

ISSN 0078-4397

CHEMICAL QUALITY OF WATER IN ABANDONED ZINC MINES IN NORTHEASTERN OKLAHOMA AND SOUTHEASTERN KANSAS

STEPHEN J. PLAYTON, ROBERT E. DAVIS, AND ROGER G. McClaflin

Prepared by the United States Geological Survey in cooperation with the Oklahoma Geological Survey

OKLAHOMA GEOLOGICAL SURVEY

CHARLES J. MANKIN, Director KENNETH S. JOHNSON, Associate Director

SURVEY STAFF

THOMAS W. AMSDEN, Biostratigrapher/Lithostratigrapher BETTY D. BELLIS, Word-Processing Operator SALMAN BLOCH, Uranium/Base-Metals Geologist/ Geochemist HELEN D. BROWN, Assistant to Director MARGARETT K. CIVIS, Senior Accounting Clerk MARION E. CLARK, Cartographic Technician II ELDON R. Cox, Manager, Core and Sample Library ROY D. DAVIS, Cartographic Technician II ROBERT L. EUTSLER, Minerals Geologist ROBERT O. FAY, Geologist/Stratigrapher S. A. FRIEDMAN, Senior Coal Geologist T. WAYNE FURR, Manager of Cartography ELIZABETH A. HAM, Associate Editor WILLIAM E. HARRISON, Petroleum Geologist/Geochemist LEROY A. HEMISH, Coal Geologist LAVEDA F. HENSLEY, Clerk-Typist/Information Officer PAULA A. HEWITT, Duplicating Machine Operator SHIRLEY JACKSON, Record Clerk ${\tt MARY\ ELLEN\ KANAK,\ } Cartographic\ Technician\ I$ DONNA R. KENWORTHY, Custodian

MICHAEL W. LAMBERT, Visiting Minerals Geologist JAMES E. LAWSON, JR., Chief Geophysicist KENNETH V. LUZA, Engineering Geologist MITZI G. MOORE, Clerk-Typist ZACK T. MORRIS, Cartographic Technician I A. J. MYERS, Geomorphologist/Aerial-Photo Interpreter DAVID O. PENNINGTON, Geological Technician ROBERT M. POWELL, Senior Laboratory Technician M. LYNN PRATER, Minerals Geologist DONALD A. PRESTON, Petroleum Geologist RAJA P. REDDY, Geology Assistant WILLIAM D. ROSE, Geologist/Editor EMRE A. SANCAKTAR, Chemist M. SUE SAUNDERS, Clerk-Typist CONNIE G. SMITH, Associate Editor I. JEAN SMITH, Record Clerk RICHARD L. WATKINS, Electronics Technician Stephen J. Weber, Chief Chemist GWEN C. WILLIAMSON, Office Manager GARY L. WULLICH, Core and Sample Library Assistant JOSEPH M. ZOVAK, Cartographic Technician I

Title Page Illustration

Generalized section showing relationship of rock formations to water-filled mines (see fig. 2). Ink diagram by Zack T. Morris.

This publication, printed by Edwards Brothers, Inc., Ann Arbor, Michigan, is issued by the Oklahoma Geological Survey as authorized by Title 70, Oklahoma Statutes, 1971, Section 3310, and Title 74, Oklahoma Statutes, 1971, Sections 231–238. 1,000 copies have been prepared for distribution at a cost to the taxpayers of the State of Oklahoma of \$6,471.

CONTENTS

		Page
Abs	stract	1
Int	roduction	1
	Purpose and scope	1
	Historical background	2
	Explanation of site numbering system	2
	Conversion factors	2
	Acknowledgments	4
	Geologic setting	4
Cha	aracteristics of mine-shaft water	4
0110	Definition of pH and specific conductance	4
	Sampling procedures and methods	5
	Results of analyses	12
	Statistical summary and constituent relationships	12
	Suitability of mine-shaft water for selected uses	23
	Hydrology of the mined area	24
G.,,	nmary	42
	erences cited.	47
ren	erences croed	- 1
	FIGURES	
1	Map of study area showing geologic structure, area of mine workings, and locations	
	of sampled shafts	3
2	Geologic section showing relationship of rock formations to water-filled mines	4
	Kemmerer-type PVC sampler and boom apparatus used in collection of water	
	samples from mine shafts	5
4.	Diagram showing water level, approximate location of mine workings, and	
	temperature, pH, and specific conductance of water at selected depths in	
	Lucky Jew mine shaft, April 1976–June 1977	6
5.	Diagram showing water level, approximate location of mine workings, and	
	temperature, pH, and specific conductance of water at selected depths in Lucky	
	Bill air shaft, April 1976–June 1977	7
6.	Diagram showing water level, approximate location of mine workings, and	
	temperature, pH, and specific conductance of water at selected depths in Skelton	
	mine shaft, April 1976–June 1977	8
7.	Diagram showing water level, approximate location of mine workings, and	
	temperature, pH, and specific conductance of water at selected depths in New	
	Chicago mine shaft, April 1976–June 1977	9
8.	Diagram showing water level and temperature, pH, and specific conductance of	
	water at selected depths in Birthday mine shaft, April 1976-June 1977	10
9.	Diagram showing water level, approximate location of mine workings, and	
	temperature, pH, and specific conductance of water at selected depths in	
	Consolidated No. 2 mine shaft, April 1976–June 1977	11
10.	Graph showing relationship of dissolved-solids concentration to specific conductance	
	of mine-shaft water	20
11.	Graph showing logarithmic relationship of dissolved aluminum concentration to	-
	pH of mine shaft water	32
12	Graph showing relationship of dissolved zinc concentration to dissolved sulfate	
-4.	concentration of mine-shaft water	40
13	Graph showing measured water-surface altitude at Blue Goose well and monthly	
⊥ 0.	precipitation at Quapaw, Oklahoma, September 1975–February 1980	46

TABLES

	·-	
		Page
1.	List of mines sampled	13
	Water-quality data from Lucky Jew mine shaft	14
	Water-quality data from Lucky Bill air shaft	16
4.	Water-quality data from Lavrion mine shaft	20
5.	Water-quality data from Skelton mine shaft	22
	Water-quality data from New Chicago mine shaft	24
	Water-quality data from Birthday mine shaft	28
	Water-quality data from Consolidated No. 2 mine shaft	33
	Chemical and physical properties of mine-shaft water determined and maximum,	•
	minimum, mean, and 50th percentile values.	37
10.	Chemical and physical properties of mine-shaft water analyzed for linear	
	relationship with specific conductance, and regression summary, including correlatio	n
	coefficients, intercepts, slopes, and standard errors of estimate	40
11.	Chemical and physical properties of mine-shaft water analyzed for linear	
	relationship with pH, and regression summary, including correlation coefficients,	
	intercepts, slopes, and standard errors of estimate	41
12.	Chemical constituents of mine-shaft water analyzed for logarithmic relationship	
	with pH, and regression summary, including correlation coefficients, intercepts,	
	slopes, and standard errors of estimate	41
13.	Chemical constituents of mine-shaft water analyzed for linear relationship with	
	dissolved sulfate concentration, and regression summary, including correlation	
	coefficients, intercepts, slopes, and standard errors of estimate	42
14.	Chemical constituents of mine-shaft water analyzed for logarithmic relationship	
	with dissolved sulfate concentration, and regression summary, including correlation	
	coefficients, intercepts, slopes, and standard errors of estimate	42
15.	Chemical and physical properties of mine-shaft water with observed values	
	exceeding recommended limits for public water supply, and percentage of samples	
	with excessive values	43
16.	Chemical and physical properties of mine-shaft water with observed values exceeding	
	recommended limits for fresh, once-through, industrial cooling water, and	
	percentage of samples with excessive values	44
17.	Chemical constituents and properties of mine-shaft water with observed values	
	exceeding recommended limits for fresh, makeup-recycle, industrial cooling water,	
	and percentage of samples with excessive values	44
18.	Chemical and physical properties of mine-shaft water with observed values exceeding	
	recommended limits for brackish industrial cooling water, and percentage of	
	samples with excessive values	45
19.	Chemical constituents and properties of mine-shaft water with observed values	
	exceeding recommended limits for irrigation water, and percentage of samples	
	with excessive values	45

CHEMICAL QUALITY OF WATER IN ABANDONED ZINC MINES IN NORTHEASTERN OKLAHOMA AND SOUTHEASTERN KANSAS

STEPHEN J. PLAYTON, 1 ROBERT E. DAVIS, 1 and ROGER G. McClaflin²

Abstract—Onsite measurements of pH, specific conductance, and water temperature show that water in seven mine shafts in northeastern Oklahoma and southeastern Kansas is stratified. With increasing sampling depth, specific conductance and water temperature tend to increase, and pH tends to decrease. Concentrations of dissolved solids and chemical constituents in mine-shaft water, such as total and dissolved metals and dissolved sulfate also increase with depth. The apparently unstable condition created by cooler, denser water overlying warmer, less dense water is offset by the greater density of the lower water strata due to higher dissolved solids content.

Correlation analysis showed that several chemical constituents and properties of mine-shaft water—including dissolved solids, total hardness, and dissolved sulfate, calcium, magnesium, and lithium—are linearly related to specific conductance. None of the constituents or properties of mine-shaft water tested had a significant linear relationship to pH. However, when values of dissolved aluminum, zinc, and nickel were transformed to natural or Napierian logarithms, significant linear correlation to pH resulted.

During the course of the study—September 1975 to June 1977—the water level in a well penetrating the mine workings rose at an average rate of 1.2 feet per month. Usually, the rate of water-level rise was greater than average after periods of relatively high rainfall, and lower than average during periods of relatively low rainfall

Water in the mine shafts is unsuited for most uses without treatment. The inability of current domestic water-treatment practices to remove high concentrations of toxic metals, such as cadmium and lead, precludes use of the water for a public supply.

INTRODUCTION

Purpose and Scope

Increasing demands for water and decreasing water levels in the heavily pumped Roubidoux Formation in northern Ottawa County, Oklahoma, have led to a search for an alternative source of water. Water in abandoned zinc mines within the Boone Formation of Mississippian age represents a potential alternative supply. However, before any use can be made of the water within the mines, information about its quality is imperative.

In order to provide water-quality information, a study by the U.S. Geological Survey, in cooperation with the Oklahoma Geological Survey, was made. The principal objective of the study was to determine the suitability of the water in the zinc mines for

public supply, industrial cooling, and irrigation.

The study originally consisted of three phases:

Phase I.— An intensive reconnaissance of the accessible mine shafts to (a) make field measurements of pH, specific conductance, and water temperature, (b) collect water samples for chemical and physical analyses, and (c) evaluate the data.

Phase II.— Collect and analyze water samples once every 2 months for 1 year to determine any variations in water quality.

Phase III.—Collect and analyze water samples twice a year for 4 years after completion of phase II to determine any annual variations and long-term trends in water quality.

The results of phase I were reported by Playton and Davis (1977). Results of phase II are presented in this report. The principal objective of this study has been fulfilled by phases I and II; therefore, phase III will not be pursued.

¹Hydrologists, U.S. Geological Survey, Oklahoma City, Oklahoma.

²Hydrologic technician, U.S. Geological Survey, Oklahoma City, Oklahoma.

Historical Background³

Lead and zinc ore was first discovered in the study area (fig. 1) in 1901, and the first recorded output of sulfide concentrates was made in 1904. During the early years of mining, operations were relatively shallow, extending from 50 to 130 ft in depth. However, as mining progressed, depths to 385 ft were reached.

Land ownership in the area was diverse with many owners holding small tracts, which allowed numerous small companies to obtain leases and simultaneously run mining operations. In 1918, approximately 230 mills were built or were under construction in Oklahoma alone, a figure that approaches the number of individual operations.

Ore bodies reached from one leased tract to the next, and mining activities were extensive throughout the area. Therefore, nearly all of the mines were interconnected, and distinguishing one mine from another was difficult. In fact, even the smaller connective workings were large enough to allow passage of ore trucks.

Production of ores from the mines expanded rapidly from 1915 to 1920; output jumped from 28,000 tons to 502,000 tons. However, the 1920's marked the maturity of the mine field. In the 5 years from 1921 to 1925, the mines in and near the study area yielded 55 percent of the total zinc produced in the United States. The total production through 1964 amounted to over 7 million tons of zinc and just under 2 million tons of lead.

After a brief period of slowdown in the early 1930's, annual production again increased through 1941. However, production in 1941 was still only slightly greater than 50 percent of the output in 1925. During the late 1920's and 1930's, many mines became depleted, forcing smaller companies out of business. These operations were bought by larger companies that were able to continue mining owing to the economy of centralized milling. Also, improved technology allowed recovery of much low-grade ore from tailing sites.

World War II created a high demand for base metals, but ore depletion dictated an industry decline. Because of depressed metal markets in 1957, many operations were suspended or reduced. By mid-1958, all major mining operations were discontinued. Although mining on a small scale has resumed since 1960, most sites have been depleted and abandoned.

Explanation of Site Numbering System

The standard method of giving location of fractional section, section, township, and range is replaced by the method illustrated in the diagram below. The location of the site indicated by the dot normally would be described as NW½SE½SE¼ sec. 16, T. 29 N., R. 23 E. The method used in this report reverses the order and indicates quarter subdivisions of the section by letters. By this method the location of the site is given as 29N-23E-16DDB 1. The final digit (1) is the sequential number of a site within the smallest fractional subdivision.

Conversion Factors

Factors for converting U.S. customary units to metric units are shown to four significant figures.

U.S. customary	Multiply by	Metric
acre-ft (acre-feet)	1.233×10^{-3}	hm ³ (cubic hecto-
		meters)
ft (feet)	.3048	m (meters)
ft ³ /s (cubic feet	2.832×10^{-2}	m ³ /s (cubic meters
per second)		per second)
in (inches)	25.40	mm (millimeters)
mi (miles)	1.609	km (kilometers)
ton	9.072×10^{-2}	t (metric ton)

³Summarized from McKnight and Fischer (1970).

3

Figure 1. Map of study area (stippling), showing geologic structure, approximate area of mine workings, and locations of sampled shafts.

Acknowledgments

The authors are especially indebted to Gordon E. Hoppe and Harry A. Berkey, of the Northeast Counties of Oklahoma Economic Development Association, for providing encouragement and cooperation from the beginning of the project. Sincere gratitude is extended to C. V. Collins, U.S. Geological Survey, and Douglas C. Brockie, Eagle-Picher Industries, for their invaluable assistance in providing information about the mines. The authors would like to express their thanks to Thomas Bond, U.S. Bureau of Indian Affairs, for providing access to Indian lands in the study area.

Geologic Setting

The study area (fig. 1) is relatively flat prairie in northeastern Oklahoma and southeastern Kansas. The regional dip of the rocks is 15 to 25 ft/mi to the northwest, though locally the dip may differ. The main structural features in the area are the Miami Trough, the Rialto Basin, and the Bendelari Monocline (McKnight and Fischer, 1970, p. 72–75). The Miami Trough is a combination of syncline and graben with a general trend of N. 26° E. The axes of the Rialto Basin and the Bendelari Monocline cross the area in a northwesterly direction. The maximum dip of the rocks in these structures is about 20°.

The abandoned mines are in the Boone Formation, of Mississippian age (fig. 2), which consists of 350 to 400 ft of chert, jasperoid, limestone, and dolomite. The principal ore minerals mined from the Boone were sphalerite and galena. Accessory minerals include chalcopyrite, enargite, luzonite, marcasite, pyrite, and barite. Fracturing within the formation is common, especially in mineralized areas.

The Chattanooga Shale of Mississippian and Devonian age underlies the Boone Formation but is locally absent in the study area. Where the Chattanooga Shale is absent, the Boone Formation lies directly upon an Ordovician sequence consisting of, in descending order, Cotter Dolomite, Jefferson City Dolomite, and Roubidoux Formation. Rocks overlying the Boone Formation are of Late Mississippian and Pennsylvanian age and consist predominantly of shale, with some sandstone and limestone layers.

CHARACTERISTICS OF MINE-SHAFT WATER

Definition of pH and Specific Conductance

The pH of a solution is a measurement of the hydrogen-ion concentration expressed as the negative base 10 logarithm of the hydrogen-ion activity in moles per liter. Val-

Figure 2. Generalized geologic section showing relationship of rock formations to water-filled mines.

ues of pH may range from 0 to 14. A pH of 7 refers to a neutral solution that contains an equal concentration of hydrogen (H⁺) and hydroxyl (OH⁻) ions. Solutions within the pH range of 0 to 7 are considered acidic, and those within the range of 7 to 14 are considered basic or alkaline.

Specific conductance is a measure of the ability of water to conduct an electric current across a specified cross section at a given temperature and is usually expressed as $\mu mho/cm$ at 25°C (micromhos per centimeter at 25° Celsius). The micromho is the reciprocal of ohms \times 10^6 . Specific conductance is related to the ionic concentration of dissolved chemical constituents and, therefore, to the dissolved-solids content of the water.

Sampling Frequencies and Methods

During the period April 1976 to June 1977, water samples were collected for physical and chemical analysis from seven mine shafts; six in Oklahoma and one in Kansas (fig. 1). These mine shafts were selected dur-

ing previous field excursions, using selection criteria based on safety, accessibility, and areal distribution. In April 1976 all seven shafts were sampled. Thereafter, four shafts -Lucky Bill, Birthday, New Chicago, and Consolidated No. 2-were sampled every other month from August 1976 through June 1977. Two mine shafts, Lucky Jew and Skelton, were sampled only twice after April 1976, in October 1976 and June 1977. Lavrion mine shaft was not sampled again, because by July 1976 it had been plugged with concrete. Each time the shafts were sampled, water-level measurements were recorded at each mine shaft and at the Blue Goose well, a well penetrating the mine workings (fig. 1).

When the mine shafts were visited, water samples were collected from one or more points in a vertical profile with a Kemmerer-type sampler made of PVC (polyvinyl chloride) (fig. 3). Field analyses for specific conductance, pH, and water temperature were made from each sample at each sampling depth (figs. 4–9). At selected depths, where pH or specific-conductance values differed significantly from those values ob-

Figure 3. Kemmerer-type PVC sampler and boom apparatus used in collection of water samples from mine shafts.

Figure 4. Diagram showing water level, approximate location of mine workings, and temperature, pH, and specific conductance of water at selected depths in Lucky Jew mine shaft, April 1976–June 1977.

Figure 5. Diagram showing water level, approximate location of mine workings, and temperature, pH, and specific conductance of water at selected depths in Lucky Bill air shaft, April 1976—June 1977.

Figure 6. Diagram showing water level, approximate location of mine workings, and temperature, pH, and specific conductance of water at selected depths in Skelton mine shaft, April 1976—June 1977.

Figure 7. Diagram showing water level, approximate location of mine workings, and temperature, pH, and specific conductance of water at selected depths in New Chicago mine shaft, April 1976–June 1977.

Figure 8. Diagram showing water level and temperature, pH, and specific conductance of water at selected depths in Birthday mine shaft, April 1976–June 1977.

Figure 9. Diagram showing water level, approximate location of mine workings, and temperature, pH, and specific conductance of water at selected depths in Consolidated No. 2 mine shaft, April 1976–June 1977.

served in the upper or lower water strata, samples were collected for more complete laboratory physical and chemical analysis.

Field measurements and water-sample treatments were made using the techniques described by Brown, Skougstad, and Fishman (1970). All samples were analyzed by the U.S. Geological Survey Central Laboratory, using the methods given by Brown, Skougstad, and Fishman (1970).

A list of mine shafts sampled, sampling depths, and months in which samples were collected is given in table 1.

Results of Analyses

No areal trend or seasonal variation in water quality is readily discernible. Results of field and laboratory analyses (tables 2–8) indicate that the water in the mine shafts is stratified. In general, as sampling depths within each mine shaft increased, pH decreased, and specific conductance, water temperature, and dissolved solids increased. Most chemical-constituent concentrations, including dissolved and total metals and dissolved sulfate, increased with sampling depth. For example, in February 1977, in Consolidated No. 2 mine shaft, as sampling depth below the water surface increased from 13 to 78 ft, pH decreased from 7.6 to 5.3 standard units. specific conductance increased from 1,030 to 4,280 μmhos/cm at 25°C, water temperature increased from 13.5 to 15.0°C, dissolved solids increased from 838 to 5,180 mg/L (milligrams per liter), dissolved zinc increased from 3,300 to 300,000 μ g/L (micrograms per liter), total iron increased from 120 to 310,000 µg/L, and dissolved sulfate increased from 510 to 3.300 mg/L. Because cooler, denser water overlies warmer, less dense water in the mine shafts, an unstable thermal-stratification condition apparently exists. However, the lower water strata contain significantly larger quantities of dissolved solids than the upper water strata. Thus, the apparently unstable thermal stratification is masked by the greater density of the lower water strata owing to higher dissolved-solids content.

One notable exception to the general stratification trend was observed during five out of seven samplings of Birthday mineshaft water (fig. 8). The pH values decreased with increasing depth until approximately midway through the water column. The trend then reversed, with increasing pH values being observed with increasing depth. However, pH values near the bottom of the water column were not as high as those measured near the top of the water column. Based upon the available data, no adequate explanation for this anomalous stratification can be offered.

The water in the Lucky Jew mine shaft is chemically anomalous from that in the other mine shafts sampled. The maximum values of many constituents and propertiesincluding dissolved aluminum, cadmium, calcium, fluoride, lead, sulfate, and zinc, and dissolved solids, specific conductance, and total hardness-in Lucky Jew mine-shaft water-were significantly lower than the maximum values of the same constituents and properties in water samples taken from the other mine shafts. Maximum values of dissolved boron, sodium, and chloride were significantly higher in Lucky Jew mine-shaft water than in water from the other mine shafts sampled.

Many of the trace elements, especially the heavy metals, have values reported for both dissolved and total concentrations. The total concentrations are analyzed from an unfiltered sample and, thus, are the sum of the dissolved-constituent concentration and the amount of constituent associated with suspended particles. Dissolved-constituent concentrations are analyzed from a filtered sample and represent the amount of constituent in the dissolved state. Some of the values reported for dissolved-constituent concentration are greater than corresponding values for total-constituent concentration. These anomalies are attributed to sampling errors, computational rounding errors, different sample-preparation techniques, and differences in precision of the analytical methods.

Statistical Summary and Constituent Relationships

A list of chemical and physical properties determined, the number of analyses of each property, and the range, mean, and fiftieth-percentile values for each property

Table 1.—List of Mines Sampled, April 1976—June 1977

Name of mine	Land-surface		Dep	th to	wate	r (ft)2			Sam	pling	dept	hs (f	t) ²	
(site location)	altitude at	Apr	Aug		Dec		Apr	June	Apr		0ct			Apr	June
	mine shaft (ft) ¹	1976	1976	1976	1976	1977	1977	1977	1976	1976	1976	1976	1977	1977	1977
Lucky Jew	845	183		171				164	200		200				180
(35S-23E-3ADD1)									205		220				200
									211		260				210
									222						
									230		298				220
									259						240
									287						260
									298						280
															298
Lucky Bill	810	158	146	144	143	142	140	136	178	170	160	160	160	160	155
(air shaft)									198	190	190		190	190	190
(29N-23E-30AAA1)									204	205	210		200	205	205
									210	218	225	225	210	225	225
									216	228			225		
									222						
									230						
Lavrion	810	144							150						
(29N-23E-29CDD1)									160						
									170						
									182						
									191						
Skelton	825	159		148				140	165		160				150
(29N-23E-28CCB1)															165
New Chicago	825	160	150	151	150	150	147	144	167	160	165	165	165	165	160
(29N-23E-28CAB1)									174	174	180	180	180	185	180
									179	187	198	195	195	187	187
									183	197	,			195	195
									192						
									197						
Birthday	815	156	146	145	144	142	2 141	137	168	160	162	160	145	155	155
(20N-23E-28BBB1)									172	167	180	170	160	167	162
									175	173	3	180	170	170	166
									182	177	,		180	180	170
										180)				175
															180
Consolidated No. 2	2 830	166	155	155	153	3 152	2 150	146	179	165	165	165	165	152	165
(29N-23E-16DDB1)									191	. 185	215	215	215	165	215
									210	215	230	230	222	215	225
									227	225	5		230	220	230
									229	230)			230)
									234	235	5				

 $^{1\}text{--Estimated}$ to nearest 5 ft above mean sea level from $7^{1}\!z\text{--minute}$ topographic maps.

^{2 -} Measured from land surface.

Table 2.—Water-Quality Data from Lucky Jew Mine Shaft, April 1976—June 1977

Sampling depths in ft below land surface; turbidity expressed in NTU (neophelometric turbidity units)

				37 A (1	SAMP- LING DEPTH (FT)	PH (UNI15)	TEMPER- ATURE (DEG C)	SPE = CIFIC C/N= DUCT= ANCE (MICRO= MHUS)				
				APR , 27	200 205 211 222 230 259 287 298	7.6 6.9 6.2 6.8 6.7 6.7	15.0 16.0 16.0 17.0 17.5 17.5	1300 1340 1800 2050 2850 2850 2850 2780				
				21 21 21 21	200 220 260 298	8.6 7.0 7.0 7.0	16.0 16.5 16.5 17.0	1200 2850 2850 2850				
				09	180 200 210 220 240 260 280 298	7.5 8.3 5.6 7.2 6.7 6.7 6.7	16.5 16.0 16.5 17.0 17.6 16.5 17.0	1200 1200 2350 2750 2650 2650 2650				
DATE	SAMP= LING DEP1H (FT)	TUR- 8ID- ITY (NTU)	HARU- NESS (CA, HG) (MG/L)	N()N- CAR- bunate hard- ness (MG/L)	TUTAL ACIDITY AS H+ (MG/L)	TÜTAL ACIDITY AS CACU3 (MG/L)	DIS- SULVEU CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SULVED SUDIUM (NA) (MG/L)	PEHCENT SUOLUM	SUDIUM AD= SURP= TIUN KATIU	DIS- SULVED P()= TAS- SIUM (K) (MG/L)
APR , 1 27 27 27	976 200 222 230 298	1.2 72 180 160	620 1100 1300 1200	500 1000 1000 1000	•1 1•4 •6 1•4	5.0 70 30 70	220 270 34n 330	18 92 98 97	38 80 200 200	12 14 26 26	.7 1.1 2.5 2.5	3.4 4.5 7.4
21 21 Jun , 1	200 220 9 77	1.0 150	590 1200	460 1000		::	210 320	15 100	36 200	12 26	.6 2,5	7.6 3.2 7.1
09	550 500	1.0 350	740 1200	610 1000	.0	.0 45	270 330	16 92	22 091	6 25	. u	2.9 6.9
DATE	BICAR- BUNATE (HCO3) (MG/L)	CAR+ HONATE (CO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SULVED SULFATE (S(14) (MG/L)	DIS- SOLVED CHEU- RIDE (CE) (MG/L)	DIS- SULVED FLUU- RIDE (F) (MG/L)	DIS= SOLVED SILICA (SIU2) (MG/L)	DIS- SOLVED SOLIDS (RESI- DUE AT 180 C) (MG/L)	SUS- PENDED SOLIOS (MG/L)	DIS- SULVED NITRATE (N) (MG/L)	DIS- SOLVED NITRATE (NO3) (MG/L)	DIS- SULVED NITRITE (N) (MG/L)
APR , 1 27 27 27 27	976 145 62 249 258	0 0 0	119 51 204 212	560 1200 1300 1300	3.1 6.4 85 85	.3 1.3 2.1 2.1	8.5 8.5 8.0 8.0	995 1750 2340 2330	0 79 95 87	.08 .07 .00	.35 .31 .00	.00 .00 .00
21 21 Jun , 1	152 228 977	n 0	125 187	520 1400	3.1 80	5.5	7.8 7.4	953 2300	85 0	.15	.66	.00
09	160 230	0	130 190	600 1300	2.3 80	.3 2.1	9.2 8.8	1050 2270	1 94	.05	.27 .09	•01 •01

					TABLE	2.— <i>Co</i>	ntinued	!				
DATE	DIS- SULVED NITRITE (ND2) (MG/L)	UIS- SILVED NITHITE PLUS NITHATE (N) (MG/L)	DIS- SULVEU AMMUNIA NITRI)- GEN (N) (MG/L)	DIS- SULVED AMMONIA (NH4) (MG/L)	TUTAL ALUM- INUM (AL) (UG/L)	DIS- SOLVED ALUM- INUM (AL) (UG/L)	TUTAL ARSENIC (AS) (UG/L)	DIS+ SUL VED ARSENIC (AS) (UG/L)	TUTAL HARIUM (BA) (UG/L)	DIS- SULVED HARIUM (BA) (UG/L)	TUTAL BURUN (B) (UG/L)	DIS- SOLVED BORGN (B) (UG/L)
PR , 1	976	• "	.02	.03	50	10	U	0	0	0	1600	100
27	.00	.08	.06	.08	80	50	0	0	0	0	1200	144 55
27	.00	.00	.40	.52	20 10	0	8	6	0	Ú	1600	56
27 ICT	.00		.00	.00	60	0	1	0	0	0	140	9
21 21 JUN , 1	.00 .00	.15	.57	.73	. 5000	300	8	8 0	100	100	620	56
09	.03	.07 .03	.03 .65	.04	30 150	100	8	6	100	100	600	55
DATE	TOTAL CAD= MIUM (CD) (UG/L)	DIS- SULVED CAD- MIUM (CD) (UG/L)	TOTAL CHRO- MIUM (CR) (UG/L)	DIS- SOLVED CHRO+ MIUM (CR) (UG/L)	TUTAL CUBALT (CU) (UG/L)	DIS- SULVED CUHALT (CU) (UG/L)	TOTAL COPPER (CU) (UG/L)	DIS- SULVED CUPPER (CU) (UG/L)	TOTAL IR(IN (FE) (UG/L)	DIS* SOLVED IRON (FE) (UG/L)	TUTAL LEAD (Ph) (UG/L)	DIS- SOLVE LEAD (PH) (UG/L
APR , 1			0	0	< 50	0	10	3	0	20	<100	
27	10 <10	n	10	10	500	170	50	3	52000 52000	44000 50000	<100 <100	
27	<10 <10	5	10 10	10 10	100 100	31 36	10	3 10	53000	46000	<100	
IC T		4	0	0	50	1	<10	6	160	10	<100	
21 21 Jun , 1	10 10 977	1	10	0	150	57	<10	1	58000	57000	100	
09	10 10	5	0	10	<50 50	100	10	5	30 61000	30 54000	<100 100	
DATE	DIS- SOLVED LITHIUM (LI) (UG/L)	TOTAL MAN= GANESE (MN) (UG/L)	DIS- SULVED MAN- GANESE (MN) (UG/L)	1UTAL MERCURY (HG) (UG/L)	DIS- SULVED MERCURY (HG) (UG/L)	TUTAL MULYB= DENUM (MD) (UG/L)	DIS* SULVED MOLYB- DENUM (MO) (UG/L)	TUTAL NICKEL (NI) (UG/L)	DIS- SULVED NICKEL (NI) (UG/L)	TUTAL SELE = NIUM (SE) (UG/L)	DIS- SOLVED SELE- NIUM (SE) (UG/L)	DIS- SOLVE VANA- DIUM (V) (UG/L
APR , 1	976							50	10	0	0	
27	40 80	5000	40 5100	1.4	.4	0	0	400	370	0	0	
27	500	5600	2300	.8	٠.	5	1	300	240	0	U	
27 UCT	200	5600	2400	.2	.3	3		300	240	0	0	1.
21 21 Jun ,	20 210 1977	10 5500	5000 10	. 3	.2	0	0	<50 300	200	0	Ü	
09	20			.1	.0	0			6	0	0	
09	200	1900	1900	. 3	. 4	0	5	200	250	0	U	•
			ں	DEI	ING Z PTH ()	TAL S(I Inc z Zn) (LVED URG INC CA ZN) (TAL B ANIC AC RHIN S C) ST	IHY- ENE LUE IIVE UB- ANCE G/L)			
				7 . 1976								
			5 5 5	7 2: 7 2: 7 2	30	9300	2900 H100	2.0 8.0 1.7	.00			
			UC	T			8300	1.7	•00			
			5		50 00	730 7000	670 7000	1.8	.00			
			0	9 2·			2300 6600	1.3	.00			

Table 3.—Water-Quality Data from Lucky Bill Air Shaft, April 1976—June 1977

Sampling depths in ft below land surface

				DATE	SAMP- LING DEPTH (FT)	PH (UNITS)	TEMPER= ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)				
				APR , 19			,					
				22	178 198 204 210	6.5 6.5 6.5	14.0 14.0 14.0 14.0	1850 1850 1750 4210				
				22 22 22	216 222 230	5.6 5.6 5.6	14.0 14.5 14.5	4630 4950 4950				
				26	170 190	6.9 6.9	14.0 14.0	760 795				
				26	205 218	6.9 5.9	14.0 15.0	880				
				26	558	5.8	15.0	4770				
				20	160 190	6.7 6.7	13.0 13.0	1060 1030				
				20	210	6.3	14.0	4400				
				20	225	6.3	14.0	4800				
				07 07	160 190	6.5 6.5	13.0 13.0	1100 1100				
				07 07	210 225	6.4 5.9	13.0 14.0	1100 4560				
				FEB , 1	977 160	6.6	13.0	1400				
				17	190 200	6.5 6.5	13.0 13.0	1380 1500				
				17	210 225	6.1 5.8	13.5	4200 4800				
				APR 21	160	6.5	13.5	1500				
				21 21 21	190 205 225	6.5 6.3 5.8	14.0 14.5 15.0	1500 2900 4800				
				JUN 07	155	6.5	14.0	1100				
				07 07 07	190 205 225	6.6 6.4 5.9	14.0 14.0 15.0	1450 3100 4200				
DATE	SAMP= LING DEPTH (FT)	TUR- 8ID- ITY (NTU)	HARD- NESS (CA,MG) (MG/L)	NON= CAR= BONATE HARO= NESS (MG/L)	TOTAL ACIDITY AS H+ (MG/L)	TUTAL ACIDITY AS CAC(13 (MG/L)	DIS= SOLVED CAL= CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS- SULVED SUDIUM (NA) (MG/L)	PERCENT SODIUM	SUDIUM AD= SURP= TIUN PATIO	DIS= SOLVED PO= TAS= SIUM (K) (MG/L)
PR , 19	976										.8	8.5
22	178 210	2.1 180	910 2100	600 2100	2.6 11	129 546	300 500	39 210	57 68	12 7	.6	4.5
22	555	100	5500	5500	55	1090	480	250	87	8	.8	6.0
26	205	1.0	450	250	.5	25	160	13	16	7	.3	4.0
26 CT	228	160	2100	2100	25	1240	490	550	90	8	. 8	9.2
20	190 225	1.4	520 2400	340 2400			180 470	16 290	19 92	7 8	.4	4.5 8.2
EC 07	190	2.0	580	340	1.5	74	200	19	23	8	.4	4.7
07	225	140	2300	2300	27	1340	490	560	A1	7	.7	7.0
Ен , 1' 17	977 190	2.0	640	380	1.7	84	550	21	29	9	.5	5.4
17 PR	225	180	2300	2300	23	1140	480	260	85	7	.8	6.5
21	190	1.0	780	520	2.0	99	270	26	36	9_	.6	6.2
21 UN	225	160	2400	2400	11	546	520	270	85	7	.8	6.8
07 07	155 225	.30 220	570 2400	320 2400	1.6 24	79 1190	190 500	23 280	26 86	9	.5 .8	4.7 6.2
										·	••	

 ${\it Table 3.--Continued}$

	hicak-	CAR-	ALKA- LINITY	DIS-	DIS- SULVED CHLU-	DIS- SULVED FLUU-	DIS- SOLVED	DIS- SULVED SOLIDS (RESI-	sus-	015- 50LVE0	DIS- SULVED	DIS- SULVED
	BUNATE	HUNATE	AS	SULFATE	RIDE	RIDE	SILICA	DUE AT	PENDED	NITRATE	NITRATE	NITRITE
	(HCU3)	(0.03)	CACOS	(\$(14)	(CL)	(F)	(SIU2)	180 C)	SHLIDS (MG/L)	(N) (MG/L)	(N()3) (MG/L)	(N) (MG/L)
DATE	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(-6/6)	(MG/L)	Curry	(10/2)
APR , 1	976											
55	375	0	308	810	10	. 3	19	1580	3	.15	.66	.00
22	59	0	48	2800	1.3	5.0	8.1	4380	509	.01	.04	.01
22	25	0	21	3000	16	9.2	7.6	5470	174	.00	.00	.01
AUG												
26	246	0	505	320	3.6	. 3	19	687	0			
26	1	0	1	3400	51	9.4	9.0		175			
20	215	0	177	380	4.0	.7	11	830	12	.16	.71	.00
Ž٥	11	0	9	3500	23	7.5	7.8	5920	15	.03	.13	.00
DEC	30.5	_				• •	-				• ()	
07 07	289	0	237	430	4.6	. 1	19	904	0			
FEB , 1	977	0	29	3100	50	6.6	8.8	5370	170			
17	310	0	254	510	14	1.2	55	1030	0			
17	0	0	0	3300	18	7.4	10	5230	183			
APR		_						3230	103			
21	320 U	0	560	610	6.6	. 4	19	1200	5			
JUN	U	U	0	3500	15	7.9	11	5520	172			
07	300	0	250	420	4.5	. 2	19	910	0	.19	.84	
07	6	0	5	3400	15	7.9	10	5650	156	.03	.13	.01
										•03	• 13	.01
			DIS-									
	DIS- SOLVED	DIS- SULVEO NITRITE PLUS NITRATE	SULVED AMMONIA NITRO=	DIS= SOLVED AMMONIA	TUTAL Alum- Inum	DIS- SOLVED ALUM- INUM	TOTAL ARSENIC	DIS= SGLVED ARSENIC	TUTAL BAHlum	DIS- SULVED BARIUM	TUTAL BURUN	DIS- SOLVED BORON
		SUL VEO	SUL VED		ALUM- [NUM (AL)	SOLVED ALUM- INUM (AL)	ARSENIC (AS)	SOLVED ARSENIC (AS)	BAHlum (BA)	SUL VED RAWIUM (BA)	BURUN (B)	SOL VED HORON (B)
DATE	SOLVED NITRITE	SULVEO NITRITE PLUS NITRATE	SULVED AMMONIA NITRO= GEN	SOL VED AMMONIA	ALUM- INUM	SOLVED ALUM- INUM	ARSENIC	SOL VED ARSENIC	BARIUM	SUL VED BARIUM	BURUN	SOL VED HORON
-	SOLVED NITRITE (NO2) (MG/L)	SULVED NITRITE PLUS NITRATE (N)	SULVED AMMONIA NITRO- GEN (N)	SOLVED AMMONIA (NH4)	ALUM- [NUM (AL)	SOLVED ALUM- INUM (AL)	ARSENIC (AS)	SOLVED ARSENIC (AS)	BAHlum (BA)	SULVED RARIUM (BA) (UG/L)	BURUN (B) (UG/L)	SOLVED HORON (B) (UG/L)
APR , 1	SOLVED NITRITE (NO2) (MG/L)	SULVED NITRITE PLUS NITRATE (N)	SULVED AMMONIA NITRO- GEN (N)	SOLVED AMMONIA (NH4)	ALUM- [NUM (AL)	SOLVED ALUM- INUM (AL)	ARSENIC (AS)	SOLVED ARSENIC (AS)	BAHlum (BA)	SUL VED RAWIUM (BA)	BURUN (B)	SOL VED HORON (B)
-	SOLVED NITRITE (NO2) (MG/L)	SULVED NITRITE PLUS NITRATE (N) (MG/L)	SULVED AMM()NIA NITRO- GEN (N) (MG/L)	SOLVED AMMONIA (NH4) (MG/L)	ALUM- INUM (AL) (UG/L)	SOLVED ALUM- INUM (AL) (UG/L)	ARSENIC (AS) (UG/L)	SGL VED ARSENIC (AS) (UG/L)	BAHIUM (BA) (UG/L)	SULVED RARIUM (BA) (UG/L)	BURUN (B) (UG/L)	SOLVED HORON (B) (UG/L)
APR , 1 22	SOLVED NITRITE (NO2) (MG/L) 976	SULVEO NITRITE PLUS NITRATE (N) (MG/L)	SULVED AMMONIA NITRO- GEN (N) (MG/L)	SOLVED AMMONIA (NH4) (MG/L)	ALUM- INUM (AL) (UG/L)	SOLVEO ALUM- INUM (AL) (UG/L)	ARSENIC (AS) (UG/L)	SOLVED ARSENIC (AS) (UG/L)	BAHIUM (BA) (UG/L)	SULVED RARIUM (BA) (UG/L)	BURUN (B) (UG/L)	SOLVED ROPON (B) (UG/L)
APR , 1 22 22	SOLVED NITRITE (NO2) (MG/L) 976 .00	SULVEO NITRITE PLUS NITRATE (N) (MG/L)	SULVED AMMONIA NITRO- GEN (N) (MG/L)	SOLVED AMMONIA (NH4) (MG/L)	ALUM- INUM (AL) (UG/L) 60 2000	SOLVEO ALUM- INUM (AL) (UG/L)	ARSENIC (AS) (UG/L)	SOLVED ARSENIC (AS) (UG/L)	BAHIUM (BA) (UG/L)	SUL VED RAFIUM (BA) (UG/L)	BURUN (B) (UG/L) 180 240	SOL VED HORON (B) (UG/L) 180
APR , 1 22 22 AUG 26	SOLVED NITRITE (NO2) (MG/L) 976 .00 .03 .03	SOLVEO NITRITE PLUS NITRATE (N) (MG/L)	SULVED AMM()NIA NITRO- GEN (N) (MG/L)	SOLVED AMMONIA (NH4) (MG/L) .04 .43 .63	ALUM- INUM (AL) (UG/L) 60 2000 5500	SOLVEO ALUM- INUM (AL) (UG/L) 10 2000 5700	ARSENIC (AS) (UG/L) 14 2 8	SOLVED ARSENIC (AS) (UG/L)	BAHIUM (BA) (UG/L)	SUL VED RAFIUM (BA) (UG/L)	BURUN (B) (UG/L) 180 240 250	SOL VED HORON (B) (UG/L) 180 180 220
APR , 1 22 22 22 AUG 26	SOLVED NITRITE (NO2) (MG/L) 976 .00 .03	SOLVEO NITRITE PLUS NITRATE (N) (MG/L)	SULVED AMM(NIA NITRO- GEN (N) (MG/L)	SOLVED AMMONIA (NH4) (MG/L) .04 .43	ALUM- INUM (AL) (UG/L) 60 2000 5500	SULVEO ALUM- INUM (AL) (UG/L) 10 2000 5700	ARSENIC (AS) (UG/L) 14 2	SOLVED ARSENIC (AS) (UG/L)	84H1UM (84) (UG/L) 0 0	SUL VED RARIUM (BA) (UG/L) 0	BURUN (B) (UG/L) 180 240 250	\$01 VED #0#0N (B) (UG/L) 180 180 220
APR , 1 22 22 AUG 26 26	SQLVED NITRITE (NO2) (MG/L) 976 .00 .03 .03	SOLVED NITRITE PLUS NITRATE (N) (MG/L)	SULVED AMMONIA NITRO- GEN (N) (MG/L)	SOLVED AMMONIA (NH4) (MG/L) .04 .43 .63	ALUM- INUM (AL) (UG/L) 60 2000 5500 40 10000	SOLVEO ALUM- INUM (AL) (UG/L) 10 2000 5700 20 10000	ARSENIC (AS) (UG/L) 14 2 8	SOLVED ARBENIC (AS) (UG/L)	BAHIUM (BA) (UG/L) 0 0	SULVED RAFIUM (BA) (UG/L)	180 240 250	SOL VED HOPON (B) (UG/L) 180 220 100 290
APR , 1 22 22 AUG 26 26 OCT 20	SOLVED NITRITE (NO2) (MG/L) 976 .00 .03 .03	SOLVEO NITRITE PLUS NITRATE (N) (MG/L) .15 .02 .01	SULVED AMMONIA NITRO- GEN (N) (MG/L) .03 .33 .49	SOLVED AMMONIA (NH4) (MG/L) .04 .43 .63	ALUM- INUM (AL) (UG/L) 60 2000 5500 40 10000	SULVEO ALUM- INUM (AL) (UG/L) 10 2000 5700 20 10000	ARSENIC (AS) (UG/L) 14 2 8	SOLVED ARBENIC (AS) (UG/L) 0 2 7	BAHIUM (BA) (UG/L) 0 0	SULVED RAFIUM (BA) (UG/L)	80RUN (B) (UG/L) 180 240 250 110 240	SOL VED HORON (B) (UG/L) 180 180 220 100 290
APR , 1 22 22 AUG 26 OCT 20 20	SQLVED NITRITE (NO2) (MG/L) 976 .00 .03 .03	SOLVED NITRITE PLUS NITRATE (N) (MG/L)	SULVED AMMONIA NITRO- GEN (N) (MG/L)	SOLVED AMMONIA (NH4) (MG/L) .04 .43 .63	ALUM- INUM (AL) (UG/L) 60 2000 5500 40 10000	SOLVEO ALUM- INUM (AL) (UG/L) 10 2000 5700 20 10000	ARSENIC (AS) (UG/L) 14 2 8	SOLVED ARBENIC (AS) (UG/L)	BAHIUM (BA) (UG/L) 0 0	SULVED RAFIUM (BA) (UG/L)	180 240 250	SOL VED HOPON (B) (UG/L) 180 220 100 290
APR , 1 22 22 AUG 26 OCT 20 20 DEC	SOLVED NITRIE (NO2) (MG/L) 976 .00 .03 .03	SOLVEO NITRITE PLUS NITRATE (N) (MG/L) .15 .02 .01	SULVED AMMONIA NITRO- GEN (N) (MG/L) .03 .33 .49	SOL VED AMMONIA (NH4) (MG/L) .04 .43 .63	ALUM- INUM (AL) (UG/L) 60 2000 5500 40 10000 40	SULVEO ALUM- INUM (AL) (UG/L) 10 2000 5700 20 10000 0	ARSENIC (AS) (UG/L) 14 2 8	SOLVED ARBENIC (AS) (UG/L) 0 2 7	BAHIUM (BA) (UG/L) 0 0	SULVED RAFIUM (BA) (UG/L)	80RUN (B) (UG/L) 180 240 250 110 240	SOL VED HORON (B) (UG/L) 180 180 220 100 290
APR , 1 22 22 24 AUG 26 26 DCT 20 20 20 20 20 20	SOLVED NITHIE (NO2) (MG/L) 976 .00 .03 .03	SOLVEO NITRITE PLUS NITRATE (N) (MG/L) .15 .02 .01	SULVED AMM()NIA NITHO- GEN (N) (MG/L) .03 .33 .49	SOL VED AMMONIA (NH4) (MG/L) .04 .43 .63	ALUM- (NUM) (AL) (UG/L) 60 2000 5500 40 10000 40	SULVEO ALUM- INUM (AL) (UG/L) 10 2000 5700 20 10000 0 5000	ARSENIC (AS) (UG/L) 14 2 8	SOL VED ARSENIC (AS) (UG/L) 0 2 7 0 11	BAHIUM (BA) (UG/L) 0 0 0	SULVED RARIUM (BA) (UG/L)	180 240 250 110 240 250	SOL VED HORON (B) (UG/L) 180 220 100 290 100 220
APR, 1 22 22 22 26 0CT 20 DEC 07 FEH, 1	SOLVED NITHIE (NO2) (MG/L) 976 .00 .03 .03	SOLVEO NITRITE PLUS NITRATE (N) (MG/L) .15 .02 .01	SULVED AMMONIA NITRO- GEN (N) (MG/L) .03 .33 .49	SOL VED AMMONIA (NH4) (MG/L) .04 .43 .63	ALUM- (NUM) (AL) (UG/L) 60 2000 5500 40 10000 40 10000 50 8000	SULVEO ALUM- INUM (AL) (UG/L) 10 2000 5700 20 10000 0 5000	ARSENIC (AS) (UG/L) 14 2 6 0 13	SOL VED ARSENIC (AS) (UG/L) 0 2 7	(BA) (UG/L) 0 0 0	SULVED RAHIUM (BA) (UG/L)	180 240 250 110 240 250 110 240 120 290 140 310	SOL VED #OPON (B) (UG/L) 180 220 100 290 100 220 110 240
APR, 1 22 22 22 26 26 26 26 27 20 20 27	SOLVED NITHIE (NO2) (MG/L) 976 .00 .03 .03 .03	SOLVEO NITRITE PLUS NITRATE (N) (MG/L) .15 .02 .01	SULVED AMM()NIA NITHO- GEN (N) (MG/L) .03 .33 .49 .01 .58	SOL VED AMMONIA (NH4) (MG/L) .04 .43 .63	ALUM- INUM (AL) (UG/L) 60 2000 5500 40 10000 40 10000 50 8000	SULVEO ALUM- INUM (AL) (UG/L) 10 2000 5700 20 10000 0 5000	ARSENIC (AS) (UG/L) 14 2 8 0 13	SOL VED ARSENIC (AS) (UG/L) 0 2 7	(BA) (UG/L) 0 0 0	SUL VED RAHIUM (BA) (UG/L)	180 240 250 110 240 250 110 240 120 290 140 310	SOL VED HORON (B) (UG/L) 180 180 220 100 290 100 220 110 240 130
APR, 1 22 22 26 26 26 27 20 20 20 20 21	SOLVED NITHIE (NO2) (MG/L) 976 .00 .03 .03 .00 .00	SOL VE O NITRITE PLUS NITRATE (N) (MG/L) .15 .02 .01	SULVED AMM()NIA NITHO- GEN (N) (MG/L) .03 .33 .49 .01 .58	SOL VED AMMONIA (NH4) (MG/L) .04 .43 .63	ALUM- (NUM) (AL) (UG/L) 60 2000 5500 40 10000 40 10000 50 8000 40 40 40	SULVEO ALUM- INUM (AL) (UG/L) 10 2000 5700 20 10000 0 5000	ARSENIC (AS) (UG/L) 14 2 6 0 13	SOL VED ARSENIC (AS) (UG/L) 0 2 7	(BA) (UG/L) 0 0 0	SULVED RAHIUM (BA) (UG/L)	180 240 250 110 240 250 110 240 120 290 140 310	SOL VED #OPON (B) (UG/L) 180 220 100 290 100 220 110 240
22 22 22 26 26 26 26 27 27 17 APR 21	SOLVED NITHITE (NO2) (MG/L) 976 .00 .03 .03 .03	SOLVEO NITRITE PLUS NITRATE (N) (MG/L) .15 .02 .01	SULVED AMMONIA NITRO- GEN (N) (MG/L) .03 .33 .49 	SOL VED AMMONIA (NH4) (MG/L) .04 .43 .63 .01 .75	ALUM- (NUM) (AL) (UG/L) 60 2000 5500 40 10000 50 8000 40 4500 20000	SULVEO ALUM- INUM (AL) (UG/L) 10 2000 5700 20 10000 0 5000 0 4500	ARSENIC (AS) (UG/L) 14 2 8 0 13	SOL VED ARSENIC (AS) (UG/L) 0 2 7	(BA) (UG/L) 0 0 0	SUL VED RAHIUM (BA) (UG/L)	180 240 250 110 240 250 110 240 120 290 140 310	SOL VED HORON (B) (UG/L) 180 180 220 100 290 100 220 110 240 130
APR, 1 22 22 26 26 26 27 20 20 20 20 21	SOLVED NITHIE (NO2) (MG/L) 976 .00 .03 .03 .00 .00	SOL VE O NITRITE PLUS NITRATE (N) (MG/L) .15 .02 .01	SULVED AMM()NIA NITHO- GEN (N) (MG/L) .03 .33 .49 .01 .58	SOL VED AMMONIA (NH4) (MG/L) .04 .43 .63	ALUM- (NUM) (AL) (UG/L) 60 2000 5500 40 10000 40 10000 50 8000 40 40 40	SULVEO ALUM- INUM (AL) (UG/L) 10 2000 5700 20 10000 0 5000 0 4500	ARSENIC (AS) (UG/L) 14 2 6 0 13	SOL VED ARSENIC (AS) (UG/L) 0 2 7 7 0 11	(BA) (UG/L) 0 0 0 0	SUL VED RAHIUM (BA) (UG/L)	180 240 250 110 240 250 110 240 120 290 140 310	SOL VED HORON (B) (UG/L) 180 180 220 100 290 100 220 110 240 130 200
22 22 22 26 26 26 27 17 17 21 21 21 21	SOLVED NITHITE (NO2) (MG/L) 976 .00 .03 .03 .03 .00 .00	SOL VE O NITRITE PLUS NITRATE (N) (MG/L) .15 .02 .01	SULVED AMMONIA NITRO- GEN (N) (MG/L) .03 .33 .49 	SOL VED AMMONIA (NH4) (MG/L) .04 .43 .63 .01 .75	ALUM- (NUM) (AL) (UG/L) 60 2000 5500 40 10000 50 8000 40 4500 20000	SULVEO ALUM- INUM (AL) (UG/L) 10 2000 5700 20 10000 0 5000 0 4500	ARSENIC (AS) (UG/L) 14 2 8 0 13	SOL VED ARSENIC (AS) (UG/L)	(BA) (UG/L) 0 0 0 0	SUL VED RAHIUM (BA) (UG/L)	180 240 250 110 240 120 290 140 310 140 310 250 320	SOL VED HORON (B) (UG/L) 180 220 100 290 100 220 110 240 130 200
22 22 22 22 24 26 26 27 20 20 20 20 20 20 20 21 21 21 21 21	SOLVED NITHITE (ND2) (MG/L) 976 .00 .03 .03 .03	SOLVEO NITRITE PLUS NITRATE (N) (MG/L) .15 .02 .01	SULVED AMM()NIA NITHO- GEN (N) (MG/L) .03 .33 .49 	SOLVED AMMONIA (NH4) (MG/L) .04 .43 .63	ALUM- (NUM) (AL) (UG/L) 60 2000 5500 40 10000 50 8000 40 4500 20000 5000	SULVEO ALUM- INUM (AL) (UG/L) 10 2000 5700 0 10000 0 5000 0 4500 0 5000	ARSENIC (AS) (UG/L) 14 2 8 0 13	SOL VED ARSENIC (AS) (UG/L) 0 2 7	(BA) (UG/L) 0 0 0 0	SULVED RAHIUM (BA) (UG/L)	180 240 250 110 240 250 110 240 120 290 140 310 140 310	SOL VED (08) (UG/L) 180 180 220 100 290 100 220 110 240 130 200

Table 3.—Water-Quality Data from Lucky Bill Air Shaft, April 1976—June 1977—Continued

DATÉ	TUTAL CAD- MIUM (CD) (UG/L)	01S- SOLVED CAD- MIUM (CD)	TUTAL CHRO= MIUM (CR) (UG/L)	DIS- SULVED CHRO- MIUM (CR) (UG/L)	TOTAL COBALI (CU) (UG/L)	DIS- SULVED COBALT (CU) (UG/L)	TOTAL COPPER (CU) (UG/L)	DIS- SOLVED COPPER (CU) (UG/L)	TOTAL IRUN (FE) (UG/L)	DIS= SULVED IRON (FE) (UG/L)	TUTAL LEAD (Pb) (UG/L)	DIS- SULVED LEAD (PB) (UG/L)
APR , 19	76											25.0
22	180	9	Ú	Ů	<50	2	30	10	350	290	450	250
22	400	420	10	10	600	53	50	4	160000	150000	300	69
22	460	490	10	10	650	43	30	1 3	290000	270000	500	400
AUG 26	70	10							380	370	100	90
26	380	370				••			350000	330000	400	400
OCT									3,0000	330000	-00	400
20	80	12	0	0	50	2	<10	11	80	20	200	150
20	350	330	50	19	850	43	50	7	370000	240000	300	350
07	100	13			~-				150	150	200	97
07 FEB , 19		360							340000	270000	300	200
17	110	10							170	70	<100	98
17 APR	330	540							320000	300000	300	250
51	600	140		••					240	60	400	150
21 Jub	310	340							320000	290000	300	250
07 07	110	8	10	0	<50	0	20	8	180	20	200	99
07	300	350	50	20	800	800	50	8	320000	310000	300	250
DATE	DIS- SULVED LITHIUM (LI) (UG/L)	TUTAL MAN= GANESE (MN) (UG/L)	UIS- SULVE() MAN- GANESE (MN) (UG/L)	INTAL MERCURY (HG) (UG/L)	DIS- SOLVED MERCURY (HG) (UG/L)	TUTAL MOLYR- DENUM (MII) (UG/L)	DIS- SOLVED MOLYB- DENUM (M(J) (UG/E)	TOTAL NICKEL (NI) (UG/L)	DIS- SULVED NICKEL (NI) (UG/L)	TUTAL SELE- NIUM (SE) (UG/L)	DIS- SOLVED SELE- NIUM (SE) (UG/L)	DIS- SOLVED VANA- DIUM (V) (UG/L)
APR , 1	976											
22	70	80	60	.3	. 3	0	0	100	47	3	3	.0
22	160	4800	5000	. 3	.3	1	0	4000	3000	1	0	21
22	210	6100	5700	. 3	• 2	5	0	5400	4200	0	0	130
26	20	20	20					<50	17			.5
26	220	6600	6500					4600	5000			
0CT 20	30	30	30	. 1	.0	0	0	50	24	,	,	-
20	220	6000	6000	.1	•1	0	1	5000	5000	2	2	.7 120
DEC				• • •	• • •	·	•	3000	3000	v	Ū	120
07	30	50	50					500	85			.0
07 FEB , 1	110	5300	5400		••			6000	4100			120
17	40	60	50		••			50	31			.0
17 APR	200	6000	5500					3900	3900			.0
21	50	2700	50					1800	49			.0
21 JUN 07	210	5900	5500					3900	4000			110
07	210	10 5800	6200 6200	1. 5.	.0	0	0	<50	20	3	3	.0
	e.10	3600	9200	•	.0	1	0	4500	4500	0	0	150

T_{Δ}	RIF	3	Contin	hou

SAMP-						
SAMP- LING ZINC ZINC CARBON SUB- DEPTH (ZN) (UG/L) (UG/L) (MG/L) (MG/L) APR , 1976 22 17H						METHY⇒ L£N£
LING DEPTH (2N) (2N) (C) STANC (FF) (UG/L) (UG/L) (UG/L) (MG/L)						BLUE
DEPTH (ZN) (ZN) (C) STANC DATE (FI) (UG/L) (UG/L) (MG/L) (MG/L) (MG/L) APR, 1976 22 178 68000 68000 4.0 .1 22 210 350000 280000 2.2 .2 22 222 480000 490000 2.9 .8 AUG 26 205 20000 20000 26 228 470000 450000 27 190 46000 25000 3.4 .1 20 225 440000 440000 3.2 .0 DEC 07 190 27000 27000 FEB, 1977 17 190 36000 35000 FEB, 1977 17 190 49000 410000 APR 21 190 49000 49000 APR 21 190 49000 49000 21 225 412000 JUN 07 155 39000 39000 3.2 .1						ACTIVE
DATE (F1) (UG/L) (UG/L) (MG/L) (MG/L) APR , 1976 22 178						
APR , 1976 22 178						STANCE
22 178 68000 68000 4.0 .1 22 210 350000 280000 2.2 .2 22 222 480000 490000 2.9 .8 AUG 26 205 20000 20000 20 190 46000 25000 3.4 .1 20 225 440000 440000 3.2 .0 DEC 07 190 27000 27000 07 225 430000 420000 FEB , 1977 17 190 36000 35000 17 225 420000 410000 APR 21 190 49000 49000 21 225 412000 JUN 07 155 39000 39000 3.2 .1	DATE	(FI)	(UG/L)	(UG/L)	(MG/L)	(MG/L)
22 210 350000 280000 2.2 .2 22 222 480000 490000 2.9 .8 AUG 26 205 20000 20000 COT 20 190 46000 25000 3.4 .1 20 225 440000 440000 3.2 .0 DEC 07 190 27000 27000 FEB , 1977 17 190 36000 35000 T17 225 420000 410000 APR 21 190 49000 49000 Z1 225 412000 JUN 07 155 39000 39000 3.2 .1	APR , 1	976				
22 222 480000 490000 2.9 88 AUG 26 205 20000 20000 26 228 470000 450000 20 190 46000 25000 3.4 .1 20 225 440000 440000 3.2 .0 DEC 07 190 27000 27000 07 225 430000 420000 FEB , 1977 17 190 36000 35000 17 225 420000 410000 APR 21 190 49000 49000 21 225 412000 JUN 07 155 39000 39000 3.2 .1	22	178	68000	68000	4.0	.10
AUG 26 205	22	210	350000	280000	2.2	.20
26 205 20000 20000	22	555	480000	490000	2.9	.80
26 228	AUG					
OCT	26	205	20000	20000		
20 190	26	228	470000	450000		
20 225 440000 440000 3.2 .0 DEC 07 190 27000 27000 07 225 430000 420000 FEB , 1977 17 190 36000 35000 17 225 420000 410000 APR 21 190 49000 49000 21 225 412000 JUN 07 155 39000 39000 3.2 .1						
DEC 07 190	20	190	46000	25000	3.4	.10
07 190 27000 27000		225	440000	440000	3.2	.00
07 225						
FEB , 1977 17 190	07	190	27000	27000	-,-	
17 190 36000 35000			430000	420000		
17 225 420000 410000 APR 21 190 49000 49000						
APR 21 190 49000 49000 21 225 412000 JUN 07 155 39000 39000 3.2 .1		190	36000	35000		
21 190 49000 49000		225	420000	410000		
21 225 412000 JUN 07 155 39000 39000 3.2 .1						
JUN 07 155 39000 39000 3.2 .1	21	190	49000	49000		
07 155 39000 39000 3.2 .1		225		412000		
		155	39000	39000	3.2	.10
07 225 440000 440000 1.61	07	225	440000	440000	1.6	.10

determined are given in table 9. The fiftieth percentile is included as a measure of central tendency in addition to the mean, because the mean is significantly affected by extreme values of small samples.

In general, correlation is defined as the degree of association of two or more random variables. For this study, correlation is used to define the degree of linear association of two chemical or physical water-quality characteristics. The correlation coefficient is a numerical representation of the degree of association and ranges between -1 and +1. Correlation coefficients of -1 and +1 represent complete inverse and direct correlative associations, respectively, and a value of 0 indicates no correlative association. For hydrologic applications, a correlation coefficient greater than 0.7 or less than -0.7 is necessary to indicate a significant correlative association (V. Yevjevich, Colorado State University, oral communication, 1976).

According to the above criterion, several chemical properties of the mine-shaft water, including dissolved sulfate, calcium, magnesium, lithium, dissolved solids, and total hardness, demonstrate significant correlation to specific conductance (table 10). None of the chemical properties statistically

analyzed showed significant correlation to pH (table 11). However, when values of dissolved aluminum, zinc, and nickel were transformed to natural or Napierian logarithms, significant correlation was observed between the transformed variable and pH (table 12). Dissolved iron, manganese, and zinc concentrations in the mine-shaft water are significantly correlated to dissolved sulfate (table 13). Transformation of dissolved iron, manganese, and zinc values to natural or Napierian logarithms did not significantly affect their correlative association to dissolved sulfate (table 14). Transformed values of dissolved aluminum, however, were significantly correlated to dissolved sulfate, whereas untransformed values were not (table 14).

Regression represents a mathematical equation expressing one random variable as being correlatively related to another random variable. For this investigation, least-squares regression analysis was used to linearly relate one chemical or physical water-quality characteristic to another. The results of the regression analyses, the slopes and intercepts of the linear relations, are shown in tables 10–14. Figures 10–12 show graphical examples of the regression analyses.

20

Figure 10. Graph showing relationship of dissolved-solids concentration to specific conductance of mine-shaft water.

Table 4.—Water-Quality Data from Lavrion Mine Shaft, April 1976

Sampling depths in ft below land surface

				NON- CAR-	TUTAL	TOTAL	DIS- SOLVED	DIS- SOLVED MAG-	DIS-		SUD1UM AD-	DIS- SOLVED PO-
	SAMP- LING	TUR- BID-	HARD+ NESS	BUNATE HARD=	ACIDITY AS	ACIUITY AS	CAL- Clum	NE = SIUM	SOL VED SODIUM (NA)	PERCENT SUDIUM	SURP= TIUN RATIO	TAS- SIUM (K)
	DEPTH	ITY	(CA,MG)	NESS (MG/L)	H+ (MG/L)	CACU3 (MG/L)	(CA) (MG/L)	(MG) (MG/L)	(MG/L)	30010m	RAITU	(MG/L)
DATE	(FI)	(UTU)	(MG/L)	(MG/L)								
_		(UTV)	(MG/L)	(MG/L)								
APR , 1		37	1700	1700	17	844	470	120	45	6	.5	4.0
_	976	37 10	1700 1800	1700 1800	17 23	1140	510	130	55	6	.6	4.5
APR , 1	976 160	37	1700	1700	17							

Table 4.—Continued

DATE	BICAR- BI)NATE (HCO3) (MG/L)	CAR- BUNATE (CO3) (MG/L)	ALKA- LINITY AS CACU3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SULVED CHLD- RIDE (CL) (MG/L)	DIS- SULVED FLUM- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIU2) (MG/L)	DIS- SOLVED SOLIDS (RESI- DUE AT 180 C) (MG/L)	SUS- PENDED SULIDS (MG/L)	DIS- SULVED NITRATE (N) (MG/L)	DIS- SULVED NITRATE (NU3) (MG/L)	DIS+ SULVED NITRITE (N) (MG/L)
APR , 1	976											
28	0	0	0	2500	7.2	9.8	13	4080	16	.00	.00	.00
28	0	0	0	2 9 00 2700	8.0 7.8	15 14	17 16	4650 4360	4	.00	.00 .18	.00
DATE	DIS- SOLVED NITRITE (NO2) (MG/L)	DIS- SOLVED NITHITE PLUS NITRATE (N) (MG/L)	DIS- SOLVED AMMONIA NITRU- GEN (N) (MG/L)	DIS- SOLVED AMMONIA (NH4)	TOTAL ALUM- INUM (AL)	DIS- SULVED ALUM- INUM (AL)	TOTAL ARSENIC (AS)	DIS- SOLVED ARSENIC (AS)	TUTAL Harium (Ba)	DIS- SOLVED BARIUM (BA)	TUTAL BURUN (8)	DIS- SOLVED BURON (B)
		((1107)	(MG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
APR , 1	976 .00	.00	.34	.44	11000	14000	0	0	0	0	170	120
28	.00	.00	.49	.63	26000	29000	0	0	0	0	130	120 150
28	.00	.04	. 45	.58	280000	56000	í	1	0	ő	280	140
DATE	TOTAL CAD- MIUM (CD) (UG/L)	DIS- SOL VED CAD- MIUM (CD) (UG/L)	TOTAL CHRO= MIUM (CR) (UG/L)	DIS- SOLVED CHRO- MIUM (CR) (UG/L)	TITAL CUBALT (CU) (UG/L)	DIS- SULVED CDBALT (CO) (UG/L)	TOTAL COPPER (CU) (UG/L)	DIS- SOLVED COPPER (CU) (UG/L)	TOTAL IRON (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TUTAL LEAD (PB) (UG/L)	DIS- SULVED LEAD (PB) (UG/L)
APR , 1	976											
28	980	10	50	30	400	36	130	140	67000	76000	300	20
28	860 830	13 13	60 70	60 60	600 650	45 44	130 130	160 120	140000 160000	130000 130000	300 200	16 10
DATE	DIS- SOLVED LITHIUM (LI) (UG/L)	TOTAL MAN= GANESE (MN) (UG/L)	DIS- SULVED MAN- GANESE (MN) (UG/L)	TOTAL Mercury (Hg) (Ug/L)	DIS- SOLVED MERCURY (HG) (UG/L)	TUTAL MOLYB- DENUM (MO) (UG/L)	DIS- SULVED MOLYB- DENUM (MO) (UG/L)	TOTAL NICKEL (NI) (UG/L)	DIS+ SULVED NICKEL (NI) (UG/L)	TUTAL SELE- NIUM (SE) (UG/L)	DIS- SOLVED SELE- NIUM (SE) (UG/L)	DIS+ SOLVED VANA- DIUM (V) (UG/L)
APR ; 1	976								•		*****	(40,5)
28 28	140 200 200	4800 7800 8400	4400 6500 6300	.1	.1	0 0 0	0 0 0	2000 3800 4000	2300 3400 3100	1 1 1	0 1 0	22 60 39
			DA	SAM LI DEP TE (F	NG ZI: TH (Zi	AL SOL NC ZI N) (Z	N) (C	NIC ACT: BON SUI) STAI	NE UE I VE B= NCE			
			85 85	, 1976 16 18	2 4200	000 420	000	1.4	.00			

Table 5.—Water-Quality Data from Skelton Mine Shaft, April 1976—June 1977

 $Sampling\ depths\ in\ ft\ below\ land\ surface$

				DATE	SAMP- LING DEPTH (FT)	PH (UNITS)	TEMPER- ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)				
				APR , 1	.976 165	5.7	16.0	2250				
				18	160	5.1	16.0	2360				
				JUN , 1 06 06	150 165	3.9 3.4	16.5 17.0	2900 3200				
DATE	SAMP= LING DEPTH (F1)	TUR- BID- ITY (NIU)	HARD= NESS (CA,MG) (MG/L)	NON- CAR~ BONATE HARD- NESS (MG/L)	TUTAL ACIDITY AS H+ (MG/L)	TOTAL ACIDITY AS CACU3 (MG/L)	DIS- SOLVED CAL- CIUM (CA)- (MG/L)	DIS= SOLVED MAG- NE= SIUM (MG) (MG/L)	DIS- SOLVED SUDIUM (NA) (MG/L)	PERCENT SODIUM	SUDIUM AD= SURP= TIUN RATIO	DIS- SOLVED P()- TAS- SIUM (K) (MG/L)
APR , 1 26	1976 165	26	1300	1200	2.5	124	450	38	22	4	. 3	1.8
18 JUN , 1	160	23	1300	1300			440	45	25	4	.3	1.6
06	165	4.8	1600	1600	14	695	500	88	33	4	. 4	1.3
DATE	BICAR- BONATE (HCU3) (MG/L)	CAR- BONATE (CO3) (MG/L)	ALKA- LINITY ÁS CACU3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SULVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS= SOLVED SILICA (SIO2) (MG/L)	DIS- SOLVED SOLIDS (RESI- DUE AT 180 C) (MG/L)	SUS+ PENDED SDLIDS (MG/L)	DIS= SOLVED NITHATE (N) (MG/L)	DIS- SULVED NITRATE (NO3) (MG/L)	DIS= SOLVED NITRITE (N) (MG/L)
APR , 1	976 59	0	48	1300	4.7	1.8	12	2120	11	.11	.49	.01
0CT	9	0	7	1600	4.6	2.9	14	2400	27	.01	.04	.00
JUN , 1	.977	0	0	2300	5.0	2.3	18	3480	7	.02	.09	.00
DATE	DIS- SOLVED NITRITE (NO2) (MG/L)	DIS- SULVED NITRITE PLUS NITRATE (N) (MG/L)	DIS- SULVED AMMONIA NITRO- GEN (N) (MG/L)	DIS- SULVED AMMONIA (NH4) (MG/L)	TUTAL ALUM- INUM (AL) (UG/L)	DIS- SULVED ALUM- INUM (AL) (UG/L)	TUTAL ARSENIC (AS) (UG/L)	DIS- SOLVED ARSENIC (AS) (UG/L)	THTAL BAPIUM (RA) (UG/L)	DIS- SULVED BARIUM (BA) (UG/L)	TUTAL BURUN (B) (UG/L)	DIS- SOLVED BORON (B) (UG/L)
APR , 1 26	976	.12	.08	.10	680	540	1	0	0	0	1700	
18	.00	. 0 1	.19	.24	600v	5500	2	1	0	0	100	60 70
JUN , 1	.00	• 05	.26	.33	26000	30000	5	1	100	200	170	110
DATE	TUTAL CAD- MIUM (CD) (UG/L)	DIS- SHLVED CAD- MIUM (CD) (UG/L)	TOTAL CHRU- MIUM (CR) (UG/L)	DIS- SOLVED CHRU- MIUM (CR) (UG/L)	TOTAL COBALT (CU) (UG/L)	DIS- SOLVED COMALT (CO) (UG/L)	TOTAL CUPPER (CU) (UG/L)	DIS- SOLVED COPPER (CU) (UG/L)	TOTAL IRUN (FE) (UG/L)	DIS= SOL VED IRON (FE) (UG/L)	TUTAL LE4D (P8) (UG/L)	DIS- SULVED LEAD (PB) (UG/L)
APR , 1 26	976 160	9	10	0	150	89	20	3	8900	140	100	1
18 Jun , 1	49 ₀	470	10	10	200	49	60	48	00068	28000	200	30
06	1100	1200	150	140	300	350	500	220	70	60	200	350

						TABLE	5.—Co	ntinued	l				
DATE	01S= SALVE LITHIU (LI) (UG/L	.D Iн	T(TAL MAN- GANESE (MN) (UG/L)	DIS- SULVED MAN- GANESE (MN) (UG/L)	TOTAL MERCURY (HG) (UG/L)	DIS- SOLVED MERCURY (HG) (UG/L)	TUTAL MOLY8- DENUM (MO) (UG/L)	DIS- SOLVED MOLYB- DENUM (MO) (UG/L)	TOTAL NICKE (NI) (UG/L	(NI)	TOTAL SELE- NIUM (SE) (UG/L)	DIS- SULVED SELE- NIUM (SE) (UG/L)	DIS- SQL VED VANA- DIUM (V) (UG/L)
APR . 1			620	670	,5	1.3	1	0	60	0 500	0	0	.0
26 ()CT	•	0	620	610	.,	1.03	•	·				_	
18		0	740	760	. 4	.8	0	0	65	0 600	1	1	1.2
Jun , 1	977	0	1600	1600	.2	. 2	0	0	110	0 1300	1	1	11
				D.	DE:	ING Z PTH (TAL SUL INC ZI ZN) (Z	(4)	TAL ANIC A RUJN	ETHY- LENE BLUE CTIVE SUB- TANCE MG/L)			
				APA	. 1976								
				26	1	5 5	9000 47	000	.9	.00			
					1 1	50 11	0000 110	000	.6	.00			
					1 , 1977	5 25	0000 250	000	. 7	.00			

Also shown in tables 10–14 are the standard errors of estimate for each linear-regression analysis performed. The standard error of estimate is defined as the standard deviation of the residual differences between values estimated by regression analysis and actual values. Therefore, approximately two-thirds of the residuals would fall within the range defined by the standard error of estimate. In cases where the linear regressions were analyzed between the independent variable and a dependent variable transformed by natural or Napierian logarithms, the standard errors of estimate are given in logarithmic units.

Suitability of Mine-Shaft Water for Selected Uses

Water-quality requirements for different major water uses, such as agriculture, industry, and public supply, differ considerably. In fact, water suitable for one user may not be suitable for another even within the same broad water-use category. Also, two raw waters whose characteristics, although different, cause them to be rated poor supplies may not be equivalent. One water may be amenable to economic treatment, whereas

the other may not. Therefore, the suitability of water for a specific use depends not only on the characteristics of the water, but also on the treatment process available.

In this report the criteria for judging the suitability of mine-shaft water for selected uses were obtained from the report Water Quality Criteria, 1972, prepared by the National Academy of Sciences and the National Academy of Engineering. Tables 15-19 give chemical and physical properties, their recommended maximum values, and the percentage of samples in which the recommended maximum values were exceeded for each of the respective water uses: public water supply; fresh, once-through, industrial cooling water; fresh, makeup-recycle, industrial cooling water; brackish industrial cooling water; and general irrigation water. The water-quality properties given in tables 15-19 are not the only ones on which the judgment of suitability for use is based. Rather, they are the constituents and properties for which excessive values were observed in water from one or more of the sampled mine shafts.

Raw water within the mines is not suitable without treatment for any of the uses considered. Because of the number and wide

distribution of samples containing excessive concentrations of metals, such as cadmium and lead, and because of the inability of current domestic water-treatment practices to remove them, the mine-shaft water is not suitable as a source of public water supply.

As previously stated, water-quality requirements differ considerably even within a single water-use category. This is especially true for the broad water-use categories of agriculture and industry. Therefore, each potential agricultural or industrial water user must decide what water-quality characteristics are necessary or undesirable and then determine from the available data whether necessary treatment is technologically available and economically practical.

Hydrology of the Mined Area

Because movement of highly mineralized water from the mines into streams or the Roubidoux Formation, the principal aq-

uifer in the area, would have deleterious effects on water quality, recharge to and discharge from the mined areas are important. At present, recharge to the mines, from surface runoff into open shafts during periods of heavy precipitation and through solution cavities and fractures in the surrounding Boone Formation, is relatively unhindered. As a result, the abandoned mines are steadily filling with highly mineralized water, and they contained by mid-1976 an estimated 100,000 acre-ft (D. C. Brockie, oral communication). The rate of recharge to the mines, estimated from pumping rates required to dewater the mines, is 22 ft³/s, resulting in an average rise in the water level of about 1.5 ft/month since cessation of mining activities (D. C. Brockie, oral communication, 1976). The total discharge from the Boone Formation in Ottawa County in 1948, considering all sources of discharge, was estimated at 43 ft³/s (Reed and others, 1955). Subsurface recharge to

Table 6.—Water-Quality Data from New Chicago Mine Shaft, April 1976—June 1977

Sampling depths in ft below land surface

SPF -

				CIFIC
				CON-
	SAMP-			DUCT-
	LING	PH	TEMPER-	ANCE
	DEPTH		ATURE	(MICRU-
DATE	(FT)	(UNITS)	(DEG C)	MHUS)
APR , 1	976			
29	167	7.6	16.0	2520
29	174	7.6	16.0	2500
29	179	7.3	16.0	2520
29	181	6.6	16.0	2520
29	183	5.4	16.5	2680
29	192	4.8	17.0	2520
29	197	4.9	17.5	2850
AUG				
26	160		18.0	
26.,,	174		18.0	
26	187	7.0	18.0	2850
26	197	3.8	17.5	3840
OCT				
20	165	7.6	16.5	3200
20	180	7.6	16.5	3200
20	195	4.8	16.0	3200
DEC				
06	165	7.0	14.5	2650
06	180	7.1	15.0	2800
06	195	4.7	16.0	2950
FEB . 19				
17	165	6.2	14.5	3150
17	180	6.2	14.5	3150
17	195	4.2	15.0	3200
APR				
21	165	7 - 1	15.0	3000
21	185	7.1	15.0	3000
21	187	4.4	16.0	3300
21	195	4.3	16.0	3350
JUN				
08	160	7.1	16.0	2550
08	180	4.6	15.0	3300
08	187	4.4	16.0	3300
08	195	3.8	16.0	3800

Table 6.—Continued

DATE	SAMP- LING DEPTH (FT)	TUR- BID- LTY (NTU)	HARI)= NESS (CA,MG) (MG/L)	NON- CAR- HUNATE HARD- NESS (MG/L)	TUTAL ACIDITY AS H+ (MG/L)	TUTAL ACIDITY AS CACU3 (MG/L)	DIS= SOLVED CAL= CIUM (CA) (MG/L)	DIS- SULVED MAG- NE- SIUM (MG) (MG/L)	DIS= SULVED SUDIUM (NA) (MG/L)	PERCENT SOUTUM	SUDIUM AD- SURP- TIUN RATIO	DIS= SOLVED PO= TAS= SIUM (K) (MG/L)
APR , 19	976											
29	174	4.6	1600	1500	.8	40	430	130	50	ц	. 3	2.9
29	192	10	1600	1600	4.6	558	490	82	28	4	. 3	1.9
29 AUG	197	38	1600	1600	5.9	293	500	86	58	4	. 3	1.6
26	187	3.8	2000	1900	. 4	20	520	170	34	4	. 3	4.1
26	197	11	1800	1800	15	745	510	130	36	4	, u	2.8
OCT												
20	165	160	2100	2000			490	210	140	13	1.3	4.3
20	195	75	1900	1800			510	140	36	4	. 4	3.1
DEC												_
06	165	8.4	2100	2000	.8	40	500	200	44	4	. 4	3.7
06	195	90	1900	1900	8.2	407	510	140	36	4	. 4	3,1
FEB , 1		_								_		
17	165	8.0	2000	1900	1.7	84	490	180	44	5	• 4	3.4
17	195	45	1800	1800	6.0	298	500	140	39	4	. 4	3.2
APR					_					_		
21	165	1.3	5000	1900	.7	35	490	190	45	5	. 4	4.0
21 Jun	195	.50	2100	2100	5.0	248	600	140	39	4	. 4	3,2
06	160	.80	1700	1600	.2	10	470	130	32	4	. 3	3.2
08	160	10	1900	1900	12	596	530	140	38	4	. 4	3.5
08	195	39	2100	2100	23	1140	500	500	57	6	.5	4.0

BICAR- BONATE (HCO3) (MG/L)	CAR- BONATE (CO3) (MG/L)	ALKA- LINITY AS CACO3 (MG/L)	DIS- SOLVED SULFATE (SO4) (MG/L)	DIS- SOLVED CHLO- RIDE (CL) (MG/L)	DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SULVED SILICA (SIU2) (MG/L)	SOLVED SOLIDS (RESI- DUE AT 180 C) (MG/L)	SUS- PENDED SOLIDS (MG/L)	DIS- SOLVED NITRATE (N) (MG/L)	DIS- SOLVED NITRATE (NO3) (MG/L)	DIS- SOLVED NITRITE (N) (MG/L)
76							3450	,,	. 12	.53	.00
114	0	94		-							.00
9	0										.00
6	0	5	5100	4.8	5.6	12	2430	10	.01	•••	•••
							2000				
166	0										
0	0	0	2300	8.1	1.2	16	3010	36			
		. 70	7700	7 //		12	3210	173	.21	.93	.00
										. 31	.00
5	0	4	2300	5.8	5,4	14	3400	70	•01	• 31	•••
			2000	7.0	1 1	12	3170	1			
	0	0	5600	5.6	2.9	15	3410	3/			
	, ,	30	3000	7 7		1.6	3090	0			
				_							
0	0	0	2200	14	3.9	14	3330	25			
	•		1000	7 7	• 0		7040				
U	U	U	2500	12	0.0	15	3030	6		••	
180	0	150	1600	4.8	. 9	13	2690	0	. 18	.80	.00
		0									.01
-	0	Ó	3000	6.2	1.0	19	4800	Ž	.01	.04	.01
	BONATE (HCO3) (MG/L) 76 114 9 6	BONATE (HCO3) (CO3) (CO3) (MG/L) 76 114 0 9 0 166 0 168 5 94 0 0 177 24 0 0 110 0 180 0 0 180 0 0	BONATE (HCO3) (CO3) (AG/L) 76 114 0 94 9 0 7 6 0 5 166 0 136 0 0 0 168 0 138 5 0 4 94 0 77 0 0 0 0 177 24 0 20 0 110 0 90 0 180 0 0 0 180 0 0 0	BUNATE (HCO3) (CO3) CACO3 (SO4) (MG/L) 76 114	BUNATE (HCO3) (CO3) CACU3 (SO4) (HCC) (HCC	BONATE	BIONATE HONATE (HCO3) (HCCO3)	BICKAP BONATE (HCO3) (CO3) (MG/L) (MG	BICAN- BONATE BONATE AS SULFATE RIDE RIDE RIDE (HC03) (C03) (C03) (S04) (CL) (F) (S102) 180 C) SOLIDS (MG/L) (MG/L	BICAN- BONATE AS SULFATE RIDE RIDE (HG/L) (H	BICAN- BONATE BONATE AS SULFATE RIDE RIDE (HCO3) (CO3)

 $\begin{array}{c} \text{Table 6.--Water-Quality Data from New Chicago Mine Shaft,} \\ \text{April 1976--June 1977---} Continued \end{array}$

DATE	DIS- SULVED NITRITE (NO2) (MG/L)	DIS- SOLVED NITRITE PLUS NITRATE (N) (MG/L)	DIS- SULVED AMMONIA NITRO- GEN (N) (MG/L)	DIS- SOLVED AMMONIA (NH4) (MG/L)	TOTAL ALUM- INUM (AL) (UG/L)	DIS- SULVED ALUM- INUM (AL) (UG/L)	TOTAL ARSENIC (AS) (UG/L)	DIS- SOLVED ARSENIC (AS) (UG/L)	TUTAL BARIUM (BA) (UG/L)	DIS= SOLVED BARIUM (BA) (UG/L)	TUTAL BURUN (B) (UG/L)	DIS- SOLVED BURON (B) (UG/L)
APR . 1	976											
29	.00	.12	.01	.01	200	30	0	0	0	0	330 190	130 160
29	.00	.03	.02	.03 .12	3100 3700	110 5400	0 1	0	0 0	0	190	180
AUG			•••		130	80					90	70
26					2900	0		••		••	210	140
OCT	.00	.21	.00	.00	130	20	1	0	0	0	100	70
20	.00	.07	.15	.19	14000	13000	1	1	0	ŏ	150	100
DEC 06		.20			340	10					120	80
06					12000	14000					150	100
FEB , 1	1977				1400	820					110	80
17					9000	0					140	130
4PR 21					140	0					110	70
21					26000	59000					140	140
JUN 08	.00	.18	.01	.01	20	10	0	0	100	100	100	70
08	.03	.02	.27	. 35	23000	24000	0	0	100	500	210	150
08	.03	.02	.46	.62	42000	42000	5	1	100	100	560	500
DATE	TUTAL CAD= MIUM (CD) (UG/L)	DIS- SOLVED CAD- MIUM (CD) (UG/L)	TOTAL CHRU= MIUM (CH) (UG/L)	DIS- SOLVED CHRO- MIUM (CR) (UG/L)	TUTAL COBALT (CO) (UG/L)	DIS- SOLVED COBALT (CO) (UG/L)	TOTAL COPPER (CU) (UG/L)	DIS- SOLVED COPPER (CU) (UG/L)	TOTAL IRUN (FE) (UG/L)	DIS~ SDL VED IRUN (FE) (UG/L)	TUTAL LEAD (PB) (UG/L)	DIS- SOLVED LEAD (PB) (UG/L)
APR . 1	CAD- MIUM (CD) (UG/L)	SOLVED CAD- MIUM (CD) (UG/L)	CHR()= MIUM (CH) (UG/L)	SOLVED CHRO- MIUM (CR) (UG/L)	COBALT (CO) (UG/L)	SOLVED COBALT (CO) (UG/L)	CUPPER (CU) (UG/L)	SOLVED COPPER (CU) (UG/L)	IRUN (FE) (UG/L)	SOL VED IRUN (FE) (UG/L)	LEAD (PB) (UG/L)	SOLVED LEAD (PB) (UG/L)
APR , 1	CAD= MIUM (CD) (UG/L) .976	SOLVED CAD- MIUM (CD) (UG/L)	CHR()= MIUM (CR) (UG/L)	SOLVED CHRO- MIUM (CR) (UG/L)	COBALT (CO) (UG/L)	SOLVED COBALT (CO) (UG/L)	CUPPER (CU)	SOLVED COPPER (CU) (UG/L)	IRUN (FE)	SOL VED IRUN (FE)	LEAD (PB)	SOLVED LEAD (PB)
APR , 1 29 29	CAD- MIUM (CD) (UG/L)	SOLVED CAD- MIUM (CD) (UG/L)	CHR()= MIUM (CH) (UG/L)	SOLVED CHRO- MIUM (CR) (UG/L)	COBALT (CO) (UG/L)	SOLVED COBALT (CO) (UG/L)	COPPER (CU) (UG/L)	SOLVED COPPER (CU) (UG/L)	IRUN (FE) (UG/L)	SUL VED IRUN (FE) (UG/L)	LEAD (P8) (UG/L)	SOLVED LEAD (PB) (UG/L)
APR , 1 29 29 29	CAD= MIUM (CD) (UG/L) 976 50 350 360	SOLVED CAD- MIUM (CD) (UG/L)	CHRU- MIUM (CH) (UG/L)	SOLVED CHRO- MIUM (CR) (UG/L)	COBALT (CO) (UG/L)	SDLVED COBALT (CO) (UG/L)	C(1PPEN (CU) (UG/L) 10 50	SOLVED COPPER (CU) (UG/L)	IRUN (FE) (UG/L) 390 2100	SDL VED IRUN (FE) (UG/L)	(P8) (UG/L)	SOLVED LEAD (PB) (UG/L)
APR , 1 29 29 29 AUG 26	CAD- MIUM (CD) (UG/L) 976 50 350	SOLVED CAD- MIUM (CD) (UG/L)	CHR()= MIUM (CR) (UG/L) 0 10 20	SOLVED CHRO- MIUM (CR) (UG/L)	(CO) (UG/L) (UG/L)	SOLVED COBALT (CO) (UG/L)	C(IPPER (CU) (UG/L) 10 50 50	SOLVED COPPER (CU) (UG/L)	IRUN (FE) (UG/L) 390 2100 18000	SDL VED IRUN (FE) (UG/L) 40 100 20000	(PB) (UG/L) (UG/L)	SOLVED LEAD (PB) (UG/L)
APR , 1 29 29 AUG 26 26	CAD- MIUM (CD) (UG/L) 976 50 350 360	SOLVED CAD- MIUM (CD) (UG/L)	CHR()= MIUM (CR) (UG/L) 0 10 20	SOLVED CHRO- MIUM (CR) (UG/L)	(CO) (UG/L) 100 200 250	SOLVED COBALT (CO) (UG/L)	COPPER (CU) (UG/L) 10 50 50	SOLVED COPPER (CU) (UG/L)	IRUN (FE) (UG/L) 390 2100 18000	SDL VED IRUN (FE) (UG/L) 40 100 20000	(PB) (UG/L) <100 100 100	SOLVED LEAD (PB) (UG/L) 11 66 120
APR , 1 29 29 AUG 26 OCT 20 20	CAD- MIUM (CD) (UG/L) 976 50 350 360 920	SOL VED CAD- MIUM (CD) (UG/L) 11 16 130 10 630	CHR()- MIUM (CR) (UG/L)	SOLVED CHRO- MIUM (CR) (UG/L)	100 200 250	SOLVED COBALT (C(1) (UG/L)	(CUPPE# (CU) (UG/L)	SOLVED COPPER (CU) (UG/L)	IRUN (FE) (UG/L) 390 2100 18000 510 83000	SDL VED IRUN (FE) (UG/L) 40 100 20000	(PB) (UG/L) (100 100 100 100 400	SOLVED LEAD (PB) (UG/L) 11 66 120
APR , 1 29 29 AUG 26 CT 20	CAD- MIUM (CD) (UG/L) 976 50 350 360 50 920	SOLVED CAD- MIUM (CD) (UG/L) 11 16 130 10 630	CHR()- MIUM (CH) (UG/L) 0 10 20	SOLVED CHRO- MIUM (CR) (UG/L)	100 200 250	SOLVED COMALT (CO) (UG/L)	COPPER (CU) (UG/L) 10 50 50	SOLVED COPPER (CU) (UG/L) 2 17 36	1RUN (FE) (UG/L) 390 2100 18000 510 83000	SDL VED IRUN (FE) (UG/L) 40 100 20000 80 67000	(PB) (UG/L) <100 100 100 400	SOLVED LEAD (PB) (UG/L) 11 66 120 14 500
APR , 1 29 29 AUG 26 CT 20 20 DEC 06	CAD- MIUM (CD) (UG/L) 976 50 350 360 920 430	SOLVED CAO- MIUM (CD) (UG/L) 11 16 130 10 630	CHR()- MIUM (CR) (UG/L) 0 10 20 10 50	SOL VED CHRO- MIUM (CR) (UG/L) 10 20 10 30	100 200 250 50 350	SOLVED COBALT (CO) (UG/L)	COPPER (CU) (UG/L) 10 50 50 	SOLVED COPPER (CU) (UG/L) 2 17 36	1RUN (FE) (UG/L) 390 2100 18000 510 63000 490 61000	SDL VED IRUN (FE) (UG/L) 40 100 20000 80 67000 30 55000	(PB) (UG/L) <100 100 100 400 100 300	SOLVED LEAD (P8) (UG/L) 11 66 120 14 500
APR , 1 29 29 AUG 26 CT 20 20 DEC 06	CAD- MIUM (CD) (UG/L) 976 50 350 360 920 430	SOLVED CAD- MIUM (CD) (UG/L) 11 16 130 10 630 16 410	CHK()- MIUM (CK) (UG/L)	SOL VED CHRO- MIUM (CR) (UG/L) 10 20	100 200 250 50 350	SOLVED COBALT (CO) (UG/L) 88 0 0	C(IPPE# (CU) (UG/L) 10 50 50 	SOLVED COPPER (CU) (UG/L) 2 17 36 3 100	1RUN (FE) (UG/L) 390 2100 18000 510 83000 490 61000	SDL VED IRUN (FE) (UG/L) 40 100 20000 80 67000 30 55000	(PB) (VG/L) <100 100 100 100 400 100 300	SOLVED LEAD (PB) (UG/L) 11 66 120 14 500
APR , 1 29 29 29 26 70 20 DEC 06 FEB , 1 17	CAD- MIUM (CD) (UG/L) 976 50 350 360 920 20 430 100 400	SOLVED CAD- MIUM (CD) (UG/L) 11 16 130 10 630 16 410	CHKU- MIUM (CH) (UG/L)	SOL VED CHRO- MIUM (CR) (UG/L)	100 200 250 50 350	SOLVED COBALT (CO) (UG/L)	C(IPPE# (CU) (UG/L) 10 50 50 <10 120	SOL VED COPPER (CU) (UG/L)	1RUN (FE) (UG/L) 390 2100 18000 510 83000 490 61000 1000 60000	SDE VED IRUN (FE) (UG/L) 40 100 20000 80 67000 30 55000 30 59000	(PB) (VG/L) <100 100 100 100 400 100 300	SOLVED LEAD (PB) (UG/L) 11 66 120 14 500 1 300
APR , 1 29 29 AUG 26 OCT 20 DEC 06 17 APR 21	CAD- HIUM (CD) (UG/L) 976 350 350 360 50 920 20 430 100 400 977	SOL VED CAO- MIUM (CD) (UG/L) 11 16 130 630 10 630 11 11 390	CHK()- MIUM (CK) (UG/L)	SOL VED CHRO- MIUM (CR) (UG/L)	100 200 250 50 350	SOL VED COBALT (CO) (UG/L) 88 0	C(IPPE# (CU) (UG/L) 10 50 50 <10 120	SOLVED COPPER (CU) (UG/L) 2 17 36	1RUN (FE) (UG/L) 390 2100 18000 510 83000 490 61000 1000 60000	SDE VED IRUM (FE) (UG/L) 40 100 20000 80 67000 30 55000 30 59000	(PB) (VG/L) <100 100 100 400 100 300 100 300 <100	SOLVED LEAD (PB) (UG/L) 11 66 120 14 500 1 300
29 29 29 26 26 DEC 06 FEB , 1 17 17 17 21 21	CAD- MIUM (CD) (UG/L) 976 50 350 360 20 430 100 400 977	SOL VED CAD- MIUM (CD) (UG/L) 11 16 130 630 16 410 11 390 8	CHK()- MIUM (CH) (UG/L)	SOL VED CHRO- MIUM (CR) (UG/L) 10 20 10 30	100 200 250 50 350	SOL VED COBALT (C(1)) (UG/L) 88 0 0 0	C(IPPER (CU) (UG/L) 10 50 50 <10 120	SOLVED COPPER (CU) (UG/L)	1RUN (FE) (UG/L) 390 2100 18000 510 83000 490 61000 1000 60000 950 42000	SDE VED 1 RUM (FE) (UG/L) 40 100 20000 80 67000 30 55000 30 59000 30 41000	(PB) (VG/L) <100 100 100 400 100 300 100 300 <100 200	SOLVED LEAD (PB) (UG/L) 11 66 120 14 500 1 250 10 200
29 29 29 29 29 20 26 DEC 06 DEC 17 17 17 21 21 JUN 08	CAD- MIUM (CD) (UG/L) 976 350 360 50 920 20 430 100 400 977 150 320 570	SOL VED CAD- MIUM (CD) (UG/L) 11 16 130 10 630 16 410 11 390 8 340 65 560	CHK()- MIUM (CK) (UG/L)	SOL VED CHRO- MIUM (CR) (UG/L)	100 200 250 350	80LVED COBALT (C(1)) (UG/L) 88 0 0 0	C(IPPE# (CU) (UG/L) 10 50 50 <10 120	SOLVED COPPER (CU) (UG/L) 2 17 36 3 100	1RUN (FE) (UG/L) 390 2100 18000 510 83000 490 61000 1000 60000 950 42000 350 120000	SDE VED 1RUM (FE) (UG/L) 40 100 20000 80 67000 30 55000 30 59000 41000 60 100000	(PB) (PB) (UG/L) <100 100 100 400 100 300 <100 200 100 300	SOLVED LEAD (PB) (UG/L) 11 66 120 14 500 1 250 10 200 100 300
APR , 1 29 29 4UG 26 26 DEC 06 DEC 17 17 17 17 17 17 17 17 17 17 21 21 JJUN 08 08 08	CAD- MIUM (CD) (UG/L) 976 350 350 360 920 20 430 100 400 977 150 320 570 570	SOLVED CAD- MIUM (CD) (UG/L) 11 16 130 10 630 16 410 11 390 8 340 65 560	CHKU- MIUM (CH) (UG/L) 0 10 20 10 50	SOL VED CHRO- MIUM (CR) (UG/L)	100 200 250 350	88 0 0 0 0 8 64	C(IPPER (CU) (UG/L) 10 50 5010 120 20 120	SOLVED COPPER (CU) (UG/L) 2 17 36 3 100	1RUN (FE) (UG/L) 390 2100 18000 510 83000 490 61000 1000 60000 950 42000	SDE VED IRUM (FE) (UG/L) 40 100 20000 67000 30 55000 30 59000 41000	(PB) (VG/L) <100 100 100 400 100 300 100 300 <100 200	SOLVED LEAD (PB) (UG/L) 11 66 120 14 500 1 250 10
29 29 29 29 29 20 26 DEC 06 DEC 17 17 17 21 21 JUN 08	CAD- MIUM (CD) (UG/L) 976 350 360 50 920 20 430 100 400 977 150 320 570	SOL VED CAD- MIUM (CD) (UG/L) 11 16 130 10 630 16 410 11 390 8 340 65 560	CHKU- MIUM (CK) (UG/L)	SOL VED CHRO- MIUM (CR) (UG/L)	100 200 250 350 350	SOLVED COBALT (C(1)) (UG/L) 88 0 0	C(IPPE# (CU) (UG/L) 10 50 5010 120 20	SOLVED COPPER (CU) (UG/L)	1RUN (FE) (UG/L) 390 2100 18000 510 63000 490 61000 1000 60000 950 42000 350 120000	SDE VED IRUN (FE) (UG/L) (UG/L) 40 100 20000 80 67000 30 59000 30 41000 60 100000 50	(PB) (VG/L) <100 100 100 100 300 100 300 <100 200 100	SOLVED LEAD (PB) (UG/L) 11 66 120 14 500 1 250 10 200

		\mathbf{T}_{λ}	ABLE 6.—	-Contin	ued					
SULVED MAN- LITHIUM GANESE (LI) (MN)	GANESE MER (MN) (SULVED LERCURY (HG)	MOLYK- ! DENUM (MU)	DIS- SULVE() 40LYB- DENUM (MO) (UG/L)	TUTAL NICKEL (NI) (UG/L)	DIS- SULVED NICKEL (NI) (UG/L)	TIDTAL SELE- NIUM (SE) (UG/L)	DIS- SULVEU SELE- NIUM (SE) (UG/L)	DIS- SULVED VANA- DIUM (V) (UG/L)
APR , 1976				1	1	200	150	0	0	.5
29 50 310 29 90 1300	310 1100	.8 .3	.4	1	Ú	800	700	i	1	.7
29 110 1300	1400	.5	.5	ō	Ü	900	1000	1	1	2.7
AUG 26 60 400	380					100	91			_ •
26 180 3500	2800					1800	1600			32
OCT 70 200	500	. 1	.2	0	1	100	100	1	1	. 1
20 130 2000 DEC	1500	. 1	•5	0	0	1100	1100	1	1	24
06 80 440	420					900	500			.0
06 130 1700 FEB , 1977	1900					1200	1200			18
17 110 840	820		••			500	500			.0
17 130 1800 APR	1800					1000	1100			5.5
21 90 400	420					250	250			.0
21 180 2500 JUN	2500					1700	1600			7.0
08 60 220 08 190 2800	550	. 1	.2	0	0	50	100	0	0	.0
08 260 4200	3100 4600	.5	• 2	0	0	1600 2600	1700 2900	2	5	.0
	UATE	SAMP- LING DEPTH (FT)	TUTAL ZINC (ZN) (UG/L)	DIS- SOLVED ZINC (ZN) (UG/L)	TI)TAL URGANIC CARBIN (C) (MG/L)	SUB-	E E			
	APR , 19	76				4	^			
	29	174	18000		3.6					
	29 29 AUG	192 197	110000		3.9		0			
	26 26	187 197	17000 260000				-			
	20	165	6300	6500	3.	3 .0	0			
	DEC	195	140000		•					
	06 06 FEB , 19	165 195 977	50000 130000	130000	-		-			
	17	165	55000		-		-			
	17 APR	195	120000		-	• •	•			
	21	165	55000		-		-			
	21 Jun	195	170000		-		-			
	08	160 180	7000 190000		3.					

TUR-BID-ITY (NTU)

₽0 72

140

24 160

130 55 80

2.1 33 95

110 400

DATE

18... 18... APR 21... 21... 21... JUN 08...

APP , 1976 23... 166 23... 162 AUG 25... 160 (ICT 19... 162 19... 160 DEC 07... 160 07... 180 FEB , 1977 18... 160

180

155 170 180

155

170 180

TABLE 7.—WATER-QUALITY DATA FROM BIRTHDAY MINE SHAFT, APRIL 1976-June 1977

Sampling depths in ft below land surface

	DATE	SAMP- LING DEPTH (FT)	PH (UNITS)	TEMPER- ATURE (DEG C)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHUS)				
	APR , 19	16							
	23	168	5.2	16.0	4100				
	23	172	5.2	15.5	4200 4200				
	23	175	5.2	15.5	4390				
	23	182	5.3	15.0	4370				
	25	160	7.2	16.0	1060				
	25	167	3.4	17.0					
	25	173	3.7	16.5					
	25	177	4.2	16.0					
	25	180	5.8	16.0	3840				
	OCT	162	6.0	15.0	1900				
	19 19	180	5.6	15.0	3800				
	DEC	•							
	07	160	6.6	14.5	1550				
	07	170	3.A	15.0	3300				
	97	180	5.7	16.0	4000				
	FEB , 19	145	5.7	15.0	3000				
	18	160	5.0	15.0	3850				
	18	170	4.5	15.0	3850				
	18	180	5.4	15.5	4050				
	APR		, ,	15.0	1550				
	21	155 167	7.2 5.3	15.5	3650				
	21	170	5.0	16.0	3850				
	51	180	5.8	16.0	4400				
	08	155	6.8	16.0	830				
	08	162	6.8	15.5	830				
	08	166	5.1	16.0	3500 3800				
	08	170 175	5.0 5.3	16.0 16.0	3800				
	08	180	5.8	16.5	4100				
HARD- NESS (CA,MG) (MG/L)	NON= CAR= BUNATE HARD= NESS (MG/L)	TUTAL ACIDITY AS H+ (MG/L)	TOTAL ACIDITY AS CACOS (MG/L)	DIS- SULVED CAL- CIUM (CA) (MG/L)	DIS- SOLVED MAG- NE- SIUM (MG) (MG/L)	DIS= SULVED SUDIUM (NA) (MG/L)	PERCENT SODIUM	SUDIUM AD- SURP- TIUN HATIO	DIS- SOLVED PO- TAS- SIUM (K) (MG/L)
					210	5)	5	.5	2.7
5500	5500	17	844	490	230 240	52 53	5	.5	2.6
5500	5500	18	894	490	240	33	,		
540	460	.2	10	160	35	29	10	.5	3.7
1600	1600	13	646	420	130	40	5	. 4	3.8
							_		
890 2100	850 2100			250 490	64 220	40 47	9 5	.6 .4	4.9
					_	_			
830	740	. 4	20	230	65	63	14	1.0	6.3
2400	2400	18	894	540	260	46	4	. 4	3.0
1900	1900	20	993	480	180	54	6	.5	4.2
2100	2100	20	993	490	210	51	5	.5	3.8
2100	2100	20	773	• 70	210	31	,	• •	3.0
730	660	.2	10	200	55	59	15	1.0	4,6
5000	2000	9.0	447	470	190	61	6	. 6	4.6
2500	2500	10	497	570	270	47	4	. 4	3.2
410	330	. 2	10	120	27	19	9	. 4	, ,
5500	2200	22	1090	500	230				3.7
2500	2400	19	943	540	270	63 44	6 4	.6 .4	5.0 3.5
-500	L-00		, ,	540	210	44	4	. 4	3.3

					Table	: 7.— <i>Ca</i>	ontinue	d				
DATE	BICAR- BONATE (HCU3) (MG/L)	CAR= BONATE (CO3) (MG/L)	ALKA÷ LINITY AS CACO3 (MG/L)	SOLVED		DIS- SOLVED FLUO- RIDE (F) (MG/L)	DIS- SOLVED SILICA (SIU2) (MG/L)	DIS- SOLVED SOLIDS (RESI- DUE AT 180 C) (MG/L)	SUS- PENDED SOLIOS (MG/L)	DIS- SOLVED NITRATE (N) (MG/L)	DIS- SOLVED NITRATE ' (NO3) (MG/L)	DIS+ SOLVED HITRITE (N) (MG/L)
PR , 197		0	7	3000	6.7	8.1	11	5150	138 134	.01	.04	.00
23 23	24	ŏ	50	3000	6.8	7.2	11	5200				
UG 25	107	0	88 1	520 2100	3.2 9.1	.4 2.9	6.8 10	864	0 156			
25 CT	1	0					6.4	1590	29	.01	.04	.00
19	5 1 4 5	0	42 37	1000 3100	4.7 7.3	1.8 2.5	12	4620	165	.01	.04	.01
EC		0	92	870	5.5	.5	7.8	1390	3			
07	112	ō	0	3500	6.9	1.1	12	5000	149			••
EB , 19	0	0	0	2900	7.4	8.6	13 13	4570 4860	115 216			
18	0	0	0	3200	6.8	6.5						
PR 21	84	0	69	760	3.4	1.1	4.9	1260 4300	9 70			
21	0	0	0	2700 3100	6.4	7.6 1.2	13 12	5100	186			
21	0	0					6.8	630	4	.36	1.6	.04
08	94	0	77	360 3200	2.3 6.9	.6 8.6	14	4960	84	.06	.27	.01
08	0 39	0	0 32	3200	7.2	.4	9,4	5340	156	.05	.22	.01
DATE	OIS- SOLVED NITRITE (NU2) (MG/L)	DIS- SULVED NITRITE PLUS NITRATE (N) (MG/L)	DIS- SULVED AMMONIA NITRU- GEN (N) (MG/L)	DIS- SOLVED AHMONIA (NH4) (MG/L)	TUTAL ALUM= Inum (AL) (UG/L)	DIS- SOLVED ALUM- INUM (AL) (UG/L)	TOTAL ARSENIC (AS) (UG/L)	DIS- SOLVED ARSENIC (AS) (UG/L)	TUTAL Barium (Ba) (UG/L)	DIS- SOLVED BAHIUM (BA) (UG/L)	TUTAL BORUN (B) (UG/L)	DIS- SULVED HORUN (B) (UG/L)
APR , 1	97b		74	.45	9100	8600	2	i	0		220	200
23	.00	.01	.35	.43	8800	8900	2	5	0	0	240	500
AUG					60	40					110	90 240
25					4000	4000				-	130	
UCT				.24	980	600	1	1	(110 160
	• •										C C 11	11.0
19	.00	.02	.19 .17	.52	4000	3200	0	0	(, ,		
19 19 DEC	.03	.02	:17		4000 60	3200	0	0			• • •	140
19 19 DEC 07	.00		.17	.22								140 170
19 19 DEC	.03	.02	.17		60 4000	2000					230	-
19 19 DEC 07 07 FEB	.03 1977		.17	.22	60	O			 	 	230	170
19 19 DEC 07 07	.03 1977		.17		60 4000 13000 8900	0 2000 13000 7900	 	 	 		230 240 220	170 150
19 19 DEC 07 07 FEB , 18 APR 21	.03 1977 			.22	60 4000 13000 A900	2000 13000	:: :-	 			230 240 220 120 230	170 150 160 90 150
19 19 DEC 07 07 FEB 18 APR 21	.03 1977				60 4000 13000 8900	0 2000 13000 7900	:-				230 240 220 120 230	170 150 160
19 19 DEC 07 FEB , 18 APR 21 21 JUN	1977				60 4000 13000 A900 180 11000	0 2000 13000 7900 20 11000	::				230 240 220 120 230	170 150 160 90 150 160
19 19 DEC 07 07 FEB 18 18 APR 21 21	.03	.02	.17		60 4000 13000 A900 180 11000 1000	2000 13000 7900 20 11000 1000					230 240 220 120 230 230 230 110 260	170 150 160 90 150 160 70

Table 7.—Water-Quality Data from Birthday Mine Shaft, April 1976—June 1977—Continued

DATE	TOTAL CAD- MIUM (CD) (UG/L)	DIS- SOLVED CAD- MIUM (CD) (UG/L)	TOTAL CHRO- MIUM (CR) (UG/L)	DIS- SOLVED CHRO- MIUM (CR) (UG/L)	TOTAL COBALT (CO) (UG/L)	DIS- SULVED COBALT (CO) (UG/L)	TOTAL COPPER (CU) (UG/L)	DIS- SOLVED COPPER (CU) (UG/L)	TOTAL IRÚN (FE) (UG/L)	DIS- SOLVED IRON (FE) (UG/L)	TUTAL LEAD (PB) (UG/L)	DIS- SOLVED LEAD (PB) (UG/L)
APR , 1	976	900	20		500							
23	900	900	10	50 50	580 600	550 580	50 50	36 60	110000 110000	110000	300 300	79 93
AUG 25	60	60							240	210	<100	12
25 UCT	270	530							110000	89000	300	40
19	130	8	10	0	150	74	<10	2	15000	13000	100	51
DEC	100	60	20	0	600	71	10	5	150000	110000	200	13
07	<10 160	1 60							2000	710 83000	100 300	2
FEB , 1		360					•					67
18	360	370							190000 210000	180000 200000	300 300	300 300
APR 21	130	140							280			
21	280	300							190000	140 170000	100 300	50 200
21 JUN	100	80							200000	200000	200	200
08	260 60	55 180	0 10	10 20	<50 650	9 700	<10 70	8 90	710 240000	90	<100	7
08	80	20	10	50	800	800	10	4	230000	230000 230000	200 300	40 17
DATE	DIS- SULVED LITHIUM (LI) (UG/L)	TOTAL MAN= GANESE (MN) (UG/L)	DIS- SULVED MAN- GANESE (MN) (UG/L)	TOTAL MERCURY (HG) (UG/L)	DIS- SULVED MERCURY (HG) (UG/L)	TUTAL MOLYB- DENUM (MO) (UG/L)	DIS= SULVED MOLYB= DENUM (MO) (UG/L)	TOTAL NICKEL (NI) (UG/L)	(NI) (NI) NICKEL SOLVED	TOTAL SELE- NIUM (SE) (UG/L)	DIS- SOLVED SELE- NIUM (SE) (UG/L)	DIS- SOLVED VANA- DIUM (V) (UG/L)
APR , 1	976			_								
23 23 AUG	250 250	5500 5500	5600 5500	.9	.7 1.0	0	0	3700 3900	3300 3500	1 0	0	39 36
25	20 120	70 12000	70					<50	50			. 4
LIC T			7400	••				5000	1800			
19 19 UEC	50 150	1300	950 9000	.0	.0	0 0	0	500 2500	500 2500	0 5	1 0	49.8
07	40	1800	1500					500	150			.0
07 FEB , 19	160 977	11000	10000		••	••		8000	2900			45
18	160 160	5200 7400	5000 7000					2900	3100			110
APR 21	30	390	300				••	3000	3200			100
21	160	5000	4400					100	97			.0
21 JUN	140	15000	14000					2900 2800	2900 3000			50 50
08 08	20	100	190	. 4	.0	0	υ	50	50	0	0	.0
08	200 140	5000 13000	5200 13000	• 1 • 1	• 0	0	0	3000	3500	0	0	130
					• 0		0	2800	3000	0	υ	50

	Т	ABLE 7.–	–Conti	nued	
					METHY-
					LENE
			DIS-	TUTAL	BLUE
	SAMP-	TUTAL	SOLVED	ORGANIC	ACTIVE
	LING	ZINC	ZINC	CARBON	SUB-
	DEPTH	(ZN)	(ZN)	(C)	STANCE
DATE	(FT)	(UG/L)	(UG/L)	(MG/L)	(MG/L)
APR , 1	976				
23	168	470000	490000	.0	.00
23	182	490000	490000	.0	.00
AUG					
25	160	9200	9400		
25	180	340000	260000		
OCT					
19	162	65000	65000	4.2	.00
19	180	370000	360000	5.4	.00
DEC					
07	160	54000	4400		
07	180	390000	390000		
FEB . 19					
18	160	340000	340000		
18	180	390000	380000		
APR					
21	155	8400	8300		
21	170	310000	270000		
21	180	410000	370000		
JUN					
08	155	6400	6700	2.4	.00
08	170	340000	340000	4.6	.10
08	180	410000	400000	5.1	.10

the Boone Formation is derived mainly from the outcrop area to the east. In the study area, direct recharge to the Boone is minimal, owing to the overlying impervious shale. The amount and direction of discharge from the area is unknown.

Periodic water-level measurements made in the Blue Goose well from September 1975 to February 1980 (fig. 13) show that the water level rose at an average rate of 2.6 ft/ month. Generally, the water-level rise was greatest after periods of high precipitation and after the mine workings were filled with water (figs. 6, 13). The equilibrium water level probably will approximate the level that existed before mining and accompanying dewatering began. Although no definite information regarding the pre-mining static water level is available, Siebenthal (1908) indicated that Tar Creek (fig. 1) is the likely drainage level for the region. Tar Creek is approximately 790 ft above mean sea level in the southern part of the study area and approximately 840 ft above mean sea level in the northern part. In the vicinity of the Blue Goose well, Tar Creek is approximately 800 ft above mean sea level. Therefore, based on the assumption that the equilibrium water-level altitude is 800 ft above mean sea level and on the fact that the rate of waterlevel rise has apparently declined, the present water level in the Blue Goose well should be near equilibrium. In the future, the water level should fluctuate about the present level. Eventually, the water in the mines will move down gradient toward major drainage basins in the area.

Siebenthal (1915) stated that the chemical characteristics of water in mines in the Miami, Oklahoma, mining district were similar to those of the deep wells in the same area. Also, the quantity of water pumped from the mines required to keep the work areas dry remained relatively constant, being essentially free of seasonal variations. Siebenthal concluded that the water in the mines in the Miami mining district was supplied under artesian pressure from deeper formations such as the Roubidoux, the source of water supply to most municipalities in the area. Brockie, Hare, and Dingess (1968) also implied a hydraulic connection between the Roubidoux and Boone Formations by concluding that the origin of the ores mined in the area was from warm, saline, orebearing solutions that migrated through the Cambrian-Ordovician formations and upward into the Mississippian formations

Figure 11. Graph showing logarithmic relationship of dissolved aluminum concentration to pH of mine-shaft water. Untransformed values of dissolved aluminum concentration given in micrograms per liter.

where zones of weakness, such as the Miami Trough and windows in the Chattanooga Shale, were present. Siebenthal (1915, p. 274) further stated:

So also there must be a constant deep-seated increment to the mine waters of all the mining districts of the Joplin region, though this increment may be almost completely masked by the seasonal variations.

If there is hydraulic connection between the mined areas of the Boone Formation and the underlying Roubidoux Formation as Siebenthal contended, then continued heavy pumping and drawdown in the Roubidoux, coupled with increasing water levels in the mines, will cause the difference in head between the two formations to decrease. If the decrease in head differential is such that it is reversed, downward migration of contaminated mine water into the Roubidoux is possible.

Reed and others (1955) noted that a considerable volume of water is discharged through many springs from the Boone Formation east of the study area in eastern Ottawa County, Oklahoma. In addition, rural wells withdraw water for domestic and stock use from the Boone outside of the mined areas. A possibility exists, therefore, that after reaching equilibrium level, water in the mined areas will migrate sufficiently to contaminate the rural domestic and stock wells. However, Barks (1977), in a study of the Joplin area, Missouri, noted that contamination of the shallow aquifer by the highly mineralized mine water was limited to the immediate area of mining. In the same report, Barks observed that streams

Table 8.—Water-Quality Data from Consolidated No. 2 Mine Shaft, April 1976—June 1977

Sampling	depths	in	ft	below	land	surface
----------	--------	----	----	-------	------	---------

SPF -

				SPE-
				CIFIC
				CON-
	SAMP-			DUCT-
	LING	ьч	TEMPER-	ANCE
	DEPTH		ATURE	(MICRU-
DATE	(FT)	(UNITS)	(DEG C)	MH(IS)
APR , 1				
20	179	7.8	16.0	920
20	191	7.5	16.0	940
21	210	7.2	15.5	1040
21	227	6.9	16.0	1080
21	229	5.0	16.0	4420
21	234	4.8	16.0	4600
AUG				0.10
25	165	7.7	17.0	810
25	185	7.8	16.5	
25	215	7.7 7.7	16.0	
25	225		16.0	4670
25	230	5.3 5.0	16.0 16.0	4670
25	235	3.0	10.0	
LICT	165	6.7	14.5	830
19	215	6.7	15.0	840
19	230	5.3	14.5	4000
19 DEC	230	3.3	14.5	-000
07	165	7.4	14.5	900
07	215	7.4	14.5	890
07	230	5.5	15.5	4650
	977	,,,	.,,,,	
17	165	7.6	13.5	1030
17	215	7.5	14.0	1080
17	252	5.7	14.5	4080
17	230	5.3	15.0	4280
APR				
21	152	5.8	14.5	1170
21	165	7.2	14.5	1080
21	215	7.3	14.5	1080
21	220	7.2	14.5	1080
21	230	5.3	15.5	4150
JUN		- • -		
07	165	7.4	16.0	810
07	215	7.6	15.5	740
07	225	7.1	16.0	810
07	230	5.6	16.0	4100
	_			

Table 8.—Water-Quality Data from Consolidated No. 2 Mine Shaft, April 1976—June 1977—Continued

Samp					2 11 1011 <i>1</i>	1010 0	ONE IO	1-00100	mucu				
20 191 3.0 520 470 .2 10 170 24 10 1 4 2 1.7 2 1.2 2 1.0 22. 22. 10 180 25 11 4 2 2 1.6 2 1.0 22. 1.6 22. 22. 22. 10 180 25 11 4 2 2 1.6 2 1.6 22.		LING DEPTH (FT)	BIO-	NESS (CA,MG)	CAR- BONATE MARD- NESS	ACIDITY AS H+	ACIDITY AS CACIJ3	SOLVED CAL= CIUM (CA)	SOLVED MAG- NE- SIUM (MG)	SÜLVED SÜDŞUM (NA)		AD- SURP- TIUN	SULVED PO= TAS= SIUM (K)
21 227 5.0 550 510 .2 10 180 250 211 0 40 30 77 7 2.24 22 165 1.0 440 370 .11 5.0 150 16 7.3 31 1 1.6 2.2 23 165 1.0 440 370 .15 5.0 150 16 7.3 31 1 1.6 2.2 24 230 140 1300 1300 1300 130 1300 130 130 130 13	APR , 1												
21 229 88 2200 2200 18 8 89 220 2300 23 1180 520 240 8.0 7 7 7 7 2 2.2 2 8.0 230 230 230 230 180 520 240 8.0 1 1 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20									10	4	.2	1.7
21 234 72 2300 2300 23 1140 520 240 8,0 1 1.0 2.0 2.0 2.0 2.0 1.1 5.0 16 16 7.1 3 1.1 1.6 2.0 2.0 190 1300 1300 18 80 340 100 43 7 7 .7 5 3.4 11.6 3.0 150 150 150 18 80 340 100 43 7 7 .7 5 3.4 11.6 3.0 150 150 150 150 150 150 150 150 150 15	21					2						.2	1.8.
AUG 25 165 1.0 440 370 1.1 5.0 150 1.6 7.1 3 1.1 1.6 25 230 140 1300 1300 1300 18 894 340 100 43 7 7.5 3.4 19 165 3.0 480 420 160 20 8.9 4 2 2.0 19 165 3.0 480 2200 2200 510 220 8.9 4 2 2.0 19 165 1.1 520 480 1.1 5.0 170 23 9.7 7 7 7 .7 3.4 10 230 150 2200 2200 220 99 3 560 240 77 7 7 7 7 7 7 7 3.9 FELS ILVIT 18 165 1.0 570 520 1.1 5.0 180 29 12 4 .2 2.1 19 230 160 2200 2200 2200 21 1080 520 230 81 7 7 .7 3.6 APP 21 250 160 2200 2200 2200 21 1080 520 230 81 7 7 .7 3.6 APP 21 250 10 570 520 1.1 5.0 180 29 12 4 .2 2.1 21 250 10 570 520 1.1 5.0 180 29 12 4 .2 2.1 21 250 70 2200 2200 11 584 510 230 77 7 7 7 .7 3.6 APP 21 250 200 2200 2200 11 584 510 230 77 7 7 7 .7 3.8 APP 21 250 200 200 2200 220 11 584 510 230 77 7 7 7 .7 3.8 21 250 200 200 2200 220 10 554 510 230 77 7 7 7 3.8 21 250 200 200 2200 220 10 554 510 230 77 7 7 7 3.8 21 250 200 200 2200 220 10 554 510 230 77 7 7 7 3.8 21 250 200 200 2200 220 10 554 510 230 77 7 7 7 3.8 22 250 200 200 2200 220 10 554 510 230 77 7 7 7 3.8 22 250 200 200 2200 220 10 554 510 230 77 7 7 7 3.8 22 250 200 200 2200 220 10 554 510 220 80 77 7 7 7 3.8 22 250 200 200 2200 220 10 550 510 20	21												
25 230 140 1300 1300 18 894 340 100 43 7 15 3.4 OCT 194 165 3.0 480 420 160 20 8.9 4 22 2.0 194 165 3.10 2200 2200 160 20 8.9 7 7 7 7 4.1 DEC 250 155 1.1 520 440 .1 5.0 170 23 9.7 7 7 7 7 7 7 3.9 FEB 1477 17 165 1.0 570 520 21 1040 520 230 81 7 7 7 7 7 3.9 FEB 1477 17 165 1.0 570 520 21 1040 520 230 81 7 7 7 7 3.6 APP 21 165 1.0 570 520 21 1040 520 230 81 7 7 7 7 3.6 APP 21 165 1.0 570 520 11 5.0 180 29 12 4 22 2.1 230 70 2200 2200 2201 15 546 510 230 77 7 7 7 7 3.8 APP 21 230 70 2200 2200 220 1090 150 16 7 1 3 1 1.4 07 230 200 2200 2200 220 220 1090 510 220 80 7 7 7 3.8 APP 1916 410 460	AUG			2300	2300	6.3	1140	520	240	8.0	1	• 1	5.2
25 230 140 1300 1300 18 894 340 100 43 7 , 5 3.4 OCT			1.0	440	370	, 1	5.0	150	16	7.1	3	. 1	1.6
0CT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		230	140	1300	1300	18							
19. 230 130 2200 2200 510 230 81 7 7 .7 4 4.7 6.1 000 000 000 000 000 000 000 000 000 0												••	
DEC. SO SO SECULD SECULD SO SO SO SO SO SO SO S	19											.2	2.0
07 155	19	230	130	5500	2200			510	230	81	7	. 7	4.1
07 230		165	1 - 1	520	440	,	E 0	. 70	27			_	
FEB. 1477 17 165 1.0 570 520 1.1 5.0 180 29 12 4 .2 2.1 17 230 160 2200 2200 21 1040 520 230 81 7, 7 3.6 APR 21 165 1.0 570 520 1.1 5.0 180 29 12 4 .2 2.1 21 220 70 2200 2200 11 546 510 230 77 7 7 7 7 3.6 APR 21 165 1.0 570 520 21 1546 510 230 77 7 7 7 7 3.4 OT 185 1.0 440 380 .0 0 1546 71 3 11 1.4 OT 230 200 2200 2200 22 1040 510 220 80 77 7 7 3.8 OT 230 200 200 2200 22 1040 510 220 80 7 17 7 3.8 BICAN- BINATE BINATE BINATE AS SULFATE RILL (HCU3) (CH3) (CH3) (CH3) (CH3) (MG/L)													
17 230 160 2200 2200 21 1040 520 230 61 7 .7 3.6 APR 21 165 1.0 570 520 230 11 540 510 230 77 7 7 .7 3.6 21 230 70 2200 2200 11 540 510 230 77 7 7 .7 3.4 07 165 1.0 440 380 .0 510 510 220 80 7 7 7 7 7 .7 3.4 07 230 200 2200 2200 2200 220 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 2200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 200 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 200 2200 220 1000 510 220 80 7 .1 1 3 .1 1.4 07 230 200 200 200 200 200 200 200 200 200				2400	2-00	20	773	360	240	"	,	• /	3.9
17. 230		165	1.0	570	520	. 1	5.0	180	29	12	ц	. 2	2 1
21 165 1.0 570 520 11 5.0 180 29 12 4 .2 2.1 3.4 3.4 3.1 1.4 3.4 3.8 3.4 1.4 3.4 1.4 3.	17	230	160	5500	5500			-					
21 230 70 2200 2200 11 546 510 220 77 7 7 .7 3.4 27 230 200 200 2200 220 1000 510 220 800 77 7 7 .7 3.4 27 230 200 200 2200 220 1000 510 510 220 80 7 .7 3.8 27 230 200 200 2200 2200 22 1000 510 510 220 80 7 .7 3.8 27 230 200 200 2200 2200 22 1000 510 510 200 80 7 .7 3.8 28.	APR									9.	•	• '	3.6
Section Sect	21,,,					. 1	5.0	180	29	12	и	د	3 (
07 165 1.0 440 380 .0 .0 .0 150 16 7.1 3 .1 1.4 07 230 200 220 220 22 1090 510 220 80 7 .7 3.8 11 1.4 07 230 200 200 2200 22 1090 510 220 80 7 .7 3.8 11 1.4 07 230 200 200 2200 220 1090 510 220 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 3.8 201 20 20 80 7 3.8 201 20 20 80 80 7 3 .7 3.8 201 20 20 80 80 7 3 .7 3.8 201 20 20 80 80 7 3 .7 3.8 201 20 20 80 80 7 3 .7 3.8 201 20 20 80 80 7 3 .7 3.8 201 20 20 80 80 7 3 .7 3.8 201 20 20 80 80 80 80 80 80 80 80 80 80 80 80 80		230	70	2200	5500	11	546	510	230				
07 230 200 2200 2200 22 1090 510 220 80 7 1.7 3.8 HICAR		165	1 0	4.4.5	7.00	_						• •	3.4
## BICAR- CAR- LINITY SULVED CHLU- FLUO- SOLVED SULVED SUL						22.0	.0					. 1	1.4
BICAR			20	2500	2200	22	1090	510	550	80	7	. 7	3.8
DATE (HC(3) (CH3) (CH3) (CH3) (AC) (Sh4) (CL) (F) (Sh2) (BG/L) (MG/L) (M				LINITY	SIJL VED	SOL VED CHLU=	SULVED FLUO-	SOLVED	SUL VED SUL I DS	Sus=			
DATE (MG/L) (MG/												NITRATE	
APR , 1976 20 6a	DATE												
20 6a 0 53 460 2.1 .3 10 795 4 .26 1.2 .00 21 57 0 47 520 1.7 .4 9.8 641 3 .24 1.1 .00 21 0 0 0 3100 6.2 1.9 8.4 5160 106 .00 .00 .01 21 0 0 0 3200 6.6 1.6 9.8 5380 36 .01 .04 .00 21 0 0 0 7 3200 6.6 1.6 9.8 5380 36 .01 .04 .00 25 81 0 66 360 .5 .4 11 6.7 11 93 UCT 19 76 0 62 440 1.1 .7 11 722 12 .22 .97 .00 19 7 0 6 3400 7.0 2.4 7.7 5160 186 .42 1.9 .00 DEC 07 71 0 58 490 1.3 .3 12 768 0 UT 17 57 0 47 510 3.1 .5 13 838 0 EER 1977 17 57 0 47 510 3.1 .5 13 838 0 17 57 0 47 510 3.1 .5 13 838 0 21 55 0 45 500 1.8 6 8.8 4970 73 21 57 0 0 47 510 3.1 .5 13 838 0 21 57 0 0 48 500 6.8 3.5 8.0 5180 93 21 57 0 0 47 510 3.1 .5 13 838 0 21 57 0 0 48 500 6.8 3.5 8.0 5180 93 21 57 0 0 47 510 3.1 .5 13 838 0 21 57 0 0 47 510 3.1 .5 13 838 0 21 57 0 0 48 500 6.8 3.5 8.0 5180 93 21 57 0 0 0 3300 6.8 3.5 8.0 5180 93 21 57 0 0 0 0 3300 6.8 3.5 8.0 5180 93 21 57 0 0 0 0 3000 6.3 1.5 8.8 4970 73			_		(.0, 2,	(1.07)	(1072)	(40/6)	(MG/L)	(MG/L)	(MG/L)	(MG/L)	(MG/L)
21 57 0 47 520 1.7 .4 9.8 841 3 .24 1.1 .00 21 0 0 0 3100 6.2 1.9 8.4 5160 106 .00 .00 .01 21 0 0 0 3200 6.6 1.6 9.8 5360 36 .01 .04 .00 AUG 25 81 0 66 360 .5 .4 11 649													
21 0 0 0 3100 6.2 1.9 8.4 5160 106 .00 .00 .00 .01 .04 .00 .00 .01 .04 .00 .01 .04 .00 .00 .01 .04 .00 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .00 .01 .04 .00 .00 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .00 .01 .01 .01 .04 .00 .00 .00 .00 .00 .00 .00 .00 .00								10	795	4	.26	1.2	-00
21 0 0 0 3100 6.6 1.6 9.8 5160 106 .00 .00 .01 AUG AUG 25 81 0 66 360 .5 .4 11 649	21								841	3	.24		
AUG	21										.00		
25 1 0 1 1600 9.1 1.7 11 93 17 19 76 0 62 440 1.1 .7 11 722 12 .22 .97 .00 19 7 0 6 3400 7.0 2.4 7.7 5160 186 .42 1.9 .00 00 00 00 3300 6.8 3.5 8.0 5180 93	AUG	,	,,	J	3200	0.0	1.6	9.8	5380	36	.01	.04	
UCT 1 0 1 1600 9.1 1.7 11 93 19 19 19 19 19 19 19 19 19 19 19 19 19		81		66	360	.5	_4	11	AUA				
19 76 0 62 440 1.1 .7 11 722 12 .22 .97 .00 19 7 0 6 3400 7.0 2.4 7.7 5160 186 .42 1.9 .00 DEC 07 71 0 58 490 1.3 .3 12 768 0 07 20 0 16 3500 7.0 1.9 9.2 5090 74 17 57 0 47 510 3.1 .5 13 838 0 17 0 0 0 3300 6.8 3.5 8.0 5180 93 21 55 0 45 500 1.8 6 12 845 2 21 55 0 45 500 1.8 6 12 845 2 21 78 0 0 64 370 1.1 4 12 622 0 .21 .93 .00		1	0			9.1	1.7						
19 7 0 6 3400 7.0 2.4 7.7 5160 186 .42 1.9 .00 DEC		-								,,	- -		
DEC						1.1		11	722	12	.22	.97	.00
07 71 0 58 490 1.3 .3 12 768 0		7	0	6	3400	7.0	2.4	7.7	5160				
07 20 0 16 3500 7.0 1.9 9.2 5090 74		7 1	n	5A	490	1 7	7		•				•
717 57 0 47 510 3.1 .5 13 838 0				_									
17 57 0 47 510 3.1 .5 13 838 0 17 0 0 0 3300 6.8 3.5 8.0 5180 93 17 21 55 0 45 500 1.8 6 12 845 2 21 0 0 0 3000 6.3 1.5 8.8 4970 73 17 21 78 0 64 370 1.1 .4 12 622 0 .21 .93 .00 07 78 0 0 0 0 3100 5.9 1.8 2.0 1.2 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	FEB , 1	977	· ·	10	3300	7.0	1.9	9.2	5090	74			
1/ 0 0 0 3300 6.8 3.5 8.0 5180 93	17	57	0	47	510	3.1	.5	13	838	0			
APR 21 55 0 45 500 1.6 .6 12 845 2 21 0 0 0 3000 6.3 1.5 8.8 4970 73 07 78 0 64 370 1.1 .4 12 622 0 .21 .93 .00	17	0	0	U									
21 0 0 0 3000 6.3 1.5 8.8 4970 73	APR		_						•		_		
Jun	21												
07 0 0 0 3100 5 9 1 8 9 4 5 6 6 1 .93 .00	JUN	· ·	U	U	3000	6.3	1.5	8.8	4970	73			
07 0 0 0 3100 5 9 1 8 9 4 5 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	07	7 A	0	64	370	1.1	4	13	4.33	_			
		0		-									
						-•	1.0	0.4	3100	114	.02	.09	.01

				ſ	Table 8	.—Con	tinued					
UATE	01S= SULVED NITRITE (NO2) (MG/L)	DIS- SUL VED NITHITE PLUS NITHATE (N) (MG/L)	DIS- SULVED AMMUNIA NITRU- GEN (N) (MG/L)	DIS- SOLVED AMM()NIA (NH4) (MG/L)	TUTAL ALUM- INUM (AL) (UG/L)	DIS- SULVED ALUM- INUM (AL) (UG/L)	TUTAL ARSENIC (AS) (UG/L)	DIS- SOLVED AKSENIC (AS) (UG/L)	TOTAL RAFIUM (BA) (UG/L)	DIS- SULVED BARIUM (HA) (UG/L)	TUTAL BORGN (B) (UG/L)	015- 50LVED 80RUN (8) (UG/L)
APR , 1									***	100	60	30
20	.00	.26	.02	.03	90 90	10	0	0 1	100	100	170	100
21	.00	.24	.00 85.	.00	7300	7700	3	2	100	100	180 190	150 120
21 AUG	.00	.01	.28	. 36	12000	10000	2	1	0			
25					60 15000	30 5000					120 90	40 100
25 OC T												
19	.00	.22	.00	.00	150	0	1	0	0	0	70	40
19	.00	.42	.27	. 35	10000	5000	10	10	0	0	240	170
DE.C 07					40	0					60	60
07					10000	5000					240	190
FEB , 1	1977				40	0					70	40
17					4500	1400					270	170
APR 21					40	10					50	30
21					4500	4500					240	140
JUN 07	.00	.21	.00	.00	60	20	0	0	100	100	60	30
07	.03	.03	.27	. 35	200	500	5	6	500	200	280	170
	Ti•TAL CAD⇔	DIS- SULVED CAD-	TOTAL CHRO-	DIS- SULVED CHR()-	TUT∆L	DIS- SOLVED	TOTAL	DIS- SULVED	TOT≜L	DIS- SULVED	TUTAL	DIS-
	ΜIJUM	MIUM	WIUM	MIUM	CUBALT	COBALT (CO)	CUPPER (CU)	COPPER (CU)	IRUN (FE)	IRON (FE)	LEAD (Pb)	LEAD (PB)
DATE	(CD) (UG/L)	(UG/L)	(CR) (UG/L)	(CR) (UG/L)	(CII)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
APF ,	1976											
50	80			0	<50	0	10	4	650 800	0 670	<100 <100	2
21	100 780			0 20	<50 800	3 53		70	250000	130000	300	200
21	950		40	30	450	56	100	100	510000	130000	500	400
AUG 25	110								120	60	<100	10
25	620	360							290000	210000	400	200
19	90	80	10	0	<50	4			140	40	100	3
19 DEC	570	540	20	10	750	61	30	33	300000	310000	300	300
07		70							70	40	<100	3
07 FEB ,	540	540							300000	290000	300	350
17	60								120	0	<100	1
17 APR	580	600							310000	300000	400	450
21									480	40	100	50
21 Jun	580	610			••				590000	270000	400	400
07				10	<50	a		-	300	70	o	(
07	530	550	50	30	750	800	30	13	350000	53000	400	350

Table 8.—Water-Quality Data from Consolidated No. 2 Mine Shaft, April 1976—June 1977—Continued

DATE	DIS- SULVED LITHIUM (LI) (UG/L)	TOTAL MAN= GANESE (MN) (UG/L)	DIS- SOLVED MAN- GANESE (MN) (UG/L)	TOTAL MERCURY (HG) (UG/L)	DIS- SOLVED MERCURY (HG) (UG/L)	TOTAL MOLYB- DENUM (MO) (UG/L)	DIS- SOLVED MOLYB- DENUM (MO) (UG/L)	TOTAL NICKEL (NI) (UG/L)	DIS- SOLVED NICKEL (NI) (UG/L)	TOTAL SELE- NIUM (SE) (UG/L)	DIS- SULVED SELE- NIUM (SE) (UG/L)	DIS- SOLVED VANA- DIUM (V) (UG/L)
APR , 1	976											
20	30	100	80	.8	.7	3	0	50	3	1	1	• 1
21	40	8.0	80	.2	.2	2	0	50	32	1	1	1
21	210	5800	5700	. 4	. 4	0	0	3300	3400	0	0	150
21	220	6600	5900	.5	•6	0	0	3800	47	0	0	150
AUG								45.0				.5
25	20	90	100			*-		<50	10			
25	120	6000	4200					3500	1500			
OC T	_			_			0	50	39	1	1	1.0
19	30	40	30	.2	.4	0	-			-	:	130
19	200	5500	5400	• 5	. 3	0	0	3500	3400	1	1	130
DEC	30	50	40					900	37			.0
07			-									60
07	190	6000	50					6000	3300			60
FEB . 1		4.0	60					50	36			.0
17	40	60				_						200
17 APR	200	5600	5500					3400	3600		•••	200
21	40	100	100		*-			50	55	••		.0
21 JUN	190	5600	5100					3200	3200			110
07	50	160	160	.2	.0	1	0	<50	14	1	0	.0
07	300	5400	5600	. 1	.2	0	0	3500	3400	0	0	160

					METHY-
					LENE
			DIS-	TOTAL	BLUE
	SAMP-	TOTAL	SILVED		ACTIVE
	LING	ZINC	ZINÇ	CARBON	SUB-
	DEPTH	(ZN)	(ZN)	(C)	STANCE
DATE	(FT)	(UG/L)	(UG/L)	(MG/L)	(MG/L)
APR , 19	976				
20	191	3000	3200	5.4	.10
21	227	4900	4000	4.7	.00
21	229	280000	310000	4.7	.10
21	234	360000	380000	4.8	.10
AUG					
25	165	5200	2200		
25	230	300000	150000		
UCT					
19	165	3900	3900	1.7	.00
19	230	290000	290000	. 9	.00
DEC					
07	165	30000	3500		
07	230	560000	280000		
FEB , 1	977				
17	165	3300	3300		
17	230	300000	300000		
APR					
21	165		4200		
21	230		592000		
JUN					
07	165	2100	2100	.7	.00
07	230	310000	310000	1.0	.00

 $\begin{array}{c} \text{Table 9.} \text{--} \text{Chemical and Physical Properties of Mine-Shaft Water Determined} \\ \text{and Maximum, Minimum, Mean, and 50th Percentile Values} \end{array}$

Chemical or	Number		Valu	es	· · · · · · · · · · · · · · · · · · ·
physical	of	Maximum	Minimum	Mean	50th Percen-
property	analyses				tile
Acidity (as CaCO3)					
(mg/L)	66	1,340	0	465	320
Alkalinity (as CaCO ₃)					
(mg/L)	77	308	0	61	23
Aluminum, dissolved					
(ug/L)	77	42,000	0	4,880	460
Aluminum, total					
(ug/L)	77	280,000	10	9,040	1,700
Ammonia, dissolved,					
as N (mg/L)	44	.65	.00	.2	1 .18
Arsenic, dissolved					
(ug/L)	44	11	0	2.2	1.0
Arsenic, total					
(ug/L)	44	14	0	2.8	1.6
Barium, dissolved					
(ug/L)	44	600	0	55	0
Barium, total					
(ug/L)	44	600	0	50	0
Bicarbonate					
(mg/L)	77	375	0	75	33
Boron, dissolved					
(ug/L)	77	560	30	150	140
Boron, total			5 0	200	000
(ug/L)	77	1,700	50	280	200
Cadmium, dissolved		1 200		010	00
(ug/L)	77	1,200	1	240	80
Cadmium, total	77	1 100	10	210	100
(ug/L)	77	1,100	10	310	180
Calcium, dissolved	77	600	1.00	205	/ 00
(mg/L)	77	600	120	395	480
Carbon, total organic	, ,	0 0	0	2.6	2 1
(mg/L)	44	8.0	.0	2.6	2.1
Carbonate	77	0	0	0	0
(mg/L)	11	U	U	U	U
Chloride, dissolved	77	85	.5	11.8	6.3
(mg/L) Chromium, dissolved	, ,	رن	ر.	TT.0	0.5
(ug/L)	44	140	0	20	16
Chromium, total	4-1	140	U	20	10
(ug/L)	44	150	0	22	17
Cobalt, dissolved	77	¥.50	v		±,
(ug/L)	44	800	0	160	50
Cobalt, total	77	000	Ü	100	50
(ug/L)	44	850	50	340	200
\-0; -/	. ,	- 2 3	- ~		

Table 9.—Chemical and Physical Properties of Mine-Shaft Water Determined and Maximum, Minimum, Mean, and 50th Percentile Values—Continued

Chemical or	hemical or Number Values						
physical	of	Maximum	Minimum	Mean	50th Percen-		
property	analyses				tile		
							
Copper, dissolved							
(ug/L)	44	260	1	40	8		
Copper, total							
(ug/L)	44	240	10	45	20		
Detergents (MBAS)							
(mg/L)	44	.80	.00		.00		
Dissolved Solids,		-					
residue at 180°C							
(mg/L)	74	5,920	622	4,000	3,410		
Fluoride, dissolved		•,,,_,	V	,,,,,,	0,120		
(mg/L)	77	15	.1	3.	3 1.9		
Hardness, noncarbonate	• •	13	• -	٠,	J 1.7		
(mg/L)	77	2,500	250	1,480	1,800		
Hardness, total	,,	2,500	230	1,400	1,000		
(mg/L)	77	2,500	410	1,540	1,800		
Iron, dissolved	,,	2,500	410	1,540	1,000		
(ug/L)	77	330,000	0	88,000	39,000		
Iron, total	//	330,000	U	00,000	39,000		
	77	150,000	0	110 000	E2 000		
(ug/L)	//	130,000	0	110,000	52,000		
Lead, dissolved	77	E00	0	125	()		
(ug/L)	77	500	0	135	63		
Lead, total	77	500	0	000	210		
(ug/L)	77	500	0	220	310		
Lithium, dissolved		000	20		100		
(ug/L)	77	300	20	123	130		
Magnesium, dissolved							
(mg/L)	77	290	13	133	134		
Manganese, dissolved							
(ug/L)	77	14,000	10	3,000	1,870		
Manganese, total							
(ug/L)	77	15,000	10	3,370	2,400		
Mercury, dissolved							
(ug/L)	44	1.30	.0	•	31 .22		
Mercury, total							
(ug/L)	44	1.40	.0	•	33 .20		
Molybdenum, dissolved							
(ug/L)	44	2	0	0	0		
Molybdenum, total							
(ug/L)	44	3	0	0	0		
Nickel, dissolved							
(ug/L)	77	5,000	3	1,510	600		
Nickel, total				-			
(ug/L)	77	8,000	50	1,800	1,000		
-		- -		-	•		

Table 9.—Continued

Chemical or	Number	Values						
physical	of	Maximum	Minimum	Mean	50th Percen-			
	analyses				tile			
property	dialyses							
Nitrate, dissolved, as N (mg/L)	44	0.42	0.00	0.08	3 0.04			
Nitrite, dissolved, as N (mg/L)	44	.04	.00	.00	.00			
pH (field measured) (units)	147	8.6	3.4		6.4			
Potassium, dissolved (mg/L)	77	9.2	1.3	4.0	3.8			
Selenium, dissolved (ug/L)	44	3	0	1	1			
Selenium, total (ug/L)	44	3	0	1	1			
Silica, dissolved (mg/L)	77	22	4.9	11.7	11.7			
Sodium adsorption ratio	77	25	.1	.6	.5			
Sodium, dissolved			- 1	F./	44			
(mg/L)	77	200	7.1	54 7.4				
Sodium, percent	77	26	1.0	7.4	0.0			
Specific conductance								
(field measured)		4 050	7/0	2 690	2,800			
(umhos/cm at 25°C)	139	4,950	740	2,680	2,000			
Sulfate, dissolved	7.7	2 500	320	1,950	2,070			
(mg/L)	77	3,500	320	1,950	2,070			
Suspended solids,								
residue at 110°C	7.6	216	0	61	20			
(mg/L)	76		0	65	23			
Turbidity (NTU)	77	400	U	05	23			
Vanadium, dissolved	74	200	.0	34	1.0			
(ug/L)	74	200	•0	34	1.0			
Water temperature								
(field measured)	1.40	18,0	13.0	15.5	15.0			
(degrees Celsius)	149	10,0	10.0	13.3	. 13.0			
Zinc, dissolved	77	490,000	640	175,000 1	.03.000			
(ug/L)	//	470,000	545	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,			
Zinc, total (ug/L)	74	490,000	730	108,000	106,000			

Figure 12. Graph showing relationship of dissolved zinc concentration to dissolved sulfate concentration of mine-shaft water.

Table 10.—Chemical and Physical Properties of Mine-Shaft Water Analyzed for Linear Relationship with Specific Conductance, and Regression Summary, Including Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate

Chemical or					Standard
physical		Correlation			error of
property	Units	coefficient	Intercept	Slope	estimate
Down dissolved	/7	0.25	(0	0.00	100
Boron, dissolved	ug/L	0.35	69	0.03	103
Calcium, dissolved	mg/L	.88	119	.09	69
Chloride, dissolved	mg/L	.16	5.3	.002	19
Dissolved Solids	mg/L	.98	-633	1.31	327
Fluoride, dissolved	mg/L	.61	-1.3	.002	2.8
Hardness, total	mg/L	.94	110	.49	245
Lithium, dissolved	ug/L	.86	-22	.05	39
Magnesium, dissolved	mg/L	.92	-47	.06	36
pН	units	.64	7.6	.0005	.8
Potassium, dissolved	mg/L	. 27	3.0	.0004	1.7
Silica, dissolved	mg/L	.13	13	.0004	3.7
Sodium, dissolved	mg/L	.39	17	.01	.39
Sulfate, dissolved	mg/L	•95	-362	.80	336

Table 11.—Chemical and Physical Properties of Mine-Shaft Water Analyzed for Linear Relationship with pH, and Regression Summary, Including Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate

Chemical or					Standard
		Correlation			error of
physical	** *.		T	01	
property	Units	coefficient	Intercept	Slope	estimate
Aluminum, dissolved	ug/L	-0.69	35,300	-5,060	6,099
Bicarbonate	mg/L	.60	-234	51	78
Boron, dissolved	ug/L	08	198	-7.2	28 110
Fluoride, dissolved	mg/L	 57	13.8	-1.7	75 2 . 85
Hardness, total	mg/L	60	3,744	-367	562
Iron, dissolved	ug/L	44	337,143	-41,485	95 , 533
Lithium, dissolved	ug/L	64	383	-43	59
Manganese, dissolved	ug/L	48	11,023	-1,335	2,816
Nickel, dissolved	ug/L	55	6,182	- 776	1,326
Specific conductance	umhos/				
F	cm	64	7,425	-770	989
	at 25°C		•		
Sulfate, dissolved	mg/L	66	5,838	-647	835
Zinc, dissolved	ug/L	64	759,476	-97,270	
Zinc, dissolved	ug/ L	• 04	755,470	57,270	132,513
				· · · · · · · · · · · · · · · · · · ·	

Table 12.—Chemical Constituents of Mine-Shaft Water Analyzed for Logarithmic Relationship with pH, and Regression Summary, Including Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate

Constituent	Correlation coefficient	Intercept	Slope	Standard error of estimate
Aluminum, dissolved	-0.86	19.66	-2.199	1.396
Iron, dissolved	65	21.64	-2.174	2.889
Manganese, dissolved	67	14.24	-1.238	1.535
Nickel, dissolved	 75	14.56	-1.420	1.420
Zinc, dissolved	81	19.39	-1.406	1.153

Table 13.—Chemical Constituents of Mine-Shaft Water Analyzed for Linear Relationship with Dissolved Sulfate Concentration, and Regression Summary, Including Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate

Constituent	Units	Correlation coefficient	Intercept	Slope	Standard error of estimate
Aluminum, dissolved	/1	0.77	1 51/	2 070	7 554
•	ug/L	0.44	-1,514	3.279	7,556
Iron, dissolved	ug/L	.79	-58,787	75.13	66,020
Manganese,	_		•		•
dissolved	ug/L	.76	-1,281	2.192	2,069
Zinc, dissolved	ug/L	.88	-92,278	136.89	81,846
	_		•		,

Table 14.—Chemical Constituents of Mine-Shaft Water Analyzed for Logarithmic Relationship with Dissolved Sulfate Concentration, and Regression Summary, Including Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate

Constituent	Correlation coefficient	Intercept	S1ope	Standard error of estimate
Aluminum, dissolved	0.76	2.367	0.0020	1.8121
Iron, dissolved	.79	3.288	.0027	2.3380
Manganese, dissolved	.83	3.773	.0016	1.1648
Zinc, dissolved	.86	7.963	.0015	1.0006

in the mined areas of Joplin were contaminated by mine water. After equilibrium water-level conditions are reached, the same possibility for stream contamination by mine water exists in the study area of this report.

At this time the quantity of water and the direction of water movement in the mined area of the Boone Formation in north-eastern Oklahoma and southeastern Kansas can only be speculated. The possible directions of movement of the mine water after equilibrium water-level conditions are reached are not fully understood, although, regionally, the drainage is toward the southeast and southwest. Because of the possibilities of contamination of presently used water

supplies by highly mineralized mine water, further study of the movement of water within the Boone Formation throughout the mined areas is warranted.

SUMMARY

This study was undertaken to determine the suitability for selected uses of water stored in abandoned zinc mines in north-eastern Oklahoma and southeastern Kansas. Phase I consisted of a reconnaissance sampling survey of the water in selected mine shafts, and has been reported by Playton and Davis (1977). Phase II consisted of bimonthly sampling of the water in selected

Table 15.—Chemical and Physical Properties of Mine-Shaft Water with Observed Values Exceeding Recommended Limits for Public Water Supply, and Percentage of Samples with Excessive Values

Chemical or physical property	Recommended maximum value	Percent of samples with excessive values
	0.5/1	11
Ammonia, dissolved, as N	0.5 mg/L ¹ 10 ug/L ²	
Cadmium, dissolved	10 ug/L_2^-	77
Chromium, total	50 ug/L ² 3	11
Detergents (MBAS)	0.5 mg/L^3	2
Fluoride, dissolved	2.0 mg/L for temp=15-	·18°C_
ridoride, dissolved	2.0 mg/L for temp=15- 2.2 mg/L for temp=13-	·14°C ²
Iron, dissolved	300 ug/L ³	62
Lead, dissolved	50 ug/L ₃	55
Manganese, dissolved	50 ug/L ³	84
pH	5.0-9.0 units ⁴	16
Sulfate, dissolved	250 mg/L^5	100
Zinc, dissolved	5.0-9.0 units ⁴ 250 mg/L ⁵ 5,000 ug/L ³	83

- 1 Limit set because constituent is indicative of pollution.
- $2- {\tt Limit}$ set because constituent causes adverse physiological effects.
- $3-\mbox{Limit}$ set because constituent causes undesirable aesthetic or taste effects.
- 4 Limits set because standard treatment practices become uneconomical outside stated range.
- 5 Limit set, where water sources with lower sulfate concentrations are or can be made available, because of taste and laxative effects.

mine shafts over a period of 1 year in order to detect short-term variations of water quality.

The results indicate that, generally, the mine-shaft water is stratified. Specific conductance, water temperature, dissolved solids, total and dissolved metal concentrations, and dissolved sulfate tend to increase with sampling depths, while pH tends to decrease with increasing sampling depth. No areal trend or significant seasonal variations in water quality were detected.

Some chemical constituents and properties of the mine-shaft water—such as dissolved solids, total hardness, and dissolved sulfate, calcium, magnesium, and lithium—are significantly linearly correlated to spe-

cific conductance. No chemical constituent or property of mine-shaft water showed significant linear correlation to pH. However, dissolved aluminum, zinc, and nickel values, when transformed to natural or Napierian logarithms, are significantly linearly correlated to pH.

Water in the mine shafts is judged unsuitable for domestic supply, irrigation, and industrial cooling without treatment. Because of the presence of metals, such as cadmium and lead, in concentrations exceeding the limits recommended by the National Academy of Sciences and the National Academy of Engineering (1972), the water should not be considered as a source of public supply.

Table 16.—Chemical and Physical Properties of Mine-Shaft Water with Observed Values Exceeding Recommended Limits for Fresh, Once-Through, Industrial Cooling Water, and Percentage of Samples with Excessive Values

Chemical or physical property	Recommended maximum value	Percent of samples with excessive values
Acidity, total, as CaCO ₃	O mg/L	97
Aluminum, dissolved	3,000 ug/L	40
Calcium, dissolved Dissolved Solids, residue	500 mg/L	23
at 180°C Hardness, total, as	1,000 mg/L	78
CaCO ₂	850 mg/L	73
Iron, dissolved	14,000 ug/L	73 56
Manganese, dissolved	2,500 ug/1	43
рН	5.0-8.9 units	16
Sulfate, dissolved	680 mg/L	75

TABLE 17.—CHEMICAL CONSTITUENTS AND PROPERTIES OF MINE-SHAFT WATER WITH OBSERVED VALUES EXCEEDING RECOMMENDED LIMITS FOR FRESH, MAKEUP-RECYCLE, INDUSTRIAL COOLING WATER, AND PERCENTAGE OF SAMPLES WITH EXCESSIVE VALUES

Chemical constituent or property	Recommended maximum value	Percent of samples with excessive values
Acidity, total, as CaCO Aluminum, dissolved Calcium, dissolved Dissolved Solids, residue	200 mg/L 3,000 ug/L 500 mg/L	55 40 23
at 180°C Hardness, total, as CaCO ₃ Iron, dissolved Manganese, dissolved Sulfate, dissolved	1,000 mg/L 850 mg/L 80,000 ug/L 10,000 ug/L 680 mg/L	78 73 39 3 75

Table 18.—Chemical and Physical Properties of Mine-Shaft Water with Observed Values Exceeding Recommended Limits for Brackish Industrial Cooling Water, and Percentage of Samples with Excessive Values

Constituent or property	Recommended maximum value	Percent of samples with excessive values
Acidity, total, as CaCO ₃ Alkalinity, total,	O mg/L	97
as CaCO ₃	150 mg/L	14
Bicarbonate	180 mg/L	14
Iron, dissolved	1,000 ug/L	58
Manganese, dissolved	20 ug/L	95
pH	5.0-8.4 units	17
Sulfate, dissolved	2,700 mg/L	32

Table 19.—Chemical Constituents and Properties of Mine-Shaft Water with Observed Values Exceeding Recommended Limits for Irrigation Water, and Percentage of Samples with Excessive Values

Constituent or property	Recommended maximum value	Percent of samples with excessive values
Aluminum, total	5 000 49/1 1	36
Boron, total	750 ug/L	6
Cadmium, total	5,000 ug/L ¹ 750 ug/L ¹ 10 ug/L ¹	88
Chromium, total	100 ug/L 1	5
Cobalt, total	50 ug/L 1	68
Copper, total	200 ug/L ¹	2
Dissolved Solids, residue	0.	
at 180°C	2,560 mg/L ²	58
Fluoride, dissolved	2,560 mg/L ² 1.0 mg/L ¹	69
Iron, total	5,000 ug/L 1	60
Manganese, total	200 ug/L_{1}^{1}	74
Nickel, total	200 ug/L $_{1}^{\perp}$	69
Vanadium, dissolved	100 ug/L ¹	18
Zinc, total	2,000 ug/L ¹	97

¹⁻ For water used continuously on all soils.

^{2 —} Recommended limit for moderately salt-tolerant crops with an average of 3 irrigations between leaching rains.

Figure 13. Graph showing measured water-surface altitude at Blue Goose well and monthly precipitation at Quapaw, Oklahoma, September 1976–February 1980.

Water levels within the mined areas have risen since cessation of mining and accompanying dewatering in the late 1950's. In the Blue Goose well the water level rose at an average rate of 2.6 ft per month from September 1975 to February 1980, but it rose at a rate greater than average after periods of heavy rainfall and after the major mine workings were filled with water. The water level in the mines and the surrounding Boone Formation should be near the static or equilibrium level—probably the

same level as before mining and dewatering. Highly mineralized mine water could possibly migrate into and contaminate the Roubidoux Formation, shallow aquifers, or surface water.

Further study of movement of water in the Boone Formation through the mined area is warranted, so that the quantity of mine water, the directions of its flow, and the consequences resulting from its movement can be adequately assessed.

REFERENCES CITED

- Barks, J. H., 1977, Effects of abandoned lead and zinc mines and tailings piles on water quality in the Joplin area, Missouri: U.S. Geological Survey Water-Resources Investigations 77–75, 49 p.
- Brockie, D. C., Hare, E. H., Jr., and Dingess, P. R., 1968, The geology and ore deposits of the Tri-State district of Missouri, Kansas and Oklahoma; in Ore deposits of the United States, 1933–1967: American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, p. 401–430.
- leum Engineers, New York, p. 401–430.

 Brown, Eugene, Skougstad, M. W., and Fishman, M. J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gages: U.S. Geological Survey Techniques Water-Resources Investigations, book 5, chap. Al, 160 p.
- McKnight, E. T., and Fischer, R. P., 1970, Geology and ore deposits of the Picher field, Oklahoma and

- Kansas: U.S. Geological Survey Professional Paper 588, 165 p.
- National Academy of Sciences and National Academy of Engineering, 1973, Water quality criteria, 1972: U.S. Environmental Protection Agency, EPA-R3-73-033, 594 p.
- Playton, S. J., and Davis, R. E., 1977, Preliminary report on the quality of water in abandoned zinc mines in northeastern Oklahoma and southeastern Kansas: U.S. Geological Survey Open-File Report 77–163, 36 p.
- Reed, E. W., Schoff, S. L., and Branson, C. C., 1955, Ground-water resources of Ottawa County, Oklahoma: Oklahoma Geological Survey Bulletin 72, 203 n
- Siebenthal, C. E., 1908, Mineral resources of northeastern Oklahoma: U.S. Geological Survey Bulletin 340-C, 43 p.
- 1915, Origin of the zinc and lead deposits of the Joplin region, Missouri, Kansas, and Oklahoma: U.S. Geological Survey Bulletin 606, 283 p.

INDEX

(Boldface numbers indicate main references; parentheses indicate page numbers of figures; brackets indicate page numbers of tables)

- 1	
aba	andoned mines 1, 4
aqı	iifers 24, 46
	rite 4
	rks, J. H., cited 33, 42
	ndelari Monocline 4
Bei	rkey, Harry A. 4
Div	thday mine shaft 5, (10), 12,
ы	
	[28–31]
Βlι	ie Goose well (3), 5, (8), (13), 46,
	(46)
ъ	
Boi	nd, Thomas 4
Boo	one Formation 1, 4, (4), 24, 31,
	33, 42, 46
hav	on 12
Bro	ockie, Douglas C. 4, 24
Bro	ockie, Douglas C., Hare, E. H.,
	Jr., and Dingess, P. R., cited 31
D	Errana Characted M W
bro	own, Eugene, Skougstad, M. W.,
	and Fishman, M. J., cited 12
cad	lmium 1, 12
Ca	mbrian-Ordovician formations
Oa.	
_	31
	alcopyrite 4
Ch	attanooga Shale 4, 33
	ert 4
	oride 12
Col	llins, C. V. 4
Co	nsolidated No. 2 mine shaft 5,
•	12, [33–36]
	version factors 2
Co	tter Dolomite 4
dis	solved aluminum 1, 12, 19, 43
dia	solved calcium 1, 12, 19, 43
	solved fluoride 12
dis	solved lithium 1, 19, 43
dis	solved magnesium 1, 19, 43
	solved manganese 19
	solved metals 1, 12, 43
dis	solved nickel 1, 19, 43
dis	solved solids 1, 12, 19
3:-	solved sulfate 1, 12, 19, 43
uis	Solved Sultate 1, 12, 13, 40
	solved zinc 1, 12, 19, 43
dol	omite 4
Dο	vonian age 4
	argite 4
ga]	lena 4
ger	ologic setting (3), 4
	storical background 2
Ho	ppe, Gordon E. 4

rackets indicate page numbers of tabl
hydrology of mined area (3), 24, 31, 33, 42
iron 12, 19
jasperoid 4
Jefferson City Dolomite 4
Joplin, Missouri, area 42
Lavrion mine shaft 5, [20–21]
lead 1, 12
limestone 4
Lucky Bill mine shaft 5, [16–19]
Lucky Jew mine shaft 5, 12, [14–15]
luzonite 4
McKnight, E. T., and Fischer, R. P.,
cited 4
marcasite 4
Miami, Oklahoma, mining district
31
Miami Trough 4, 33
mines sampled [13]
mine-shaft water
characteristics 4-46
chemical and physical properties
[37–39], [40], [41], [43], [44], [45]
chemical constituents and
properties 1, [41], [42], [44], [45]
constituent relationships 12, 19,
23
definition of pH $4-5$
definition of specific conductance
4-5
results of analyses 12
sampling frequencies and
methods 5, 12
statistical summary 12, 19, 23
suitability 23–24, 42
unsuitability 1, 43
Mississippian age 1, 4
Mississippian formations 31, 33
Napierian logarithms 1, 19, 23, 43
National Academy of Engineering
23, 43
National Academy of Sciences 23, 43
New Chicago mine shaft 5, [24-27]
northeastern Oklahoma 1, 4, 5, 42
Oklahoma Geological Survey 1
Ordovician 4
Ottawa County, Oklahoma 1, 24, 33
Pennsylvanian age 4

```
pH values 1, 4, 5, 12, 19, 43
Playton, S. J., and Davis, R. E.,
    cited 2, 42
purpose and scope of study 1-2
pyrite 4
Reed, E. W., and others, cited 24,
    33
results of analyses 12
Rialto Basin 4
Roubidoux Formation 1, 4, 24, 31,
    33, 46
sampling frequencies and methods
    5, 12
sandstone 4
shale 4
Siebenthal, C. E., cited 31; quoted
site-numbering system 2
Skelton mine shaft 5, [22-23]
sodium 12
southeastern Kansas 1, (3), 4, 5, 42
specific conductance 1, 4, 5, 12, 43
sphalerite 4
statistical summary and constituent
    relationships 12, 19, 23
subsurface recharge to mines 24, 31
summary 42-43, 46
Tar Creek (3), 31
U.S. Geological Survey 1
U.S. Geological Survey Central
    Laboratory 12
variables 19, 23
water hardness, mine-shaft 1, 12,
   19
water-level changes 1
Water Quality Criteria, 1972 23
water-quality data
 Birthday mine shaft [28-31]
  Consolidated No. 2 mine shaft
   [33-36]
 Lavrion mine shaft [20-21]
  Lucky Bill air shaft [16-19]
  Lucky Jew mine shaft [14-15]
  New Chicago mine shaft [24-27]
 Skelton mine shaft [22-23]
water temperature, mine-shaft 1, 12
water treatment 1, 23, 24
Yevjevich, V. 19
```

Type faces: Text in 8- and 10-pt. Century Schoolbook, with

1-pt. leading Heads in 10-pt. Century Schoolbook bold Figure captions in 8-pt. Optima, with 1-pt.

leading

Table heads in 10-pt. Century Schoolbook, caps

and small caps
Running heads in 8-pt. Optima bold

Presswork: Miehle TP-29 Perfector

Binding: Saddle-stitched, with hardbound and softbound

Paper: Text on 70-lb. Mountie Matte

Cover (hardbound) on Gane 8117LV red cloth on 160-pt. binder's board

Cover (softbound) on 65-lb. Hammermill gray,

antique finish