined conditions prevail. The gradient of the water table in the outcrop area generally is to the east, but locally is toward gaining streams (Pl. 1, map A). In the confined part of the aquifer the potentiometric surface presumably follows the homoclinal dip to the west. Measurements made in a few wells that penetrate the confined part of the aquifer show that water levels in the confined part of the aquifer are 70–150 ft below water levels in the unconfined part of the aquifer. The occurrence and movement of water in the Vamoosa–Ada aquifer depend significantly on variations in thickness of the sandstone units. The base of fresh water is lower in altitude where the sandstone sequence is thick and is higher where sandstones grade into less-permeable shale and siltstone. The effect of the en echelon faults on the movement of ground water is not known; however, these faults are of limited extent and likely do not have regional effects on the hydrology of the aquifer. Movement of ground water across the fault zones depends on the degree of fracturing, brecciation, or cementation. Based on recovery tests made in seven wells in 1978, transmissivity values for the aguifer were 70-490 ft²/day (average 200 ft²/day). Hydraulic conductivity was 2-4 ft/day (average slightly less than 3 ft/day). Storage coefficients determined from four unpublished tests made in the confined part of the aquifer in 1944 by the U.S. Geological Survey were 0.0001-0.0003, whereas storage, or specific yield, in the unconfined part was estimated at 0.12. Water-level measurements in wells were compared with base-flow measurements in the Hilliby and Polecat Creek basins, which are geologically and topographically typical of the aguifer outcrop area; the comparison shows that a rise in water level is accompanied by an increase in base flow, whereas a decline in water level results in a decrease in base flow. Thus, recharge and discharge are in approximate equilibrium. The volume of water in storage is near capacity most of the time. # BRINE-DETECTION METHODS Chemical-Graphical Method Water samples were collected for chemical analysis from 347 sites; 167 were surface-water sites and 180 were ground-water sites (Pl. 1, map B). Most of the samples were collected in 1979 and 1980; however, 15 samples were collected for less-complete chemical analysis in 1978. Selection of sample sites was based on a 2- to 3-mi grid; therefore, throughout the study area sample sites generally were evenly distributed. Time and budget constraints precluded a closer grid spacing. Because of the large grid spacing, many sites where water possibly is degraded by brine were not sampled; therefore, this study does not represent a complete inventory of all sites with degraded water in the area. Three hundred forty-two samples were analyzed for the common ions plus bromide and lithium. One hundred eighteen surface-water samples and 127 ground-water samples were analyzed for dissolved organic carbon (DOC). As noted later in this report, chloride is the best brine index. Plotting of DOC concentration against chloride con- centration showed no relationship for either the surface-water or ground-water samples; therefore, DOC analysis was terminated. Figures 3 through 10 show a few data points at some distance from the general trend. Such points may represent valid data, but many probably are the result of errors. Included in the possible sources of error are laboratory analytical errors, errors in rounding of the laboratory values, laboratory tabulation errors, key-punch errors, contamination of the sample container, or contamination of the sample during collection. Most of the fresh water in the study area is either a sodium bicarbonate type or a sodium calcium bicarbonate type, and most brines are a sodium chloride type. The presence of other water types in the area may explain some of the variability of data seen in Figures 3 through 10. Data points with question marks may be the result of one or more types of errors. These outlying points were not used in determining the position of the median lines or in the delineation of the ranges of each ratio. Laboratory analyses of water samples collected at the 347 sites are listed alphabetically by county in Appendix 3, which presents the data used in the chemical-graphical method for determining the presence of brine. In Appendix 3, surfacewater analyses are indicated by a value for "Streamflow, instantaneous," whereas groundwater analyses are indicated by a value for "Depth of well, total." # Basis for Use of Brine-Effect Indexes Brine in the subsurface may originate in two ways. One possible origin is by re-solution of halite, and in such cases the halite commonly occurs as bedded salt in the rock column. However, studies by many investigators have failed to identify salt or other evaporites in the Pennsylvanian rocks of Oklahoma. The ratio of sodium to chloride by weight in the re-solution of halite is 0.65. The average sodium concentration of all water samples collected in the study area is 679.4 mg/L, and the average chloride concentration is 1,383.5 mg/L, yielding a ratio of 0.49. This ratio indicates that the origin of the brine in the study area is not by re-solution of halite. The second possible origin of brine (the one most acceptable in the study area) is from sea water. As indicated by Carpenter (1978), the chemical evolution of subsurface brines derived from sea water includes an evaporative process in which the least-soluble chemical elements progressively precipitate out of solution, whereas the more-soluble chemical elements remain in solution in increasing concentrations. Carpenter (1978) explained further that the sodium/chloride ratio should be between 0.55 and 0.58 for any concentration of sea water up to halite saturation. However, any modification of sea water by evaporative concentration beyond halite saturation, or by diage- netic reactions, should lower the sodium content relative to chloride, so that the sodium/chloride ratio should be less than 0.5. Since the sodium/chloride ratio in the subsurface brines of the study area is 0.49, those brines evidently originated from sea water. On all the graphs, the value for the respective elemental ratios for sea water is shown. The position of the sea water value relative to the more briny (right) side of the graphs further indicates a sea water origin for the brines. Where available data permitted, plots from brine analyses are shown on some of the graphs. The analyses were made by various oil companies and later compiled by the University of Oklahoma, Energy Resources Institute, Office of Information Systems Programs, from whom the analyses were purchased for this study. Sodium, chloride, bromide, and lithium—four of the more-soluble ions in the brines of the study area—were used in determining the brine-effect indexes as log-log plots (in some cases, plots of a ratio versus a component of the ratio). A semilog plot was used for Figure 10. Because there is a significant disparity in the concentrations of sodium, chloride, bromide, and lithium, the logarithmic approach was considered useful in most instances. Other workers (e.g., Whittemore and Pollack, 1979) have used a log-log plot of a ratio versus a component of the ratio. The combinations of elements used in the plots were decided empirically. # Brine-Effect Indexes and Their Limitations The solubility of the alkali metals and halides and their usefulness to brine indexes has been discussed by Chebotarev (1955), White and others (1963), and Whittemore and Pollock (1979). The importance of chloride as an indicator of oil-field brine pollution has been discussed by Revelle (1941) and Collins (1974). Bromide as an indicator of oil-field waters has been discussed by Rittenhouse (1967). Collins (1976) reported on lithium and bromide in oil-field brine. Sodium, chloride, bromide, and lithium occur in much greater concentrations in oil-field brines than in fresh ground water and surface water. For example, a representative analysis of freshwater in the study area shows 22 mg/L of sodium, 23 mg/L of chloride, 0.2 mg/L of bromide, and 20 μ g/L of lithium (Appendix 3, analysis 325). By contrast, a representative analysis of oil-field brine in the area shows concentrations of 42,000 mg/L of sodium, 91,000 mg/L of chloride, 280 mg/L of bromide, and 1,900 μ g/L of lithium (Appendix 3, analysis 290). As shown in Table 1, these four constituents are concentrated during sea-water evaporation. Because of the greater solubility of sodium, chloride, bromide, and lithium, and because of their use as brine indicators by earlier researchers, these four constituents were used in a series of graphs (Figs. 3–10) to determine the indexes described in this study. During preparation of this report, various combinations of the data in Appendix 3 were plotted. The purpose of the graphs was to determine quantitative relationships among constituents that would help to distinguish fresh water from various mixtures of fresh water and brine. The plotted data showing the most consistent relationships, from which numerical relationships could be derived, are shown in Figures 3 through 10. Because some of the indexes are derived from different approaches, the validity of such indexes is substantiated. The analyzed water samples grade from virtually fresh water, through different, increasingly briny mixtures of fresh water and brine, to samples that are essentially brine. The use of numerical expressions for the indexes might be assumed to imply mathematical exactness. No assertion is made for such mathematical precision. The change from fresh water to brine—as indicated by plots of the analysis of the
many water samples—is gradational. The indexes are considered the best means of identifying the point on this gradational series where the brine contamination begins. Except for the iodide data, which have not been used, all values reported in Appendix 3 are rounded to one decimal place. This rounding helps explain the linear arrangement of some of the data points in Figures 3 through 10. Rounding also may affect the positions of points plotted on the graphs, and the scatter of points at the left (fresh water) ends of the graphs. In the case of bromide, a reported value of 0.1 mg/L may include values ranging from 0.05 to 0.15 mg/L; thus, the actual value may be 50% more or 50% less than the reported value. In Figure 3, the maximum sodium/bromide ratio is 3,500 and the minimum is 29 for a bromide concentration of 0.1 mg/L. Applying the maximum "correction" of 50% to the plotted ratio values results in a minimum maximum value of 1,750 and a maximum minimum value of 43. Thus, the scatter is slightly exaggerated by rounding of the reported data. However, the diffusion of points observed on the left of most of the graphs is real and is explained by the large range in constituent concentrations in mixtures of fresh water and brine. The lesser scatter observed on the right of the graphs might be incorrectly interpreted to indicate that pollution is widespread and that most water in the study area is not potable. However, most of the water in the study area is in fact potable, as shown by the proliferation and scatter of points on the left of the graphs. As shown in Figure 3, sodium/bromide values are widely scattered until a critical bromide concentration of about 2 mg/L is reached. At bromide Table 1.—Five Relative Concentration Changes of Some Dissolved Ions During Evaporation of Sea Water and Brine* | Constituents | Sea water | $CaSO_4$ | NaCl | $MgSO_4$ | KCl | $MgCl_2$ | |--------------|-----------|----------|---------|----------|---------|----------| | Lithium | 0.2 | 2 | 11 | 12 | 27 | 34 | | Sodium | 11,000 | 98,000 | 140,000 | 70,000 | 13,000 | 12,000 | | Potassium | 350 | 3,600 | 23,000 | 37,000 | 26,000 | 1,200 | | Rubidium | 0.1 | 1 | 6 | 8 | 14 | 10 | | Magnesium | 1,300 | 13,000 | 74,000 | 80,000 | 130,000 | 153,000 | | Calcium | 400 | 1,700 | 100 | 10 | 0 | (| | Strontium | 7 | 60 | 10 | 1 | 0 | (| | Boron | 5 | 40 | 300 | 310 | 750 | 850 | | Chloride | 19,000 | 178,000 | 275,000 | 277,000 | 360,000 | 425,000 | | Bromide | 65 | 600 | 4,000 | 4,300 | 8,600 | 10,000 | | Iodide | 0.05 | 2 | 5 | 7 | . 8 | | ^{*}Modified from Collins (1975); used with permission of the author and publisher. concentrations ≥2 mg/L, the range of sodium/bromide ratios narrows and reaches a median value of ~92. The median value range is 35 to 155. For the purpose of this report, a bromide concentration ≥2 mg/L is proposed as one of the indexes of water-quality degradation by brine, because it represents a subtle break in the background bromide concentration in most waters of the study area. The relationship of sodium/chloride ratios to bromide concentrations is shown in Figure 4. Here again, a bromide concentration ≥2 mg/L apparently is a critical value for indexing possible water-quality degradation by brine; also, a median sodium/chloride ratio of ~0.46 is an index of brine if the bromide concentration is ≥2 mg/L. The median value range is 0.28–0.72. The median sodium/chloride ratio of 0.46 generally agrees with a mean ratio of 0.52 derived from 45 random samples of oil-field brine in the Walnut River Basin of south- central Kansas (Leonard, 1972). The conclusions based on data used in this report also agree with Leonard's conclusions that the sodium/chloride ratio in fresh water commonly is >0.60, whereas the ratio in water containing brine usually is <0.60. The relationship of bromide/chloride ratios to chloride concentrations is shown in Figure 5. As chloride concentrations increase, the range of the bromide/chloride ratio decreases until an approximately constant ratio is reached; this ratio is \sim 0.0048 beginning at a bromide concentration \geq 2 mg/L and a chloride concentration \geq 400 mg/L. The median value range is 0.0025 to 0.0090. The lines marking 400 mg/L of chloride and 2 mg/L of bromide and the median bromide/chloride ratio of 0.0048 have a common intersection. A bromide concentration \geq 2 mg/L again is indicated as a possible brine index, and a chloride concentration \geq 400 mg/L also appears to be significant as a brine index. The relationship of sodium/chloride ratios to chloride concentrations is shown in Figure 6. The scatter of points at lower chloride concentrations is apparent. However, the range of sodium/chloride ratios converges and generally becomes linear at higher chloride concentrations; the rate of change of the median line progressively decreases and attains a constant value of $\sim\!0.46$ beginning at a chloride concentration of $\sim\!400$ mg/L. Therefore, a chloride concentration $\!\geqslant\!400$ mg/L and a median sodium/chloride ratio of $\sim\!0.46$ are further supported as brine indicators. The curve shown in Figure 7 was constructed to test the hypothesis that the analyzed water samples are various mixtures of fresh water and brine. From the analyzed data, a sample analysis with the smallest constituent concentration (fresh water) and a sample analysis with the greatest constituent concentration (brine) were selected. The extremes in values for sodium and chloride are shown in Table 2. Different volumes of the two ^{**}Beginning with normal sea water; progressive stages of evaporation are identified by substances which have last precipitated (CaSO₄, etc.). Figure 3. Relationship between sodium/bromide ratios and bromide concentrations. solutions then were mixed, hypothetically, according to equation (1): $$\frac{V_1C_1 + V_2C_2}{V_1 + V_2} = \begin{array}{c} \text{concentration of} \\ \text{constituent in} \\ \text{mixture (mg/L)} \end{array}$$ (1) where V_1 = volume of solution 1, V_2 = volume of solution 2, $C_1 = \text{concentration of constituent in}$ solution 1, and C_2 = concentration of constituent in solution 2. Because the hypothetical curve in Figure 7 approximates the shape of the curve in Figure 6, the sampled waters evidently are various mixtures of fresh water and brine. On both curves the sodium/ chloride ratio stabilizes at the median value of ~0.46 at a chloride concentration ≥400 mg/L. The relationship between lithium/bromide ratios and chloride concentrations is shown in Figure 8. The median line for the plotted values shows an inflection toward a greater rate of increase in chloride concentration beginning at a chloride concentration of ~400 mg/L. If the area of Figure 8 is divided into four quadrants by the 400 mg/L chloride line and the 0.01 lithium/bromide line. approximately 98% of the points plot in the upper left and lower right quadrants. The few values that plot in the upper right and lower left quadrants may result from one or more of the aforementioned errors. Because a chloride concentration ≥400 mg/L has been shown to be a brine index, Figure 8 indicates that values which plot both to the right of the 400 mg/L chloride line and on or below the 0.01 lithium/bromide ratio line represent brine contamination. Therefore, a lithium/ bromide ratio ≤0.01 is considered a brine index if chloride concentration is ≥400 mg/L. Figure 9 is a hypothetical-mixing curve constructed in the same way as Figure 7, except that Figure 4. Relationship between sodium/chloride ratios and bromide concentrations. concentrations of lithium, bromide, and chloride (Table 2) were used in equation (1). The two curves in Figures 8 and 9 show a close similarity; thus, the analyzed data apparently represent various combinations of fresh water and brine. The relationship between the ratio of sodium plus chloride to dissolved solids (residue at 180°C) and chloride concentrations is shown in Figure 10. The median line through the plotted points shows an inflection toward a greater rate of increase in chloride concentration at $\sim\!400$ mg/L. At this concentration of chloride, the ratio of sodium plus chloride to dissolved solids is about 0.64; therefore, when this ratio is $\geq\!0.64$, a brine effect is indicated. This interpretation of Figure 10 further substantiates that 400 mg/L of chloride apparently is a consistent brine index in the study area. Although the indexes developed in this study are useful in defining and identifying water-quality degradation by brine, failure of the indexes usually is traceable to one or more of the several sources of error, or lack of conformity to water type, as described earlier in this report. The water-type problem is illustrated by the degradation of water from three wells in 8N-5E-6, 9N-5E-4, and 9N-5E-27, near the Seminole-Pottawatomie county line (Pl. 1, map B; Appendix 3, analyses 213, 216, and 294, respectively). According to the landowners, the three wells yielded potable water for domestic use; however, the water is now unfit to drink. In 1979, analyses of water samples from the three wells showed 3,840 mg/L, 2,530 mg/L, and 3,910 mg/L of dissolved solids, respectively. The indexes used in this report are based on water of typical sodium chloride type (brine). The water from the three wells, and probably in the local area, is a sodium sulfate type, rather than a typical sodium chloride oil-field-brine type; the highest bromide concentration was 1.0 mg/L, and the highest chloride concentration was 220 mg/L. Therefore, the indexes do not apply in the unusual circumstances of these three wells. The failure of Figure 5. Relationship between bromide/chloride ratios and chloride concentrations. Figure 6. Relationship between sodium/chloride ratios and chloride concentrations. Figure 7. Relationship between sodium/chloride ratios and chloride concentrations resulting from the hypothetical mixing of two
solutions with different volumes and concentrations. Concentrations range from 12 to 42,000 mg/L of sodium, and from 4.2 to 91,000 mg/L of chloride. Figure 8. Relationship between lithium/bromide ratios and chloride concentrations. Figure 9. Relationship between lithium/bromide ratios and chloride concentrations resulting from the hypothetical mixing of two solutions with different volumes and concentrations. Concentrations range from 0.02 to 0.5 mg/L of lithium, 0.1 to 110 mg/L of bromide, and 4.3 to 22,000 mg/L of chloride. the indexes in the case of sodium sulfate water is predictable from the statistical analysis (see following section), which shows no significant difference in sulfate concentration between group 1 (fresh water) and group 2 (degraded water). The explanation of the anomalous water type in the three wells is not known; the water chemistry may reflect a difference in the local geology or hydrology. Other possible explanations are (1) atypical brine at the time of origin; (2) geochemical alteration of typical brine (gypsum is unknown in the rock column of the area, but the sulfate-type water may be caused by oxidation of the hydrogen sulfide commonly associated with some crude oil); (3) a combination of (1) and (2); or (4) addition of chemicals to the brine by the oil operator after the water leaves the rock, or reservoir, which originally contained it. ### Statistical Analysis A summary of the described indexes is presented in Table 3. Some indexes are more impor- tant than others. The three most important are called *primary* indexes; the other four, called *secondary* indexes, have supporting value and are to be used with the primary indexes. Inspection of the water-sample analyses indicated that-for an index not significantly greater than the minimum (e.g., bromide concentration = 2 mg/L)—concentrations of lithium, strontium, magnesium, and sulfate did not necessarily correlate with changes in the value of the index. For example, a water sample with 3.0 mg/L of bromide may have a lower concentration of strontium than another water sample with a bromide concentration of 2.5 mg/L. Therefore, the primary indexes were statistically evaluated, using analysis of variance and Duncan's multiple-range test. Concentration values for the following constituents were used in the test: bromide, lithium, strontium, dissolved solids, calcium, magnesium, sodium, chloride, and sulfate. Water samples whose constituent concentrations are too low to be included with the indexed water samples represent fresh water and are called group 1. Samples with constituent concentrations compatible with the index values represent degraded water and are called group 2. Except for sulfate, each constituent showed a significant statistical difference (at the 95% confidence level) between group 1 and group 2 data when classed according to the indexes. The concentration of sulfate in the water resources of the study area is not significantly different (at the 95% confidence level) between the two groups. The mean sulfate concentration in analyzed water samples from the 347 sites is \sim 63 mg/L. The two most reliable brine indicators are chloride and bromide. Computer comparison of the difference in standard deviation between waters in groups 1 and 2-segregated according to concentrations of chloride and bromide-shows that chloride is a slightly more reliable indicator than bromide. Chloride at a concentration ≥400 mg/L is the best single indicator of water degradation by brine. Reliability of the indexes developed in this study usually is increased in a combination of indexes, particularly if one of the indicators is chloride. The bromide and chloride indexes can be further tested by the R² statistic, which measures how much variation in the dependent variable can be accounted for by a linear regression model, according to the following general equation for simple regression: $$\mu = \alpha + \beta (X - \overline{X}) \tag{2}$$ where μ = mean of dependent variable (for example, magnesium), α and β = regression coefficients, X = sample value for independent variable(for example, chloride), and \bar{X} = sample mean for independent variable (for example, chloride). The R² statistic multiplied by 100 is a measure, expressed as percent, of how well the dependent variables in groups 1 and 2 correlate with the independent variables, bromide and chloride. The correlation can range from 0 to 100% (the greater the percentage, the better the correlation). Correlations of the dependent variables with bromide and chloride in waters from groups 1 and 2 are shown in Table 4. When bromide is the independent variable, the correlation with the other constituents in waters of group 1 (fresh water) is weak in most cases, in contrast to strong correlations between bromide and the other constituents in waters of group 2 (degraded water). Similarly, where chloride is the independent variable, correlations with most constituents in waters of group 1 is considerably less than correlations with those constituents in waters of group 2. Sulfate was ignored in the R² cal- TABLE 2.—WATER-SAMPLE ANALYSES USED IN CONSTRUCTING FIGURES 7 AND 9 (SEE TEXT) | Figure | Solution | conce | ies of constituent
ntrations
ng/L) | |--------|----------|--------------------------|--| | 7 | 1
2 | Sodium
12
42,000 | <u>Chloride</u>
4.2
91,000 | | 9 | 1 2 | Lithium B
0.02
0.5 | romide Chloride
0.1 4.3
110 22,000 | culations because, as stated earlier, the sulfate concentration is not significantly different between the two groups. # **Geophysical Method** The vertical change from fresh water to salt water can be seen on geophysical logs. The ideal means of detecting a rise in the interface by using geophysical logs is to compare a log made during well construction with a log from the same hole many years later. Such ideal conditions do not exist for this study; therefore, comparison was made between logs from any two wells no more than 0.5 mi apart, and generally with a difference of at least 20 yr in drilling date. Relative structural positions of the wells and stratigraphic correlations of the sandstone units were considered. A rise of 10 ft was considered significant. About 266 geophysical logs of oil or gas tests (133 pairs; Pl. 1, map C) met the constraints of distance, time, structural position, and stratigraphic correlation. Significant rises in the interface between fresh water and salt water may have occurred in five of the 133 pairs (Table 5) but a widespread rise in the interface apparently has not taken place. Because porosity logs were not available for most of the older wells and for some of the younger wells, accurate data on dissolved-solids concentrations of the formation waters could not be obtained from standard log analysis; therefore, a qualitative inspection was made of the suite of curves on each log to determine a possible rise in the interface. It was assumed that the change in dissolved solids across the interface occurs in the range of 1,000–1,500 mg/L. In some wells the change from fresh water to salt water is abrupt, whereas in other wells a transition zone of 200 ft or more may exist. In wells with transition zones, the interface depth was drawn at the depth of greatest contrast in the suite of curves. A rise in the interface may have resulted from disposal of large quantities of brine in wells. The Figure 10. Relationship between ratios of sodium plus chloride to dissolved solids (residue at 180°C) and chloride concentrations. (SODIUM + CHLORIDE)/DISSOLVED SOLIDS (RESIDUE AT 180°C) RATIO (BY WEIGHT) | Index | Description of index | |-----------|--| | type | (values approximate) | | Primary | Chloride concentration ≥ 400 mg/L | | Primary | Bromide concentration $\geq 2 \text{ mg/L}$ | | Primary | Ratio of sodium plus chloride to dissolved solids (residue at $180^{\circ}\text{C}) \ge 0.64$ | | Secondary | Ratio of lithium to bromide ≤ 0.01 when chloride concentration is $\geq 400 \text{ mg/L}$ | | Secondary | Median sodium/chloride ratio ≈ 0.46 (range $0.28-0.72$) when bromide concentration ≥ 2 mg/L or chloride concentration ≥ 400 mg/L | | Secondary | Median sodium/bromide ratio ≈ 92 (range 35–155)
when bromide concentration ≥ 2 mg/L | | Secondary | Median bromide/chloride ratio ≈ 0.0048 (range $0.0025-0.0090$) when bromide concentration ≥ 2 mg/L or chloride concentration ≥ 400 mg/L | | Dependent | Bron | mide | Chloride | | | | |------------------|---------|---------|----------|---------|--|--| | variables | Group 1 | Group 2 | Group 1 | Group 2 | | | | Bromide | _ | _ | 81.58 | 95.98 | | | | Lithium | 1.39 | 89.36 | 2.45 | 87.53 | | | | Strontium | 0.68 | 93.76 | 2.05 | 96.61 | | | | Dissolved solids | 12.38 | 96.29 | 22.82 | 99.07 | | | | Calcium | 6.90 | 97.45 | 10.40 | 96.86 | | | | Magnesium | 7.94 | 94.66 | 7.22 | 93.32 | | | | Sodium . | 7.56 | 96.10 | 16.24 | 98.96 | | | | Chloride | 53.76 | 96.03 | _ | | | | | BETWEEN FRESH WATER AND SALT WATER | | | | | | | | | | |---------------------------------------|---------------------------------|--|--|--|--|--|--|--|--| | Location of
compared
well pairs | Possible rise of interface (ft) | | | | | | | | | | 5N-7E-19 | 230 | | | | | | | | | | 9N-5E-13 | 120 | | | | | | | | | | 11N-6E-35 | 250 | | | | | | | | | | 15N-7E-33 | 90 | | | | | | | | | | 16N-5E-28 | 100 | | | | | | | | | Table 5.—Possible Rise of Interface disposal wells either are drilled specifically for that purpose or are converted noncommercial oil or gas wells. Brine commonly is introduced into the disposal well from a holding tank. Usually the hydrostatic head of the water column forces brine to enter the disposal zone at
depth, but in some areas the brine must be forced into the disposal zone by pumping. The terms disposal well and injection well commonly are used interchangeably. An injection well is an opening or hole used to transfer material, usually a fluid, from the surface into the subsurface. A disposal well is used to discard unwanted material, usually a fluid, from the surface to the subsurface. Thus, a disposal well is a special kind of injection well distinguished by its use. Injection wells, if properly constructed and maintained, usually present no contamination problems. However, mechanical failures in the well, inadequate cementing, pipe corrosion, or otherwise inadequate construction or use may allow the injected brines to travel upward outside the casing, where they can invade shallower permeable formations which may be sources of fresh water. If this situation persists, especially in a pressurized system, the interface between fresh water and salt water rises and fresh water is degraded. #### POSSIBLE SOURCES OF BRINES Possible sources of brines identified in the streams and ground water of the study area are evaluated below: - 1) Solution of salt beds within the Vamoosa–Ada aquifer and underlying formations. Bedrock in the study area is of Pennsylvanian age and consists mostly of sandstone, shale, siltstone, and limestone. Studies by many investigators have failed to disclose salt or other evaporites in the Pennsylvanian rocks of Oklahoma. - 2) Addition of minerals from agriculture. Chloride is present only in trace quantities in commercial fertilizers, at most. Consequently, fertilizers are not a source of brines. - 3) Solution of salt from formations of Permian age west of the study area. About 80 mi west of the study area, formations of Permian age contain salt deposits. The Cimarron River crosses the area of salt deposits (Fig. 1) and carries some salts from solution of these deposits. The average chloride concentration in the Cimarron for the 1976–79 water years, inclusive, was about 3,000 mg/L at Perkins. During this time, the mean of the mean daily discharges was about 670 ft³/sec at Perkins. The average chloride concentration for the same period near Guthrie was about 3,300 mg/L. No discharge data are available for the Cimarron River near Guthrie, but flow should be less than at Perkins, because Guthrie is a considerable distance upstream from Perkins. Thus, the average chloride concentration in the Cimarron River decreased about 300 mg/L from Guthrie to Perkins. Geologic and hydrologic data indicate that increased discharge causes a continued decrease in chloride concentration to less than 3,000 mg/L for the remaining distance downstream to the study area. For example, Plate 1 (map A) shows almost 200 ft of hydraulic head toward the Cimarron River along the northern border of the study area. Thus, the Cimarron is for the most part a gaining stream; this is shown by an average flow of 1,244 ft³/sec at Oilton during 1934-45, a rate almost double the flow of 670 ft³/sec at Perkins. Lesser streams originating in or a short distance west of the study area are not affected by natural brine contamination because they lack a connection to salt-bearing formations. This hydrologic evidence supports the geochemical evidence (Carpenter, 1978) which discredits re-solution of salt as a source of brine in the study area. - 4) Natural surface discharge of connate brines. The interface between salt water and fresh water in most places is several hundred feet below land surface, and no known natural hydraulic-head relationship would cause a significant rise in the interface. - 5) Pumpage of ground water. There is very little use of ground water for irrigation in the study area. Most large- capacity wells are municipal, and degradation of ground-water supplies is not associated with towns or surrounding areas. Most wells in the study area are less than 200 ft deep and yield less than 10 gal/min. The total annual pumpage of ground water is less than 5,000 acre-ft (D'Lugosz and McClaflin, 1986), which is insufficient to induce significant upward movement of the interface. - 6) Natural fluctuations caused by changes in recharge from precipitation. Natural fluctuations in the interface between salt water and fresh water may result from changes in hydraulic head caused by changes in recharge lasting more than an estimated 20 yr. Available precipitation data indicate no significant changes in precipitation during the last 20 yr; therefore, significant changes in recharge during this time probably have not occurred. - 7) Atmospheric source. The insignificance of airborne chloride in inland areas is clearly indicated in the literature. Junge and Gustafson (1957) obtained average concentrations of chloride in precipitation at many sampling points in the United States during 1955 and 1956. Their data show that only a small area near the coasts has as much as 0.5 mg/L of chloride in precipitation, and that over most of the country the average is less than 0.3 mg/L. Riffenburg (1925) reported that the average chloride concentration in rainwater for several parts of the world is 3.0 mg/L. 8) Industrial source. No known industries in the study area—other than oil or gas—produce a brine effluent; the distribution of observed brine occurrences in the water resources of the project area is related to the distribution of brine effluent from oil and gas operations. Plate 1 (map B) shows water-sample sites, active and abandoned oil and gas fields, and oil and gas well sites where a significant rise in the interface between salt water and fresh water has occurred. Analyses of 63 surface-water samples and 15 ground-water samples show brine effects by indexes developed in this study. These 78 sampling sites and the five locations showing a rise of the interface are in or near oil or gas fields. A single oil-field source of brine in a drainage basin may account for more than one degraded surface-water sample downstream. Thus, the 63 surface-water samples showing brine effects do not necessarily represent 63 separate brine sources. D'Lugosz and McClaflin (1986) determined that the specific conductance of water in Wewoka Creek and its tributaries was 255-44,000 µmho. They determined the entrance points of such mineralized water into the creek by making a series of measurements during a base-flow period in August 1975. The measurements show that specific conductance increased from 5,800 µmho near the mouth of the creek to 19,000 µmho about 8 mi upstream. From the upstream point, specific conductance increased to 44,000 µmho near the headwaters of the creek; the discharge of the creek did not change significantly upstream. These measurements show that mineralized water was entering the upstream reach of Wewoka Creek during August 1975. Not all sites with degraded water necessarily show visual effects of oil and gas operations, whereas evidence of the incursion of oil and gas activity is apparent at other sites. Most of the circumstances in the following list do not represent isolated instances, but can be observed at several locations; all of these circumstances were identified near present or past oil or gas operations. - 1) Salt encrustation is visible on the alluvium surface and along the banks of small tributary streams. - 2) Water in a small tributary is briny; darkbrown oil sludge floats on the water and covers the stream banks; flow in the tributary originates near an oil well on the stream bank. - 3) Sizeable areas of dead vegetation, including large trees, can be seen near producing wells and associated installations, such as storage tanks for oil and for salt water. - 4) Pipe from a salt-water storage tank near a producing well leads to a stream bank; brine is flowing from the pipe, and water downstream from the pipe is degraded. - 5) Unlined pits contain brine or brine and crude oil. - 6) Analysis of a water sample collected from an unused water well (Appendix 3, analysis 175) in 13N-7E-9, Okfuskee County, (Pl. 1, map B) showed 4,800 mg/L chloride, 1,700 mg/L sodium, 9,530 mg/L dissolved solids (residue at 180°C), and 33 mg/L bromide. Reportedly, water from the well initially was potable, but as the hydraulic head in the Vamoosa-Ada aquifer was lowered by continued use, chemical quality deteriorated. Analysis of water from a nearby stream (Appendix 3, analysis 176) showed 22,000 mg/L chloride, 11,000 mg/L sodium, 38,000 mg/L dissolved solids (residue at 180°C), and 110 mg/L bromide. This area had at one time been the site of an oil well, as evidenced by a concrete base which once supported an oil-well pumping unit; the concrete base is obscured in vegetation several hundred yards east of the unused water well. - 7) A domestic well that reportedly once was a source of potable water is now unusable because of degradation of the chemical quality of the water. A salt-water-injection well is located several hundred feet from the unusable domestic well. This relationship can be observed at a number of places in the study area and therefore may be significant. 8) On-site examination of a small tributary disclosed that the water is briny; streamflow originates opposite a salt-water-injection well on the stream bank several hundred feet from the stream. Collins (1971) gave a detailed discussion of oil and gas operations that may be potential sources of contamination from overflow of brine or emulsions of petroleum and brine from disposal ponds, or from leakage of such liquids from faulty or inadequately constructed ponds. The leaking brines may pass through the soil, reappear at the surface, and produce scar areas. Some brine may remain in the soil, and subsequent leaching will pollute surface streams or shallow subsurface aquifers. Other potential sources of pollution Collins (1971) discussed are crude oil (or brine) escaping from leaky pipe connections, unplugged or improperly plugged wells, improperly cased and cemented wells, holes in
pipelines or storage tanks, and accidents. Collins (1971) cited casing leaks in disposal wells as a means by which brine may enter freshwater aquifers. He stated that injected brines must be chemically compatible with the brine in the disposal zone; if they are not, precipitates may form on the face of the injection zone, thus decreasing fluid conductivity. Commonly the injected brines are chemically treated to inhibit precipitation reactions. However, if pressure is used to force brines into a disposal zone, bottomhole pressure must not exceed 1 (lb/ft²)/ft of overburden, or the hydraulic pressure may induce fracturing and in time the brine may migrate upward to a fresh- 18 Conclusions water zone. Collins stated that most accidental fractures will be horizontal if the disposal zone beneath the overlying impermeable rocks is no deeper than 1,000 ft. However, if the disposal zone is deeper than 1,500 ft, the fracture orientation may be vertical, resulting in an increased potential for contamination of upper fresh-water zones. # **CONCLUSIONS** The presence of brine is most apparent in small streams where dilution is at a minimum and salt crusts and brown oil sludge are fairly common. Degradation of water quality by brine is indicated at 63 of the 167 surface-water sites and 20 of the 180 ground-water sites. Two methods, chemical-graphical and geophysical, were used for detecting the presence of brine in the water resources. The two more reliable chemical-graphical indexes are: chloride $\geqslant 400$ mg/L, and bromide $\geqslant 2$ mg/L. The chloride index probably is the most reliable of the proposed indexes. All indexes are based on concentrations of chloride, bromide, sodium, lithium, and dissolved solids, or ratios of the concentrations of these constituents and dissolved-solids concentrations. The use of geophysical logs for detecting brine contamination by rise of the interface between fresh water and salt water is reliable in most instances. The indexes are supported in many places by visual evidence of brine degradation in the streams from which the samples were collected. The same indexes also are applicable to ground waters; however, the presence of brine in ground water is not obvious, because visual evidence is absent. Results of this study indicate that the effect of brine on the water quality of the study area is local rather than extensive. # SELECTED REFERENCES Bingham, R. H.; and Moore, R. L., 1975, Reconnaissance of the water resources of the Oklahoma City quadrangle, central Oklahoma: Oklahoma Geological Survey Hydrologic Atlas 4, scale 1:250,000, 4 sheets. Bingham, R. H.; and Bergman, D. L., 1980, Reconnaissance of the water resources of the Enid quadrangle, north-central Oklahoma: Oklahoma Geological Survey Hydrologic Atlas 7, scale 1:250,000, 4 sheets. - Carpenter, A. B., 1978, Origin and chemical evolution of brines in sedimentary basins, in Johnson, K. S.; and Russell, J. A. (eds.), Thirteenth annual forum on the geology of industrial minerals: Oklahoma Geological Survey Circular 79, p. 60-77. - Case, L. C., 1977, Water problems in oil production: an operator's manual [2nd ed.]: Petroleum Publishing Co., Tulsa, 163 p. - Chebotarev, I. I., 1955, Metamorphism of natural waters in the crust of weathering, parts 1–3: Geochimica et Cosmochimica Acta, v. 8, p. 22–48, 137–170, 198–212. - Collins, A. G., 1971, Oil and gas wells—potential polluters of the environment: Journal Water Pollution Control Federation, v. 43, no. 12, p. 2382–2393. - 1974, Saline groundwaters produced with oil and gas: U.S. Bureau of Mines Project Report 16060 EOO for the U.S. Environmental Protection Agency, 68 p. —— 1975, Geochemistry of oilfield waters: Elsevier Scientific Publishing Co., Amsterdam, 496 p. - —— 1976, Lithium abundances in oilfield waters, in Lithium resources and requirements by the year 2000: U.S. Geological Survey Professional Paper 1005, p. 116–123. - Collins, W. D.; and Williams, K. T., 1933, Chloride and sulfate in rain water: Industrial and Engineering Chemistry, v. 25, p. 944-945. - Dixon, W. J.; and Massey, F. J., 1969, Introduction to statistical analysis: McGraw-Hill, New York, 638 p. - D'Lugosz, J. J.; McClaflin, R. G.; and Marcher, M. V., 1986, Geohydrology of the Vamoosa-Ada aquifer, east-central Oklahoma: Oklahoma Geological Survey Circular 87, 41 p. - Fenneman, N. M.; and Johnson, D. W., 1946, Physical divisions of the United States: U.S. Geological Survey map, scale 1:7,000,000. - Gary, Margaret; McAfee, Robert, Jr.; and Wolf, C. L., 1972, Glossary of geology: American Geological Institute, Falls Church, Va., 805 p. - Hart, D. L., Jr., 1974, Reconnaissance of the water resources of the Ardmore and Sherman quadrangles, southern Oklahoma: Oklahoma Geological Survey Hydrologic Atlas 3, scale 1:250,000, 4 sheets. - Hawley, G. G. (ed.), 1971, The condensed chemical dictionary [8th ed.]: Van Nostrand Reinhold, New York, 971 p. - Hem, J. D., 1959, Study and interpretation of the chemical characteristics of natural water [1st ed.]: U.S. Geological Survey Water-Supply Paper 1473, 269 p. - —— 1970, Study and interpretation of the chemical characteristics of natural water [2nd ed.]: U.S. Geological Survey Water-Supply Paper 1473, 363 p. - Junge, C. E.; and Gustafson, P. E., 1957, On the distribution of sea salt over the United States and its removal by precipitation: Tellus, v. 9, p. 164–173. - Keys, W. S.; and MacCary, L. M., 1973, Location and characteristics of the interface between brine and fresh water from geophysical logs of boreholes in the - Upper Brazos River basin, Texas: U.S. Geological Survey Professional Paper 809-B, p. B1–B23. - Langbein, W. B.; and Iseri, K. T., 1960, General introduction and hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, p. 1–29. - Leonard, R. B., 1964, A method for evaluating oil-field-brine pollution of the Walnut River in Kansas, in Geological Survey Research 1984: U.S. Geological Survey Professional Paper 501-B, p. B173-B176. - —— 1972, Chemical quality of water in the Walnut River basin, south-central Kansas: U.S. Geological Survey Water-Supply Paper 1982, 113 p. - Lohman, S. W., 1972, Ground-water hydraulics: U.S. Geological Survey Professional Paper 708, 70 p. - Lohman, S. W.; and others, 1972, Definitions of selected ground-water terms—revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p. - McCaslin, J. C., 1977, Here are the big U.S. reserves: Oil and Gas Journal, v. 75, no. 5, p. 129-132. - Miller, D. W. (ed.), 1980, Waste disposal effects on ground water, in The report to Congress, waste disposal practices and their effects on ground water: U.S. Environmental Protection Agency, 512 p. - Miodrag, Sarkovic, 1975, Should we consider geochemistry as important exploratory technique?: Oil and Gas Journal, v. 73, no. 31, p. 106-110. - National Oceanic and Atmospheric Administration, 1978, Tulsa, Okla., International Airport: Airport Climatological Summary, 18 p. - Revelle, Roger, 1941, Criteria for recognition of sea water in ground-waters: American Geophysical Union Transactions, v. 22, p. 593–597. - Riffenburg, H. B., 1925, Chemical character of ground waters of the northern Great Plains: U.S. Geological Survey Water-Supply Paper 560, p. 31–52. - Rittenhouse, Gordon, 1967, Bromine in oil-field waters and its use in determining possibilities of origin of these waters: American Association of Petroluem Geologists Bulletin, v. 51, p. 2430-2440. - Skougstad, M. W.; and others (eds.), 1979, Methods for determination of inorganic substances in water and fluvial sediments: Techniques of Water Resources Investigations of the United States Geological Survey, Book 5, Chap. A-1, 626 p. - White, D. E., 1965, Saline waters of sedimentary rocks, in Fluids in subsurface environments—a symposium: American Association of Petroleum Geologists Memoir 4, p. 342–366. - White, D. E.; Hem, J. D.; and Waring, G. A., 1963, Chemical composition of subsurface waters, in Data of geochemistry [6th ed.]: U.S. Geological Survey Professional Paper 440-F, p. F1-F67. - Whittemore, D. O.; and Pollack, L. M., 1979, Determination of salinity sources in water resources of Kansas by minor alkali metal and halide chemistry: Kansas Water Resources Research Institute Contribution No. 208, 28 p. - Woolf, H. B. (ed.), 1979, Webster's new collegiate dictionary: G. and C. Merriam Co., Springfield, Mass., 1532 p. - Wright, Jack; Pearson, Cynthia; Kurt, E. T.; and Watkins, J. W., 1957, Analyses of brines from oil-productive formations in Oklahoma: U.S. Bureau of Mines Report of Investigations 5326, 71 p. | | | , | | |---------|--|---|--| | | | | | | | | | | | . · · · | # Appendix 1: Glossary of Technical Terms Appendix 1 The following definitions are in part from Dixon and Massey (1969), Hawley (1971), Lohman (1972), Lohman and others (1972), Gary and others (1972), Hem (1970), Skougstad and others (1979), and Woolf (1979). Some definitions have been modified. - Acre-foot—The volume of water required to cover 1 acre to a depth of 1 ft; equivalent to 43,560 ft³ or 325,851 U.S. gal. - Alkali metal—A metal in group 1A of the periodic system: lithium, sodium, potassium, rubidium, cesium, and francium. - Aquifer—A formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs. - Base flow—Sustained or fair-weather streamflow, usually composed mostly of ground-water effluent. - Breccia—A coarse-grained clastic rock composed of large (>2 mm diameter), angular rock fragments cemented by a fine-grained matrix. - Brine—A solution of sodium chloride and water, usually containing other salts also; concentrations are 3-20% or more. - Cation—An ion with a positive charge. An ion is an atom or radical that has lost or gained one or
more electrons and thus has acquired an electric charge. - Confidence level—A percentage indicating how sure one is of the inference being made. In statistics the value for the confidence level is $1-\alpha$, where α is the area in the critical region at either end of a normal distribution curve. - Confined ground water—Ground water under pressure significantly greater than atmospheric; its upper limit is the bottom of a bed of distinctly lesser hydraulic conductivity than that of the material in which the confined water occurs - Conglomerate—A coarse-grained, clastic sedimentary rock composed of rounded (to subangular) fragments >2 mm in diameter in a fine-grained matrix of sand, silt, or any of the common natural cementing materials. - Connate water—Water that is contained in a rock and that has not been in contact with the atmosphere essentially since the rock was formed. - Diagenesis (mineral)—All the chemical, physical, and biological changes undergone by a sediment after its deposition, and during and after its lithification, exclusive of surficial alteration (weathering) and metamorphism. - Evaporite—A nonclastic sedimentary rock composed primarily of minerals produced from a saline solution that became concentrated by evaporation. - Fault—A surface or zone of rock fracture along which there has been displacement. - Geophysical log—A log obtained by lowering an instrument into a borehole or well and recording continuously on a meter at the surface some physical property of the rock material being logged. - Gypsum—A widely distributed mineral consisting of hydrous calcium sulfate: CaSO₄·2H₂O. - Halides—Binary compounds of the halogens: fluorine, chlorine, bromine, iodine, and astatine. - Head, static—The height (above a standard datum) of the surface of a column of water (or other liquid) that can be supported by the static pressure at a given point. - Homocline—A sequence of strata inclined from the horizontal at a uniform angle over a wide area. - Hydraulic conductivity—In a porous, isotropic medium, the volume of homogeneous water at the existing kinematic viscosity that will move in unit time under a unit hydraulic gradient through a unit area measured at right angles to the direction of flow. - Ion—An atom or radical that has lost or gained one or more electrons and has thus acquired an electric charge. - Mean—A central value, or average, of a distribution, defined as the sum of all observations divided by the number of observations. - Median—A central value defined as the middle observation if there is an odd number of observations, or (by convention) the mean of the two central observations if there is an even number of observations. - National Geodetic Vertical Datum of 1929 (NGVD of 1929)—A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada; formerly called mean sea level. - Normal fault—A fault in which rocks above the fault appear to have moved downward relative to rocks below the fault. - Pennsylvanian—A period of the Paleozoic Era, and its corresponding system of rocks, thought to represent the span of time between 320 and 280 million years ago. - Permian—The last period of the Paleozoic Era, and its corresponding system of rocks, thought to represent the span of time between 280 and 225 million years ago. - Potentiometric surface—A surface which represents the static head; as related to an aquifer, it is defined by the levels to which water will rise in tightly cased wells. The water table is a particular potentiometric surface. Recharge—The absorption and addition of water to the zone of saturation; also, the volume of water added. Residue at 180°C—The weight of material remaining from an aliquot of a water sample dried at 180°C for 2 hr and immediately weighed. Specific conductance—The reciprocal of the resistance, in ohms, measured between opposite faces of a centimeter cube of an aqueous solution at a specific temperature. Specific yield—The ratio of (1) the volume of water which a saturated rock or soil will yield by gravity to (2) the volume of the rock or soil. The definition implies that gravity drainage is complete. Standard deviation—The positive square root of the variance of a distribution. Storage coefficient—The volume of water an aquifer releases from or takes into storage per unit surface area of the aquifer per unit change in head. Stratigraphy—The branch of geology that deals with the definition and description of major and minor natural divisions of rocks available for study in outcrops or in the subsurface, and with the interpretation of their significance. Transmissivity—The rate at which water of the prevailing kinematic viscosity is transmitted through a unit width of the aquifer under a unit hydraulic gradient. Unconfined ground water—Ground water in an aquifer that has a water table. Variance—The sum of squares of the deviations of the observations from the arithmetic mean of the observations, divided by one less than the total number of observations; a measure of the spread of a distribution about the mean. Viscosity—Internal resistance to flow of a substance; its internal friction. Water table—That surface in an unconfined water body at which the pressure is atmospheric. It is defined by the levels at which water stands in wells that penetrate the water body just far enough to hold standing water. In wells which penetrate to greater depths, the water level will stand above or below the water table if an upward or downward component of ground-water flow exists. # **Appendix 2: Conversion Factors** | $\mathbf{B}\mathbf{y}$ | To obtain SI unit | |---|--| | 25.4
0.3048
0.02832
0.02832
1.609
2.59
0.06309
4,047.856
1,233
0.3048
0.0929
3.785
0.1894
0.23 | millimeter (mm) meter (m) cubic meter (m³) cubic meter per second (m³/sec) kilometer (km) square kilometer (km²) liter per second (L/sec) square meter (m²) cubic meter (m³) meter per day (m/day) square meter per day (m²/day) liter (L) meter per kilometer (m/km) kilogram per square centimeter per meter (kg/cm²/m) microsiemens per centimeter [at 25°C](µS/cm) | | 7 | (20 20 0) () | | | 25.4
0.3048
0.02832
0.02832
1.609
2.59
0.06309
4,047.856
1,233
0.3048
0.0929
3.785
0.1894 | APPENDIX 3: Chemical analyses of water from selected streams and wells | | Sample Site Leasting Pate Time | | | | Streamflow,
instantaneous (cfs) | Specific
conductance (µmho) | Field pH | Hardness
(mg/L as CaCO ₃) | Hardness, noncarbonate (mg/L as CaCO ₃) | Calcium, dissolved
(mg/L as Ca) | Magnesium, dissolved
(mg/L as Mg) | |----------|----------------------------------|----------------------|--------------|---------------------------|---|--------------------------------|------------|--|---|------------------------------------|--------------------------------------| | Site | Location | Date | Time | Well depth,
total (ft) | . <u>. </u> | - | | <u></u> |
 |
 | Σ | | | | | | CREE | к соии | ΤΥ | | | | | | | 1
2 | 14N-06E-12 AAA
14N-07E-09 BCB | 80-02-27
80-03-03 | 1500
1630 | 260
236 | | 690
720 | 7.5
7.6 | 230
200 | 0
0 | 47.0
39.0 | 28.0
24.0 | | 3 | 14N-07E-12 CCB | | 1145 | | <0.10 | 159 | 7.3 | 67 | 13 | 15.0 | 7.1 | | 4 | 14N-07E-14 BBB | | 1045 | 117 | | 284 | 6.9 | 120 | 18 | 27.0 | 12.0 | | 5 | 14N-07E-18 ACA | 80-03-04 | 0830 | | 0.20 | 3710 | 7.9 | 900 | 690 | 200.0 | 96.0 | | 6 | 14N-07E-20 DCD | | 1330 | | <0.10 | 136 | 7.1 | 40 | 16 | 8.5 | 4.6 | | 7
8 | 14N-07E-23 DDA
14N-07E-27 AAA | 80-03-05 | 1100 | 63
 | 0 10 | 226 | 6.6 | 98 | 9 | 21.0 | 11.0 | | 9 | 14N-07E-27 AAA
14N-07E-29 DAD | 80-03-05
80-03-05 | 1530 | 38 | 0.10 | 194
194 | 6.7
5.8 | 45
38 | 13
4 | 11.0
9.4 | 4.3
3.4 | | 10 | 14N-08E-06 BBA | 80-03-04 | 1530 | | 0.10** | 4820 | 3.7 | 740 | 740 | 160.0 | 81.0 | | 11 | 14N-08E-06 BCC | 80-03-04 | 1430 | 35 | | 4310 | 6.5 | 930 | 860 | 230.0 | 85.0 | | 12 | 14N-08E-09 BAB | 80-03-06 | 1400 | | 3.50 | 2440 | 7.7 | 500 | 370 | 130.0 | 42.0 | | 13
14 | 14N-08E-12 BBB
14N-08E-15 BDA | 80-03-06
80-03-06 | 1730
1230 |
114 | <0.10 | 281
138 | 9.1
5.5 | 59
32 | 35
30 | 14.0
8.5 | 5.8
2.7 | | 15 | 14N-08E-21 CBB | 80-03-06 | 1000 | | <0.10 | 134 | 6.7 | 36 | 18 | 7.0 | 4.6 | | 16 | 14N-08E-30 CCB | 80-03-05 | 0930 | | <0.10 | 4180 | 6.8 | 640 | 610 | 150.0 | 64.0 | | 17 | 15N-07E-02 BCC | 80-04-03 | 0915 | 118 | | 1000 | 7.3 | 390 | 60 | 80.0 | 45.0 | | 18
19 | 15N-07E-15 CBB
15N-07E-15 CCD | 80-04-08
80-08-03 | 1500
1630 | 147 | <0.10 | 670
390 | 8.2
7.6 | 270
170 | 9 | 63.0
40.0 | 27.0
17.0 | | 20 | 15N-07E-19 DDD | 80-04-03 | 1800 | 140 | | 615 | 7.3 | 260 | 50 | 46.0 | 35.0 | | 21 | 15N-07E-24 AAA | 80-04-03 | 1500 | 111 | | 422 | 7.6 | 190 | 0 | 43.0 | 21.0 | | 22
23 | 15N-07E-26 CCB
15N-07E-26 CDC | 80-03-04
80-03-04 | 1800
1630 | 59
 | 0.25 | 520
232 | 7.1
7.8 | 240
91 | 1
5 | 57.0
21.0 | 24.0 | | 24 | 15N-07E-29 CDD | 80-02-28 | 1630 | | <0.10 | 3213 | 8.2 | 1400 | 1000 | 260.0 | 9.3
170.0 | | 25 | 15N-08E-04 DCD | 80-03-13 | 0830 | 41 | | 150 | 7.6 | 45 | 0 | 13.0 | 3.1 | | 26 | 15N-08E-07 BBB | 80-04-03 | 1245 | 159 | | 2110 | 6.7 | 490 | 410 | 110.0 | 52.0 | | 27
28 |
15N-08E-08 BAA
15N-08E-10 AAA | 80-03-12
80-03-12 | 1745
1500 | | <0.10
<0.10 | 2580
649 | 7.5
7.4 | 390
290 | 330
44 | 91.0
68.0 | 40.0
30.0 | | 29 | 15N-08E-11 AAA | 80-03-12 | 1630 | 119 | | 561 | 7.4 | 230 | -0 | 48.0 | 26.0 | | 30 | 15N-08E-15 CDC | 80-03-12 | 1200 | 134 | | 4471 | 6.8 | 130 | 30 | 28.0 | 14.0 | | 31 | 15N-08E-16 CCC | 80-03-11 | 1800 | | <0.10 | 7300 | 8.1 | 1000 | 920 | 250.0 | 91.0 | | 32
33 | 15N-08E-17 CDD
15N-08E-26 BBA | 80-03-12
80-03-12 | 0930
1300 | 85
 | <0.10 | 700
1530 | 7.2
7.5 | 350
290 | 16
180 | 71.0
71.0 | 41.0
28.0 | | 34 | 15N-08E-28 DCC | 80-03-11 | 1415 | | <0.10 | 1290 | 7.6 | 260 | 110 | 63.0 | 24.0 | | 35 | 15N-08E-33 CBB | 80-03-11 | 1645 | 51 | | 154 | 6.0 | 60 | 12 | 15.0 | 5.5 | | 36 | 15N-08E-34 DDD | 80-03-06 | 1630 | 114 | | 760 | 7.2 | 300 | 140 | 69.0 | 30.0 | | 37
38 | 15N-09E-31 CCC
15N-09E-32 BCC | 80-03-11
80-03-11 | 1200
0945 | 99 | 0.30 | 3500
1120 | 12.7 | 800
200 | 51
120 | 320.0
49.0 | 0.3
18.0 | | 39 | 16N-07E-10 DDC | 80-04-02 | 1400 | 59 | 0.30 | 285 | 6.4 | 93 | 24 | 26.0 | 6.7 | | 40 | 16N-07E-16 BBB | 80-04-01 | 1600 | | <0.10 | 1700 | 8.6 | 250 | 180 | 62.0 | 23.0 | | 41 | 16N-07E-17 DCD | 80-04-01 | 1800 | 178 | | 459 | 7.5 | 190 | 13 | 47.0 | 18.0 | | 42
43 | 16N-07E-23 ABA
16N-07E-26 BCA | 80-04-02
80-04-02 | 1200
1100 | 109 | 7.00 | 1400
560 | 7.9
7.4 | 270
240 | 160
0 | 66.0
57.0 | 26.0
24.0 | | 44 | 16N-07E-28 ADD | 80-04-02 | 0900 | | 0.75 | 568 | 8.0 | 170 | 48 | 39.0 | 17.0 | | 45 | 16N-08E-02 CAD | 80-03-18 | 1715 | | <0.10 | 158 | 7.4 | 54 | 17 | 12.0 | 5.8 | | 46 | 16N-08E-04 BAC | 80-03-19 | 1015 | 34 | | 320 | 7.0 | 110 | 2 | 31.0 | 8.4 | | 47
48 | 16N-08E-07 CAD
16N-08E-13 DCD | 80-05-07
80-03-18 | 1445
1615 | 210
158 | | 202
545 | 6.4
7.4 | 82
240 | 13
0 | 19.0
52.0 | 8.4
26.0 | | 49 | 16N-08E-16 ABB | 80-03-18 | 1145 | | <0.10 | 2630 | 8.3 | 490 | 310 | 110.0 | 52.0 | | 50 | 16N-08E-16 DDA | 80-03-18 | 0945 | 99 | | 261 | 6.3 | 89 | 30 | 21.0 | 8.8 | | Sodium, dissolved
(mg/L as Na) | Sodium-adsorption
ratio | Potassium, dissolved (mg/L as K) | Alkalinity
(mg/L as CaCO ₃) | Sulfate, dissolved
(mg/L as SO₄) | Chloride, dissolved
(mg/L as Cl) | Fluoride, dissolved
(mg/L as F) | Bromide, dissolved
(mg/L as Br) | lodide, dissolved
(mg/L as I) | Silica, dissolved $(mg/L \text{ as SiO}_2)$ | Total dissolved solids* (mg/L) | Lithium, dissolved
(μg/L as Li) | Strontium, dissolved
(μg/L as Sr) | Organic carbon,
dissolved (mg/L as C) | |---|----------------------------------|----------------------------------|--|--------------------------------------|--|------------------------------------|------------------------------------|----------------------------------|---|-----------------------------------|------------------------------------|--------------------------------------|--| | | | | | | CRE | FK C | OUNT | Υ | | | | | | | 45.0
71.0
7.3
9.1
390.0 | 1.3
2.2
0.4
0.4
5.7 | 2.7
6.9
1.2
0.8
5.2 | 280
310
54
99
210 | 13.0
27.0
17.0
14.0
50.0 | 36.0
19.0
10.0
9.7
1000.0 | 0.2
0.4
0.2
0.2
0.2 | 0.2
0.1
0.2
0.2
4.0 |

0.01
0.04 | 17.0
18.0
14.0
16.0
12.0 | 356
398
112
169
2060 | 20
40
6
9
20 | 410
850
50
60
1900 | 8.5

4.7
1.5
4.3 | | 7.8
5.1
13.0
21.0
630.0 | 0.5
0.2
0.8
1.5 | 1.6
1.3
1.6
0.6
9.2 | 24
89
32
34
0 | 18.0
11.0
19.0
19.0
7.6 | 10.0
5.1
20.0
15.0
1500.0 | 0.1
0.2
0.1
0.1
0.2 | 0.1
0.1
0.5
0.3 |

0.00
0.01 | 9.7
18.0
15.0
26.0
20.0 | 100
140
121
136
2740 | <4
5
<4
10
10 | 40
70
60
60
4200 | 3.8
2.3
3.3
3.1
2.4 | | 480.0
280.0
23.0
9.3
16.0 | 6.9
5.5
1.3
0.7 | 5.2
4.0
2.3
1.0 | 63
130
24
2
18 | 11.0
9.9
27.0
12.0
15.0 | 1400.0
660.0
42.0
20.0
26.0 | 0.1
0.3
0.1
0.0
0.1 | 6.4
22.0
0.3
0.2
0.3 | 0.00 | 24.0
11.0
5.9
13.0
17.0 | 2540
1350
160
91
126 | 20
10
<4
6
7 | 1300
1800
90
50
60 | 6.4

5.9
1.0 | | 510.0
52.0
30.0
13.0
29.0 | 8.8
1.2
0.8
0.4
0.8 | 7.3
7.1
5.4
1.5
2.0 | 28
330
260
180
210 | 20.0
47.0
25.0
5.0
54.0 | 1200.0
98.0
35.0
6.9
30.0 | 0.1
0.2
0.3
0.2
0.1 | 19.0
0.3
0.4
0.1
0.3 | 0.01
0.00

 | 12.0
18.0
8.4
16.0
18.0 | 2190
550
366
204
343 | 20
40
8
10 | 2000
4700
380
200
920 | 2.9 | | 9.3
12.0
8.1
160.0
6.1 | 0.3
0.3
0.4
1.9 | 1.5
1.4
2.1
3.4
3.3 | 210
240
86
310
45 | 1.3
3.5
12.0
25.0 | 4.3
13.0
12.0
910.0
5.9 | 0.1
0.2
0.2
0.3
0.1 | 0.1
0.2
0.1
4.5
0.1 | 0.02 | 15.0
18.0
13.0
19.0
17.0 | 220
277
138
1760
87 | 20
20
6
10
5 | 180
170
80
2500
60 | 4.9
3.9
3.8
17.0 | | 220.0
350.0
23.0
32.0
46.0 | 4.3
7.7
0.6
0.9 | 4.8
5.0
1.9
2.5
1.6 | 80
67
250
280
98 | 30.0
30.0
41.0
4.3
30.0 | 570.0
730.0
29.0
7.2
68.0 | 0.1
0.2
0.3
0.3 | 3.2
3.8
0.3
0.1
0.5 | 0.03 | 18.0
7.2
13.0
15.0
12.0 | 1160
1440
365
304
253 | 10
20
6
30
10 | 470
1600
340
250
130 | 9.0
6.1
8.0
3.4 | | 1100.0
13.0
200.0
140.0
6.4 | 15.0
0.3
5.1
3.8
0.4 | 10.0
1.2
5.8
3.0
1.0 | 85
330
110
150
48 | 21.0
13.0
14.0
12.0
8.1 | 2300.0
16.0
430.0
300.0
12.0 | 0.1
0.2
0.2
0.2
0.1 | 10.0
0.4
2.2
1.4
0.1 | 0.04 | 4.6
19.0
3.3
12.0
21.0 | 4160
385
897
692
81 | 40
20
9
9
5 | 5600
130
1100
820
80 | 6.9
12.0
7.0
2.6 | | 18.0
26.0
130.0
14.0
240.0 | 0.5
0.4
4.0
0.6
6.6 | 3.7
21.0
2.3
0.8
3.9 | 160

78
69
71 | 68.0
55.0
16.0
18.0
49.0 | 86.0
17.0
280.0
23.0
450.0 | 0.1
0.3
0.1
0.1 | 0.5
0.2
2.0
0.1
2.8 | 0.00 | 11.0
3.8
6.3
17.0
5.5 | 409
847
593
157
915 | 30
20
6
6
10 | 350
1700
680
70
1100 | 14.0
2.8
 | | 14.0
150.0
22.0
43.0
9.4 | 0.4
4.0
0.6
1.4
0.6 | 1.8
4.2
2.6
3.4
1.7 | 180
110
250
120
37 | 29.0
12.0
4.7
20.0
12.0 | 7.6
330.0
19.0
77.0
15.0 | 0.1
0.2
0.2
0.2
0.2 | 0.1
2.0
0.2
0.6
0.1 |

 | 17.0
3.7
19.0
3.4
12.0 | 219
745
302
307
102 | 10
10
30
<4
<4 | 930
880
290
370
60 |

3.4 | | 2.9
5.4
15.0
330.0
8.8 | 0.1
0.3
0.4
6.5
0.4 | 20.0
1.2
3.4
1.3
5.6 | 110
69
240
180
59 | 11.0
9.8
10.0
9.8
24.0 | 2.4
6.3
16.0
790.0
12.0 | 0.2
0.2
0.2
0.4
0.1 | 0.1
0.1
0.1
2.9
0.1 | | 14.0
17.0
16.0
5.5 | 218
112
278
1430
141 | <4
<4
30
10
<4 | 180
40
410
1600
90 | 8.7

2.8
6.7
27.0 | ${\bf APPENDIX~3.}-Continued$ | Site | S | Sample | Date | Time | Well depth,
total (ft) | Streamflow, instantaneous (cfs) | Specific
conductance (μmho) | Field pH | Hardness
(mg/L as CaCO ₃) | Hardness, noncarbonate (mg/L as CaCO ₃) | Calcium, dissolved
(mg/L as Ca) | Magnesium, dissolved
(mg/L as Mg) | |---------------------------------|--|---------------------------------|--|--------------------------------------|---------------------------|--------------------------------------|---------------------------------------|---------------------------------|--|---|---|--| | | | | | | REEK CO | UNTY Cont | inund | | | | | | | 51
52
53
54
55 | 16N-08E-26
16N-08E-27 | BDC
BAB
DDA
BBB
DDD | 80-04-02
80-03-13
80-03-13
80-04-02
80-03-20 | 1730
1330
1230
1515
1015 | 101

140

120 | 0.30 | 141
1340
440
219
136 | 6.0
8.0
8.4
7.5
5.6 | 51
240
180
80
38 | 16
150
15
13
22 | 12.0
61.0
41.0
19.0
9.0 | 5.2
22.0
20.0
8.0
3.8 | | 56
57
58
59
60 | 17N-07E-03
17N-07E-03 | CCC
BAB
BBC
CCD
BAA | 80-03-18
80-07-09
78-03-29
80-05-09
80-05-08 | 1400
1400
1000
0830
1230 | 121 | <0.10

0.10**
0.04
<0.10 | 9100
860
15000
8500
22360 | 8.0
7.0
5.7
7.2
8.0 | 1200
300
33000
1300
3800 | 1100
0
33000
1200
3700 | 350.0
50.0
10000.0
320.0
1000.0 | 72.0
42.0
1900.0
110.0
320.0 | | 61
62
63
64
65 | 17N-07E-18 | CBB
BAA
DCD | 80-05-08
80-05-08
80-07-11
80-07-10
80-05-08 | 1330
1830
0900
1800
1530 | 256
110
58
190 |

<0.10 | 460
2750
340
460
850 | 8.0
6.7

8.4 | 200
1100
130
260
100 | 0
970
51
59
49 | 40.0
220.0
31.0
49.0
26.0 | 25.0
130.0
12.0
33.0
9.3 | |
66
67
68
69
70 | 17N-07E-28
17N-07E-31 | ADD
AAA
DAD
DDC
CAA | 80-05-08
80-05-09
80-05-07
80-05-07 | 1000
1045
1100
1015
1800 | 153
108

146 | 0.10
0.75 | 218
610
845
2800
419 | 5.8
6.2
7.9
8.0
6.7 | 54
190
400
380
180 | 26
130
55
310
32 | 12.0
43.0
86.0
98.0
40.0 | 5.8
19.0
46.0
33.0
20.0 | | 71
72
73
74
75 | 17N-08E-09
17N-08E-10
17N-08E-12 | | 80-05-08
80-07-09
80-07-10
80-04-08
80-07-10 | 1115
1530
1230
1700
1030 | 67
43
 | <0.10

<0.10
<0.10 | 2225
184
700
1120
1462 | 7.9
5.5

7.2 | 410
50
170
240
340 | 260
16
15
170
240 | 93.0
12.0
65.0
51.0
74.0 | 43.0
4.9
2.9
27.0
37.0 | | 76
77
78
79
80 | 17N-08E-17
17N-08E-21
17N-08E-26 | CCD
DCC
BCB
CBD
CCA | 80-03-19
80-03-19
80-03-19
80-03-19
80-03-19 | 1630
1530
1430
1800
1200 | 79
144 | <0.10
<0.10

<0.10 | 4700
800
232
350
522 | 7.1
8.3
6.6
7.6
7.9 | 890
220
79
150
100 | 860
110
0
0
43 | 190.0
45.0
17.0
37.0
25.0 | 100.0
25.0
8.8
14.0
9.1 | | 81
82
83
84
85 | 18N-07E-01
18N-07E-05 | DDC
BDC
DCD
ABA
DAA | 80-03-20
80-03-20
80-04-23
80-04-23
80-04-18 | 1300
1100
1645
1030
1400 | 117

115
160 | 1.00 | 244
940
1300
710
36000 | 6.3
8.0
7.2
6.7
7.5 | 60
190
460
230
6400 | 14
97
81
34
6300 | 13.0
47.0
97.0
54.0
1800.0 | 6.6
18.0
52.0
24.0
450.0 | | 86
87
88
89
90 | 18N-07E-10
18N-07E-16
18N-07E-19
18N-07E-23
18N-07E-29 | CAA
ABA | 80-05-06
80-04-18
80-04-18
80-05-06
80-04-17 | 1430
1200
0900
1600
1745 | 181
95

45 | 2.30
0.01 | 740
1581
6510
1004
998 | 7.3
7.1
8.0
8.3
7.3 | 270
670
1000
470
380 | 0
420
790
150
130 | 63.0
180.0
260.0
74.0
87.0 | 25.0
53.0
93.0
70.0
40.0 | | 91
92
93
94
95 | 18N-08E-01
18N-08E-04
18N-08E-18
18N-08E-21
18N-08E-22 | DDA
ABA
CBC | 80-07-17
80-07-18
80-04-23
80-07-11
80-07-11 | 1700
1000
1800
1045
1200 | 138
168

51 | 0.35 | 375
349
376
138
370 | 6.0
7.3
8.2
 | 150
260
150
48
170 | 110
90
17
15
37 | 34.0
64.0
34.0
12.0
37.0 | 16.0
24.0
15.0
4.4
18.0 | | 96
97
98
99 | 18N-08E-24
18N-08E-31
18N-08E-32
18N-08E-34
18N-09E-08 | BAA
ADA
AAB | 80-07-16
80-05-06
80-07-09
80-07-10
80-07-16 | 1430
1800
1600
1430
1600 | 120
28

171
 | <0.10

<0.10 | 192
920
460
330
900 | 6.6
7.1
7.9

7.7 | 88
310
190
170
260 | 6
35
25
0
24 | 21.0
63.0
41.0
35.0
66.0 | 8.4
38.0
20.0
20.0
24.0 | | 101
102
103
104
105 | 18N-09E-30
18N-09E-31
19N-07E-26
19N-07E-36
19N-08E-15 | CCC
CDD
AAA | 80-07-16
80-07-10
80-04-23
80-04-23
80-07-24 | 1200
1600
1230
1330
1500 | 300
103

126 | 2.00
1.10 | 440
371
1880
440
3290 | 7.2

8.0
7.9
7.4 | 300
190
540
150
840 | 34
0
340
28
670 | 77.0
34.0
130.0
36.0
240.0 | 27.0
26.0
52.0
14.0
56.0 | | Sodium, dissolved
(mg/L as Na) | Sodium-adsorption
ratio | Potassium, dissolved
(mg/L as K) | Alkalinity
(mg/L as CaCO ₃) | Sulfate, dissolved
(mg/L as SO ₄) | Chloride, dissolved
(mg/L as Cl) | Fluoride, dissolved
(mg/L as F) | Bromide, dissolved
(mg/L as Br) | lodide, dissolved
(mg/L as !) | Silica, dissolved
(mg/L as SiO ₂) | Total dissolved solids* (mg/L) | Lithium, dissolved (µg/L as Li) | Strontium, dissolved
(μg/L as Sr) | Organic carbon,
dissolved (mg/L as C) | |---|--------------------------------------|--------------------------------------|--|--|---|------------------------------------|------------------------------------|--------------------------------------|--|--|---------------------------------|--------------------------------------|--| | | | | | | CREEK C | OUNTY | Continue | ed | | | | | | | 4.7
150.0
14.0
8.6
7.2 | 0.3
4.2
0.4
0.4 | 1.4
3.3
1.5
2.1 | 35
90
170
67
16 | 21.0
11.0
21.0
17.0
14.0 | 4.0
340.0
12.0
10.0 | 0.1
0.2
0.1
0.1
0.2 | 0.1
1.7
0.1
0.1 | 0.03 | 13.0
7.2
14.0
14.0 | 83
731
237
126
83 | <4
10
10
<4
<4 | 70
1100
100
70
40 | 8.8
1.7

4.1 | | 1400.0
25.0
64000.0
1300.0
3900.0 | 18.0
0.6
154.0
16.0
27.0 | 11.0
1.7
820.0
15.0
38.0 | 63
320
66
61
120 | 18.0
28.0

23.0
16.0 | 3000.0
7.7
95000.0
2900.0
17000.0 | 0.2
0.4

0.2
0.1 | 14.0
0.0
240.0
15.0 | 0.09
0.00
9.80
0.15 | 6.0
14.0

9.3
9.3 | 5020
437
168000
5040
15600 | 510
10

90
210 | 15000
520

6900 | 5.6

 | | 24.0
82.0
22.0
17.0
120.0 | 0.7
1.1
0.9
0.5
5.1 | 2.8
4.4
0.8
1.4
4.8 | 220
120
76
200
55 | 17.0
0.5
13.0
68.0
25.0 | 5.7
830.0
74.0
22.0
200.0 | 0.2
0.2
0.2
0.3
0.3 | 0.1
4.6
0.4
0.1
1.1 | 0.01
0.01
0.01 | 18.0
20.0
15.0
13.0
6.7 | 253
1820
263
335
473 | 6
50
7
20
10 | 1100
560
150
520
670 | | | 17.0
39.0
32.0
390.0
11.0 | 1.0
1.2
0.7
8.7
0.4 | 1.1
3.4
5.1
7.4
1.5 | 28
58
350
70
150 | 21.0
59.0
52.0
10.0
16.0 | 26.0
110.0
39.0
770.0
22.0 | 0.2
0.1
0.3
0.2
0.2 | 0.4
0.8
0.4
4.1
0.2 | 0.05
0.00 | 15.0
20.0
9.8
3.1
19.0 | 115
349
503
1530
221 | 6
10
<4
20
10 | 60
120
620
2000
70 | | | 280.0
11.0
13.0
110.0
190.0 | 6.0
0.7
0.4
3.1
4.5 | 5.5
0.8
7.2
2.5
2.3 | 150
34
160
69
94 | 27.0
7.6
5.4
19.0
7.5 | 600.0
29.0
8.2
290.0
480.0 | 0.2
0.2
0.1
0.1
0.3 | 4.0
0.2
0.1
1.6
1.8 | 0.01
0.00
0.01
0.00
0.05 | 13.0
13.0
12.0
9.5
16.0 | 1260
115
246
627
993 | 10
<4
8
8 | 2100
90
410
630
1300 | | | 540.0
61.0
12.0
13.0
59.0 | 7.9
1.8
0.6
0.5
2.6 | 5.9
2.3
1.3
1.3 | 30
110
96
150
57 | 26.0
7.1
0.2
2.8
18.0 | 1500.0
170.0
4.2
11.0
110.0 | 0.2
0.3
0.4
0.3
0.2 | 7.6
0.4
0.0
0.1
0.6 | 0.01 | 3.2
10.0
22.0
14.0
14.0 | 2630
410
130
182
280 | 10
4
10
10
4 | 2900
450
90
140
270 | 4.4
11.0
7.3
3.9
3.4 | | 22.0
86.0
66.0
51.0
7200.0 | 1.2
2.7
1.3
1.5
39.0 | 2.1
2.2
4.3
1.5
96.0 | 46
95
380
200
140 | 21.0
13.0
170.0
46.0
43.0 | 19.0
180.0
31.0
66.0
16000.0 | 0.2
0.2
0.3
0.2
0.3 | 0.2
1.1
0.1
0.4
84.0 | 0.01 | 18.0
5.3
15.0
18.0
9.5 | 143
479
665
390
28200 | <4
10
20
20
930 | 60
570
3900
470
62000 | 10.0 | | 50.0
47.0
950.0
45.0
62.0 | 1.3
0.8
13.0
0.9 | 3.5 | 290
250
250
320
250 | 70.0
13.0
14.0
170.0
67.0 | 11.0
380.0
2100.0
50.0
140.0 | 0.3
0.4
0.3
0.4
0.2 | 0.1
2.6
8.4
0.4
0.9 | 0.09 | 17.0
15.0
14.0
3.5
19.0 | 417
1040
3960
646
648 | 10
20
70
10 | 9200
800
6700
310
2200 |

 | | 18.0
40.0
19.0
7.6
26.0 | 0.6
1.1
0.7
0.5
0.9 | 2.4
2.3
0.6 | 130 | 40.0
57.0
21.0
16.0
26.0 | 40.0
36.0
20.0
7.8
69.0 | 0.3
0.3
0.2
0.2 | 0.1
0.1
0.3
0.1 | 0.01
0.00
0.01
0.00
0.01 | 16.0
17.0
2.1
14.0
14.0 | 295
399
203
94
306 | 10
20
<4
<4
5 | 240
1000
170
70
230 |

 | | 6.2
28.0
28.0
16.0
140.0 | 0.3
0.7
0.9
0.5
3.8 | 1.8
3.5
1.6 | 280 | 7.7
16.0
22.0
7.6
7.8 | 6.3
46.0
52.0
7.0
240.0 | 0.2
0.2
0.3
0.3 | 0.1
0.9
0.2
0.0
0.6 | 0.00

0.01
0.01
0.06 | 16.0
17.0
8.0
14.0 | 121
375
279
196
671 | 10
20
9
9 | 730
680
300
320
530 |

 | | 14.0
21.0
160.0
30.0
380.0 | 0.4
0.7
3.0
1.1
5.7 | 1.7
3.5
2.6 | 210
200
120 | 9.2
15.0
13.0
19.0
200.0 | 36.0
14.0
480.0
45.0
940.0 | 0.3
0.3
0.2
0.2 | 3.2 | 0.00
0.01
0.02

0.10 | 11.0
16.0
6.6
3.6
8.2 | 349
246
1080
230
2230 | 10
10
20
<4
20 | 140
270
1400
230
5800 |

 | APPENDIX 3. – Continued 28 | | | | | | | | | | ate | | | |--|--|--|--|-----------------------------|------------------------------------|---|--
--|--|--|---| | | San | nple | | Well depth,
total (ft) | Streamflow.
instantaneous (cfs) | Specific
conductance (μmho) | Hd P | Hardness
(mg L as CaCO ₃) | Hardness, noncarbonate
(mg L as CaCO ₃) | Calcium, dissolved
(mg L as Ca) | Magnesium, dissolved
(mg L as Mg) | | Site | Location | Date | Time | ¥ o | inst | CO | Field | gm) | Наг | Calc | Maç | | | | | С | REEK C | OUNTY Cont | inued | | | | | | | 106
107
108
109
110 | 19N-08E-20 DA
19N-08E-24 BB
19N-08E-26 DC
19N-08E-28 DC
19N-09E-06 DC | B 80-07-17
D 80-07-17
C 80-07-18 | 1715
1230
1430
1130
1215 | 218
163
63
112 |

0.02 | 470
610
380
114
3080 | 6.2
7.4
7.6
5.7
8.4 | 130
490
220
31
420 | 92
200
0
7
210 | 32.0
160.0
53.0
7.7
110.0 | 11.0
22.0
21.0
2.7
34.0 | | 111
112 | 19N-09E-18 DD
19N-09E-31 AA | | 1000
1730 | 106
81 | | 390
441 | 7.6
- 7.6 | 210
290 | 0
0 | 44.0
63.0 | 25.0
32.0 | | | | | L | INCO | LN COU! | NTY | | | | | | | 113
114
115
116
117 | 12N-05E-36 DD
12N-06E-10 AD
12N-06E-15 BA
12N-06E-17 DA
12N-06E-19 BB | D 79-07-24
A 79-07-24
A 79-07-23 | 1000
1530
0830
1700
1500 | 96
189

230 | <0.10
<0.10 | 670
688
719
385
8427 | 7.5
8.2

6.8
7.9 | 200
100
330
140
1300 | 0
0
0
0
1000 | 41.0
20.0
52.0
31.0
290.0 | 23.0
12.0
49.0
16.0
130.0 | | 118
119
120
121
122 | 12N-06E-28 DA
13N-05E-36 DD
13N-06E-06 AA
13N-06E-07 BA
13N-06E-15 BC | D 80-02-28
D 79-07-25
A 79-07-25 | 1200
0930
1200
1430
1000 | 412

161
170 | <0.10
0.10
 | 675
1102
774
1321
773 | 6.8
8.3
8.4
7.6
7.1 | 180
500
230
52
140 | 21
0
62
0
0 | 56.0
81.0
43.0
11.0
30.0 | 9.7
73.0
30.0
5.9
16.0 | | 123
124
125
126
127 | 13N-06E-19 CD
13N-06E-21 AB
13N-06E-26 CB
13N-06E-32 DD
13N-06E-34 CC | 79-07-25
79-07-24
79-09-14 | 0845
0830
1700
0900
1100 | 127

109
109 | <0.10

<0.10 | 721
880
1060
460
550 | 7.8
7.5
7.1
7.1
8.0 | 35
370
170
280
210 | 0
0
0
16
0 | 7.3
69.0
33.0
56.0
48.0 | 4.1
49.0
20.0
33.0
23.0 | | 128
129
130
131
132 | 14N-06E-11 BA
14N-06E-15 CB
14N-06E-27 CC
14N-06E-27 DC
14N-06E-35 DD | 79-09-14
79-07-26
80-02-27 | 1230
1100
1030
1700
1200 | 68

125

118 | 500.00**

<0.10 | 982
900
520
6200
644 | 7.2
8.1
6.9
7.5
7.5 | 350
230
190
1600
240 | 55
51
0
1300
0 | 67.0
51.0
41.0
330.0
51.0 | 43.0
25.0
20.0
180.0
27.0 | | 133
134
135
136
137 | 15N-05E-01 DA
15N-06E-02 AA
15N-06E-10 CC
15N-06E-12 AD
15N-06E-18 DC | 80-03-10
80-03-07
80-04-04 | 1800
1800
0930
0930
0830 | 92
153
79
24
42 |

 | 562
625
920
411
565 | 7.7
7.5
8.0
7.3
8.3 | 210
260
100
170
66 | 25
1
0
0 | 43.0
56.0
23.0
40.0
15.0 | 26.0
29.0
11.0
17.0
6.8 | | 138
139
140
141
142 | 15N-06E-22 BB
15N-06E-26 DD
15N-06E-33 BB
15N-06E-34 CC
16N-05E-04 AA | 80-02-27
80-02-28
80-02-27 | 0800
1330
1430
1130
1700 | 55
231
 | <0.01

<0.10
<0.10 | 750
442
710
760
1170 | 7.6
7.3
7.6
8.1
8.3 | 260
170
230
250
330 | 12
0
0
50
78 | 62.0
39.0
49.0
57.0
70.0 | 26.0
18.0
27.0
26.0
37.0 | | 143
144
145
146
147 | 16N-05E-11 BCI
16N-05E-12 DCI
16N-05E-24 CBI
16N-06E-01 BCI
16N-06E-03 CCI | 80-03-21
80-03-17
80-04-09 | 1830
1200
1700
1030
0845 | 15

30
80
 | <0.10

<0.10 | 413
680
1590
134
680 | 7.5
8.2
7.3
6.2
8.0 | 160
270
620
44
290 | 19
4
200
15
43 | 39.0
55.0
130.0
10.0
61.0 | 15.0
33.0
72.0
4.5
34.0 | | 148
149
150
151
152 | 16N-06E-18 AAA
16N-06E-23 BBA
16N-06E-29 ADA
16N-06E-33 DAG
16N-06E-35 BCG | 80-04-01
80-03-21
80-03-20 | 1345
1430
1030
1700
1630 | 31
87
120
134 |

<0.10 | 1093
5210
441
690
444 | 7.6
7.2
7.7
7.5
8.5 | 410
1300
190
270
200 | 96
1200
18
0
6 | 75.0
370.0
39.0
45.0
37.0 | 53.0
100.0
22.0
38.0
25.0 | | 153
154
155
156
157
158 | 17N-05E-26 DAA
17N-05E-28 ABA
17N-05E-35 AAG
17N-06E-27 DCG
17N-06E-31 CDG
17N-06E-32 DDG | 80-04-15
80-04-09
80-04-09
80-04-09 | 1640
1830
1500
1130
1400
1245 | 104
105

177 | 0.50

<0.10
<0.10 | 560
850
1220
495
330
604 | 8.3
7.5
7.9
7.8
7.9
7.5 | 190
370
98
250
140
250 | 33
0
0
9
9 | 41.0
46.0
28.0
60.0
34.0
51.0 | 22.0
61.0
6.6
24.0
13.0
30.0 | | Sodium, dissolved
(mg L as Na) | Sodium-adsorption
ratio | Potassium, dissolved
(mg.L as K) | Alkalinity
(mg:L as CaCO ₃) | Sulfate, dissolved
(mg·L as SO ₄) | Chloride, dissolved (mg.L as Cl) | Fluoride, dissolved
(mg.L as F) | Bromide, dissolved
(mg/L as Br) | lodide, dissolved
(mg L as I) | Silica, dissolved
(mg/L as SiO ₂) | Total dissolved solids* (mg/L.) | Lithium, dissolved
(μg/L as Li) | Strontium, dissolved
(μg/L as Sr) | Organic carbon,
dissolved (mg/L as C) | |--|---|--|--|--|---|------------------------------------|------------------------------------|--------------------------------------|--|--|------------------------------------|--------------------------------------|--| | | | | | | 005514.6 | OLINITY | ' Continu | | | | | | | | 40.0
29.0
21.0
11.0
480.0 | 1.6
0.6
0.6
0.9 | 1.2
2.1
2.0
0.4 | 33
290
230
24
210 | 34.0
240.0
25.0
13.0
160.0 | 94.0
94.0
29.0
13.0
13.0
800.0 | 0.2
0.4
0.2
0.2
0.2 | 0.5
0.2
0.1
0.1 | 0.01
0.00
0.00
0.00
0.10 | 8.8
14.0
16.0
16.0
7.9 | 333
711
280
80
1770 | 10
20
8
6
10 | 240
2000
740
130
1800 |

 | | 27.0 | 0.8 | 1.8
1.8 | 240
290 | 12.0
31.0 | 15.0
22.0 | 1.0 | 0.1 | 0.00 | 16.0
15.0 | 262
353 | 20
10 | 380
300 | | | 25.0 | 0.6 | 1.8 | 290 | 31.0 | 22.0 | | | | .5.0 | 555 | | | | | | 2 2 | | 200 | 16.0 | LINC (
49.0 | 0.4 | 0.3 | T Y
 | 20.0 | 412 | 30 | 310 | 3.4 | | 83.0
150.0
52.0
22.0
1500.0 | 2.6
6.6
1.2
0.8
18.0 | 2.1
3.1
3.7
1.2
4.3 | 280
380
380
150
250 | 16.0
17.0
30.0
14.0
28.0 | 20.0
21.0
21.0
3000.0 | 1.1
0.5
0.2
0.4 | 0.2
0.3
0.2
13.0 | 0.03 | 12.0
11.0
25.0
11.0 | 459
478
231
5610 | 20
9
8
20 | 660
300
140
3400 | 1.2
4.0
0.9
3.8 | | 93.0
74.0 | 3.0 | 2.8 | 160
560 | 210.0 | 5.0
22.0 | 0.7 | 0.0 | 0.01 | 13.0 | 475
647 | 10
8 | 1100
430 |
6.2 | | 65.0
350.0 | 1.9 | 6.6 | 170
420 | 61.0
360.0 | 150.0
26.0 | 0.4 | 1.1 | 0.01 | 2.7
7.6 | 517
1040 | 5
20 | 520
450 | 10.0 | | 140.0 | 5.1 | 2.9 | 240 | 45.0 | 100.0 | 1.6 | 0.6 | | 12.0 | 510 | 10 | 640 | 0.5 | | 190.0
60.0
200.0
23.0
19.0 | 14.0
1.4
6.8
0.6
0.6 | 3.4
4.2
6.0
0.9
3.7 | 330
390
300
260
220 | 20.0
28.0
110.0
42.0
22.0 | 58.0
58.0
130.0
25.0
16.0 | 0.5
0.4
1.1
0.4
0.2 | 0.3
0.5
0.6
0.2 |

 | 10.0
13.0
9.2
19.0
5.8 | 497
568
718
357
275 | 20
7
10
10
9 | 190
440
280
140
210 | 0.8
6.0
5.5
1.3
10.0 | | 63.0
100.0
39.0
750.0
54.0 | 1.5
2.9
1.2
8.3
1.5 | 3.3
7.4
1.3
5.3
3.1 | 290
180
190
300
280 | 110.0
69.0
26.0
18.0
24.0 | 69.0
160.0
35.0
2100.0
48.0 | 0.4
0.5
0.4
0.2
0.5 | 0.2
0.9
0.4
19.0
0.8 | 0.00
0.07

0.03 | 12.0
5.3
15.0
13.0
17.0 | 561
549
326
3750
400 | 40
20
8
10
20 | 490
850
170
3400
520 | 0.6
7.0
2.6
11.0
1.2 | | 31.0
28.0
150.0
18.0 | 0.9
0.8
6.4
0.6 | 0.7
2.6
3.9 | 190
260
340
170 | 47.0
28.0
69.0
23.0 | 19.0
11.0
26.0
10.0 | 0.4
0.2
0.6
0.2 | 0.2
0.1
0.2
0.1 |

 | 14.0
16.0
9.8
9.3 | 310
327
540
229
342 | 20
10
20
10 | 100
1400
310
150
750 | 5.6
11.0
6.7

3.4 | | 110.0 | 5.9 | 3.2 | 190 | 74.0 | 15.0 | 0.5 | 0.1 | | 4.5 | 405 | 8 | 500 | 8.9 | | 47.0
22.0
45.0
41.0
46.0 | 1.3
0.7
1.3
1.1 | 3.5
1.0
2.7
4.6
3.7 | 250
190
270
200
250 | 29.0
15.0
37.0
62.0
62.0 | 59.0
14.0
21.0
61.0
88.0 | 0.3
0.3
0.7
0.2
0.4 | 0.1
1.0
0.4
0.6 |

0.00 | 13.0
13.0
3.0
8.1 | 236
356
398
486 | 20
30
10
5 | 180
490
410
350 | 0.2 | |
22.0
33.0
98.0
4.4
24.0 | 0.8
0.9
1.7
0.3
0.6 | 6.6
2.1
1.6
0.5
3.2 | 140
270
420
29
250 | 31.0
32.0
110.0
14.0
72.0 | 16.0
25.0
180.0
4.6
17.0 | 0.2
0.5
1.0
0.1
0.3 | 0.3
0.3
1.0
0.1
0.2 | 0.01
0.01 | 12.0
5.9
11.0
11.0
9.0 | 265
348
928
79
400 | <4
<4
20
6
8 | 230
240
750
130
190 | 12.0
20.0
 | | 89.0
460.0
15.0
46.0
15.0 | 1.9
5.5
0.5
1.2
0.5 | 1.4
2.7
1.0
3.4
3.4 | 310
110
170
320
190 | 190.0
15.0
33.0
10.0
24.0 | 46.0
1500.0
6.4
17.0
11.0 | 0.9
0.0
0.8
0.5
0.2 | 0.4
10.0
0.1
0.1
0.2 | 0.01 | 11.0
17.0
8.4
15.0
1.2 | 692
2970
238
363
223 | 20
20
10
20
5 | 580
1100
180
1300
280 | 4.1

4.5
8.6
8.5 | | 40.0
25.0
240.0
7.2
10.0
30.0 | 1.3
0.6
11.0
0.2
0.4
0.8 | 4.2
1.2
3.1
1.4
3.6
2.5 | 160
390
280
240
130
270 | 35.0
18.0
290.0
9.7
16.0
24.0 | 52.0
16.0
20.0
7.2
8.7
14.0 | 0.3
1.1
0.6
0.4
0.3 | 0.4
0.1
0.1
0.2
0.1 | 0.00 | 7.3
13.0
13.0
11.0
6.9
14.0 | 335
430
807
275
192
334 | 6
20
20
8
4
10 | 340
430
690
140
170 |

 | ${\bf APPENDIX~3.}-Continued$ | Site | Sar | nple
Date | Time | Well depth,
total (ft) | Streamflow,
instantaneous (cfs) | Specific
conductance (μmho) | Field pH | Hardness
(mg/L as CaCO ₃) | Hardness, noncarbonate
(mg/L as CaCO ₃) | Calcium, dissolved
(mg/L as Ca) | Magnesium, dissolved
(mg/L as Mg) | |------------|--------------------------------|--------------|--------------|---------------------------|------------------------------------|--------------------------------|------------|--|--|------------------------------------|--------------------------------------| | | | | | | · | II N T V | | | | - | | | 159 | 11N-07E-08 DE | D 79-07-31 | 1600 | | 1.00 | 425 | 8.0 | 180 | 33 | 42.0 | 19.0 | | 160 | 11N-07E-19 CC | | 0800
1000 | 105 | 1.50 | 1112
1280 | 7.7
6.2 | 340
440 | 260
5 | 86.0
100.0 | 31.0
45.0 | | 161
162 | 11N-07E-20 BE | | 1430 | 83 | | 340 | 6.5 | 160 | 5 | 34.0 | 17.0 | | 163 | 12N-07E-03 DA | | 1630 | | <0.10 | 1545 | 8.2 | 410 | 200 | 80.0 | 50.0 | | 164 | 12N-07E-17 DO | | 0900 | 150** | | 516 | 6.4 | 270 | 0 | 60.0 | 29.0 | | 165
166 | 12N-07E-24 AD | | 0930
1000 | 39 | <0.10 | 129
261 | 4.6 | 26
89 | 14
16 | 6.4
20.0 | 2.5
9.4 | | 167 | 12N-07E-27 DE | | 1330 | 130 | | 420 | 5.6 | 210 | ő | 45.0 | 23.0 | | 168 | 12N-07E-32 BA | A 79-07-31 | 1200 | | <0.10 | 351 | 7.3 | 180 | 1 | 41.0 | 19.0 | | 169 | 12N-07E-32 BC | | 1430 | 87 | | 610
116 | 6.8
6.0 | 310
25 | 35
1 | 66.0
6.4 | 34.0
2.1 | | 170
171 | 12N-08E-08 AA
12N-08E-31 DA | | 1630
1600 | 109
57 | | 200 | 5.2 | 110 | 23 | 32.0 | 8.3 | | 172 | 12N-08E-32 CC | B 79~08-01 | 1430 | | <0.10 | 343 | 7.3 | 160 | 3 | 39.0 | 16.0 | | 173 | 12N-08E-34 BE | 3B 79-08-02 | 0830 | | <0.10 | 705 | 7.2 | 230 | 83 | 60.0 | 20.0 | | 174 | 13N-07E-09 DA | | 1115 | 105
149 | | 356
12760 | 6.6
6.2 | 140
3400 | 17
3200 | 30.0
840.0 | 15.0
320.0 | | 175
176 | 13N-07E-09 DA
13N-07E-10 CE | | 1300
1000 | | <0.10 | 42140 | 7.0 | 6000 | 5900 | 1600.0 | 450.0 | | 177 | 13N-07E-11 CC | C 79-07-26 | 1630 | | <0.10 | 470 | 7.6 | 220 | 3 | 53.0 | 22.0 | | 178 | 13N-07E-12 AA | A 79-08-07 | 1300 | 120 | ~- | 470 | 6.9 | 230 | 0 | 48.0 | 26.0 | | 179 | 13N-07E-17 AE | | 1500
1400 | 89 | <0.10 | 400
548 | 8.0
7.2 | 180
290 | 0
0 | 43.0
63.0 | 18.0
33.0 | | 180
181 | 13N-07E-18 BA | | 0930 | 149 | | 387 | 6.5 | 200 | Ö | 43.0 | 22.0 | | 182 | 13N-07E-24 DE | | 1100 | | <0.10 | 501 | 7.9 | 270 | 0 | 53.0 | 33.0 | | 183 | 13N-07E-27 CC | CB 79-08-06 | 1500 | | <0.10 | 500 | 7.1 | 260 | 14 | 56.0 | 30.0 | | 184 | 13N-07E-30 BA | | 1300
0830 | 133 | <0.10 | 297
813 | 7.5
7.0 | 140
280 | 0 | 31.0
57.0 | 15.0
34.0 | | 185
186 | 13N-07E-33 CC
13N-08E-27 BE | | 1400 | 115 | | 380 | 6.5 | 160 | 3 | 37.0 | 17.0 | | 187 | 13N-08E-30 DE | C 79-11-02 | 1230 | 40 | | 320 | 5.9 | 67 | 0 | 14.0 | 7.7 | | 188 | 13N-08E+33 D0 | D 79-11-02 | 1100 | | <0.10 | 136 | 5.8 | 33 | 17 | 7.7 | 3.3 | | | | | | PAYN | E COUI | NTY | | | | | | | 189 | 17N-05E-11 DO | | 1420 | | 0.40
0.07 | 900
291 | 8.7
7.4 | 260
96 | 73
16 | 62.0
23.0 | 26.0
9.3 | | 190
191 | 17N-06E-02 AF | | 1400
0845 | | 10.00 | 507 | 7.4 | 150 | 27 | 34.0 | 15.0 | | 192 | 17N-06E-05 BE | 80-04-10 | 1700 | | <0.10 | 700 | 8.7 | 360 | 0 | 63.0 | 49.0 | | 193 | 17N-06E-07 DC | OC 80-04-10 | 1800 | 203 | | 539 | 8.3 | 24 | 0 | 7.4 | 1.4 | | 194 | 17N-06E-10 BA | | 1045 | 145
120 | | 391
405 | 7.2
6.3 | 160
130 | 9
91 | 42.0
31.0 | 13.0
13.0 | | 195
196 | 17N-06E-14 CC | | 0930
1100 | | 0.04 | 400 | 7.9 | 150 | 18 | 36.0 | 14.0 | | 197 | 17N-06E-20 CE | C 80-04-10 | 1200 | 83 | | 880 | 7.4 | 320 | 0 | 60.0 | 40.0 | | 198 | 18N-05E-11 AA | 8 80-04-16 | 1500 | 140 | | 12932 | 6.9 | 2500 | 2300 | 690.0 | 190.0 | | 199 | 18N-05E-12 BC | | 1330 | 81 | | 2100 | 7.0 | 780 | 590 | 220.0 | 56.0 | | 200
201 | 18N-05E-22 BE
18N-05E-24 DC | | 1530
1700 | 88 | <0.10 | 1080
850 | 7.4
8.0 | 370
550 | 37
17 | 61.0
90.0 | 52.0
78.0 | | 202 | 18N-05E-34 BE | B 80-04-16 | 1100 | | 1.00 | 2420 | 8.6 | 330 | 180 | 79.0 | 33.0 | | 203 | 18N-05E-35 AA | D 80-04-10 | 1600 | 179 | | 990 | 7.3 | 270 | 0 | 63.0 | 26.0 | | 204 | 18N-06E-07 CE | | 1600 | | 0.05 | 1165
283 | 8.2
6.4 | 360
99 | 92
8 | 110.0
23.0 | 21.0
10.0 | | 205
206 | 18N-06E-23 CC
18N-06E-28 BC | | 1200
0930 | 93
238 | | 630 | 7.3 | 240 | 2 | 61.0 | 21.0 | | 207 | 18N-07E-28 AD | | 1015 | | 0.10 | 2460 | 8.0 | 850 | 560 | 160.0 | 110.0 | | | _ | | | | | | | | | | | | | |---|-----------------------------------|-------------------------------------|--|---------------------------------------|--|------------------------------------|------------------------------------|----------------------------------|--|------------------------------------|------------------------------------|--------------------------------------|--| | Sodium, dissolved
(mg/L as Na) | Sodium-adsorption
ratio | Potassium, dissolved
(mg/L as K) | Alkalinity
(mg/L as CaCO ₃) | Sulfate, dissolved
(mg/L as SO₄) | Chloride, dissolved
(mg/L as Cl) | Fluoride, dissolved
(mg/L as F) | Bromide, dissolved
(mg/L as Br) | lodide, dissolved
(mg/L as I) | Silica, dissolved
(mg/L as SiO ₂) | Total dissolved solids* (mg/L) | Lithium, dissolved
(µg/L as Li) | Strontium, dissolved
(μg/L as Sr) | Organic carbon,
dissolved (mg/L as C) | | | | | | | | | | | | | | | _ | | 24.0
110.0
100.0
13.0
190.0 | 0.8
2.6
2.1
0.5
4.1 | 2.4
3.5
1.8
1.1
4.6 | 150
84
430
150
210 | 20.0
15.0
56.0
14.0
16.0 | OKFUS
45.0
360.0
110.0
12.0
410.0 | 0.3
0.1
0.2
0.2
0.4 | 0.4
1.7
0.9
0.1
2.2 | 0.02
0.03

0.03 | 14.0
28.0
23.0
21.0
11.0 | 281
925
758
187
978 | 4
20
30
9
10 | 190
600
280
120
280 | 6.3
19.0
14.0
2.9
3.7 | | 15.0
11.0
12.0
16.0
10.0 | 0.4
0.9
0.6
0.5 | 1.6
0.7
2.2
0.9
2.0 | 310
12
73
220
180 | 4.1
13.0
25.0
14.0
14.0 | 8.2
12.0
13.0
10.0
9.8 | 0.3
0.1
0.2
0.2
0.3 | 0.0
0.1
0.3
0.2
0.2 | 0.01 | 15.0
14.0
18.0
19.0
15.0 | 319
73
154
257
210 | 10
8
<4
10
<4 | 190
40
110
200
130 | 0.5
0.6
3.6
6.5
2.7 | | 23.0
11.0
5.7
12.0
68.0 | 0.6
1.0
0.2
0.4
1.9 | 0.8
0.9
1.2
1.2
3.6 | 270
24
91
160
150 | 29.0
16.0
14.0
12.0
24.0 | 44.0
4.9
10.0
15.0
160.0 | 0.2
0.1
0.2
0.3
0.3 | 0.1
0.1
0.2
0.7 | | 21.0
15.0
14.0
11.0
23.0 | 402
73
148
194
482 | 10
<4
6
8
6 | 190
40
50
100
360 | 1.1
0.2
2.9
1.2
5.5 | | 18.0
1700.0
11000.0
16.0
18.0 | 0.7
13.0
63.0
0.5
0.5 | 1.1
7.2
31.0
4.2
2.3 | 120
200
89
220
230 | 20.0
47.0
130.0
11.0
6.7 | 17.0
4800.0
22000.0
26.0
28.0 | 0.1
0.1
0.3
0.4
0.2 | 0.2
33.0
110.0
0.3
0.4 | 0.02
0.02
0.80 | 19.0
14.0
11.0
13.0
19.0 | 204
9530
38000
293
274 | 6
50
500
4
10 | 200
8000
93000
320
240 | 2.9
4.7
4.2
6.1
0.9 | | 8.1
9.8
5.6
19.0
11.0 | 0.3
0.3
0.2
0.5 | 4.2
2.2
1.1
2.9
2.2 | 200
300
200
280
250 | 10.0
8.9
8.5
12.0
15.0 | 7.8
12.0
7.2
15.0
17.0 | 0.3
0.2
0.0
0.7 | 0.1
0.1
0.1
0.2
0.2 | 0.00 | 8.9
15.0
20.0
12.0
16.0 | 241
323
222
303
264 | <4
9
6
<4
<4 | 220
140
80
270
220 | 5.2
1.2
0.9
9.0
3.4 | | 8.9
98.0
14.0
28.0
8.7 | 0.3
2.5
0.5
1.5
0.7 | 4.0
2.0
2.0
0.7
2.1 | 150
310
160
84
16 | 7.2
53.0
8.8
12.0
12.0 | 5.4
81.0
18.0
22.0
19.0 | 0.3
0.7
0.2
0.7 | 0.1
0.5
0.3
0.3 | | 6.0
17.0
15.0
22.0
14.0 | 161
523
210
176
81 |
<4
30
20
10
10 | 200
350
160
60
50 | 7.1
1.3
21.0
0.8
4.3 | | | | | | | PAY | NE (| COUNT | Υ Υ | | | | | | | 68.0
16.0
39.0
25.0
110.0 | 1.8
0.7
1.4
0.6
9.7 | 5.0
1.5
5.0
2.7
1.5 | 190
80
120
360
230 | 70.0
20.0
32.0
14.0
18.0 | 110.0
22.0
56.0
13.0
6.5 | 0.3
0.2
0.3
0.5 | 0.8
0.3
0.6
0.3
0.1 | 0.06 | 4.5
10.0
7.5
12.0
12.0 | 491
172
285
389
311 | 10
<4
7
5
7 | 530
80
300
350
170 | | | 15.0
17.0
15.0
51.0
1800.0 | 0.5
0.6
0.5
1.3 | 0.7
1.2
4.7
3.6
3.6 | 150
40
130
370
200 | 16.0
40.0
19.0
17.0
16.0 | 11.0
33.0
23.0
35.0
4600.0 | 0.3
0.1
0.2
0.4
0.2 | 0.1

0.2
0.2
32.0 | 0.00 | 10.0
11.0
2.5
19.0
19.0 | 211
238
229
467
8090 | 8

<4
20
50 | 180

210
900
4400 |

 | | 110.0
84.0
54.0
330.0
95.0 | 1.7
1.9
1.0
7.9
2.5 | 1.5
1.9
3.0
14.0
1.9 | 190
330
530
150
280 | 0.0
92.0
63.0
220.0
140.0 | 540.0
83.0
35.0
460.0
38.0 | 0.2
0.4
0.5
9.1
0.4 | 4.0
0.5
0.5
2.8
0.4 | 0.00 | 22.0
19.0
13.0
9.3
14.0 | 1290
587
646
1310
569 | 20
20
8
20
20 | 700
500
850
1100
490 | | | 98.0
15.0
35.0
180.0 | 2.2
0.7
1.0
2.7 | 1.7
0.6
2.5
3.8 | 270
91
240
290 | 26.0
16.0
71.0
280.0 | 200.0
12.0
5.6
490.0 | 0.3
0.3
0.3
0.4 | 0.2 | 0.01
0.03 | 15.0
15.0
19.0
5.1 | 638
154
365
1460 | 10
8
7
10 | 430
30
3000
2000 |

 | APPENDIX 3. – Continued | Site | Location | Sample | e
Date | Time | Well depth,
total (ft) | Streamflow,
instantaneous (cfs) | Specific
conductance (μπho) | Field pH | Hardness
(mg/L as CaCO ₃) | Hardness, noncarbonate (mg/L as CaCO ₃) | Calcium, dissolved
(mgʻL as Ca) | Magnesium, dissolved
(mg L as Mg) | |------------|--------------------------|------------|-------------------------------|--------------|---------------------------|------------------------------------|--------------------------------|------------|--|---|------------------------------------|--------------------------------------| | | | | | | | | | | | | • | | | | | | | | | TOMIE | COUNT | | | | | | | 208
209 | 06N-05E-04
06N-05E-06 | | 79-11-15
79-11-15 | 1400
1500 | 176 | 0.10 | 484
6600 | 7.2
6.7 | 120
1100 | 0
800 | 25.0
240.0 | 14.0
120.0 | | 210 | 06N-05E-32 | | 79-12-05 | 1330 | | <0.10 | 782 | 7.3 | 340 | 0 | 65.0 | 44.0 | | 211 | 07N-05E-21 | DCD | 79-11-15 | 0930 | | 0.30 | 9244 | 7.3 | 1100 | 840 | 160.0 | 170.0 | | 212 | 07N-05E-28 | DBA | 79-11-15 | 1200 | 208 | | 1018 | 6.7 | 400 | 17 | 88.0 | 43.0 | | 213 | 08N-05E-06 | | 79-11-01 | 1700 | 220 | | 5010 | 7.8 | 310 | 66 | 71.0 | 31.0 | | 214
215 | 08N-05E-20
09N-04E-25 | DDA
DDD | 79-11-13
79-10-01 | 1600
1730 | 216 | 1.50 | 1387
1503 | 8.6 | 20
270 | 0
31 | 4.5
39.0 | 2.2
42.0 | | 216 | 09N-05E-04 | | 79-09-19 | 1100 | 248 | | 3400 | 9.4 | 220 | 110 | 55.0 | 19.0 | | 217 | 09N-05E-08 | ABA | 79-09-13 | 1530 | 87 | | 400 | 7.1 | 180 | 0 | 47.0 | 15.0 | | 218 | 09N-05E-16 | ADD | 78-09-28 | 1145 | | <0.10 | 150000 | 6.8 | | | | | | | | | 79-09-13 | 1630 | | 0.10 | 17500 | 6.7 | 2200 | 1800 | 600.0 | 170.0 | | 219
220 | 09N-05E-18
09N-05E-29 | ABA | 79~11-01
79 ~ 10~01 | 1500
1630 |
41 | 0.10 | 714
1264 | 7.9
7.1 | 320
390 | 7
130 | 69.0
83.0 | 35.0
45.0 | | 221 | 11N-05E-09 | ADA | 79-09-11 | 1300 | | 0.10 | 491 | 7.1 | 200 | 0 | 51.0 | 18.0 | | 222 | 11N-05E-13 | ABB | 79-07-17 | 1100 | | <0.10 | 512 | 8.1 | 200 | 19 | 40.0 | 24.0 | | 223 | 11N-05E-21 | AAA | 79-09-11 | 1430 | 54 | | 350 | 5.6 | 110 | 73 | 28.0 | 8.7 | | 224
225 | 11N-06E-04
11N-06E-11 | CDC
BAA | 79-07-16 | 1700 | 211 | <0.10 | 810 | 8.6 | 120 | 0 | 30.0 | 12.0 | | 226 | | DAD | 79-07-11
79-07-17 | 1500
1500 | 196 | | 510
315 | 7.3
7.5 | 170
72 | 0 | 38.0
17.0 | 17.0
7.1 | | 227 | 11N-06E-28 | ADB | 79-08-15 | 1730 | | 600.00** | 1440 | 8.4 | 370 | 160 | 93.0 | 34.0 | | | | | | | = 14 1 1 | 215 001 | LNTV | | | | | | | 228 | 05N-05E-01 | AAA | 79-12-06 | 1700 | 197 | OLE CO | 694 | 7.0 | 140 | 0 | 27,0 | 18.0 | | 229 | 05N-05E-11 | BCC | 79-12-06 | 1030 | 199 | | 827 | 7.0 | 190 | 0 | 38.0 | 22.0 | | 230 | 05N-05E-12 | ВСВ | 79-12-06 | 1500 | | 0.75 | 1320 | 7.8 | 390 | 120 | 91.0 | 40.0 | | 231
232 | 05N-05E-15
05N-06E-01 | BAB
CBA | 79-12-05
80-02-20 | 1630
1400 | 179 | <0.10 | 432
713 | 7.2 | 180
180 | 0 | 52.0
52.0 | 12.0
12.0 | | | | | | | | | | 7 4 | | | | | | 233
234 | 05N-06E-18
05N-06E-19 | CCC
ABD | 79-12-06
79-12-06 | 1200
1400 | 64 | 0.15 | 999
632 | 7.4
7.6 | 71
250 | 0
0 | 12.0
66.0 | 10.0
20.0 | | 235 | 06N-05E-01 | DDC | 79-10-04 | 1030 | 86 | | 868 | 7.0 | 410 | 140 | 82.0 | 49.0 | | 236
237 | 06N-05E-02
06N-05E-22 | | 79-11-15
79-12-05 | 1630
1100 | 154 | 0.10 | 4680
466 | 7.8
7.0 | 1100
170 | 740
7 | 200.0
42.0 | 140.0
15.0 | | | | | | | | | | | | | | | | 238
239 | 06N-05E-24
06N-05E-26 | BCB | 80-01-30
80-02-20 | 1230
1000 | 78
 | <0.10 | 703
651 | 7.2
8.0 | 150
320 | 0 | 22.0
66.0 | 24.0
37.0 | | 240 | 06N-05E-34 | ввс | 79-12-05 | 1530 | 187 | | 832 | 6.9 | 250 | 0 | 39.0 | 36.0 | | 241
242 | 06N-06E-04
06N-06E-15 | | 80-01-30
80-01-31 | 1000
1000 | 236 | <0.10 | 2250
965 | 7.3
7.3 | 630
400 | 320
88 | 140.0
75.0 | 69.0
51.0 | | | | | | | | | 303 | 7.5 | | | 73.0 | 31.0 | | 243
244 | 06N-06E-17
06N-06E-27 | | 80-02-20
80-01-31 | 1100
1500 | 242 | <0.10
 | 1471
480 | 6.9 | 620
220 | 49
11 | 150.0
52.0 | 59.0
22.0 | | 245 | 06N-06E-33 | | 80-01-30 | 1500 | | 0.20 | 1562 | 7.4 | 530 | 240 | 110.0 | 61.0 | | 246 | 06N-06E-36 | | 80-01-31 | 1600 | | <0.10 | 1520 | 6.0 | 53 | 21 | 16.0 | 3.2 | | 247 | 07N-05E-02 | DCC | 79-11-14 | 1800 | 122 | | 905 | 6.8 | 160 | 0 | 25.0 | 24.0 | | 248 | 07N-05E-15 | | 79-11-14 | 1600 | | 2.50 | 4928 | 8.0 | 890 | 700 | 200.0 | 93.0 | | 249
250 | 07N-05E-25
07N-06E-01 | | 79-10-04
79-10-02 | 1700
1000 | 246 | <0.10 | 1763
1962 | 8.5
8.0 | 25
440 | 0
190 | 6.7
82.0 | 2.0
58.0 | | 251 | 07N-06E-04 | CCC | 79-10-02 | 1300 | 240 | | 609 | 6.9 | 340 | 9 | 73.0 | 38.0 | | 252 | 07N-06E-12 | CCD | 79-09-27 | 1330 | 240 | | 565 | 7.3 | 270 | 0 | 53.0 | 34.0 | | 253 | 07N-06E-17 | | 80-02-21 | 1530 | | <0.10 | 760 | | 370 | 37 | 89.0 | 35.0 | | 254
255 | 07N-06E-17
07N-06E-18 | | 79-10-03
79-10-02 | 1530
1515 | 117
114 | | 1066
980 | 8.5
7.0 | 12
390 | 0
0 | 2.0
70.0 | 1.6 | | 256 | 07N-06E-19 | BCC | 79-10-03 | 1330 | | 0.40 | 1936 | 8.1 | 300 | 180 | 62.0 | 51.0
34.0 | | 257 | 07N-06E-23 | всв | 79-09-27 | 1545 | | <0.10 | 14541 | 7.6 | 1500 | 1200 | 380.0 | 140.0 | | Sodium, dissolved
(mg·L as Na) | Sodium-adsorption
ratio | Potassium, dissolved
(mg/L as K) | Alkalinity
(mg/L as CaCO ₃) | Sulfate, dissolved
(mg/L as SO ₄) | Chloride, dissolved
(mg/L as Cl) | Fluoride, dissolved
(mg/L as F) | Bromide, dissolved
(mg/L as Br) | lodide, dissolved
(mg/L as i) | Silica, dissolved
(mg/L as SiO ₂) | Total dissolved solids* (mg/L) | Lithium, dissolved
(μg/L as Li) | Strontium, dissolved (μg/L as Sr) | Organic carbon,
dissolved (mg L as C) | |---|------------------------------------|-------------------------------------|--|--|--|------------------------------------|---|----------------------------------|--|---|------------------------------------|-----------------------------------|--| | | | | | | POTTAWA | 4 T O N | MIE CC | UNTY | | | | | | | 82.0
880.0
46.0
1600.0
58.0 | 3.3
12.0
1.1
21.0
1.3 | 2.4
9.9
2.1
13.0
3.0 | 260
300
400
270
380 | 21.0
24.0
18.0
32.0
30.0 | 7.8
1900.0
23.0
3200.0
70.0 | 0.3
0.3
0.5
0.2
0.6 | 0.2
8.4
0.3
13.0
0.6 | 0.06 | 16.0
11.0
13.0
9.2
14.0 | 326
3750
432
5920
585 | 20
50
7
90
40 | 310
3600
420
5700
490 | 29.0
34.0
22.0
9.9
33.0 | | 1200.0
320.0
200.0
750.0
16.0 | 30.0
31.0
5.3
22.0
0.5 | 6.6
1.9
4.6
7.8
2.9 | 240
390
240
110
190 | 1300.0
170.0
74.0
1600.0
25.0 | 230.0
95.0
300.0
96.0
9.3 | 1.8
1.0
0.4
1.0 | 1.0
0.4
1.7
0.4
0.1 | 0.05

0.01
0.01 | 9.5
9.4
2.0
3.0 | 3840
836
810
2530
244 | 40
10
6
30
10 | 1100
120
520
1100
830 | 34.0
29.0
6.3
12.0
0.6 | | 49000.0
3400.0
29.0
96.0
35.0
33.0 | 32.0
0.7
2.1
1.1 | 27.0
3.4
1.8
2.5
3.6 | 420
310
260
260
180 | 78.0
17.0
44.0
12.0
17.0 | 100000.0
6900.0
47.0
230.0
9.2
57.0 | 0.5
0.3
0.5
0.4 | 220.0
40.0
0.4
1.2
0.2
0.5 | 0.30 | 12.0
13.0
19.0
19.0
6.9 | 205000
12500
412
699
313
303 | 190
10
20
10
5 | 17000
310
350
250
230 | 5.4
35.0
1.5
3.5
4.4 | | 19.0
140.0
47.0
47.0
170.0 | 0.8
5.5
1.6
2.4
3.8
| 1.6
9.3
3.4
2.4
10.0 | 33
290
260
150
210 | 26.0
76.0
9.8
12.0
180.0 | 58.0
45.0
20.0
7.3
240.0 | 0.1
0.5
0.3
0.3 | 0.3
0.3
0.1
0.1 | 0.04
0.02

0.04 | 34.0
6.8
18.0
16.0
3.7 | 264
560
305
192
847 | 20
7
10
10
30 | 220
260
890
330
1200 | 1.8
5.1
0.3
0.0
9.3 | | | | | | | SEMIN | OLE | COUN | ΙΤΥ | | | | | | | 170.0
120.0
120.0
17.0
94.0 | 6.2
3.8
2.6
0.6
3.1 | 2.2
2.1
3.2
1.0
2.6 | 440
380
270
180
330 | 32.0
33.0
43.0
15.0
37.0 | 23.0
47.0
250.0
21.0
8.5 | 0.5
0.5
0.3
0.3 | 0.1
0.6
1.4
0.1
0.0 | 0.01 | 13.0
14.0
19.0
36.0
15.0 | 543
504
763
272
410 | 30
20
20
20
10 | 250
440
590
200
290 | 6.1
8.6
3.6
2.7 | | 220.0
38.0
20.0
890.0
41.0 | 11.0
1.1
0.4
12.0
1.4 | 3.1
1.8
2.7
8.9
0.7 | 520
250
270
340
160 | 12.0
22.0
86.0
21.0
39.0 | 28.0
49.0
61.0
1900.0
32.0 | 0.7
0.3
0.3
0.3 | 0.3
0.3
0.7
8.6
0.2 | 0.02
0.02

 | 10.0
31.0
15.0
11.0
20.0 | 614
366
520
3020
295 | 30
10
20

6 | 160
210
230

160 | 15.0
16.0
6.0
30.0
0.7 | | 110.0
21.0
98.0
240.0
42.0 | 3.9
0.5
2.7
4.2
0.9 | 2.3
1.6
3.5
2.1
3.5 | 330
330
400
310
310 | 42.0
12.0
20.0
19.0
34.0 | 21.0
16.0
30.0
540.0
92.0 | 0.2
0.3
0.6
0.2
0.2 | 0.1
0.3

3.4
0.6 | 0.02 | 16.0
11.0
20.0
9.8
8.6 | 425
352
480
1190
540 | 30
<4
40
10
30 | 310
230
590
1000
550 | 9.7
16.0
5.5
19.0 | | 85.0
9.1
140.0
4.4
150.0 | 1.5
0.3
2.7
0.3
5.1 | 0.7
1.4
4.1
1.5
5.9 | 570
210
290
32
380 | 73.0
19.0
170.0
16.0
16.0 | 120.0
18.0
250.0
16.0
73.0 | 0.3
0.2
0.5
0.1
0.3 | 0.8
0.2
1.3
0.1
0.2 | 0.02

0.00
0.01 | 7.5
8.8
11.0
9.2
15.0 | 874
249
997
98
534 | 7
20
30
10
30 | 1100
140
710
70
660 | 11.0
1.5
18.0
6.2
16.0 | | 750.0
650.0
310.0
6.6
25.0 | 11.0
57.0
6.4
0.2
0.7 | 10.0
2.2
6.7
1.1
3.9 | 190
750
250
330
290 | 51.0
100.0
62.0
15.0
15.0 | 1500.0
450.0
610.0
8.8
30.0 | 0.3
5.2
0.4
0.4 | 12.0
2.6
2.3
0.1
0.2 | 0.05
0.10
0.00 | 4.4
10.0
3.2
15.0
8.7 | 3020
1690
1360
337
337 | 50
20
10
8
20 | 3800
60
1100
310
670 | 19.0
12.0
7.6
2.6
0.7 | | 23.0
270.0
71.0
270.0
3400.0 | 0.5
35.0
1.6
6.8
38.0 | 1.5
1.0
1.8
4.6
46.0 | 330
550
390
120
380 | 33.0
23.0
31.0
11.0
50.0 | 22.0
22.0
50.0
530.0
6300.0 | 0.2
0.6
0.5
0.3 | 0.2
0.1
0.3
2.3
29.0 |

0.07
0.50 | 11.0
8.4
2.0
3.0
2.0 | 404
632
571
1050
11600 | 5
<4
30
10
210 | 270
30
300
1100
12000 | 4.1
1.4
4.5
6.5
8.6 | ${\bf APPENDIX~3.}-Continued$ | | Sample | | Time | Well depth,
total (ft) | Streamflow,
instantaneous (cfs) | Specific
conductance (μmho) | Field pH | Hardness
(mg/L as CaCO ₃) | Hardness, noncarbonate
(mg/L as CaCO ₃) | Calcium, dissolved
(mg/L as Ca) | Magnesium, dissolved
(mg/L as Mg) | |---|---|--|--|---------------------------|---|---|---|---|--|---|--| | Site | Location | Date | Time | | .= | | | | | | | | | | | | | COUNTY Co | | | | | 050 0 | 94.0 | | 258
259
260
261
262 | 07N-06E-26 CBB
07N-06E-28 BAD
07N-06E-30 DCC
07N-06E-33 CDC
07N-07E-05 ACD | 79-09-27
79-10-03
79-10-04
79-10-04
79-09-27 | 1745
1600
1500
1300
1030 | 110

235
375 | 0.56
<0.10
 | 3773
1654
1528
1071
946 | 6.4
8.0
8.0
8.9
7.1 | 1300
280
460
4
430 | 1200
150
140
0
200 | 350.0
66.0
110.0
0.9
100.0 | 28.0
44.0
0.4
43.0 | | 263
264
265
266
267 | 07N-07E-10 BBB
07N-07E-20 BBA
08N-05E-13 ABB
08N-05E-14 BAB
08N-05E-15 ACC | 79-09-26
79-09-26
80-02-21
79-11-14
78-10-03 | 1600
1700
1230
1400
1550 | 59

82
 | 5.00
<0.10

<0.10 | 900
1891
10192
612
50000 | 6.8
8.2

7.0
7.6 | 510
360
1500
250 | 120
140
1300
0 | 100.0
78.0
350.0
52.0 | 63.0
41.0
150.0
30.0 | | 268
269
270
271 | 08N-05E-23 BBD
08N-05E-36 BBB
08N-06E-07 CBA
08N-06E-09 ADA
08N-06E-10 DBC | 79-11-13
79-11-14
80-02-19
78-08-10
80-02-01
79-12-04 | 1730
1030
1515
0930
0900
1630 | 156
53
178
178 | 2.50 | 1343
1108
3150
1650
726
2553 | 8.1
7.7

8.5
7.8
10.8 | 340
140
850

35
46 | 48
0
660

0 | 66.0
20.0
180.0

8.4
14.0 | 42.0
21.0
97.0

3.4
2.7 | | 273
274
275 | 08N-06E-13 DAD
08N-06E-23 AAD
08N-06E-26 DDA
08N-06E-28 DDD | 79-09-20
78-08-09
80-02-01
78-08-10
80-02-21
80-02-19 | 1330
1630
1030
1700
1100
1700 |

 | <0.10
<0.10
<0.10
<0.10
0.10
<0.10 | 3442
9400
6688
15000
9400
766 | 7.6
8.1
6.7
8.0 | 650

1500

1400
360 | 460

1200

1200
0 | 140.0

360.0

350.0
81.0 | 72.0

150.0

130.0
37.0 | | 276
277
278
279
280
281
282 | 08N-07E-02 ABB 08N-07E-03 ADC 08N-07E-05 ABA 08N-07E-06 DDB 08N-07E-16 BBB 08N-07E-18 BAA | 79-09-25
79-09-25
79-09-20
79-09-20
79-09-25
78-11-30 | 1330
1530
1030
1200
1700
1300 | 102
104
 | <0.10

<0.10
0.16
<0.10 | 707
143
320
329
2186
4000 | 5.0
6.4
6.7
9.1
8.1 | 32
140
130
330 | 78
21
14
24
140 | 36.0
7.7
33.0
32.0
80.0 | 14.0
3.2
15.0
13.0
32.0 | | 283
284
285
286
287 | 08N-07E-18 CBB
08N-07E-20 AAA
08N-07E-22 ABA
08N-07E-29 ABB
08N-07E-32 AAA | 79-09-20
79-09-26
79-09-26
80-02-20
79-09-20 | 1430
1200
1000
1730
1700 | 170
67

94 | <0.10
0.10 | 26200
151
6820
1100
269 | 6.6
5.3
7.3

5.3 | 1400
32
240
190
42 | 1200
16
86
160
31 | 280.0
6.2
53.0
46.0
9.8 | 180.0
4.0
25.0
19.0
4.3 | | 288
289
290
291
292 | 08N-07E-34 DDD
09N-05E-03 DAD
09N-05E-03 DDD
09N-05E-13 CDA
09N-05E-15 BBB | 80-02-20
79-09-13
79-09-18
79-11-16
79-09-19 | 1600
1400
1730
1130
0930 |

98
114 | <0.10
0.10
<0.10
 | 800
16500
161000
675
656 | 7.9
6.9
7.0
6.4 | 410
2600
20000
270
210 | 100
2400
20000
0
67 | 110.0
650.0
5500.0
40.0
53.0 | 34.0
230.0
1400.0
40.0
18.0 | | 293
294
295
296 | 09N-05E-24 BCB
09N-05E-27 AAA
09N-05E-34 ABA
09N-06E-03 AAB | 79-11-01
79-11-01
78-08-02
79-07-20 | 0900
1130
1400
1500
0800
1030
1630 | 272

 | <0.10

<0.10
<).10
<0.10
<0.10 | 23217
4446
813
12000
7210
35500
22500 | 7.5
7.1
7.5
7.7
7.8
7.3
6.9 | 1300
1000
370

1100

2400 | 1200
910
0

790

2100 | 290.0
74.0

260.0

590.0 | 310.0
68.0
46.0

99.0

220.0 | | 298
299
300
301
302 | 09N-06E-06 BBB
09N-06E-08 CDD
09N-06E-09 CDC
09N-06E-10 BBA
09N-06E-10 DAA | 79-09-12
78-08-01
79-07-20
79-07-20 | 1730
1230
1600
1100
0930
1800
1100 | 265
120

 | 0.10
0.10
0.10
<0.10
<0.10
0.10 | 700
641
5200
1675
4337
15200
1550 | 7.1
7.2
8.6
7.5
8.1
6.8
7.3 | 310
160

260
400

230 | 0
0

140
230

140 | 61.0
44.0

68.0
100.0

59.0 | 38.0
13.0

22.0
35.0

21.0 | | Sodium, dissolved
(mg/L as Na) | Sodium-adsorption
ratio | Potassium, dissolved
(mg/L as K) | Alkalinity
(mg/L as CaCO ₃) | Sulfate, dissolved (mg/L as SO ₄) | Chloride, dissolved
(mg/L as Cl) | Fluoride, dissolved
(mg/L as F) | Bromide, dissolved
(mg/L as Br) | lodide, dissolved
(mg/L as I) | Silica, dissolved
(mg/L as SiO ₂) | Total dissolved solids* (mg/L) | Lithium, dissolved
(μg/L as Li) | Strontium, dissolved (µg/L as Sr) | Organic carbon,
dissolved (mg/L as C) | |---|---|--|--|---|---|---|--|----------------------------------|--|--
--------------------------------------|---|--| | | | | | | SEMINOLE | COLIN | TY Conti | nued | | | | | | | 250.0
230.0
150.0
280.0
33.0 | 3.1
6.0
3.1
62.0
0.7 | 7.5
4.5
2.6
0.9
4.6 | 69
130
320
510
230 | 1200.0
13.0
11.0
37.0
26.0 | 440.0
450.0
350.0
42.0
190.0 | 0.1
0.4
0.5
1.0
0.2 | 7.0
2.4
2.9
0.2
1.1 | 0.01 | 9.6
3.1
18.0
10.0
11.0 | 2200
899
906
666
580 | 8
9
9
<4
20 | 1000
970
330
10
790 | 1.9
4.5
5.2
11.0
2.6 | | 11.0
230.0
1900.0
43.0
9800.0 | 0.2
5.3
21.0
1.2 | 2.6
6.2
15.0
1.3 | 390
220
210
310 | 140.0
32.0
44.0
25.0 | 21.0
470.0
3800.0
14.0
26000.0 | 0.2
0.3
0.2
0.1 | 0.2
1.0
22.0
0.1
90.0 | 0.09 | 9.6
4.8
2.5
16.0 | 571
1050
6500
360
43300 | 20
10
70
20 | 310
1100
8200
160 | 0.5
5.1
8.9
3.5 | | 160.0
230.0
290.0
280.0
160.0
510.0 | 3.8
8.6
4.3

12.0
33.0 | 4.4
1.8
2.1

2.4
2.7 | 290
500
190

290
590 | 52.0
43.0
28.0

68.0
250.0 | 230.0
58.0
880.0
22.0
35.0
290.0 | 0.4
1.3
0.2

1.3
1.4 | 1.4
0.3
3.2
0.3
0.2
2.0 | 0.01
0.02

0.03 | 13.0
12.0
31.0

9.6
20.0 | 743
676
1820
830
464
1480 | 20
20
10

20
20 | 590
180
370

130
180 | 37.0
37.0
5.0

6.6
23.0 | | 500.0
1500.0
1400.0
2400.0
1400.0
48.0
95.0 | 8.6

16.0

16.0
1.1
3.4 | 4.6

2.1

7.2
4.6
3.6 | 190

300

200
370
70 | 18.0

53.0

26.0
53.0
12.0 | 1000.0
2800.0
3100.0
4700.0
3000.0
26.0
200.0 | 0.3

0.2

0.2
0.3
0.2 | 5.7
8.2
13.0
21.0
27.0
0.2 | 0.12 | 6.4

12.0

23.0
7.4
2.9 | 2190
5310
5730
8530
5560
488
423 | 4

110

40
<4
5 | 1700

7000

6400
280
560 | 3.3

5.6

4.9
14.0
5.6 | | 12.0
7.3
16.0
320.0
580.0 | 0.9
0.3
0.6
7.6 | 1.2
1.1
1.1
11.0 | 11
130
110
190 | 16.0
13.0
14.0
56.0 | 19.0
17.0
30.0
550.0
1200.0 | 0.1
0.3
0.4
0.5 | 0.2
0.1
0.2
2.6
5.0 | 0.02 | 14.0
13.0
16.0
3.8 | 81
184
194
1270
2200 | <4
20
10
10 | 20
40
90
1100 | 0.6
1.8
2.9
11.0 | | 110.0
11.0
64.0
120.0
35.0 | 1.3
0.8
1.8
3.8
2.3 | 16.0
1.0
0.9
3.6
1.1 | 230
16
150
30
11 | 8.3
8.8
8.1
24.0
24.0 | 1000.0
18.0
170.0
300.0
57.0 | 0.2
0.2
0.2
0.1 | 6.1
0.2
1.2
1.5
0.4 | 0.06 | 9.2
19.0
19.0
14.0
14.0 | 2360
97
414
611
157 | 20
8
7
<4
6 | 4100
30
310
630
50 | 3.9
0.8
2.0
3.8
0.4 | | 4.7
2900.0
42000.0
50.0
72.0 | 0.1
25.0
131.0
1.3
2.2 | 0.7
23.0
620.0
2.5
0.8 | 310
190
1
330
140 | 110.0
54.0
570.0
15.0
150.0 | 7.7
6500.0
91000.0
22.0
68.0 | 0.2
0.3
0.4
0.3
0.2 | 0.0
30.0
280.0
0.2
0.5 | 0.32
10.00 | 6.6
6.3
13.0
14.0
20.0 | 484
12000
150000
391
451 | <4
100
1900
30
8 | 160
13000
280000
330
150 | 5.4
3.8

9.0
2.1 | | 6300.0
720.0
52.0
1700.0
1200.0
6100.0
3300.0 | 9.9
1.2

16.0

29.0 | 25.0
9.6
2.9

12.0

32.0 | 100
100
440

270

340 | 130.0
2300.0
18.0

26.0

49.0 | 9500.0
62.0
41.0
3900.0
2500.0
9300.0
7300.0 | 0.3
0.8
0.3

0.2

0.4 | 40.0
0.4
0.3
18.0
12.0
20.0
34.0 | 0.30 | 16.0
12.0
16.0

11.0 | 17000
3910
521
7260
4880
23900
13500 | 150
40
30

50

180 | 6500
3000
320
9400
4200
40000
18000 | 4.9
1.8
52.0

3.7

4.2 | | 42.0
83.0
780.0
220.0
730.0
2300.0
240.0 | 1.0
2.8

5.9
16.0

6.8 | 1.8
3.7

4.0
9.4

4.4 | 310
290

120
170

91 | 19.0
51.0

8.8
44.0

16.0 | 67.0
17.0
1700.0
480.0
1300.0
4800.0
470.0 | 0.4
0.3

0.2
0.4

0.2 | 0.4
0.1
8.0
2.1
5.7
21.0
3.1 |

 | 19.0
17.0

7.7
6.0

5.6 | 430
377
3110
953
2520
9340
976 | 30
10

20
60

20 | 310
1100
2900
1100
2300

880 | 0.0
0.0

4.1
6.4

4.1 | APPENDIX 3. – Continued | | | Sample | | | Well depth,
total (ft) | Streamflow, instantaneous (cfs) | Specific
conductance (μmho) | Hd | Hardness
(mg/L as CaCO ₃) | dness, noncarbonate (mg/L as CaCO ₃) | Calcium, dissolved
(mg/L as Ca) | Magnesium, dissolved
(mg/L as Mg) | |---------------------------------|--|--------------------------|--|--------------------------------------|---------------------------|---------------------------------|------------------------------------|---------------------------------|--|--|---|--| | Site | Location | | Date | Time | Well | S
instar | cond | Field pH | H
(mg/L | Hardness,
(mg/L | Calcii
(m | Magn
() | | | | | | SEM | MINOLE (| COUNTY C | ontinued | | | | | | | 303 | 09N-06E-10 | DDC | 79-09-12 | 1430 | 100 | | 434 | 7.1 | 240 | 3 | 54.0 | 26.0 | | 304 | 09N-06E-13 | DDA | 78-08-03 | 1000 | | <0.10 | 35000 | 7.6 | | | | | | 305 | 09N-06E-17 | ВВА | 79-08-14
78-08-01 | 1545
1430 | | <0.10
<0.10 | 29412
13300 | 7.5
8.2 | 4300 | 4100 | 1100.0 | 360.0 | | | | | 79-09-12 | 1430 | | 0.10 | 9500 | 8.0 | 940 | 670 | 250.0 | 74.0 | | 306 | 09N-06E-23 | | 78-11-30 | 0945 | | <0.01 | 3800 | 7.3 | | | | | | 307 | 09N-06E-25 | ССВ | 80-01-29 | 1600 | 235 | | 457 | 7.0 | 240 | 6 | 58.0 | 22.0 | | 308 | 09N-06E-26 | | 79-11-16 | 0900 | | 0.40 | 942 | 7.1 | 170 | 0 | 51.0 | 11.0 | | 309 | 09N-06E-29 | | 79-12-04 | 1500 | | 0.30 | 3670 | 7.5 | 560 | 420 | 140.0 | 51.0 | | 310
311 | 09N-06E-31
09N-07E-03 | | 79-09-28
79-08-13 | 1000
1600 | 150
150 | | 1231
271 | 7.3
6.8 | 250
110 | 0
2 | 43.0
25.0 | 35.0
12.0 | | 312 | 09N-07E-17 | | 79-08-15 | 0845 | | <0,10 | 2657 | 6.9 | 550 | 340 | 140.0 | 47.0 | | | 0011 075 10 | 000 | 70 00 14 | | | | 500 | 7.0 | 000 | | -7 0 | 05.0 | | 313
314 | 09N-07E-18
09N-07E-19 | | 79-08-14
78-11-29 | 1700
1530 | 119 | <0.10 | 593
2650 | 7.3
8.1 | 290 | 17 | 57.0
~~ | 35.0 | | 315 | 09N-07E-22 | | 79-09-25 | 1200 | 117 | | 143 | 5.6 | 52 | 22 | 11,0 | 5.9 | | 316 | 09N-07E-30 | | 80-02-21 | 0930 | | <0.10 | 475 | | 200 | 0 | 42.0 | 23.0 | | 317 | 10N-05E-12 | ADA | 79-07-18 | 1030 | 215 | | 920 | 8.0 | 49 | 0 | 12.0 | 4.5 | | 318
319
320
321 | 10N-05E-27
10N-06E-08
10N-06E-14
10N-06E-15 | DDC | 79-09-13
79-07-18
79-07-19
79-07-19 | 1230
1200
0930
1300 | 44

157 | 1.70 | 657
9900
13140
839 | 6.6
7.7
7.5
7.6 | 190
1500
1200
320 | 0
1300
1100
160 | 44.0
380.0
310.0
60.0 | 20.0
140.0
110.0
41.0 | | 322 | 10N-06E-20 | ввс | 79-07-19 | 1400 | 90 | | 562 | 7.3 | 220 | 0 | 43.0 | 28.0 | | 323
324
325
326
327 | 10N-06E-30
10N-06E-31
10N-06E-35
10N-07E-02
10N-07E-02 | CDD
CCC
ABA | 79-07-18
79-07-18
80-08-22
79-08-03
79-08-03 | 1500
1630
0945
0930
0830 |
129

212 | 1.70
<0.10

0.12 | 8600
61250
656
823
500 | 7.9
7.3
7.1
7.4
6.6 | 1400
9100
300
260
230 | 1200
8900
11
120
55 | 340.0
2500.0
64.0
64.0
51.0 | 140.0
660.0
34.0
24.0
26.0 | | 328 | 10N-07E-05 | ССВ | 79-08-14 | 1030 | 119 | | 441 | 6.7 | 260 | 28 | 62.0 | 25.0 | | 329 | | CDC | 79-09-19 | 1600 | 38 | | 489 | 7.0 | 220 | 47 | 49.0 | 23.0 | | 330
331 | 10N-07E-17
10N-07E-20 | | 79-08-08
79-08-14 | 0930
1200 | 83 | <0.10 | 3617
664 | 7.2
7.0 | 870
400 | 730
16 | 240.0
48.0 | 65.0
67.0 | | 332 | 10N-07E-24 | | 79-08-14 | 1330 | 182 | | 451 | 5.2 | 110 | 88 | 23.0 | 12.0 | | 333
334
335
336
337 | 10N-07E-27
10N-07E-29
10N-07E-30
10N-08E-05
11N-06E-19 | DDD
CDC
BBB | 79-08-13
79-09-19
79-08-13
79-09-21
79-08-15 | 1230
1430
1700
0900
0845 | 41

84 | <0.10

<0.10

<0.10 | 155
236
428
205
302 | 6.3
5.4
7.8
6.0
7.2 | 53
63
240
43
120 | 19
28
34
0
3 | 12.0
16.0
53.0
11.0
31.0 | 5.5
5.6
27.0
3.8
11.0 | | 338 | 11N-06E-29 | ССС | 79-07-17 | 1600 | 180 | | 1145 | 6.6 | 310 | 0 | 46.0 | 48.0 | | 339 | 11N-06E-35 | | 79-07-18 | 0900 | 120 | | 710 | 7.6 | 140 | 0 | 41.0 | 8.1 | | 340 | 11N-06E-35 | | 79-07-18 | 1330 | 62 | 3.70 | 7500 | 7.2 | 1100 | 940 | 280.0 | 100.0 | | 341
342 | 11N-07E-10
11N-07E-14 | | 79-08-15
79-08-15 | 1400
1230 | 62 .
 | <0.10 | 82
26 | 5.3
7.5 | 12
59 | 0
8 | 3.0
14.0 | 1.0
5.8 | | 343
344
345
346
347 | 11N-07E-25
11N-08E-09
11N-08E-21
11N-08E-22
11N-08E-33 | BBA
AAA
DDD
ABB | 79-08-15
79-08-02
79-08-02
79-08-02
79-08-02 | 1100
1030
1400
1200
1530 | 122
26
58
 |

<0.10
<0.10 | 95
152
715
330
3177 | 5.7
5.7
5.7
6.3
7.5 | 29
43
240
110
540 | 11
0
37
0
410 | 7.6
12.0
60.0
26.0
140.0 | 2.4
3.1
21.0
10.0
46.0 | ^{*}Residue at 180°C. ^{**}Estimated. | Sodium, dissolved
(mg/L as Na) | Sodium-adsorption
ratio | Potassium, dissolved
(mg/L as K) | Alkalinity
(mg/L as CaCO ₃) | Sulfate, dissolved (mg/L as SO ₄) | Chloride, dissolved
(mg/L as Cl) | Fluoride, dissolved
(mg/L as F) | Bromide, dissolved
(mg/L as Br) | lodide, dissolved
(mg/L as I) | Silica, dissolved
(mg/L as SiO ₂) | Total dissolved solids* (mg/L.) | Lithium, dissolved
(μg/L as Li) | Strontium, dissolved
(μg/L as Sr) | Organic carbon,
dissolved (mg/L as C) | |---|--|--|--|---|--|------------------------------------|---|----------------------------------|--|--|------------------------------------|---|--| | <u> </u> | - | | | | SEMINOLE | COUNT | TY Conti | nued | | | · | | | | 23.0
6800.0
6200.0
2100.0
1800.0
510.0 | 0.6

42.0

26.0

0.3 | 2.3

57.0

17.0

3.6 | 240

150

270

230 | 46.0

150.0

51.0

23.0 | 17.0
13000.0
13000.0
4000.0
3400.0
1300.0 | 0.4

0.2

0.5
 | 0.2
13.0
64.0
16.0
22.0
7.5
0.1 | 0.27 | 18.0

8.7

15.0

8.9 | 316
24100
24400
6950
5830
2250
264 | 20

480

90

20 | 520
1000
26000
6100
5500

890 | 3.5

6.3

2.7

3.5 | | 140.0
500.0
160.0
5.8
350.0 | 4.6
9.2
4.4
0.2
6.5 | 16.0
6.0
5.7
1.0
3.6 | 280
140
330
110
210 | 86.0
16.0
120.0
4.1
780.0 | 79.0
1100.0
140.0
9.3
310.0 | 0.6
0.2
0.4
0.2 | 0.4
4.6
0.4
0.1 | 0.12 | 19.0
4.9
15.0
12.0
11.0 | 556
2130
690
143
1640 | 20
20
40
0
20 | 600
2300
740
140
1800 | 39.0
3.9
1.0
0.0 | | 11.0
290.0
6.3
22.0
220.0 | 0.3
0.4
0.7
14.0 | 1.9

1.1
8.0
2.1 | 270

30
220
240 | 8.6

10.0
16.0
180.0 | 37.0
770.0
16.0
15.0
69.0 | 0.3

0.1
0.3
1.1 | 0.2
4.7
0.1
0.1
0.5 | 0.00 | 8.3

15.0
3.6
7.6 | 349
1530
87
269
625 | 0

7
<4
10 | 420

40
230
130 | 2.5

0.4
11.0 | | 64.0
1600.0
2500.0
48.0
48.0 | 2.0
18.0
31.0
1.2 | 1.2
20.0
15.0
8.9
3.1 | 230
230
140
160
310 | 13.0
45.0
60.0
120.0 | 66.0
3300.0
4600.0
110.0
20.0 | 0.2
0.3
0.2
0.3 | 0.5
16.0
21.0
0.2
0.1 | 0.31
0.29 | 25.0
8.3
7.1
17.0
22.0 | 429
6540
8460
480
354 | 30
100
200
10
20 | 240
8900
8300
1500
480 | 3.1
8.3
3.7
0.0
0.0 | | 1200.0
17000.0
22.0
84.0
18.0 | 14.0
78.0
0.6
2.3
0.5 | 13.0
170.0
2.3
3.8
2.2 | 230
120
290
140
180 | 43.0
230.0
35.0
13.0
22.0 | 2800.0
38000.0
23.0
220.0
52.0 | 0.2
0.1
0.4
0.2
0.2 | 12.0
130.0
0.2
1.3
0.4 | 0.16 | 9.8
9.3
16.0
14.0
13.0 | 5580
54400
365
561
322 | 60
730
20
6
20 | 80000
730
430
180 | 7.3
3.6

4.3
1.9 | | 14.0
17.0
430.0
23.0
47.0 | 0.4
0.5
6.4
0.5
2.0 | 2.8
1.5
3.4
1.7
3.2 | 230
170
140
380
19 | 26.0
14.0
23.0
24.0
54.0 | 16.0
44.0
1100.0
10.0
70.0 | 0.2
0.1
0.2
0.2 | 0.1
0.3
8.4
0.1
0.5 | 0.11 | 12.0
11.0
20.0
10.0
20.0 | 278
296
2360
395
287 | 9
20
9
20
20 | 480
100
1700
250
220 | 33.0
1.0
3.7
1.4
1.6 | | 7.6
20.0
16.0
25.0
15.0 | 0.5
1.1
0.4
1.7
0.6 | 1.6
0.5
1.5
0.6
5.9 | 34
35
210
44
120 | 3.7
16.0
20.0
20.0
3.8 | 14.0
35.0
22.0
20.0
21.0 | 0.3
0.1
0.5
0.2
0.2 | 0.1
0.3
0.2
0.3
0.2 | 0.02 | 6.7
25.0
16.0
26.0
3.3 | 79
142
266
137
178 | 2
7
0
7
0 | 180
70
220
140
280 | 2.7
0.8
6.4
1.1
18.0 | | 200.0
120.0
1100.0
9.3
20.0 | 4.9
4.5
14.0
1.2 | 3.9
3.8
17.0
1.7 | 380
190
170
12
51 | 270.0
190.0
40.0
3.9
9.1 | 70.0
22.0
2400.0
3.3
26.0 | 0.6
0.5
0.2
0.1
0.2 | 0.3
0.1
11.0
0.1
0.4 | | 13.0
13.0
7.0
29.0
31.0 | 880
507
4820
73
155 | 40
10
80
2
0 | 720
900
2100
140
250 | 1.4
0.7
17.0
1.4
1.8 | | 6.1
8.6
59.0
24.0
450.0 | 0.5
0.6
1.7
1.0
8.4 | 0.8
2.3
21.0
4.4
4.6 | 18
59
200
140
130 | 6.1
5.9
70.0
18.0
30.0 | 5.9
2.5
64.0
8.7
950.0 | 0.3
0.1
0.3
0.4
0.2 | 0.1
0.1
0.5
0.2
5.9 | 0.02

0.09 | 11.0
9.9
6.9
39.0
15.0 | 57
78
501
217
1950 | 2
<4
10
10
4 | 140
90
290
180
2100 | 3.3
0.9
4.8
3.1
4.2 | # Index | Ada Group 3 Barnsdall Formation 6.15,(Appendix 3) Bithium-6.13,15.18,(Appendix 3) Borning-6.13,15.18,(Appendix 3) Borning-6.13,15.18,(Appendix 3) Bowlegs 2-3 Bowlegs 2-3 Seminole Siminole 2-3 Seminole Semi | A.J. C 0 | :- d: d- C (Ad: 0) | |--|---|---------------------------------------| | Barnsdall Formation 3 base of fresh water 4 boron 6 brine-detection methods 4-6 chemical-graphical method 4-13,18 geophysical method 1,13-16,18 sample analyses 4 sample sites 4,17,(Plate 1) brine-effect indexes 4-15,18 bromide 4-5,8,13,18 chemical-graphical methods 18 chioride 4-5,8,13,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4-5,8,18 limitations 5 lithium 4-5,8,18 limitations 5 lithium 4-5,8,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4-5,8,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4-5,8,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4-5,8,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4-5,8,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4-5,8,18 concentration changes of dissolved ions 6 secondary 12,15 socilum 5,18 statistical analysis 12 brines 1,4-6,13,17-18 oil-field 5,17-15 possible sources 16-18 sodium chloride type 4 sec also brine-effect indexes see ind | | liable of (Appendix 3) | | base of fresh water 4 boron 6 brine-detection methods 4–6 chemical-graphical method 4–13,18 geophysical method 1,13–16,18 sample analyses 4 sample sites 4,17,(Plate 1) brine-effect indexes 4–15,18 bromide 4–5,8,13,18 chemical-graphical methods 18 chloride 4–5,8,13,18 chemical-graphical methods 18 chloride 4–5,8,13,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4–5,8,18 organic carbon 4 primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 socium 5,18 statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 possible sources 16–18 socium 6,15,18,18,(Appendix 3) promide 4–8,13,15,18,(Appendix 3) calcium 6,15,(Appendix 3) chloride
4–9,13,15,18,(Appendix 3) chloride 4–5,13,16,(Appendix 3) chloride 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 Central Lowlands 1 chemical analyses of water 6,12–13,(Appendix 3) chloride 4–15,18,(Appendix 3),(Plate 1) fresh surface water (Plate 1) geophysical place to the social place of the surface (Plate 1) fresh-water-salt-water interface 13,15–18,(Plate 1) fresh-water-salt-water interface 13,15–18,(Plate 1) geophysical place to the surface (Plate geo | • • • • | | | boron 6 brine-detection methods 4–6 chemical-graphical method 1,13–16,18 geophysical method 1,13–16,18 sample sites 4,17,(Plate 1) brine-effect indexes 4–15,18 bromide 4–5,8,13,18 concentration changes of dissolved ions 6 geophysical 18 clinitations 5 lithium 4–5,8,18 organic carbon 4, 4 primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4–8,13,17–18 oil-field 5,17–18 possible sources 16–18 sodium chloride type 4 see also brine-effect indexes bromide 4–8,13,15,18,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3),(Plate 1) climarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) geophysical 18 linitations 5 lithium 4–5,8,18 organic and provided type 4 see also brine-detection methods a | | | | brine-detection methods 4–6 chemical-graphical method 4–13,18 geophysical method 1,13–16,18 sample analyses 4 sample sites 4,17,(Plate 1) brine-effect indexes 4–15,18 chemical-graphical methods 18 chloride 4–5,8,13,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4–5,8,18 organic carbon 4 primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 string 1,3,17–18 oil-field 5,17–18 oil-field 5,17–18 oil-field 5,17–18 sodium chloride type 4 see also brine-effect indexes spomide 4–13,18,18,(Appendix 3),(Plate 1) bromide 4–15,18,(Appendix 3),(Plate 1) bromide 4–15,18,(Appendix 3),(Plate 1) tromarrom River 1–2 Central Lowlands 1 chemical analyses of water 6,12–13,(Appendix 3) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh-water sites (Plate 1) geophysical jest the first fresh surface rester (Plate 1) geophysical jest see (Pl | | | | chemical-graphical method 4-13,18 sample analyses 4 sample sites 4-17,(Plate 1) brine-effect indexes 4-15,18 bromide 4-5,8,13,13 concentration changes of dissolved ions 6 geophysical 18 limitations 6 lithium 4-5,8,13 organic carbon 4,(Appendix 3) Polecat Creek 4 potassium 6,(Appendix 3) potentiometric surface (Plate 1) recovery tests 4 resondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4-6,13,17-18 oil-field 5,17-18 possible sources 16-18 sodium chloride type 4 see also brine-detection methods see also brine-detection methods see also brine-detection diaxes bromide 4-8,13,15,18,(Appendix 3) clacium 6,15,(Appendix 3) clacium 6,15,(Appendix 3) clacium 6,15,(Appendix 3) clacium 6,15,(Appendix 3),(Plate 1) remain alayses of water 6,12-13,(Appendix 3) rehemical analyses 6,1 | | | | geophysical method 1,13–16,18 sample analyses 4 sample sites 4,17,(Plate 1) brine-effect indexes 4–15,18 bromide 4–5,8,13,18 chemical-graphical methods 18 chloride 4–5,8,13,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4–5,8,18 organic carbon 4 primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 sodium 5,18 sodium chloride type 4 see also brine-effect indexes bromide 4–8,13,15,18, (Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) Canadian River 1–2 Central Lowlands 1 chemical analyses of water 6,12–13,(Appendix 3) chloride 4–15,18,(Appendix 3),(Plate 1) fiesh water sodium bicarbonate type 4 sodium calcium | brine-detection methods 4–6 | oil and gas fields (Plate 1) | | geophysical method 1,13–16,18 sample analyses 4 sample sites 4,17,(Plate 1) brine-effect indexes 4–15,18 bromide 4–5,8,13,18 chemical-graphical methods 18 chloride 4–5,8,13,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4–5,8,18 organic carbon 4 primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 sodium 5,18 sodium chloride type 4 see also brine-effect indexes bromide 4–8,13,15,18, (Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) Canadian River 1–2 Central Lowlands 1 chemical analyses of water 6,12–13,(Appendix 3) chloride 4–15,18,(Appendix 3),(Plate 1) fiesh water sodium bicarbonate type 4 sodium calcium | chemical-graphical method 4–13,18 | Bowlegs 2–3 | | sample analyses 4 sample sites 4,17,(Plate 1) brine-effect indexes 4-15,18 bromide 4-5,8,13,18 chemical-graphical methods 18 chioride 4-5,8,13,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4-5,8,18 organic carbon 4 primary 12,15 quantitative relationships 5-14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4-6,13,17-18 oil-field 5,17-18 possible sources 16-18 sodium folloride type 4 see also brine-effect indexes bromide 4-8,13,15,18,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 clacium 6,15,(Appendix 3) Canadian River 1-2 Central Lowlands 1 chemical analyses of water 6,12-13,(Appendix 3) themical analyses of water 6,12-13,(Appendix 3) fresh ground water (Plate 1) fresh water 2 degraded-water sites (Plate 1) fresh water see water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium | | | | sample sites 4,17,(Plate 1) brine-effect indexes 4–15,18 bromide 4–5,8,13,18 chemical-graphical methods 18 chloride 4–5,8,13,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4–5,8,18 organic carbon 4 primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 possible sources 16–18 sodium chloride type 4 sodium chloride type 4 streamflow (Appendix 3) specific orientatical analysis 12 bromide-de-horide tripe 4 streamflow (Appendix 3) specific prined 4 see also brine-detection methods allored type also al | | | | brine-effect indexes 4–15,18 bromide 4–5,8,13,18 chemical-graphical methods 18 chloride 4–5,8,13,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4–5,8,18 organic carbon 4 primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4–6,13,7–18 oil-field 7,17–18 8,13,16,13,16,4ppendix 3) oil-field 7,17–18 8,17–18 oil-field 7,17–18 | | | | bromide 4-5,8,13,18 concentration changes of dissolved ions 6 pH (Appendix 3) Polecat Creek 4 potassium 6,(Appendix 3) Polecat Creek 4 potassium 6,(Appendix 3) Polecat Creek 4 potassium 6,(Appendix 3) potentiometric surface (Plate 1) recharge 4 recovery tests 4 Rs statistic 13,15 rubidium 6 silica (Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 sodium 5,18 statistical analysis 12 sodium 5,18 sodium 5,18 sodium 5,18 sodium 6,17,18 6,17,19,19,19,19,19,19,19,19,19,19,19,19,19, | | | | chemical-graphical methods 18 chloride 4–5,8,13,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4–5,8,18 organic carbon 4 primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 possible sources 16–18 sodium chloride type 4 see also brine-detection methods see also brine-detection well of the see also brine-detection methods see also brine-detection methods see also brine-detection methods see also brine-detection methods see also brine-detection well of the also see also brine-detection also see also brine-detection also see also brine- | | | | chloride 4-5,8,13,18 concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4-5,6,18 organic carbon 4 primary 12,15 quantitative relationships 5-14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4-6,13,17-18 oil-field 5,17-18 possible sources 16-18 sodium chloride type 4 sodium chloride type 4 sodium 6,15,(Appendix 3) sea also brine-detection methods see also brine-effect indexes bromide 4-8,13,15,18,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) chloride 4-15,18,(Appendix 3),(Plate 1) Cinarron River 1-2 Central Lowlands 1 chemical analyses of water 6,12-13,(Appendix 3) chloride 4-15,18,(Appendix 3),(Plate 1) Cinarron River 1-2 Central Lowlands 1 chemical analyses of water 6,12-13,(Appendix 3) chloride 4-15,18,(Appendix 3),(Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium b | | | | concentration changes of dissolved ions 6 geophysical 18 limitations 5 lithium 4-5,8,18 organic carbon 4 primary 12,15 quantitative relationships 5-14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4-6,13,17-18 oil-field 5,17-18 possible sources 16-18 sodium chloride type 4 see also brine-effect indexes see also brine-fiect indexes see also from effect statistical analysis 12 storage 4 storage coefficients 4 streamflow (Appendix 3) strontium 6,15,(Appendix 6,15,(Appe | | | | geophysical 18 limitations 5 lithium 4–5,8,18 organic carbon 4 primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 jossible sources 16–18 sodium chloride type 4 sodium chloride type 4 see also brine-effect indexes bromide 4–8,13,15,18,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3),(Plate 1) Cimarron River 1–2 Deep Fork 2 Deep Roud 3 Duride (Appendix 3),(Plate 1) Dissolved solids 13,15,18,(Appendix 3), | chioride 4-5,8,13,18 | | | limitations 5 lithium 4–5,8,18 organic carbon 4 primary 12,15 quantitative
relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 possible sources 16–18 sodium chloride type 4 sodium chloride type 4 sodium 6,15,(Appendix 3) secilus (Appendix 3) specific conductance 17,(Appendix strontium 6,15,(Appendix 6,15, | | | | lithium 4–5,8,18 organic carbon 4 primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 possible sources 16–18 sodium folloride type 4 sodium chloride type 4 sodium 6,15,(Appendix 3) calcium 6,15,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) Canadian River 1–2 Central Lowlands 1 choride 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh water sites (Plate 1) fresh-water sites (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) dilliby Creek 4 hydrologic connection 3 well localitosing (Plate 1) hardness (Appendix 3) water sample sites water type 8,12 group 1 13 group 2 13 well localitons (Plate 1) | | | | organic carbon 4 primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 possible sources 16–18 sodium chloride type 4 see also brine-detection methods see also brine-effect indexes bromide 4–8,13,15,18,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3),(Plate 1) bromide 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 Central Lowlands 1 chemical analyses of water 6,12–13,(Appendix 3) chloride 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water sites (Plate 1) geophyriologic map hydraulic conductivity 4 hydrologic connection 3 water sample sites (Plate 1) | limitations 5 | recharge 4 | | primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 sodium 5,18 statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 possible sources 16–18 sodium chloride type 4 see also brine-detection methods see also brine-detection indexes bromide 4–8,13,15,18,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3),(Plate 1) chemical analyses of water 6,12–13,(Appendix 3) chloride 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geophysical-log sites (Plate 1) geophysical-log sites (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydrologic connection 3 well locations (Plate 1) water sample sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydrologic connection 3 well locations (Plate 1) | lithium 4–5,8,18 | recovery tests 4 | | primary 12,15 quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 sodium 5,18 statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 possible sources 16–18 sodium chloride type 4 see also brine-detection methods see also brine-detection indexes bromide 4–8,13,15,18,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3),(Plate 1) chemical analyses of water 6,12–13,(Appendix 3) chloride 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geophysical-log sites (Plate 1) geophysical-log sites (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydrologic connection 3 well locations (Plate 1) water sample sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydrologic connection 3 well locations (Plate 1) | organic carbon 4 | R ² statistic 13,15 | | quantitative relationships 5–14,(Appendix 3) secondary 12,15 sodium 5,18 statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 possible sources 16–18 sodium-dominde ratio 6,2,10–11,14–15 specific conductance 17,(Appendix 3) vield 4 statistical analysis 12 storage 4 see also brine-effect indexes bromide 4–8,13,15,18,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) Candian River 1–2 Central Lowlands 1 chemical analyses of water 6,12–13,(Appendix 3) choride 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fluoride (Appendix 3) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium colicum sod | primary 12,15 | | | secondary 12,15 sodium 5,18 sodium 5,18 statistical analysis 12 brines 1,4-6,13,17-18 oil-field 5,17-18 oil-field 5,17-18 sosible sources 16-18 sodium chloride type 4 sodium chloride type 4 sodium chloride type 4 see also brine-detection methods see also brine-effect indexes bromide 4-8,13,15,18,(Appendix 3),(Plate 1) stornide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) Canadian River 1-2 central Lowlands 1 chemical analyses of water 6,12-13,(Appendix 3) chloride 4-15,18,(Appendix 3),(Plate 1) Cimarron River 1-2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16-17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium | | silica (Appendix 3) | | sodium 5,18 statistical analysis 12 brines 1,4-6,13,17-18 oil-field 5,17-18 possible sources 16-18 sodium-domide ratio 5-7,15 sodium/chloride ratio 6,8,10-11,14-15 specific conductance 17,(Appendix 3) specific yield 4 satistical analysis 12 specific conductance 17,(Appendix 3) specific yield 4 statistical analysis 12 storage 4 see also brine-detection methods see also brine-effect indexes see also brine-effect indexes storage 4 storage coefficients 4 storage coefficients 4 storage coefficients 3 strontium 6,15,(Appendix 3) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) study area 1-3 Canadian River 1-2 Sulfate 13,(Appendix 3) Central Lowlands 1 chemical analyses of water 6,12-13,(Appendix 3) chloride 4-15,18,(Appendix 3),(Plate 1) Cimarron River 1-2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16-17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fluoride (Appendix 3) fluoride (Appendix 3) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh-water sodium bicarbonate type 4 sodium calcium typ | | | | statistical analysis 12 brines 1,4–6,13,17–18 oil-field 5,17–18 possible sources 16–18 sodium/chloride ratio 6,8,10–11,14–15 specific conductance 17,(Appendix 3) specific yield 4 statistical analysis 12 see also brine-detection methods see also brine-effect indexes bromide 4–8,13,15,18,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) calcium 6,15,(Appendix 3) calcium 6,15,(Appendix 3) canadian River 1–2 Central Lowlands 1 chemical analyses of water 6,12–13,(Appendix 3) chloride 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh surface water interface 13,15–18,(Plate 1) geophysical-log sites (Plate 1) geophysical-log sites (Plate 1) surfaces (Appendix 3) Hilliby Creek 4 shydroulic conductivity 4 hydrologic map (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydrologic connection 3 sedium/bromide ratio 6,9,15 sodium/chloride ratio 6,8,10–11,14–15 sodium/chloride ratio 6,8,10–11,14–15 sodium/bromide ratio 6,8,10–11,14–15 sodium/bromide ratio 6,8,10 specific yield 4 storage coefficients 4 structure 3 transmissivity 4 vamoesa Group 3 water sample sites (Plate 1) water type 8,12 group 1 13 hydraulic conductivity 4 hydrologic connection 3 | | | | brines 1,4–6,13,17–18 oil-field 5,17–18 specific conductance 17,(Appendix 3) possible sources 16–18 sodium chloride type 4 see also brine-detection methods see also brine-detect indexes storage 4 5 storage 6 storage 6 storage 7 | | | | oil-field 5,17-18 possible sources 16-18 sodium chloride type 4 see also brine-detection methods see also brine-effect indexes storage 4 see also brine-effect indexes storage 4 storage coefficients 4 storage coefficients 3) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) calcium 6,15,(Appendix 3) calcium 6,15,(Appendix 3) canadian River 1-2
Sulfate 13,(Appendix 3) Central Lowlands 1 chemical analyses of water 6,12-13,(Appendix 3) chloride 4-15,18,(Appendix 3),(Plate 1) Cimarron River 1-2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16-17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium storage coefficients 4 storage 4 storage 4 storage coefficients 4 storage 4 storage 4 storage 4 storage 6 storage 4 storage 6 storage 4 storage 6 storage 7 | | | | possible sources 16–18 sodium chloride type 4 see also brine-effect indexes bromide 4–8,13,15,18,(Appendix 3),(Plate 1) scalcium 6,15,(Appendix 3) calcium 6,15,(Appendix 3) candian River 1–2 central Lowlands 1 chemical analyses of water 6,12–13,(Appendix 3) choride 4–15,18,(Appendix 3) chemical analyses of water 6,12–13,(Appendix choride 4–15,18,(Appendix 3),(Plate 1) climarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 d | | sodium/chioride ratio 6,6,10–11,14–15 | | sodium chloride type 4 see also brine-effect indexes bromide 4-8,13,15,18,(Appendix 3),(Plate 1) see also brine-effect indexes bromide 4-8,13,15,18,(Appendix 3),(Plate 1) streamflow (Appendix 3) calcium 6,15,(Appendix 3) Canadian River 1-2 canadian River 1-2 central Lowlands 1 chemical analyses of water 6,12-13,(Appendix 3) chloride 4-15,18,(Appendix 3),(Plate 1) Cimarron River 1-2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16-17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium calc | · | | | see also brine-detection methods see also brine-effect indexes storage coefficients 4 bromide 4-8,13,15,18,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) Canadian River 1-2 Central Lowlands 1 chemical analyses of water 6,12-13,(Appendix 3) 1-2 sulfate 13,(Appendix 3) chemical analyses 1-2 sulfate 13,(Appendix 3) chemical 1-2 sulfate 13,(Appendix 3) chemical 1-3 13,(Appe | | | | see also brine-effect indexes bromide 4-8,13,15,18,(Appendix 3),(Plate 1) streamflow (Appendix 3) calcium 6,15,(Appendix 3) canadian River 1-2 Central Lowlands 1 chemical analyses of water 6,12-13,(Appendix 3) chloride 4-15,18,(Appendix 3),(Plate 1) Cimarron River 1-2 Deep Fork 2 degraded-water sites (Plate 1) dissolved solids 13,16-17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium so | | • | | bromide 4–8,13,15,18,(Appendix 3),(Plate 1) bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) Canadian River 1–2 Central Lowlands 1 chemical analyses of water 6,12–13,(Appendix 3) chloride 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geophyrical-log sites (Plate 1) hardness (Appendix 3) fresh-water sites (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 well locations (Plate 1) water type 8,12 group 1 13 hydrallic conductivity 4 conductivit 3 hydrallic conductivit 3 hydrallic conductivit 3 hydrallic conductivit 3 hydr | | | | bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) calcium 6,15,(Appendix 3) Study area 1-3 Canadian River 1-2 Sulfate 13,(Appendix 3) Central Lowlands 1 Chemical analyses of water 6,12-13,(Appendix 3) Chemical analyses of water 6,12-13,(Appendix 3) Choride 4-15,18,(Appendix 3),(Plate 1) Cimarron River 1-2 Deep Fork 2 degraded-water sites (Plate 1) disscharge 4 disposal wells 13,16-17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh ground water (Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15-18,(Plate 1) fresh-water sites (Plate 1) geophysical-log sites (Plate 1) yeohydrologic map (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity conductivi | | | | bromide/chloride ratio 6,9,15 calcium 6,15,(Appendix 3) calcium 6,15,(Appendix 3) Study area 1-3 Canadian River 1-2 Sulfate 13,(Appendix 3) Central Lowlands 1 Chemical analyses of water 6,12-13,(Appendix 3) Chemical analyses of water 6,12-13,(Appendix 3) Choride 4-15,18,(Appendix 3),(Plate 1) Cimarron River 1-2 Deep Fork 2 degraded-water sites (Plate 1) disscharge 4 disposal wells 13,16-17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh ground water (Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15-18,(Plate 1) fresh-water sites (Plate 1) geophysical-log sites (Plate 1) yeohydrologic map (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity conductivi | bromide 4-8,13,15,18,(Appendix 3),(Plate 1) | streamflow (Appendix 3) | | calcium 6,15,(Appendix 3) Canadian River 1-2 Central Lowlands 1 Chemical analyses of water 6,12-13,(Appendix 3) Chloride 4-15,18,(Appendix 3),(Plate 1) Cimarron River 1-2 Deep Fork 2 degraded-water sites (Plate 1) disscharge 4 discharge 4 discharge 4 discharge 4 disposal wells 13,16-17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium storage coefficients 4 structure 3 transmissivity 4 Vamoosa Group 3 geophysical-log sites (Plate 1) water sample sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 group 1 13 hydrologic connection 3 well locations (Plate 1) | | | | Canadian River 1–2 Central Lowlands 1 Chemical analyses of water 6,12–13,(Appendix 3) Chemical analyses of water 6,12–13,(Appendix 3) Chloride 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water sites (Plate 1) geophydrologic map (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydraulic conductivity 4 hydraulic conductivity 4 hydrologic connection 3 well locations (Plate 1) well locations (Plate 1) well locations (Plate 1) | calcium 6.15.(Appendix 3) | study area 1–3 | | Central Lowlands 1 chemical analyses of water 6,12–13,(Appendix 3) chloride 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 discharge 4 discharge 4 discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) hardness (Appendix 3) hydraulic conductivity 4 reach a discharge 4 | | | | chemical analyses of water 6,12–13,(Appendix 3) chloride 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 hydrology 3 discharge 4 discharge 4 hydrology 3–4 lithology 3 fluoride (Appendix 3) fresh ground water (Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 sodium calcium bicarbonate type 4 storage 4 storage 4 storage 4 storage 4 storage coefficients 4 structure 3 fresh-water sites (Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) water sample sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydraulic conductivity 4 hydraulic conductivity 4 group 2 13 hydrologic connection 3 well locations (Plate 1) | | | | chloride 4–15,18,(Appendix 3),(Plate 1) Cimarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) hardness (Appendix 3) fresh 4 surface water (Plate 1) fresh-water sites (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydrologic connection 3 vanish ada Aquifer 1 base of fresh water 4 discharge 4 discharge 4 geology 3 hydraulic conductivity 4 hydrologic fresh water 4 discharge 4 geology 3 hydraulic conductivity 4 base of fresh water 4 discharge 4 geology 3 hydraulic conductivity 4 base of fresh water 4 discharge 4 geology 3 hydraulic conductivity 4 base of fresh water 4 discharge 4 geology 3 hydraulic conductivity 4 base of fresh water 4 discharge 4 geology 3 hydraulic conductivity 4 base of fresh water 4 discharge 4 geology 3 hydraulic conductivity 4 base of fresh water 4 discharge 4 geology 3 hydraulic conductivity 4 geology 3 hydraulic conductivity 4 proup 2 13 hydrologic connection 3 | | | | Cimarron River 1–2 Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16–17 dissolved
solids 13,15,18,(Appendix 3),(Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydrology 3 hydrologic conductivity 4 hydrology 3 outcrop area (Plate 1) recharge 4 recovery tests 4 specific yield 4 storage 4 storage 4 storage 4 storage coefficients 4 structure 3 transmissivity 4 Vamoosa Group 3 geophysical-log sites (Plate 1) water sample sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 well locations (Plate 1) | | | | Deep Fork 2 degraded-water sites (Plate 1) discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 discharge 4 geology 3 hydraulic conductivity 4 hydrologic connection 3 discharge 4 geology 3 hydraulic conductivity 4 hydraulic conductivity 4 hydraulic conductivity 4 speology 3 hydraulic conductivity 4 hydraulic conductivity 4 speology 3 hydraulic conductivity 4 hydraulic conductivity 4 hydraulic conductivity 4 hydraulic conductivity 4 hydrologic connection 3 | | | | degraded-water sites (Plate 1) discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fluoride (Appendix 3) fluoride (Appendix 3) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 geology 3 hydraulic conductivity 4 hydralic conductivity 4 hydrologic connection 3 geology 3 hydraulic conductivity 4 when locations (Plate 1) hydrologic connection 3 | | _ | | discharge 4 disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fluoride (Appendix 3) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 hydraulic conductivity 4 hydrologic connection 3 hydrologic y3-4 lithology 3 outcrop area (Plate 1) recharge 4 recharge 4 recovery tests 4 specific yield 4 storage 4 storage coefficients 4 structure 3 transmissivity 4 Vamoosa Group 3 water sample sites (Plate 1) water sample sites (Plate 1) water type 8,12 group 1 13 hydrologic connection 3 | | | | disposal wells 13,16–17 dissolved solids 13,15,18,(Appendix 3),(Plate 1) fluoride (Appendix 3) fluoride (Appendix 3) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 hydrology 3–4 lithology 3 lithology 3 lithology 3 lithology 3–4 lithology 3 4 lithology 3 lithology 4 litholog | | | | dissolved solids 13,15,18,(Appendix 3),(Plate 1) fluoride (Appendix 3) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 lithology 3 outcrop area (Plate 1) recharge 4 recovery tests 4 storage 4 storage 4 storage 4 storage coefficients 4 structure 3 transmissivity 4 Vamoosa Group 3 water sample sites (Plate 1) water type 8,12 group 1 13 hydrologic connection 3 well locations (Plate 1) | | | | fluoride (Appendix 3) fresh ground water (Plate 1) fresh surface water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 outcrop area (Plate 1) recharge 4 recovery tests 4 specific yield 4 storage 4 storage 4 storage coefficients 4 structure 3 transmissivity 4 Vamoosa Group 3 water sample sites (Plate 1) water sample sites (Plate 1) water type 8,12 group 1 13 hydrologic connection 3 | | | | fresh ground water (Plate 1) fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) yamoosa Group 3 geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 recharge 4 recovery tests 4 specific yield 4 storage 4 storage coefficients 4 structure 3 transmissivity 4 Vamoosa Group 3 water sample sites (Plate 1) water sample sites (Plate 1) surfaces (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 sproup 2 13 hydrologic connection 3 | | | | fresh surface water (Plate 1) fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geohydrologic map (Plate 1) yamoosa Group 3 geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 recovery tests 4 specific yield 4 storage 4 storage coefficients 4 structure 3 transmissivity 4 Vamoosa Group 3 water sample sites (Plate 1) water ype 8,12 group 1 13 hydrologic connection 3 | | outcrop area (Plate 1) | | fresh water sodium bicarbonate type 4 sodium calcium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 specific yield 4 storage 4 storage coefficients 4 structure 3 transmissivity 4 Vamoosa Group 3 water sample sites (Plate 1) water type 8,12 group 1 13 hydrologic connection 3 well locations (Plate 1) | fresh ground water (Plate 1) | recharge 4 | | sodium bicarbonate type 4 sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 storage 4 storage coefficients 4 structure 3 transmissivity 4 Vamoosa Group 3 water sample sites (Plate 1) water stype 8,12 group 1 13 hydrologic connection 3 well locations (Plate 1) | fresh surface water (Plate 1) | recovery tests 4 | | sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 structure 3 transmissivity 4 Vamoosa Group 3 water sample sites (Plate 1) water type 8,12 group 1 13 hydrologic connection 3 well locations (Plate 1) | fresh water | specific yield 4 | | sodium calcium bicarbonate type 4 fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 structure 3 transmissivity 4 Vamoosa Group 3 water sample sites (Plate 1) water type 8,12 group 1 13 hydrologic connection 3 well locations (Plate 1) | sodium bicarbonate type 4 | | | fresh-water/salt-water interface 13,15–18,(Plate 1) fresh-water sites (Plate 1) geohydrologic map (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 structure 3 transmissivity 4 Vamoosa Group 3 water sample sites (Plate 1) water type 8,12 group 1 13 hydrologic connection 3 well locations (Plate 1) | sodium calcium bicarbonate type 4 | | | fresh-water sites (Plate 1) geohydrologic map (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 transmissivity 4 Vamoosa Group 3 water sample sites (Plate 1) water type 8,12 group 1 13 group 2 13 hydrologic connection 3 | fresh-water/salt-water interface 13 15-18 (Plate 1) | | | geohydrologic map (Plate 1) geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 Vamoosa Group 3 water sample sites (Plate 1) water type 8,12 group 1 13 group 2 13 well locations (Plate 1) | | | | geophysical-log sites (Plate 1) hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 water sample sites (Plate 1) water type 8,12 group 1 13 group 2 13 well locations (Plate 1) | | | | hardness (Appendix 3) Hilliby Creek 4 hydraulic conductivity 4 hydrologic connection 3 water type 8,12 group 1 13 group 2 13 well locations (Plate 1) | | | | Hilliby Creek 4 group 1 13 hydraulic conductivity 4 group 2 13 hydrologic connection 3 well locations (Plate 1) | | | | hydraulic conductivity 4 group 2
13
hydrologic connection 3 well locations (Plate 1) | | | | hydrologic connection 3 well locations (Plate 1) | | | | injection wells 16–17 well locations (Plate 1) Wewoka Creek 17 | | | | injection wells 16–17 Wewoka Creek 17 | nydrologic connection 3 | | | | injection wells 16–17 | Wewoka Creek 17 | Type faces: Text in 9-pt. Century Schoolbook, with 1-pt. leading Heads in 10-pt. Century Schoolbook bold Text-figure captions in 8-pt. Helvetica, with 1-pt. leading Table heads in 10-pt. Century Schoolbook, caps and small caps Running heads in 8-pt. Century Schoolbook bold Presswork: Miehle TP-29 Perfector Binding: Saddle-stitched, softbound covered Smythe sewn, hardbound covered Paper: Text on 70-lb. Mountie Matte (hardbound), 100-lb. Mountie Matte (softbound) Cover (hardbound) on Gane 8117LV red cloth on 160-pt. binder's board Cover (softbound) on 65-lb. Hammermill gray, antique finish