ISSN 0078-4397 # CHEMICAL QUALITY OF WATER IN ABANDONED ZINC MINES IN NORTHEASTERN OKLAHOMA AND SOUTHEASTERN KANSAS STEPHEN J. PLAYTON, ROBERT E. DAVIS, AND ROGER G. McClaflin Prepared by the United States Geological Survey in cooperation with the Oklahoma Geological Survey #### OKLAHOMA GEOLOGICAL SURVEY CHARLES J. MANKIN, Director KENNETH S. JOHNSON, Associate Director #### SURVEY STAFF THOMAS W. AMSDEN, Biostratigrapher/Lithostratigrapher BETTY D. BELLIS, Word-Processing Operator SALMAN BLOCH, Uranium/Base-Metals Geologist/ Geochemist HELEN D. BROWN, Assistant to Director MARGARETT K. CIVIS, Senior Accounting Clerk MARION E. CLARK, Cartographic Technician II ELDON R. Cox, Manager, Core and Sample Library ROY D. DAVIS, Cartographic Technician II ROBERT L. EUTSLER, Minerals Geologist ROBERT O. FAY, Geologist/Stratigrapher S. A. FRIEDMAN, Senior Coal Geologist T. WAYNE FURR, Manager of Cartography ELIZABETH A. HAM, Associate Editor WILLIAM E. HARRISON, Petroleum Geologist/Geochemist LEROY A. HEMISH, Coal Geologist LAVEDA F. HENSLEY, Clerk-Typist/Information Officer PAULA A. HEWITT, Duplicating Machine Operator SHIRLEY JACKSON, Record Clerk ${\tt MARY\ ELLEN\ KANAK,\ } Cartographic\ Technician\ I$ DONNA R. KENWORTHY, Custodian MICHAEL W. LAMBERT, Visiting Minerals Geologist JAMES E. LAWSON, JR., Chief Geophysicist KENNETH V. LUZA, Engineering Geologist MITZI G. MOORE, Clerk-Typist ZACK T. MORRIS, Cartographic Technician I A. J. MYERS, Geomorphologist/Aerial-Photo Interpreter DAVID O. PENNINGTON, Geological Technician ROBERT M. POWELL, Senior Laboratory Technician M. LYNN PRATER, Minerals Geologist DONALD A. PRESTON, Petroleum Geologist RAJA P. REDDY, Geology Assistant WILLIAM D. ROSE, Geologist/Editor EMRE A. SANCAKTAR, Chemist M. SUE SAUNDERS, Clerk-Typist CONNIE G. SMITH, Associate Editor I. JEAN SMITH, Record Clerk RICHARD L. WATKINS, Electronics Technician Stephen J. Weber, Chief Chemist GWEN C. WILLIAMSON, Office Manager GARY L. WULLICH, Core and Sample Library Assistant JOSEPH M. ZOVAK, Cartographic Technician I #### **Title Page Illustration** Generalized section showing relationship of rock formations to water-filled mines (see fig. 2). Ink diagram by Zack T. Morris. This publication, printed by Edwards Brothers, Inc., Ann Arbor, Michigan, is issued by the Oklahoma Geological Survey as authorized by Title 70, Oklahoma Statutes, 1971, Section 3310, and Title 74, Oklahoma Statutes, 1971, Sections 231–238. 1,000 copies have been prepared for distribution at a cost to the taxpayers of the State of Oklahoma of \$6,471. # CONTENTS | | | Page | |-------------|--|------| | Abs | stract | 1 | | Int | roduction | 1 | | | Purpose and scope | 1 | | | Historical background | 2 | | | Explanation of site numbering system | 2 | | | Conversion factors | 2 | | | Acknowledgments | 4 | | | Geologic setting | 4 | | Cha | aracteristics of mine-shaft water | 4 | | 0110 | Definition of pH and specific conductance | 4 | | | Sampling procedures and methods | 5 | | | Results of analyses | 12 | | | Statistical summary and constituent relationships | 12 | | | Suitability of mine-shaft water for selected uses | 23 | | | Hydrology of the mined area | 24 | | G.,, | nmary | 42 | | | erences cited. | 47 | | ren | erences croed | - 1 | | | FIGURES | | | 1 | Map of study area showing geologic structure, area of mine workings, and locations | | | | of sampled shafts | 3 | | 2 | Geologic section showing relationship of rock formations to water-filled mines | 4 | | | Kemmerer-type PVC sampler and boom apparatus used in collection of water | | | | samples from mine shafts | 5 | | 4. | Diagram showing water level, approximate location of mine workings, and | | | | temperature, pH, and specific conductance of water at selected depths in | | | | Lucky Jew mine shaft, April 1976–June 1977 | 6 | | 5. | Diagram showing water level, approximate location of mine workings, and | | | | temperature, pH, and specific conductance of water at selected depths in Lucky | | | | Bill air shaft, April 1976–June 1977 | 7 | | 6. | Diagram showing water level, approximate location of mine workings, and | | | | temperature, pH, and specific conductance of water at selected depths in Skelton | | | | mine shaft, April 1976–June 1977 | 8 | | 7. | Diagram showing water level, approximate location of mine workings, and | | | | temperature, pH, and specific conductance of water at selected depths in New | | | | Chicago mine shaft, April 1976–June 1977 | 9 | | 8. | Diagram showing water level and temperature, pH, and specific conductance of | | | | water at selected depths in Birthday mine shaft, April 1976-June 1977 | 10 | | 9. | Diagram showing water level, approximate location of mine workings, and | | | | temperature, pH, and specific conductance of water at selected depths in | | | | Consolidated No. 2 mine shaft, April 1976–June 1977 | 11 | | 10. | Graph showing relationship of dissolved-solids concentration to specific conductance | | | | of mine-shaft water | 20 | | 11. | Graph showing logarithmic relationship of dissolved aluminum concentration to | - | | | pH of mine shaft water | 32 | | 12 | Graph showing relationship of dissolved zinc concentration to dissolved sulfate | | | -4. | concentration of mine-shaft water | 40 | | 13 | Graph showing measured water-surface altitude at Blue Goose well and monthly | | | ⊥ 0. | precipitation at Quapaw, Oklahoma, September 1975–February 1980 | 46 | | | | | # **TABLES** | | ·- | | |-----|--|------| | | | Page | | 1. | List of mines sampled | 13 | | | Water-quality data from Lucky Jew mine shaft | 14 | | | Water-quality data from Lucky Bill air shaft | 16 | | 4. | Water-quality data from Lavrion mine shaft | 20 | | 5. | Water-quality data from Skelton mine shaft | 22 | | | Water-quality data from New Chicago mine shaft | 24 | | | Water-quality data from Birthday mine shaft | 28 | | | Water-quality data from Consolidated No. 2 mine shaft | 33 | | | Chemical and physical properties of mine-shaft water determined and maximum, | • | | | minimum, mean, and 50th percentile values. | 37 | | 10. | Chemical and physical properties of mine-shaft water analyzed for linear | | | | relationship with specific conductance, and regression summary, including correlatio | n | | | coefficients, intercepts, slopes, and standard errors of estimate | 40 | | 11. | Chemical and physical properties of mine-shaft water analyzed for linear | | | | relationship with pH, and regression summary, including correlation coefficients, | | | | intercepts, slopes, and standard errors of estimate | 41 | | 12. | Chemical constituents of mine-shaft water analyzed for logarithmic relationship | | | | with pH, and regression summary, including correlation coefficients, intercepts, | | | | slopes, and standard errors of estimate | 41 | | 13. | Chemical constituents of mine-shaft water analyzed for linear relationship with | | | | dissolved sulfate concentration, and regression summary, including correlation | | | | coefficients, intercepts, slopes, and standard errors of estimate | 42 | | 14. | Chemical constituents of mine-shaft water analyzed for logarithmic relationship | | | | with dissolved sulfate concentration, and regression summary, including correlation | | | | coefficients, intercepts, slopes, and standard errors of estimate | 42 | | 15. | Chemical and physical properties of mine-shaft water with observed values | | | | exceeding recommended limits for public water supply, and percentage of samples | | | | with excessive values | 43 | | 16. | Chemical and physical properties of mine-shaft water with observed values exceeding | | | | recommended limits for fresh, once-through, industrial cooling water, and | | | | percentage of samples with excessive values | 44 | | 17. | Chemical constituents and properties of mine-shaft water with observed values | | | | exceeding recommended limits for fresh, makeup-recycle, industrial cooling water, | | | | and percentage of samples with excessive values | 44 | | 18. | Chemical and physical properties of mine-shaft water with observed values exceeding | | | | recommended limits for brackish industrial cooling water, and percentage of | | | | samples with excessive values | 45 | | 19. | Chemical constituents and properties of mine-shaft water with observed values | | | | exceeding recommended limits for irrigation water, and percentage of samples | | | | with excessive values | 45 | # CHEMICAL QUALITY OF WATER IN ABANDONED ZINC MINES IN NORTHEASTERN OKLAHOMA AND SOUTHEASTERN KANSAS STEPHEN J. PLAYTON, 1 ROBERT E. DAVIS, 1 and ROGER G. McClaflin² Abstract—Onsite measurements of pH, specific conductance, and water temperature show that water in seven mine shafts in northeastern Oklahoma and southeastern Kansas is stratified. With increasing sampling depth, specific conductance and water temperature tend to increase, and pH tends to decrease. Concentrations of dissolved solids and chemical constituents in mine-shaft water, such as total and dissolved metals and dissolved sulfate also increase with depth. The apparently unstable condition created by cooler, denser water overlying warmer, less dense water is offset by the greater density of the lower water strata due to higher dissolved solids content. Correlation analysis showed that several chemical constituents and properties of mine-shaft water—including dissolved solids, total hardness, and dissolved sulfate, calcium, magnesium, and lithium—are linearly related to specific conductance. None of the constituents or properties of mine-shaft water tested had a significant linear relationship to pH. However, when values of dissolved aluminum, zinc, and nickel were transformed to natural or Napierian logarithms, significant linear correlation to pH resulted. During the course of the study—September
1975 to June 1977—the water level in a well penetrating the mine workings rose at an average rate of 1.2 feet per month. Usually, the rate of water-level rise was greater than average after periods of relatively high rainfall, and lower than average during periods of relatively low rainfall Water in the mine shafts is unsuited for most uses without treatment. The inability of current domestic water-treatment practices to remove high concentrations of toxic metals, such as cadmium and lead, precludes use of the water for a public supply. #### INTRODUCTION #### Purpose and Scope Increasing demands for water and decreasing water levels in the heavily pumped Roubidoux Formation in northern Ottawa County, Oklahoma, have led to a search for an alternative source of water. Water in abandoned zinc mines within the Boone Formation of Mississippian age represents a potential alternative supply. However, before any use can be made of the water within the mines, information about its quality is imperative. In order to provide water-quality information, a study by the U.S. Geological Survey, in cooperation with the Oklahoma Geological Survey, was made. The principal objective of the study was to determine the suitability of the water in the zinc mines for public supply, industrial cooling, and irrigation. The study originally consisted of three phases: Phase I.— An intensive reconnaissance of the accessible mine shafts to (a) make field measurements of pH, specific conductance, and water temperature, (b) collect water samples for chemical and physical analyses, and (c) evaluate the data. Phase II.— Collect and analyze water samples once every 2 months for 1 year to determine any variations in water quality. Phase III.—Collect and analyze water samples twice a year for 4 years after completion of phase II to determine any annual variations and long-term trends in water quality. The results of phase I were reported by Playton and Davis (1977). Results of phase II are presented in this report. The principal objective of this study has been fulfilled by phases I and II; therefore, phase III will not be pursued. ¹Hydrologists, U.S. Geological Survey, Oklahoma City, Oklahoma. ²Hydrologic technician, U.S. Geological Survey, Oklahoma City, Oklahoma. ## Historical Background³ Lead and zinc ore was first discovered in the study area (fig. 1) in 1901, and the first recorded output of sulfide concentrates was made in 1904. During the early years of mining, operations were relatively shallow, extending from 50 to 130 ft in depth. However, as mining progressed, depths to 385 ft were reached. Land ownership in the area was diverse with many owners holding small tracts, which allowed numerous small companies to obtain leases and simultaneously run mining operations. In 1918, approximately 230 mills were built or were under construction in Oklahoma alone, a figure that approaches the number of individual operations. Ore bodies reached from one leased tract to the next, and mining activities were extensive throughout the area. Therefore, nearly all of the mines were interconnected, and distinguishing one mine from another was difficult. In fact, even the smaller connective workings were large enough to allow passage of ore trucks. Production of ores from the mines expanded rapidly from 1915 to 1920; output jumped from 28,000 tons to 502,000 tons. However, the 1920's marked the maturity of the mine field. In the 5 years from 1921 to 1925, the mines in and near the study area yielded 55 percent of the total zinc produced in the United States. The total production through 1964 amounted to over 7 million tons of zinc and just under 2 million tons of lead. After a brief period of slowdown in the early 1930's, annual production again increased through 1941. However, production in 1941 was still only slightly greater than 50 percent of the output in 1925. During the late 1920's and 1930's, many mines became depleted, forcing smaller companies out of business. These operations were bought by larger companies that were able to continue mining owing to the economy of centralized milling. Also, improved technology allowed recovery of much low-grade ore from tailing sites. World War II created a high demand for base metals, but ore depletion dictated an industry decline. Because of depressed metal markets in 1957, many operations were suspended or reduced. By mid-1958, all major mining operations were discontinued. Although mining on a small scale has resumed since 1960, most sites have been depleted and abandoned. #### **Explanation of Site Numbering System** The standard method of giving location of fractional section, section, township, and range is replaced by the method illustrated in the diagram below. The location of the site indicated by the dot normally would be described as NW½SE½SE¼ sec. 16, T. 29 N., R. 23 E. The method used in this report reverses the order and indicates quarter subdivisions of the section by letters. By this method the location of the site is given as 29N-23E-16DDB 1. The final digit (1) is the sequential number of a site within the smallest fractional subdivision. #### **Conversion Factors** Factors for converting U.S. customary units to metric units are shown to four significant figures. | U.S. customary | Multiply by | Metric | |--------------------------------|------------------------|---------------------------------| | acre-ft (acre-feet) | 1.233×10^{-3} | hm ³ (cubic hecto- | | | | meters) | | ft (feet) | .3048 | m (meters) | | ft ³ /s (cubic feet | 2.832×10^{-2} | m ³ /s (cubic meters | | per second) | | per second) | | in (inches) | 25.40 | mm (millimeters) | | mi (miles) | 1.609 | km (kilometers) | | ton | 9.072×10^{-2} | t (metric ton) | ³Summarized from McKnight and Fischer (1970). 3 Figure 1. Map of study area (stippling), showing geologic structure, approximate area of mine workings, and locations of sampled shafts. #### Acknowledgments The authors are especially indebted to Gordon E. Hoppe and Harry A. Berkey, of the Northeast Counties of Oklahoma Economic Development Association, for providing encouragement and cooperation from the beginning of the project. Sincere gratitude is extended to C. V. Collins, U.S. Geological Survey, and Douglas C. Brockie, Eagle-Picher Industries, for their invaluable assistance in providing information about the mines. The authors would like to express their thanks to Thomas Bond, U.S. Bureau of Indian Affairs, for providing access to Indian lands in the study area. ## **Geologic Setting** The study area (fig. 1) is relatively flat prairie in northeastern Oklahoma and southeastern Kansas. The regional dip of the rocks is 15 to 25 ft/mi to the northwest, though locally the dip may differ. The main structural features in the area are the Miami Trough, the Rialto Basin, and the Bendelari Monocline (McKnight and Fischer, 1970, p. 72–75). The Miami Trough is a combination of syncline and graben with a general trend of N. 26° E. The axes of the Rialto Basin and the Bendelari Monocline cross the area in a northwesterly direction. The maximum dip of the rocks in these structures is about 20°. The abandoned mines are in the Boone Formation, of Mississippian age (fig. 2), which consists of 350 to 400 ft of chert, jasperoid, limestone, and dolomite. The principal ore minerals mined from the Boone were sphalerite and galena. Accessory minerals include chalcopyrite, enargite, luzonite, marcasite, pyrite, and barite. Fracturing within the formation is common, especially in mineralized areas. The Chattanooga Shale of Mississippian and Devonian age underlies the Boone Formation but is locally absent in the study area. Where the Chattanooga Shale is absent, the Boone Formation lies directly upon an Ordovician sequence consisting of, in descending order, Cotter Dolomite, Jefferson City Dolomite, and Roubidoux Formation. Rocks overlying the Boone Formation are of Late Mississippian and Pennsylvanian age and consist predominantly of shale, with some sandstone and limestone layers. #### CHARACTERISTICS OF MINE-SHAFT WATER # Definition of pH and Specific Conductance The pH of a solution is a measurement of the hydrogen-ion concentration expressed as the negative base 10 logarithm of the hydrogen-ion activity in moles per liter. Val- Figure 2. Generalized geologic section showing relationship of rock formations to water-filled mines. ues of pH may range from 0 to 14. A pH of 7 refers to a neutral solution that contains an equal concentration of hydrogen (H⁺) and hydroxyl (OH⁻) ions. Solutions within the pH range of 0 to 7 are considered acidic, and those within the range of 7 to 14 are considered basic or alkaline. Specific conductance is a measure of the ability of water to conduct an electric current across a specified cross section at a given temperature and is usually expressed as $\mu mho/cm$ at 25°C (micromhos per centimeter at 25° Celsius). The micromho is the reciprocal of ohms \times 10^6 . Specific conductance is related to the ionic concentration of dissolved chemical constituents and, therefore, to the dissolved-solids content of the water. ### Sampling Frequencies and Methods During the period April 1976 to June 1977, water samples were collected for physical and chemical analysis from seven mine shafts; six in Oklahoma and one in Kansas (fig. 1). These mine shafts were selected dur- ing previous field excursions, using selection criteria based on safety, accessibility, and areal distribution. In April 1976 all seven shafts were sampled. Thereafter, four shafts -Lucky Bill, Birthday, New Chicago, and Consolidated No. 2-were sampled every other month from August 1976 through June 1977. Two mine shafts, Lucky Jew and Skelton, were sampled only twice after April 1976, in October 1976 and June 1977. Lavrion mine shaft was not sampled again, because by July 1976 it had been plugged with concrete. Each time the shafts were sampled, water-level measurements
were recorded at each mine shaft and at the Blue Goose well, a well penetrating the mine workings (fig. 1). When the mine shafts were visited, water samples were collected from one or more points in a vertical profile with a Kemmerer-type sampler made of PVC (polyvinyl chloride) (fig. 3). Field analyses for specific conductance, pH, and water temperature were made from each sample at each sampling depth (figs. 4–9). At selected depths, where pH or specific-conductance values differed significantly from those values ob- Figure 3. Kemmerer-type PVC sampler and boom apparatus used in collection of water samples from mine shafts. Figure 4. Diagram showing water level, approximate location of mine workings, and temperature, pH, and specific conductance of water at selected depths in Lucky Jew mine shaft, April 1976–June 1977. Figure 5. Diagram showing water level, approximate location of mine workings, and temperature, pH, and specific conductance of water at selected depths in Lucky Bill air shaft, April 1976—June 1977. Figure 6. Diagram showing water level, approximate location of mine workings, and temperature, pH, and specific conductance of water at selected depths in Skelton mine shaft, April 1976—June 1977. Figure 7. Diagram showing water level, approximate location of mine workings, and temperature, pH, and specific conductance of water at selected depths in New Chicago mine shaft, April 1976–June 1977. Figure 8. Diagram showing water level and temperature, pH, and specific conductance of water at selected depths in Birthday mine shaft, April 1976–June 1977. Figure 9. Diagram showing water level, approximate location of mine workings, and temperature, pH, and specific conductance of water at selected depths in Consolidated No. 2 mine shaft, April 1976–June 1977. served in the upper or lower water strata, samples were collected for more complete laboratory physical and chemical analysis. Field measurements and water-sample treatments were made using the techniques described by Brown, Skougstad, and Fishman (1970). All samples were analyzed by the U.S. Geological Survey Central Laboratory, using the methods given by Brown, Skougstad, and Fishman (1970). A list of mine shafts sampled, sampling depths, and months in which samples were collected is given in table 1. #### **Results of Analyses** No areal trend or seasonal variation in water quality is readily discernible. Results of field and laboratory analyses (tables 2–8) indicate that the water in the mine shafts is stratified. In general, as sampling depths within each mine shaft increased, pH decreased, and specific conductance, water temperature, and dissolved solids increased. Most chemical-constituent concentrations, including dissolved and total metals and dissolved sulfate, increased with sampling depth. For example, in February 1977, in Consolidated No. 2 mine shaft, as sampling depth below the water surface increased from 13 to 78 ft, pH decreased from 7.6 to 5.3 standard units. specific conductance increased from 1,030 to 4,280 μmhos/cm at 25°C, water temperature increased from 13.5 to 15.0°C, dissolved solids increased from 838 to 5,180 mg/L (milligrams per liter), dissolved zinc increased from 3,300 to 300,000 μ g/L (micrograms per liter), total iron increased from 120 to 310,000 µg/L, and dissolved sulfate increased from 510 to 3.300 mg/L. Because cooler, denser water overlies warmer, less dense water in the mine shafts, an unstable thermal-stratification condition apparently exists. However, the lower water strata contain significantly larger quantities of dissolved solids than the upper water strata. Thus, the apparently unstable thermal stratification is masked by the greater density of the lower water strata owing to higher dissolved-solids content. One notable exception to the general stratification trend was observed during five out of seven samplings of Birthday mineshaft water (fig. 8). The pH values decreased with increasing depth until approximately midway through the water column. The trend then reversed, with increasing pH values being observed with increasing depth. However, pH values near the bottom of the water column were not as high as those measured near the top of the water column. Based upon the available data, no adequate explanation for this anomalous stratification can be offered. The water in the Lucky Jew mine shaft is chemically anomalous from that in the other mine shafts sampled. The maximum values of many constituents and propertiesincluding dissolved aluminum, cadmium, calcium, fluoride, lead, sulfate, and zinc, and dissolved solids, specific conductance, and total hardness-in Lucky Jew mine-shaft water-were significantly lower than the maximum values of the same constituents and properties in water samples taken from the other mine shafts. Maximum values of dissolved boron, sodium, and chloride were significantly higher in Lucky Jew mine-shaft water than in water from the other mine shafts sampled. Many of the trace elements, especially the heavy metals, have values reported for both dissolved and total concentrations. The total concentrations are analyzed from an unfiltered sample and, thus, are the sum of the dissolved-constituent concentration and the amount of constituent associated with suspended particles. Dissolved-constituent concentrations are analyzed from a filtered sample and represent the amount of constituent in the dissolved state. Some of the values reported for dissolved-constituent concentration are greater than corresponding values for total-constituent concentration. These anomalies are attributed to sampling errors, computational rounding errors, different sample-preparation techniques, and differences in precision of the analytical methods. # Statistical Summary and Constituent Relationships A list of chemical and physical properties determined, the number of analyses of each property, and the range, mean, and fiftieth-percentile values for each property Table 1.—List of Mines Sampled, April 1976—June 1977 | Name of mine | Land-surface | | Dep | th to | wate | r (ft |)2 | | | Sam | pling | dept | hs (f | t) ² | | |--------------------|------------------------------|------|------|-------|------|-------|-------|------|------|-------|-------|------|-------|-----------------|------| | (site location) | altitude at | Apr | Aug | | Dec | | Apr | June | Apr | | 0ct | | | Apr | June | | | mine shaft (ft) ¹ | 1976 | 1976 | 1976 | 1976 | 1977 | 1977 | 1977 | 1976 | 1976 | 1976 | 1976 | 1977 | 1977 | 1977 | | Lucky Jew | 845 | 183 | | 171 | | | | 164 | 200 | | 200 | | | | 180 | | (35S-23E-3ADD1) | | | | | | | | | 205 | | 220 | | | | 200 | | | | | | | | | | | 211 | | 260 | | | | 210 | | | | | | | | | | | 222 | | | | | | | | | | | | | | | | | 230 | | 298 | | | | 220 | | | | | | | | | | | 259 | | | | | | 240 | | | | | | | | | | | 287 | | | | | | 260 | | | | | | | | | | | 298 | | | | | | 280 | | | | | | | | | | | | | | | | | 298 | | Lucky Bill | 810 | 158 | 146 | 144 | 143 | 142 | 140 | 136 | 178 | 170 | 160 | 160 | 160 | 160 | 155 | | (air shaft) | | | | | | | | | 198 | 190 | 190 | | 190 | 190 | 190 | | (29N-23E-30AAA1) | | | | | | | | | 204 | 205 | 210 | | 200 | 205 | 205 | | | | | | | | | | | 210 | 218 | 225 | 225 | 210 | 225 | 225 | | | | | | | | | | | 216 | 228 | | | 225 | | | | | | | | | | | | | 222 | | | | | | | | | | | | | | | | | 230 | Lavrion | 810 | 144 | | | | | | | 150 | | | | | | | | (29N-23E-29CDD1) | | | | | | | | | 160 | | | | | | | | | | | | | | | | | 170 | | | | | | | | | | | | | | | | | 182 | | | | | | | | | | | | | | | | | 191 | | | | | | | | Skelton | 825 | 159 | | 148 | | | | 140 | 165 | | 160 | | | | 150 | | (29N-23E-28CCB1) | | | | | | | | | | | | | | | 165 | | New Chicago | 825 | 160 | 150 | 151 | 150 | 150 | 147 | 144 | 167 | 160 | 165 | 165 | 165 | 165 | 160 | | (29N-23E-28CAB1) | | | | | | | | | 174 | 174 | 180 | 180 | 180 | 185 | 180 | | | | | | | | | | | 179 | 187 | 198 | 195 | 195 | 187 | 187 | | | | | | | | | | | 183 | 197 | , | | | 195 | 195 | | | | | | | | | | | 192 | | | | | | | | | | | | | | | | | 197 | | | | | | | | Birthday | 815 | 156 | 146 | 145 | 144 | 142 | 2 141 | 137 | 168 | 160 | 162 | 160 | 145 | 155 | 155 | | (20N-23E-28BBB1) | | | | | | | | | 172 | 167 | 180 | 170 | 160 | 167 | 162 | | | | | | | | | | | 175 | 173 | 3 | 180 | 170 | 170 | 166 | | | | | | | | | | | 182 | 177 | , | | 180 | 180 | 170 | | | | | | | | | | | | 180 |) | | | | 175 | | | | | | | | | | | | | | | | | 180 | | Consolidated No. 2 | 2 830 | 166 | 155 | 155 | 153 | 3 152 | 2 150 | 146 | 179 | 165 | 165 | 165 | 165 | 152 | 165 | | (29N-23E-16DDB1) | | | | | | | | | 191 | . 185 | 215 | 215 | 215 | 165 | 215 | | | | | | | | | | | 210 | 215 | 230 | 230 | 222 | 215 | 225 | | | | | | | | | | | 227 | 225 | 5 | | 230 | 220 | 230 | | | | | | | | | | | 229 | 230 |) | | | 230 |) | | | | | | | | | | | 234 | 235 | 5 | | | | | $^{1\}text{--Estimated}$ to nearest 5 ft above mean sea level from $7^{1}\!z\text{--minute}$ topographic maps. ^{2 -} Measured from land surface. Table 2.—Water-Quality Data from Lucky Jew Mine Shaft, April 1976—June 1977 Sampling depths in ft below land surface; turbidity expressed in NTU (neophelometric turbidity units) | | | | | 37 A (1 | SAMP-
LING
DEPTH
(FT) | PH
(UNI15) | TEMPER-
ATURE
(DEG C) | SPE =
CIFIC
C/N=
DUCT=
ANCE
(MICRO=
MHUS) | | | | | |---------------------------------|--------------------------------------|-----------------------------------|--|--|--|--|--|--|--|--
--|--| | | | | | APR , 27 | 200
205
211
222
230
259
287
298 | 7.6
6.9
6.2
6.8
6.7
6.7 | 15.0
16.0
16.0
17.0
17.5
17.5 | 1300
1340
1800
2050
2850
2850
2850
2780 | | | | | | | | | | 21
21
21
21 | 200
220
260
298 | 8.6
7.0
7.0
7.0 | 16.0
16.5
16.5
17.0 | 1200
2850
2850
2850 | | | | | | | | | | 09 | 180
200
210
220
240
260
280
298 | 7.5
8.3
5.6
7.2
6.7
6.7
6.7 | 16.5
16.0
16.5
17.0
17.6
16.5
17.0 | 1200
1200
2350
2750
2650
2650
2650 | | | | | | DATE | SAMP=
LING
DEP1H
(FT) | TUR-
8ID-
ITY
(NTU) | HARU-
NESS
(CA, HG)
(MG/L) | N()N-
CAR-
bunate
hard-
ness
(MG/L) | TUTAL
ACIDITY
AS
H+
(MG/L) | TÜTAL
ACIDITY
AS
CACU3
(MG/L) | DIS-
SULVEU
CAL-
CIUM
(CA)
(MG/L) | DIS-
SOLVED
MAG-
NE-
SIUM
(MG)
(MG/L) | DIS-
SULVED
SUDIUM
(NA)
(MG/L) | PEHCENT
SUOLUM | SUDIUM
AD=
SURP=
TIUN
KATIU | DIS- SULVED P()= TAS- SIUM (K) (MG/L) | | APR , 1
27
27
27 | 976
200
222
230
298 | 1.2
72
180
160 | 620
1100
1300
1200 | 500
1000
1000
1000 | •1
1•4
•6
1•4 | 5.0
70
30
70 | 220
270
34n
330 | 18
92
98
97 | 38
80
200
200 | 12
14
26
26 | .7
1.1
2.5
2.5 | 3.4
4.5
7.4 | | 21
21
Jun , 1 | 200
220
9 77 | 1.0
150 | 590
1200 | 460
1000 | | :: | 210
320 | 15
100 | 36
200 | 12
26 | .6
2,5 | 7.6
3.2
7.1 | | 09 | 550
500 | 1.0
350 | 740
1200 | 610
1000 | .0 | .0
45 | 270
330 | 16
92 | 22
091 | 6
25 | . u | 2.9
6.9 | | DATE | BICAR-
BUNATE
(HCO3)
(MG/L) | CAR+
HONATE
(CO3)
(MG/L) | ALKA-
LINITY
AS
CACO3
(MG/L) | DIS-
SULVED
SULFATE
(S(14)
(MG/L) | DIS-
SOLVED
CHEU-
RIDE
(CE)
(MG/L) | DIS-
SULVED
FLUU-
RIDE
(F)
(MG/L) | DIS=
SOLVED
SILICA
(SIU2)
(MG/L) | DIS-
SOLVED
SOLIDS
(RESI-
DUE AT
180 C)
(MG/L) | SUS-
PENDED
SOLIOS
(MG/L) | DIS-
SULVED
NITRATE
(N)
(MG/L) | DIS-
SOLVED
NITRATE
(NO3)
(MG/L) | DIS-
SULVED
NITRITE
(N)
(MG/L) | | APR , 1
27
27
27
27 | 976
145
62
249
258 | 0
0
0 | 119
51
204
212 | 560
1200
1300
1300 | 3.1
6.4
85
85 | .3
1.3
2.1
2.1 | 8.5
8.5
8.0
8.0 | 995
1750
2340
2330 | 0
79
95
87 | .08
.07
.00 | .35
.31
.00 | .00
.00
.00 | | 21
21
Jun , 1 | 152
228
977 | n
0 | 125
187 | 520
1400 | 3.1
80 | 5.5 | 7.8
7.4 | 953
2300 | 85
0 | .15 | .66 | .00 | | 09 | 160
230 | 0 | 130
190 | 600
1300 | 2.3
80 | .3
2.1 | 9.2
8.8 | 1050
2270 | 1
94 | .05 | .27
.09 | •01
•01 | TABLE | 2.— <i>Co</i> | ntinued | ! | | | | | |---------------------|--|---|--|---|---|---|--------------------------------------|--|---|--|---|--| | DATE | DIS-
SULVED
NITRITE
(ND2)
(MG/L) | UIS-
SILVED
NITHITE
PLUS
NITHATE
(N)
(MG/L) | DIS-
SULVEU
AMMUNIA
NITRI)-
GEN
(N)
(MG/L) | DIS-
SULVED
AMMONIA
(NH4)
(MG/L) | TUTAL
ALUM-
INUM
(AL)
(UG/L) | DIS-
SOLVED
ALUM-
INUM
(AL)
(UG/L) | TUTAL
ARSENIC
(AS)
(UG/L) | DIS+
SUL VED
ARSENIC
(AS)
(UG/L) | TUTAL
HARIUM
(BA)
(UG/L) | DIS-
SULVED
HARIUM
(BA)
(UG/L) | TUTAL
BURUN
(B)
(UG/L) | DIS-
SOLVED
BORGN
(B)
(UG/L) | | PR , 1 | 976 | • " | .02 | .03 | 50 | 10 | U | 0 | 0 | 0 | 1600 | 100 | | 27 | .00 | .08 | .06 | .08 | 80 | 50 | 0 | 0 | 0 | 0 | 1200 | 144
55 | | 27 | .00 | .00 | .40 | .52 | 20
10 | 0 | 8 | 6 | 0 | Ú | 1600 | 56 | | 27
ICT | .00 | | .00 | .00 | 60 | 0 | 1 | 0 | 0 | 0 | 140 | 9 | | 21
21
JUN , 1 | .00
.00 | .15 | .57 | .73 | . 5000 | 300 | 8 | 8
0 | 100 | 100 | 620 | 56 | | 09 | .03 | .07
.03 | .03
.65 | .04 | 30
150 | 100 | 8 | 6 | 100 | 100 | 600 | 55 | | DATE | TOTAL
CAD=
MIUM
(CD)
(UG/L) | DIS-
SULVED
CAD-
MIUM
(CD)
(UG/L) | TOTAL
CHRO-
MIUM
(CR)
(UG/L) | DIS-
SOLVED
CHRO+
MIUM
(CR)
(UG/L) | TUTAL
CUBALT
(CU)
(UG/L) | DIS-
SULVED
CUHALT
(CU)
(UG/L) | TOTAL
COPPER
(CU)
(UG/L) | DIS-
SULVED
CUPPER
(CU)
(UG/L) | TOTAL
IR(IN
(FE)
(UG/L) | DIS* SOLVED IRON (FE) (UG/L) | TUTAL
LEAD
(Ph)
(UG/L) | DIS-
SOLVE
LEAD
(PH)
(UG/L | | APR , 1 | | | 0 | 0 | < 50 | 0 | 10 | 3 | 0 | 20 | <100 | | | 27 | 10
<10 | n | 10 | 10 | 500 | 170 | 50 | 3 | 52000
52000 | 44000
50000 | <100
<100 | | | 27 | <10
<10 | 5 | 10
10 | 10
10 | 100
100 | 31
36 | 10 | 3
10 | 53000 | 46000 | <100 | | | IC T | | 4 | 0 | 0 | 50 | 1 | <10 | 6 | 160 | 10 | <100 | | | 21
21
Jun , 1 | 10
10
977 | 1 | 10 | 0 | 150 | 57 | <10 | 1 | 58000 | 57000 | 100 | | | 09 | 10
10 | 5 | 0 | 10 | <50
50 | 100 | 10 | 5 | 30
61000 | 30
54000 | <100
100 | | | DATE | DIS-
SOLVED
LITHIUM
(LI)
(UG/L) | TOTAL MAN= GANESE (MN) (UG/L) | DIS-
SULVED
MAN-
GANESE
(MN)
(UG/L) | 1UTAL
MERCURY
(HG)
(UG/L) | DIS-
SULVED
MERCURY
(HG)
(UG/L) | TUTAL
MULYB=
DENUM
(MD)
(UG/L) | DIS* SULVED MOLYB- DENUM (MO) (UG/L) | TUTAL
NICKEL
(NI)
(UG/L) | DIS-
SULVED
NICKEL
(NI)
(UG/L) | TUTAL SELE = NIUM (SE) (UG/L) | DIS-
SOLVED
SELE-
NIUM
(SE)
(UG/L) | DIS-
SOLVE
VANA-
DIUM
(V)
(UG/L | | APR , 1 | 976 | | | | | | | 50 | 10 | 0 | 0 | | | 27 | 40
80 | 5000 | 40
5100 | 1.4 | .4 | 0 | 0 | 400 | 370 | 0 | 0 | | | 27 | 500 | 5600 | 2300 | .8 | ٠. | 5 | 1 | 300 | 240 | 0 | U | | | 27
UCT | 200 | 5600 | 2400 | .2 | .3 | 3 | | 300 | 240 | 0 | 0 | 1. | | 21
21
Jun , | 20
210
1977 | 10
5500 | 5000
10 | . 3 | .2 | 0 | 0 | <50
300 | 200 | 0 | Ü | | | 09 | 20 | | | .1 | .0 | 0 | | | 6 | 0 | 0 | | | 09 | 200 | 1900 | 1900 | . 3 | . 4 | 0 | 5 | 200 | 250 | 0 | U | • | | | | | ں | DEI | ING Z
PTH () | TAL S(I
Inc z
Zn) (| LVED URG
INC CA
ZN) (| TAL B
ANIC AC
RHIN S
C) ST | IHY-
ENE
LUE
IIVE
UB-
ANCE
G/L) | | | | | | | | | 7 . 1976 | | | | | | | | | | | | | 5
5
5 | 7 2:
7 2:
7 2 | 30 | 9300 | 2900
H100 | 2.0
8.0
1.7 | .00 | | | | | | | | UC | T | | | 8300 | 1.7 | •00 | | | | | | | | 5 | | 50
00 | 730
7000 | 670
7000 | 1.8 | .00 | | | | | | | | 0 | 9 2· | | | 2300
6600 | 1.3 | .00 | | | | Table 3.—Water-Quality Data from Lucky Bill Air Shaft, April 1976—June 1977 Sampling depths in ft below land surface | | | | | DATE | SAMP-
LING
DEPTH
(FT) | PH
(UNITS) | TEMPER=
ATURE
(DEG C) | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | | | | | |---------------|--------------------------------|------------------------------|------------------------------------|---|--|--|--|--|--|-------------------|---|--| | | | | | APR , 19 | | | , | | | | | | | | | | | 22 | 178
198
204
210 | 6.5
6.5
6.5 | 14.0
14.0
14.0
14.0 | 1850
1850
1750
4210 | | | | | | | | | | 22
22
22 | 216
222
230 | 5.6
5.6
5.6 | 14.0
14.5
14.5 | 4630
4950
4950 | | | | | | | | | | 26 | 170
190 | 6.9
6.9 | 14.0
14.0 | 760
795 | | | | | | | | | | 26 | 205
218 | 6.9
5.9 | 14.0
15.0 | 880 | | | | | | | | | | 26 | 558 | 5.8 | 15.0 | 4770 | | | | | | | | | | 20 | 160
190 | 6.7
6.7 | 13.0
13.0 | 1060
1030 | | | | | | | | | | 20 | 210 | 6.3 | 14.0 | 4400 | | | | | | | | | | 20 | 225 | 6.3 | 14.0 | 4800 | | | | | | | | | | 07
07 | 160
190 | 6.5
6.5 | 13.0
13.0 | 1100
1100 | | | | | | | | | | 07
07 | 210
225 | 6.4
5.9 | 13.0
14.0 | 1100
4560 | | | | | | | | | | FEB , 1 | 977
160 | 6.6 | 13.0 | 1400 | | | | | | | | | | 17 | 190
200 | 6.5
6.5 | 13.0
13.0 | 1380
1500 | | | | | | | | | | 17 | 210
225 | 6.1
5.8 | 13.5 | 4200
4800 | | | | | | | | | | APR
21 | 160 | 6.5 | 13.5 | 1500 | | | | | | | | | | 21
21
21 | 190
205
225 | 6.5
6.3
5.8 | 14.0
14.5
15.0 | 1500
2900
4800 | | | | | | | | | | JUN
07 | 155 | 6.5 | 14.0 | 1100 | | | | | | | | | | 07
07
07 | 190
205
225 | 6.6
6.4
5.9 | 14.0
14.0
15.0 | 1450
3100
4200 | | | | | | DATE | SAMP=
LING
DEPTH
(FT) | TUR-
8ID-
ITY
(NTU) | HARD-
NESS
(CA,MG)
(MG/L) | NON=
CAR=
BONATE
HARO=
NESS
(MG/L) | TOTAL
ACIDITY
AS
H+
(MG/L) | TUTAL
ACIDITY
AS
CAC(13
(MG/L) | DIS=
SOLVED
CAL=
CIUM
(CA)
(MG/L) |
DIS-
SOLVED
MAG-
NE-
SIUM
(MG)
(MG/L) | DIS-
SULVED
SUDIUM
(NA)
(MG/L) | PERCENT
SODIUM | SUDIUM
AD=
SURP=
TIUN
PATIO | DIS=
SOLVED
PO=
TAS=
SIUM
(K)
(MG/L) | | PR , 19 | 976 | | | | | | | | | | .8 | 8.5 | | 22 | 178
210 | 2.1
180 | 910
2100 | 600
2100 | 2.6
11 | 129
546 | 300
500 | 39
210 | 57
68 | 12
7 | .6 | 4.5 | | 22 | 555 | 100 | 5500 | 5500 | 55 | 1090 | 480 | 250 | 87 | 8 | .8 | 6.0 | | 26 | 205 | 1.0 | 450 | 250 | .5 | 25 | 160 | 13 | 16 | 7 | .3 | 4.0 | | 26
CT | 228 | 160 | 2100 | 2100 | 25 | 1240 | 490 | 550 | 90 | 8 | . 8 | 9.2 | | 20 | 190
225 | 1.4 | 520
2400 | 340
2400 | | | 180
470 | 16
290 | 19
92 | 7
8 | .4 | 4.5
8.2 | | EC
07 | 190 | 2.0 | 580 | 340 | 1.5 | 74 | 200 | 19 | 23 | 8 | .4 | 4.7 | | 07 | 225 | 140 | 2300 | 2300 | 27 | 1340 | 490 | 560 | A1 | 7 | .7 | 7.0 | | Ен , 1'
17 | 977
190 | 2.0 | 640 | 380 | 1.7 | 84 | 550 | 21 | 29 | 9 | .5 | 5.4 | | 17
PR | 225 | 180 | 2300 | 2300 | 23 | 1140 | 480 | 260 | 85 | 7 | .8 | 6.5 | | 21 | 190 | 1.0 | 780 | 520 | 2.0 | 99 | 270 | 26 | 36 | 9_ | .6 | 6.2 | | 21
UN | 225 | 160 | 2400 | 2400 | 11 | 546 | 520 | 270 | 85 | 7 | .8 | 6.8 | | 07
07 | 155
225 | .30
220 | 570
2400 | 320
2400 | 1.6
24 | 79
1190 | 190
500 | 23
280 | 26
86 | 9 | .5
.8 | 4.7
6.2 | | | | | | | | | | | | · | •• | | | | | | | | | | | | | | | | ${\it Table 3.--Continued}$ | | hicak- | CAR- | ALKA-
LINITY | DIS- | DIS-
SULVED
CHLU- | DIS-
SULVED
FLUU- | DIS-
SOLVED | DIS-
SULVED
SOLIDS
(RESI- | sus- | 015-
50LVE0 | DIS-
SULVED | DIS-
SULVED | |--|---|--|---|--|--|--|---|---|---|--|--|---| | | BUNATE | HUNATE | AS | SULFATE | RIDE | RIDE | SILICA | DUE AT | PENDED | NITRATE | NITRATE | NITRITE | | | (HCU3) | (0.03) | CACOS | (\$(14) | (CL) | (F) | (SIU2) | 180 C) | SHLIDS
(MG/L) | (N)
(MG/L) | (N()3)
(MG/L) | (N)
(MG/L) | | DATE | (MG/L) (-6/6) | (MG/L) | Curry | (10/2) | | APR , 1 | 976 | | | | | | | | | | | | | 55 | 375 | 0 | 308 | 810 | 10 | . 3 | 19 | 1580 | 3 | .15 | .66 | .00 | | 22 | 59 | 0 | 48 | 2800 | 1.3 | 5.0 | 8.1 | 4380 | 509 | .01 | .04 | .01 | | 22 | 25 | 0 | 21 | 3000 | 16 | 9.2 | 7.6 | 5470 | 174 | .00 | .00 | .01 | | AUG | | | | | | | | | | | | | | 26 | 246 | 0 | 505 | 320 | 3.6 | . 3 | 19 | 687 | 0 | | | | | 26 | 1 | 0 | 1 | 3400 | 51 | 9.4 | 9.0 | | 175 | | | | | 20 | 215 | 0 | 177 | 380 | 4.0 | .7 | 11 | 830 | 12 | .16 | .71 | .00 | | Ž٥ | 11 | 0 | 9 | 3500 | 23 | 7.5 | 7.8 | 5920 | 15 | .03 | .13 | .00 | | DEC | 30.5 | _ | | | | • • | - | | | | • () | | | 07
07 | 289 | 0 | 237 | 430 | 4.6 | . 1 | 19 | 904 | 0 | | | | | FEB , 1 | 977 | 0 | 29 | 3100 | 50 | 6.6 | 8.8 | 5370 | 170 | | | | | 17 | 310 | 0 | 254 | 510 | 14 | 1.2 | 55 | 1030 | 0 | | | | | 17 | 0 | 0 | 0 | 3300 | 18 | 7.4 | 10 | 5230 | 183 | | | | | APR | | _ | | | | | | 3230 | 103 | | | | | 21 | 320
U | 0 | 560 | 610 | 6.6 | . 4 | 19 | 1200 | 5 | | | | | JUN | U | U | 0 | 3500 | 15 | 7.9 | 11 | 5520 | 172 | | | | | 07 | 300 | 0 | 250 | 420 | 4.5 | . 2 | 19 | 910 | 0 | .19 | .84 | | | 07 | 6 | 0 | 5 | 3400 | 15 | 7.9 | 10 | 5650 | 156 | .03 | .13 | .01 | | | | | | | | | | | | •03 | • 13 | .01 | | | | | DIS- | | | | | | | | | | | | DIS-
SOLVED | DIS-
SULVEO
NITRITE
PLUS
NITRATE | SULVED
AMMONIA
NITRO= | DIS=
SOLVED
AMMONIA | TUTAL
Alum-
Inum | DIS-
SOLVED
ALUM-
INUM | TOTAL
ARSENIC | DIS=
SGLVED
ARSENIC | TUTAL
BAHlum | DIS-
SULVED
BARIUM | TUTAL
BURUN | DIS-
SOLVED
BORON | | | | SUL VEO | SUL VED | | ALUM-
[NUM
(AL) | SOLVED
ALUM-
INUM
(AL) | ARSENIC
(AS) | SOLVED
ARSENIC
(AS) | BAHlum
(BA) | SUL VED
RAWIUM
(BA) | BURUN
(B) | SOL VED
HORON
(B) | | DATE | SOLVED
NITRITE | SULVEO
NITRITE
PLUS
NITRATE | SULVED
AMMONIA
NITRO=
GEN | SOL VED
AMMONIA | ALUM-
INUM | SOLVED
ALUM-
INUM | ARSENIC | SOL VED
ARSENIC | BARIUM | SUL VED
BARIUM | BURUN | SOL VED
HORON | | - | SOLVED
NITRITE
(NO2)
(MG/L) | SULVED
NITRITE
PLUS
NITRATE
(N) | SULVED
AMMONIA
NITRO-
GEN
(N) | SOLVED
AMMONIA
(NH4) | ALUM-
[NUM
(AL) | SOLVED
ALUM-
INUM
(AL) | ARSENIC
(AS) | SOLVED
ARSENIC
(AS) | BAHlum
(BA) | SULVED
RARIUM
(BA)
(UG/L) | BURUN
(B)
(UG/L) | SOLVED
HORON
(B)
(UG/L) | | APR , 1 | SOLVED
NITRITE
(NO2)
(MG/L) | SULVED
NITRITE
PLUS
NITRATE
(N) | SULVED
AMMONIA
NITRO-
GEN
(N) | SOLVED
AMMONIA
(NH4) | ALUM-
[NUM
(AL) | SOLVED
ALUM-
INUM
(AL) | ARSENIC
(AS) | SOLVED
ARSENIC
(AS) | BAHlum
(BA) | SUL VED
RAWIUM
(BA) | BURUN
(B) | SOL VED
HORON
(B) | | - | SOLVED
NITRITE
(NO2)
(MG/L) | SULVED
NITRITE
PLUS
NITRATE
(N)
(MG/L) | SULVED
AMM()NIA
NITRO-
GEN
(N)
(MG/L) | SOLVED
AMMONIA
(NH4)
(MG/L) | ALUM-
INUM
(AL)
(UG/L) | SOLVED
ALUM-
INUM
(AL)
(UG/L) | ARSENIC
(AS)
(UG/L) | SGL VED
ARSENIC
(AS)
(UG/L) | BAHIUM
(BA)
(UG/L) | SULVED
RARIUM
(BA)
(UG/L) | BURUN
(B)
(UG/L) | SOLVED
HORON
(B)
(UG/L) | | APR , 1
22 | SOLVED
NITRITE
(NO2)
(MG/L)
976 | SULVEO
NITRITE
PLUS
NITRATE
(N)
(MG/L) | SULVED
AMMONIA
NITRO-
GEN
(N)
(MG/L) | SOLVED
AMMONIA
(NH4)
(MG/L) | ALUM-
INUM
(AL)
(UG/L) | SOLVEO
ALUM-
INUM
(AL)
(UG/L) | ARSENIC
(AS)
(UG/L) | SOLVED
ARSENIC
(AS)
(UG/L) | BAHIUM
(BA)
(UG/L) | SULVED
RARIUM
(BA)
(UG/L) | BURUN
(B)
(UG/L) | SOLVED
ROPON
(B)
(UG/L) | | APR , 1
22
22 | SOLVED
NITRITE
(NO2)
(MG/L)
976
.00 | SULVEO
NITRITE
PLUS
NITRATE
(N)
(MG/L) | SULVED
AMMONIA
NITRO-
GEN
(N)
(MG/L) | SOLVED
AMMONIA
(NH4)
(MG/L) | ALUM-
INUM
(AL)
(UG/L)
60
2000 | SOLVEO
ALUM-
INUM
(AL)
(UG/L) | ARSENIC
(AS)
(UG/L) | SOLVED
ARSENIC
(AS)
(UG/L) | BAHIUM
(BA)
(UG/L) | SUL VED
RAFIUM
(BA)
(UG/L) | BURUN
(B)
(UG/L)
180
240 | SOL VED
HORON
(B)
(UG/L)
180 | | APR , 1
22
22
AUG
26 | SOLVED
NITRITE
(NO2)
(MG/L)
976
.00
.03
.03 | SOLVEO
NITRITE
PLUS
NITRATE
(N)
(MG/L) | SULVED
AMM()NIA
NITRO-
GEN
(N)
(MG/L) | SOLVED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63 | ALUM-
INUM
(AL)
(UG/L)
60
2000
5500 | SOLVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700 | ARSENIC
(AS)
(UG/L)
14
2
8 | SOLVED
ARSENIC
(AS)
(UG/L) | BAHIUM
(BA)
(UG/L) | SUL VED
RAFIUM
(BA)
(UG/L) | BURUN
(B)
(UG/L)
180
240
250 | SOL VED
HORON
(B)
(UG/L)
180
180
220 | | APR , 1
22
22
22
AUG
26 |
SOLVED
NITRITE
(NO2)
(MG/L)
976
.00
.03 | SOLVEO
NITRITE
PLUS
NITRATE
(N)
(MG/L) | SULVED
AMM(NIA
NITRO-
GEN
(N)
(MG/L) | SOLVED
AMMONIA
(NH4)
(MG/L)
.04
.43 | ALUM-
INUM
(AL)
(UG/L)
60
2000
5500 | SULVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700 | ARSENIC
(AS)
(UG/L)
14
2 | SOLVED
ARSENIC
(AS)
(UG/L) | 84H1UM
(84)
(UG/L)
0
0 | SUL VED
RARIUM
(BA)
(UG/L)
0 | BURUN
(B)
(UG/L)
180
240
250 | \$01 VED
#0#0N
(B)
(UG/L)
180
180
220 | | APR , 1
22
22
AUG
26
26 | SQLVED
NITRITE
(NO2)
(MG/L)
976
.00
.03
.03 | SOLVED
NITRITE
PLUS
NITRATE
(N)
(MG/L) | SULVED
AMMONIA
NITRO-
GEN
(N)
(MG/L) | SOLVED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63 | ALUM-
INUM
(AL)
(UG/L)
60
2000
5500
40
10000 | SOLVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700
20
10000 | ARSENIC
(AS)
(UG/L)
14
2
8 | SOLVED
ARBENIC
(AS)
(UG/L) | BAHIUM
(BA)
(UG/L)
0
0 | SULVED
RAFIUM
(BA)
(UG/L) | 180
240
250 | SOL VED
HOPON
(B)
(UG/L)
180
220
100
290 | | APR , 1
22
22
AUG
26
26
OCT
20 | SOLVED
NITRITE
(NO2)
(MG/L)
976
.00
.03
.03 | SOLVEO
NITRITE
PLUS
NITRATE
(N)
(MG/L)
.15
.02
.01 | SULVED
AMMONIA
NITRO-
GEN
(N)
(MG/L)
.03
.33
.49 | SOLVED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63 | ALUM-
INUM
(AL)
(UG/L)
60
2000
5500
40
10000 | SULVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700
20
10000 | ARSENIC (AS) (UG/L) 14 2 8 | SOLVED ARBENIC (AS) (UG/L) 0 2 7 | BAHIUM
(BA)
(UG/L)
0
0 | SULVED
RAFIUM
(BA)
(UG/L) | 80RUN
(B)
(UG/L)
180
240
250
110
240 | SOL VED HORON (B) (UG/L) 180 180 220 100 290 | | APR , 1
22
22
AUG
26
OCT
20
20 | SQLVED
NITRITE
(NO2)
(MG/L)
976
.00
.03
.03 | SOLVED
NITRITE
PLUS
NITRATE
(N)
(MG/L) | SULVED
AMMONIA
NITRO-
GEN
(N)
(MG/L) | SOLVED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63 | ALUM-
INUM
(AL)
(UG/L)
60
2000
5500
40
10000 | SOLVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700
20
10000 | ARSENIC
(AS)
(UG/L)
14
2
8 | SOLVED
ARBENIC
(AS)
(UG/L) | BAHIUM
(BA)
(UG/L)
0
0 | SULVED
RAFIUM
(BA)
(UG/L) | 180
240
250 | SOL VED
HOPON
(B)
(UG/L)
180
220
100
290 | | APR , 1
22
22
AUG
26
OCT
20
20
DEC | SOLVED
NITRIE (NO2)
(MG/L)
976
.00
.03
.03 | SOLVEO
NITRITE
PLUS
NITRATE
(N)
(MG/L)
.15
.02
.01 | SULVED
AMMONIA
NITRO-
GEN
(N)
(MG/L)
.03
.33
.49 | SOL VED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63 | ALUM-
INUM
(AL)
(UG/L)
60
2000
5500
40
10000
40 | SULVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700
20
10000
0 | ARSENIC (AS) (UG/L) 14 2 8 | SOLVED ARBENIC (AS) (UG/L) 0 2 7 | BAHIUM
(BA)
(UG/L)
0
0 | SULVED
RAFIUM
(BA)
(UG/L) | 80RUN
(B)
(UG/L)
180
240
250
110
240 | SOL VED HORON (B) (UG/L) 180 180 220 100 290 | | APR , 1
22
22
24
AUG
26
26
DCT
20
20
20
20
20
20 | SOLVED
NITHIE
(NO2)
(MG/L)
976
.00
.03
.03 | SOLVEO
NITRITE
PLUS
NITRATE
(N)
(MG/L)
.15
.02
.01 | SULVED
AMM()NIA
NITHO-
GEN
(N)
(MG/L)
.03
.33
.49 | SOL VED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63 | ALUM-
(NUM)
(AL)
(UG/L)
60
2000
5500
40
10000
40 | SULVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700
20
10000
0
5000 | ARSENIC (AS) (UG/L) 14 2 8 | SOL VED ARSENIC (AS) (UG/L) 0 2 7 0 11 | BAHIUM
(BA)
(UG/L)
0
0
0 | SULVED
RARIUM
(BA)
(UG/L) | 180
240
250
110
240
250 | SOL VED
HORON
(B)
(UG/L)
180
220
100
290
100
220 | | APR, 1
22
22
22
26
0CT
20
DEC
07
FEH, 1 | SOLVED
NITHIE
(NO2)
(MG/L)
976
.00
.03
.03 | SOLVEO
NITRITE
PLUS
NITRATE
(N)
(MG/L)
.15
.02
.01 | SULVED
AMMONIA
NITRO-
GEN
(N)
(MG/L)
.03
.33
.49 | SOL VED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63 | ALUM-
(NUM)
(AL)
(UG/L)
60
2000
5500
40
10000
40
10000
50
8000 | SULVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700
20
10000
0
5000 | ARSENIC (AS) (UG/L) 14 2 6 0 13 | SOL VED
ARSENIC
(AS)
(UG/L)
0
2
7 | (BA)
(UG/L)
0
0
0 | SULVED
RAHIUM
(BA)
(UG/L) | 180
240
250
110
240
250
110
240
120
290
140
310 | SOL VED
#OPON
(B)
(UG/L)
180
220
100
290
100
220
110
240 | | APR, 1
22
22
22
26
26
26
26
27
20
20
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27
27 | SOLVED
NITHIE
(NO2)
(MG/L)
976
.00
.03
.03
.03 | SOLVEO
NITRITE
PLUS
NITRATE
(N)
(MG/L)
.15
.02
.01 | SULVED
AMM()NIA
NITHO-
GEN
(N)
(MG/L)
.03
.33
.49
.01
.58 | SOL VED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63 | ALUM-
INUM
(AL)
(UG/L)
60
2000
5500
40
10000
40
10000
50
8000 | SULVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700
20
10000
0
5000 | ARSENIC (AS) (UG/L) 14 2 8 0 13 | SOL VED
ARSENIC
(AS)
(UG/L)
0
2
7 | (BA)
(UG/L)
0
0
0 | SUL VED
RAHIUM
(BA)
(UG/L) | 180
240
250
110
240
250
110
240
120
290
140
310 | SOL VED HORON (B) (UG/L) 180 180 220 100 290 100 220 110 240 130 | | APR,
1
22
22
26
26
26
27
20
20
20
20
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21 | SOLVED
NITHIE
(NO2)
(MG/L)
976
.00
.03
.03
.00
.00 | SOL VE O
NITRITE
PLUS
NITRATE
(N)
(MG/L)
.15
.02
.01 | SULVED
AMM()NIA
NITHO-
GEN
(N)
(MG/L)
.03
.33
.49
.01
.58 | SOL VED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63 | ALUM-
(NUM)
(AL)
(UG/L)
60
2000
5500
40
10000
40
10000
50
8000
40
40
40 | SULVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700
20
10000
0
5000 | ARSENIC (AS) (UG/L) 14 2 6 0 13 | SOL VED
ARSENIC
(AS)
(UG/L)
0
2
7 | (BA)
(UG/L)
0
0
0 | SULVED
RAHIUM
(BA)
(UG/L) | 180
240
250
110
240
250
110
240
120
290
140
310 | SOL VED
#OPON
(B)
(UG/L)
180
220
100
290
100
220
110
240 | | 22
22
22
26
26
26
26
27
27
17
APR
21 | SOLVED
NITHITE
(NO2)
(MG/L)
976
.00
.03
.03
.03 | SOLVEO
NITRITE
PLUS
NITRATE
(N)
(MG/L)
.15
.02
.01 | SULVED
AMMONIA
NITRO-
GEN
(N)
(MG/L)
.03
.33
.49
 | SOL VED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63
.01
.75 | ALUM-
(NUM)
(AL)
(UG/L)
60
2000
5500
40
10000
50
8000
40
4500
20000 | SULVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700
20
10000
0
5000
0
4500 | ARSENIC (AS) (UG/L) 14 2 8 0 13 | SOL VED
ARSENIC
(AS)
(UG/L)
0
2
7 | (BA)
(UG/L)
0
0
0 | SUL VED
RAHIUM
(BA)
(UG/L) | 180
240
250
110
240
250
110
240
120
290
140
310 | SOL VED HORON (B) (UG/L) 180 180 220 100 290 100 220 110 240 130 | | APR, 1
22
22
26
26
26
27
20
20
20
20
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21
21 | SOLVED
NITHIE
(NO2)
(MG/L)
976
.00
.03
.03
.00
.00 | SOL VE O
NITRITE
PLUS
NITRATE
(N)
(MG/L)
.15
.02
.01 | SULVED
AMM()NIA
NITHO-
GEN
(N)
(MG/L)
.03
.33
.49
.01
.58 | SOL VED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63 | ALUM-
(NUM)
(AL)
(UG/L)
60
2000
5500
40
10000
40
10000
50
8000
40
40
40 | SULVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700
20
10000
0
5000
0
4500 | ARSENIC (AS) (UG/L) 14 2 6 0 13 | SOL VED
ARSENIC
(AS)
(UG/L)
0
2
7
7
0
11 | (BA)
(UG/L)
0
0
0
0 | SUL VED
RAHIUM
(BA)
(UG/L) | 180
240
250
110
240
250
110
240
120
290
140
310 | SOL VED HORON (B) (UG/L) 180 180 220 100 290 100 220 110 240 130 200 | | 22
22
22
26
26
26
27
17
17
21
21
21
21 | SOLVED
NITHITE
(NO2)
(MG/L)
976
.00
.03
.03
.03
.00
.00 | SOL VE O
NITRITE
PLUS
NITRATE
(N)
(MG/L)
.15
.02
.01 | SULVED
AMMONIA
NITRO-
GEN
(N)
(MG/L)
.03
.33
.49
 | SOL VED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63
.01
.75 | ALUM-
(NUM)
(AL)
(UG/L)
60
2000
5500
40
10000
50
8000
40
4500
20000 | SULVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700
20
10000
0
5000
0
4500 | ARSENIC (AS) (UG/L) 14 2 8 0 13 | SOL VED
ARSENIC
(AS)
(UG/L) | (BA)
(UG/L)
0
0
0
0 | SUL VED
RAHIUM
(BA)
(UG/L) | 180
240
250
110
240
120
290
140
310
140
310
250
320 | SOL VED HORON (B) (UG/L) 180 220 100 290 100 220 110 240 130 200 | | 22 22 22 22 24 26 26 27 20 20 20 20 20 20 20 21 21 21 21 21 | SOLVED
NITHITE
(ND2)
(MG/L)
976
.00
.03
.03
.03 | SOLVEO
NITRITE
PLUS
NITRATE
(N)
(MG/L)
.15
.02
.01 | SULVED
AMM()NIA
NITHO-
GEN
(N)
(MG/L)
.03
.33
.49
 | SOLVED
AMMONIA
(NH4)
(MG/L)
.04
.43
.63 | ALUM-
(NUM)
(AL)
(UG/L)
60
2000
5500
40
10000
50
8000
40
4500
20000
5000 | SULVEO
ALUM-
INUM
(AL)
(UG/L)
10
2000
5700
0
10000
0
5000
0
4500
0
5000 | ARSENIC (AS) (UG/L) 14 2 8 0 13 | SOL VED
ARSENIC
(AS)
(UG/L)
0
2
7 | (BA)
(UG/L)
0
0
0
0 | SULVED
RAHIUM
(BA)
(UG/L) | 180
240
250
110
240
250
110
240
120
290
140
310
140
310 | SOL VED (08) (UG/L) 180 180 220 100 290 100 220 110 240 130 200 | Table 3.—Water-Quality Data from Lucky Bill Air Shaft, April 1976—June 1977—Continued | DATÉ | TUTAL
CAD-
MIUM
(CD)
(UG/L) | 01S-
SOLVED
CAD-
MIUM
(CD) | TUTAL
CHRO=
MIUM
(CR)
(UG/L) | DIS-
SULVED
CHRO-
MIUM
(CR)
(UG/L) | TOTAL
COBALI
(CU)
(UG/L) | DIS-
SULVED
COBALT
(CU)
(UG/L) | TOTAL
COPPER
(CU)
(UG/L) | DIS-
SOLVED
COPPER
(CU)
(UG/L) | TOTAL
IRUN
(FE)
(UG/L) | DIS=
SULVED
IRON
(FE)
(UG/L) | TUTAL
LEAD
(Pb)
(UG/L) | DIS-
SULVED
LEAD
(PB)
(UG/L) | |-----------------|---|--|---|---|---|---|--|--|--|--|---|--| | APR , 19 | 76 | | | | | | | | | | | 25.0 | | 22 | 180 | 9 | Ú | Ů | <50 | 2 | 30 | 10 | 350 | 290 | 450 | 250 | | 22 | 400 | 420 | 10 | 10 | 600 | 53 | 50 | 4 | 160000 | 150000 | 300 | 69 | | 22 | 460 | 490 | 10 | 10 | 650 | 43 | 30 | 1 3 | 290000 |
270000 | 500 | 400 | | AUG
26 | 70 | 10 | | | | | | | 380 | 370 | 100 | 90 | | 26 | 380 | 370 | | | | •• | | | 350000 | 330000 | 400 | 400 | | OCT | | | | | | | | | 3,0000 | 330000 | -00 | 400 | | 20 | 80 | 12 | 0 | 0 | 50 | 2 | <10 | 11 | 80 | 20 | 200 | 150 | | 20 | 350 | 330 | 50 | 19 | 850 | 43 | 50 | 7 | 370000 | 240000 | 300 | 350 | | 07 | 100 | 13 | | | ~- | | | | 150 | 150 | 200 | 97 | | 07
FEB , 19 | | 360 | | | | | | | 340000 | 270000 | 300 | 200 | | 17 | 110 | 10 | | | | | | | 170 | 70 | <100 | 98 | | 17
APR | 330 | 540 | | | | | | | 320000 | 300000 | 300 | 250 | | 51 | 600 | 140 | | •• | | | | | 240 | 60 | 400 | 150 | | 21
Jub | 310 | 340 | | | | | | | 320000 | 290000 | 300 | 250 | | 07
07 | 110 | 8 | 10 | 0 | <50 | 0 | 20 | 8 | 180 | 20 | 200 | 99 | | 07 | 300 | 350 | 50 | 20 | 800 | 800 | 50 | 8 | 320000 | 310000 | 300 | 250 | | DATE | DIS-
SULVED
LITHIUM
(LI)
(UG/L) | TUTAL MAN= GANESE (MN) (UG/L) | UIS-
SULVE()
MAN-
GANESE
(MN)
(UG/L) | INTAL
MERCURY
(HG)
(UG/L) | DIS-
SOLVED
MERCURY
(HG)
(UG/L) | TUTAL
MOLYR-
DENUM
(MII)
(UG/L) | DIS-
SOLVED
MOLYB-
DENUM
(M(J)
(UG/E) | TOTAL
NICKEL
(NI)
(UG/L) | DIS-
SULVED
NICKEL
(NI)
(UG/L) | TUTAL
SELE-
NIUM
(SE)
(UG/L) | DIS-
SOLVED
SELE-
NIUM
(SE)
(UG/L) | DIS-
SOLVED
VANA-
DIUM
(V)
(UG/L) | | APR , 1 | 976 | | | | | | | | | | | | | 22 | 70 | 80 | 60 | .3 | . 3 | 0 | 0 | 100 | 47 | 3 | 3 | .0 | | 22 | 160 | 4800 | 5000 | . 3 | .3 | 1 | 0 | 4000 | 3000 | 1 | 0 | 21 | | 22 | 210 | 6100 | 5700 | . 3 | • 2 | 5 | 0 | 5400 | 4200 | 0 | 0 | 130 | | 26 | 20 | 20 | 20 | | | | | <50 | 17 | | | .5 | | 26 | 220 | 6600 | 6500 | | | | | 4600 | 5000 | | | | | 0CT
20 | 30 | 30 | 30 | . 1 | .0 | 0 | 0 | 50 | 24 | , | , | - | | 20 | 220 | 6000 | 6000 | .1 | •1 | 0 | 1 | 5000 | 5000 | 2 | 2 | .7
120 | | DEC | | | | • • • | • • • | · | • | 3000 | 3000 | v | Ū | 120 | | 07 | 30 | 50 | 50 | | | | | 500 | 85 | | | .0 | | 07
FEB , 1 | 110 | 5300 | 5400 | | •• | | | 6000 | 4100 | | | 120 | | 17 | 40 | 60 | 50 | | •• | | | 50 | 31 | | | .0 | | 17
APR | 200 | 6000 | 5500 | | | | | 3900 | 3900 | | | .0 | | 21 | 50 | 2700 | 50 | | | | | 1800 | 49 | | | .0 | | 21
JUN
07 | 210 | 5900 | 5500 | | | | | 3900 | 4000 | | | 110 | | 07 | 210 | 10
5800 | 6200
6200 | 1.
5. | .0 | 0 | 0 | <50 | 20 | 3 | 3 | .0 | | | e.10 | 3600 | 9200 | • | .0 | 1 | 0 | 4500 | 4500 | 0 | 0 | 150 | | T_{Δ} | RIF | 3 | Contin | hou | |--------------|-----|---|--------|-----| | | | | | | | SAMP- | | | | | | | |--|---------|------|--------|--------|--------|----------------| | SAMP- LING ZINC ZINC CARBON SUB- DEPTH (ZN) (UG/L) (UG/L) (MG/L) (MG/L) APR , 1976 22 17H | | | | | | METHY⇒
L£N£ | | LING DEPTH (2N) (2N) (C) STANC (FF) (UG/L) (UG/L) (UG/L) (MG/L) | | | | | | BLUE | | DEPTH (ZN) (ZN) (C) STANC DATE (FI) (UG/L) (UG/L) (MG/L) (MG/L) (MG/L) APR, 1976 22 178 68000 68000 4.0 .1 22 210 350000 280000 2.2 .2 22 222 480000 490000 2.9 .8 AUG 26 205 20000 20000 26 228 470000 450000 27 190 46000 25000 3.4 .1 20 225 440000 440000 3.2 .0 DEC 07 190 27000 27000 FEB, 1977 17 190 36000 35000 FEB, 1977 17 190 49000 410000 APR 21 190 49000 49000 APR 21 190 49000 49000 21 225 412000 JUN 07 155 39000 39000 3.2 .1 | | | | | | ACTIVE | | DATE (F1) (UG/L) (UG/L) (MG/L) (MG/L) APR , 1976 22 178 | | | | | | | | APR , 1976 22 178 | | | | | | STANCE | | 22 178 68000 68000 4.0 .1 22 210 350000 280000 2.2 .2 22 222 480000 490000 2.9 .8 AUG 26 205 20000 20000 20 190 46000 25000 3.4 .1 20 225 440000 440000 3.2 .0 DEC 07 190 27000 27000 07 225 430000 420000 FEB , 1977 17 190 36000 35000 17 225 420000 410000 APR 21 190 49000 49000 21 225 412000 JUN 07 155 39000 39000 3.2 .1 | DATE | (FI) | (UG/L) | (UG/L) | (MG/L) | (MG/L) | | 22 210 350000 280000 2.2 .2 22 222 480000 490000 2.9 .8 AUG 26 205 20000 20000 COT 20 190 46000 25000 3.4 .1 20 225 440000 440000 3.2 .0 DEC 07 190 27000 27000 FEB , 1977 17 190 36000 35000 T17 225 420000 410000 APR 21 190 49000 49000 Z1 225 412000 JUN 07 155 39000 39000 3.2 .1 | APR , 1 | 976 | | | | | | 22 222 480000 490000 2.9 88 AUG 26 205 20000 20000 26 228 470000 450000 20 190 46000 25000 3.4 .1 20 225 440000 440000 3.2 .0 DEC 07 190 27000 27000 07 225 430000 420000 FEB , 1977 17 190 36000 35000 17 225 420000 410000 APR 21 190 49000 49000 21 225 412000 JUN 07 155 39000 39000 3.2 .1 | 22 | 178 | 68000 | 68000 | 4.0 | .10 | | AUG 26 205 | 22 | 210 | 350000 | 280000 | 2.2 | .20 | | 26 205 20000 20000 | 22 | 555 | 480000 | 490000 | 2.9 | .80 | | 26 228 | AUG | | | | | | | OCT | 26 | 205 | 20000 | 20000 | | | | 20 190 | 26 | 228 | 470000 | 450000 | | | | 20 225 440000 440000 3.2 .0 DEC 07 190 27000 27000 07 225 430000 420000 FEB , 1977 17 190 36000 35000 17 225 420000 410000 APR 21 190 49000 49000 21 225 412000 JUN 07 155 39000 39000 3.2 .1 | | | | | | | | DEC 07 190 | 20 | 190 | 46000 | 25000 | 3.4 | .10 | | 07 190 27000 27000 | | 225 | 440000 | 440000 | 3.2 | .00 | | 07 225 | | | | | | | | FEB , 1977 17 190 | 07 | 190 | 27000 | 27000 | -,- | | | 17 190 36000 35000 | | | 430000 | 420000 | | | | 17 225 420000 410000 APR 21 190 49000 49000 | | | | | | | | APR 21 190 49000 49000 21 225 412000 JUN 07 155 39000 39000 3.2 .1 | | 190 | 36000 | 35000 | | | | 21 190 49000 49000 | | 225 | 420000 | 410000 | | | | 21 225 412000 JUN 07 155 39000 39000 3.2 .1 | | | | | | | | JUN 07 155 39000 39000 3.2 .1 | 21 | 190 | 49000 | 49000 | | | | 07 155 39000 39000 3.2 .1 | | 225 | | 412000 | | | | | | | | | | | | | | 155 | 39000 | 39000 | 3.2 | .10 | | 07 225 440000 440000 1.61 | 07 | 225 | 440000 | 440000 | 1.6 | .10 | | | | | | | | | determined are given in table 9. The fiftieth percentile is included as a measure of central tendency in addition to the mean, because the mean is significantly affected by extreme values of small samples. In general, correlation is defined as the degree of association of two or more random variables. For this study, correlation is used to define the degree of linear association of two chemical or physical water-quality characteristics. The correlation coefficient is a numerical representation of the degree of association and ranges between -1 and +1. Correlation coefficients of -1 and +1 represent complete inverse and direct correlative associations, respectively, and a value of 0 indicates no correlative association. For hydrologic applications, a correlation coefficient greater than 0.7 or less than -0.7 is necessary to indicate a significant correlative association (V. Yevjevich, Colorado State University, oral communication, 1976). According to the above criterion, several chemical properties of the mine-shaft water, including dissolved sulfate, calcium, magnesium, lithium, dissolved solids, and total hardness, demonstrate significant correlation to specific conductance (table 10). None of the chemical properties statistically analyzed showed significant correlation to pH (table 11). However, when values of dissolved aluminum, zinc, and nickel were transformed to natural or Napierian logarithms, significant correlation was observed between the transformed variable and pH (table 12). Dissolved iron, manganese, and zinc concentrations in the mine-shaft water are significantly correlated to dissolved sulfate (table 13). Transformation of dissolved iron, manganese, and zinc values to natural or Napierian logarithms did not significantly affect their correlative association to dissolved sulfate (table 14). Transformed values of dissolved aluminum, however, were significantly correlated to dissolved sulfate, whereas untransformed values were not (table 14). Regression represents a mathematical equation expressing one random variable as being correlatively related to another random variable. For this investigation, least-squares regression analysis was used to linearly relate one chemical or physical water-quality
characteristic to another. The results of the regression analyses, the slopes and intercepts of the linear relations, are shown in tables 10–14. Figures 10–12 show graphical examples of the regression analyses. 20 Figure 10. Graph showing relationship of dissolved-solids concentration to specific conductance of mine-shaft water. Table 4.—Water-Quality Data from Lavrion Mine Shaft, April 1976 Sampling depths in ft below land surface | | | | | NON-
CAR- | TUTAL | TOTAL | DIS-
SOLVED | DIS-
SOLVED
MAG- | DIS- | | SUD1UM
AD- | DIS-
SOLVED
PO- | |---------|---------------|--------------|---------------|-----------------|---------------|-----------------|----------------|------------------------|---------------------------|-------------------|------------------------|-----------------------| | | SAMP-
LING | TUR-
BID- | HARD+
NESS | BUNATE
HARD= | ACIDITY
AS | ACIUITY
AS | CAL-
Clum | NE =
SIUM | SOL VED
SODIUM
(NA) | PERCENT
SUDIUM | SURP=
TIUN
RATIO | TAS-
SIUM
(K) | | | DEPTH | ITY | (CA,MG) | NESS
(MG/L) | H+
(MG/L) | CACU3
(MG/L) | (CA)
(MG/L) | (MG)
(MG/L) | (MG/L) | 30010m | RAITU | (MG/L) | | DATE | (FI) | (UTU) | (MG/L) | (MG/L) | | | | | | | | | | _ | | (UTV) | (MG/L) | (MG/L) | | | | | | | | | | APR , 1 | | 37 | 1700 | 1700 | 17 | 844 | 470 | 120 | 45 | 6 | .5 | 4.0 | | _ | 976 | 37
10 | 1700
1800 | 1700
1800 | 17
23 | 1140 | 510 | 130 | 55 | 6 | .6 | 4.5 | | APR , 1 | 976
160 | 37 | 1700 | 1700 | 17 | | | | | | | | Table 4.—Continued | DATE | BICAR-
BI)NATE
(HCO3)
(MG/L) | CAR-
BUNATE
(CO3)
(MG/L) | ALKA-
LINITY
AS
CACU3
(MG/L) | DIS-
SOLVED
SULFATE
(SO4)
(MG/L) | DIS-
SULVED
CHLD-
RIDE
(CL)
(MG/L) | DIS-
SULVED
FLUM-
RIDE
(F)
(MG/L) | DIS-
SOLVED
SILICA
(SIU2)
(MG/L) | DIS-
SOLVED
SOLIDS
(RESI-
DUE AT
180 C)
(MG/L) | SUS-
PENDED
SULIDS
(MG/L) | DIS-
SULVED
NITRATE
(N)
(MG/L) | DIS-
SULVED
NITRATE
(NU3)
(MG/L) | DIS+
SULVED
NITRITE
(N)
(MG/L) | |----------|--|---|--|---|---|--|---|--|--|--|---|--| | APR , 1 | 976 | | | | | | | | | | | | | 28 | 0 | 0 | 0 | 2500 | 7.2 | 9.8 | 13 | 4080 | 16 | .00 | .00 | .00 | | 28 | 0 | 0 | 0 | 2 9 00
2700 | 8.0
7.8 | 15
14 | 17
16 | 4650
4360 | 4 | .00 | .00
.18 | .00 | | DATE | DIS-
SOLVED
NITRITE
(NO2)
(MG/L) | DIS-
SOLVED
NITHITE
PLUS
NITRATE
(N)
(MG/L) | DIS- SOLVED AMMONIA NITRU- GEN (N) (MG/L) | DIS-
SOLVED
AMMONIA
(NH4) | TOTAL ALUM- INUM (AL) | DIS-
SULVED
ALUM-
INUM
(AL) | TOTAL
ARSENIC
(AS) | DIS-
SOLVED
ARSENIC
(AS) | TUTAL
Harium
(Ba) | DIS-
SOLVED
BARIUM
(BA) | TUTAL
BURUN
(8) | DIS-
SOLVED
BURON
(B) | | | | (| (1107) | (MG/L) | (UG/L) | APR , 1 | 976
.00 | .00 | .34 | .44 | 11000 | 14000 | 0 | 0 | 0 | 0 | 170 | 120 | | 28 | .00 | .00 | .49 | .63 | 26000 | 29000 | 0 | 0 | 0 | 0 | 130 | 120
150 | | 28 | .00 | .04 | . 45 | .58 | 280000 | 56000 | í | 1 | 0 | ő | 280 | 140 | | | | | | | | | | | | | | | | DATE | TOTAL
CAD-
MIUM
(CD)
(UG/L) | DIS-
SOL VED
CAD-
MIUM
(CD)
(UG/L) | TOTAL
CHRO=
MIUM
(CR)
(UG/L) | DIS-
SOLVED
CHRO-
MIUM
(CR)
(UG/L) | TITAL
CUBALT
(CU)
(UG/L) | DIS-
SULVED
CDBALT
(CO)
(UG/L) | TOTAL
COPPER
(CU)
(UG/L) | DIS-
SOLVED
COPPER
(CU)
(UG/L) | TOTAL
IRON
(FE)
(UG/L) | DIS-
SOLVED
IRON
(FE)
(UG/L) | TUTAL
LEAD
(PB)
(UG/L) | DIS-
SULVED
LEAD
(PB)
(UG/L) | | APR , 1 | 976 | | | | | | | | | | | | | 28 | 980 | 10 | 50 | 30 | 400 | 36 | 130 | 140 | 67000 | 76000 | 300 | 20 | | 28 | 860
830 | 13
13 | 60
70 | 60
60 | 600
650 | 45
44 | 130
130 | 160
120 | 140000
160000 | 130000
130000 | 300
200 | 16
10 | | DATE | DIS-
SOLVED
LITHIUM
(LI)
(UG/L) | TOTAL MAN= GANESE (MN) (UG/L) | DIS-
SULVED
MAN-
GANESE
(MN)
(UG/L) | TOTAL
Mercury
(Hg)
(Ug/L) | DIS-
SOLVED
MERCURY
(HG)
(UG/L) | TUTAL MOLYB- DENUM (MO) (UG/L) | DIS-
SULVED
MOLYB-
DENUM
(MO)
(UG/L) | TOTAL
NICKEL
(NI)
(UG/L) | DIS+
SULVED
NICKEL
(NI)
(UG/L) | TUTAL
SELE-
NIUM
(SE)
(UG/L) | DIS-
SOLVED
SELE-
NIUM
(SE)
(UG/L) | DIS+
SOLVED
VANA-
DIUM
(V)
(UG/L) | | APR ; 1 | 976 | | | | | | | | • | | ***** | (40,5) | | 28
28 | 140
200
200 | 4800
7800
8400 | 4400
6500
6300 | .1 | .1 | 0
0
0 | 0
0
0 | 2000
3800
4000 | 2300
3400
3100 | 1
1
1 | 0
1
0 | 22
60
39 | | | | | DA | SAM
LI
DEP
TE (F | NG ZI:
TH (Zi | AL SOL
NC ZI
N) (Z | N) (C | NIC ACT:
BON SUI
) STAI | NE
UE
I VE
B=
NCE | | | | | | | | 85
85 | , 1976
16
18 | 2 4200 | 000 420 | 000 | 1.4 | .00 | | | | Table 5.—Water-Quality Data from Skelton Mine Shaft, April 1976—June 1977 $Sampling\ depths\ in\ ft\ below\ land\ surface$ | | | | | DATE | SAMP-
LING
DEPTH
(FT) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHOS) | | | | | |---------------|--|---|---|---|---|---|---|--|--|--|--|---| | | | | | APR , 1 | .976
165 | 5.7 | 16.0 | 2250 | | | | | | | | | | 18 | 160 | 5.1 | 16.0 | 2360 | | | | | | | | | | JUN , 1
06
06 | 150
165 | 3.9
3.4 | 16.5
17.0 | 2900
3200 | | | | | | DATE | SAMP=
LING
DEPTH
(F1) | TUR-
BID-
ITY
(NIU) | HARD=
NESS
(CA,MG)
(MG/L) | NON-
CAR~
BONATE
HARD-
NESS
(MG/L) | TUTAL
ACIDITY
AS
H+
(MG/L) | TOTAL
ACIDITY
AS
CACU3
(MG/L) | DIS-
SOLVED
CAL-
CIUM
(CA)-
(MG/L) | DIS=
SOLVED
MAG-
NE=
SIUM
(MG)
(MG/L) | DIS-
SOLVED
SUDIUM
(NA)
(MG/L) | PERCENT
SODIUM | SUDIUM
AD=
SURP=
TIUN
RATIO | DIS-
SOLVED
P()-
TAS-
SIUM
(K)
(MG/L) | | APR , 1
26 | 1976
165 | 26 | 1300 | 1200 | 2.5 | 124 | 450 | 38 | 22 | 4 | . 3 | 1.8 | | 18
JUN , 1 | 160 | 23 | 1300 | 1300 | | | 440 | 45 | 25 | 4 | .3 | 1.6 | | 06 | 165 | 4.8 | 1600 | 1600 | 14 | 695 | 500 | 88 | 33 | 4 | . 4 | 1.3 | | DATE | BICAR-
BONATE
(HCU3)
(MG/L) | CAR-
BONATE
(CO3)
(MG/L) | ALKA-
LINITY
ÁS
CACU3
(MG/L) | DIS-
SOLVED
SULFATE
(SO4)
(MG/L) | DIS-
SULVED
CHLO-
RIDE
(CL)
(MG/L) | DIS-
SOLVED
FLUO-
RIDE
(F)
(MG/L) | DIS=
SOLVED
SILICA
(SIO2)
(MG/L) | DIS-
SOLVED
SOLIDS
(RESI-
DUE AT
180 C)
(MG/L) | SUS+
PENDED
SDLIDS
(MG/L) | DIS=
SOLVED
NITHATE
(N)
(MG/L) | DIS-
SULVED
NITRATE
(NO3)
(MG/L) | DIS=
SOLVED
NITRITE
(N)
(MG/L) | | APR , 1 | 976
59 | 0 | 48 | 1300 | 4.7 | 1.8 | 12 | 2120 | 11 | .11 | .49 | .01 | | 0CT | 9 | 0 | 7 | 1600 | 4.6 | 2.9 | 14 | 2400 | 27 | .01 | .04 | .00 | | JUN , 1 | .977 | 0 | 0 | 2300 | 5.0 | 2.3 | 18 | 3480 | 7 | .02 | .09 | .00 | | DATE | DIS-
SOLVED
NITRITE
(NO2)
(MG/L) | DIS-
SULVED
NITRITE
PLUS
NITRATE
(N)
(MG/L) | DIS-
SULVED
AMMONIA
NITRO-
GEN
(N)
(MG/L) | DIS-
SULVED
AMMONIA
(NH4)
(MG/L) | TUTAL
ALUM-
INUM
(AL)
(UG/L) | DIS-
SULVED
ALUM-
INUM
(AL)
(UG/L) | TUTAL
ARSENIC
(AS)
(UG/L) | DIS-
SOLVED
ARSENIC
(AS)
(UG/L) | THTAL
BAPIUM
(RA)
(UG/L) | DIS-
SULVED
BARIUM
(BA)
(UG/L) | TUTAL
BURUN
(B)
(UG/L) | DIS-
SOLVED
BORON
(B)
(UG/L) | | APR , 1
26 | 976 | .12 | .08 | .10 | 680 | 540 | 1 | 0 | 0 | 0 | 1700 | | | 18 | .00 | . 0 1 | .19 | .24 | 600v | 5500 | 2 | 1 | 0 | 0 | 100 | 60
70 | | JUN , 1 | .00 | • 05 | .26 | .33 | 26000 | 30000 | 5 | 1 | 100 | 200 | 170 | 110 | | DATE | TUTAL
CAD-
MIUM
(CD)
(UG/L) | DIS-
SHLVED
CAD-
MIUM
(CD)
(UG/L) | TOTAL
CHRU-
MIUM
(CR)
(UG/L) | DIS-
SOLVED
CHRU-
MIUM
(CR)
(UG/L) | TOTAL
COBALT
(CU)
(UG/L) | DIS-
SOLVED
COMALT
(CO)
(UG/L) | TOTAL
CUPPER
(CU)
(UG/L) | DIS-
SOLVED
COPPER
(CU)
(UG/L) | TOTAL
IRUN
(FE)
(UG/L) | DIS=
SOL VED
IRON
(FE)
(UG/L) | TUTAL
LE4D
(P8)
(UG/L) | DIS-
SULVED
LEAD
(PB)
(UG/L) | | APR , 1
26 | 976
160 | 9 | 10 | 0 | 150 | 89 | 20 | 3 | 8900 | 140 | 100 | 1 | | 18
Jun , 1 | 49 ₀ | 470 | 10 | 10 | 200 | 49 | 60 | 48 | 00068 | 28000 | 200 | 30 | | 06 | 1100 | 1200 | 150 | 140 | 300 | 350 | 500 | 220 | 70 | 60 | 200 | 350 | | | | | | | | TABLE | 5.—Co | ntinued | l | | | | | |------------
--|----------|---|--|------------------------------------|---|--|---|---------------------------------|--|--|---|---| | DATE | 01S=
SALVE
LITHIU
(LI)
(UG/L | .D
Iн | T(TAL
MAN-
GANESE
(MN)
(UG/L) | DIS-
SULVED
MAN-
GANESE
(MN)
(UG/L) | TOTAL
MERCURY
(HG)
(UG/L) | DIS-
SOLVED
MERCURY
(HG)
(UG/L) | TUTAL
MOLY8-
DENUM
(MO)
(UG/L) | DIS-
SOLVED
MOLYB-
DENUM
(MO)
(UG/L) | TOTAL
NICKE
(NI)
(UG/L | (NI) | TOTAL
SELE-
NIUM
(SE)
(UG/L) | DIS-
SULVED
SELE-
NIUM
(SE)
(UG/L) | DIS-
SQL VED
VANA-
DIUM
(V)
(UG/L) | | APR . 1 | | | 620 | 670 | ,5 | 1.3 | 1 | 0 | 60 | 0 500 | 0 | 0 | .0 | | 26
()CT | • | 0 | 620 | 610 | ., | 1.03 | • | · | | | | _ | | | 18 | | 0 | 740 | 760 | . 4 | .8 | 0 | 0 | 65 | 0 600 | 1 | 1 | 1.2 | | Jun , 1 | 977 | 0 | 1600 | 1600 | .2 | . 2 | 0 | 0 | 110 | 0 1300 | 1 | 1 | 11 | | | | | | D. | DE: | ING Z
PTH (| TAL SUL
INC ZI
ZN) (Z | (4) | TAL
ANIC A
RUJN | ETHY-
LENE
BLUE
CTIVE
SUB-
TANCE
MG/L) | | | | | | | | | APA | . 1976 | | | | | | | | | | | | | | 26 | 1 | 5 5 | 9000 47 | 000 | .9 | .00 | | | | | | | | | | 1 1 | 50 11 | 0000 110 | 000 | .6 | .00 | | | | | | | | | | 1 , 1977 | 5 25 | 0000 250 | 000 | . 7 | .00 | | | | Also shown in tables 10–14 are the standard errors of estimate for each linear-regression analysis performed. The standard error of estimate is defined as the standard deviation of the residual differences between values estimated by regression analysis and actual values. Therefore, approximately two-thirds of the residuals would fall within the range defined by the standard error of estimate. In cases where the linear regressions were analyzed between the independent variable and a dependent variable transformed by natural or Napierian logarithms, the standard errors of estimate are given in logarithmic units. ## Suitability of Mine-Shaft Water for Selected Uses Water-quality requirements for different major water uses, such as agriculture, industry, and public supply, differ considerably. In fact, water suitable for one user may not be suitable for another even within the same broad water-use category. Also, two raw waters whose characteristics, although different, cause them to be rated poor supplies may not be equivalent. One water may be amenable to economic treatment, whereas the other may not. Therefore, the suitability of water for a specific use depends not only on the characteristics of the water, but also on the treatment process available. In this report the criteria for judging the suitability of mine-shaft water for selected uses were obtained from the report Water Quality Criteria, 1972, prepared by the National Academy of Sciences and the National Academy of Engineering. Tables 15-19 give chemical and physical properties, their recommended maximum values, and the percentage of samples in which the recommended maximum values were exceeded for each of the respective water uses: public water supply; fresh, once-through, industrial cooling water; fresh, makeup-recycle, industrial cooling water; brackish industrial cooling water; and general irrigation water. The water-quality properties given in tables 15-19 are not the only ones on which the judgment of suitability for use is based. Rather, they are the constituents and properties for which excessive values were observed in water from one or more of the sampled mine shafts. Raw water within the mines is not suitable without treatment for any of the uses considered. Because of the number and wide distribution of samples containing excessive concentrations of metals, such as cadmium and lead, and because of the inability of current domestic water-treatment practices to remove them, the mine-shaft water is not suitable as a source of public water supply. As previously stated, water-quality requirements differ considerably even within a single water-use category. This is especially true for the broad water-use categories of agriculture and industry. Therefore, each potential agricultural or industrial water user must decide what water-quality characteristics are necessary or undesirable and then determine from the available data whether necessary treatment is technologically available and economically practical. #### Hydrology of the Mined Area Because movement of highly mineralized water from the mines into streams or the Roubidoux Formation, the principal aq- uifer in the area, would have deleterious effects on water quality, recharge to and discharge from the mined areas are important. At present, recharge to the mines, from surface runoff into open shafts during periods of heavy precipitation and through solution cavities and fractures in the surrounding Boone Formation, is relatively unhindered. As a result, the abandoned mines are steadily filling with highly mineralized water, and they contained by mid-1976 an estimated 100,000 acre-ft (D. C. Brockie, oral communication). The rate of recharge to the mines, estimated from pumping rates required to dewater the mines, is 22 ft³/s, resulting in an average rise in the water level of about 1.5 ft/month since cessation of mining activities (D. C. Brockie, oral communication, 1976). The total discharge from the Boone Formation in Ottawa County in 1948, considering all sources of discharge, was estimated at 43 ft³/s (Reed and others, 1955). Subsurface recharge to Table 6.—Water-Quality Data from New Chicago Mine Shaft, April 1976—June 1977 Sampling depths in ft below land surface SPF - | | | | | CIFIC | |----------|-------|---------|---------|---------| | | | | | CON- | | | SAMP- | | | DUCT- | | | LING | PH | TEMPER- | ANCE | | | DEPTH | | ATURE | (MICRU- | | DATE | (FT) | (UNITS) | (DEG C) | MHUS) | | APR , 1 | 976 | | | | | 29 | 167 | 7.6 | 16.0 | 2520 | | 29 | 174 | 7.6 | 16.0 | 2500 | | 29 | 179 | 7.3 | 16.0 | 2520 | | 29 | 181 | 6.6 | 16.0 | 2520 | | 29 | 183 | 5.4 | 16.5 | 2680 | | 29 | 192 | 4.8 | 17.0 | 2520 | | 29 | 197 | 4.9 | 17.5 | 2850 | | AUG | | | | | | 26 | 160 | | 18.0 | | | 26.,, | 174 | | 18.0 | | | 26 | 187 | 7.0 | 18.0 | 2850 | | 26 | 197 | 3.8 | 17.5 | 3840 | | OCT | | | | | | 20 | 165 | 7.6 | 16.5 | 3200 | | 20 | 180 | 7.6 | 16.5 | 3200 | | 20 | 195 | 4.8 | 16.0 | 3200 | | DEC | | | | | | 06 | 165 | 7.0 | 14.5 | 2650 | | 06 | 180 | 7.1 | 15.0 | 2800 | | 06 | 195 | 4.7 | 16.0 | 2950 | | FEB . 19 | | | | | | 17 | 165 | 6.2 | 14.5 | 3150 | | 17 | 180 | 6.2 | 14.5 | 3150 | | 17 | 195 | 4.2 | 15.0 | 3200 | | APR | | | | | | 21 | 165 | 7 - 1 | 15.0 | 3000 | | 21 | 185 | 7.1 | 15.0 | 3000 | | 21 | 187 | 4.4 | 16.0 | 3300 | | 21 | 195 | 4.3 | 16.0 | 3350 | | JUN | | | | | | 08 | 160 | 7.1 | 16.0 | 2550 | | 08 | 180 | 4.6 | 15.0 | 3300 | | 08 | 187 | 4.4 | 16.0 | 3300 | | 08 | 195 | 3.8 | 16.0 | 3800 | | | | | | | Table 6.—Continued | DATE | SAMP-
LING
DEPTH
(FT) | TUR-
BID-
LTY
(NTU) | HARI)=
NESS
(CA,MG)
(MG/L) | NON-
CAR-
HUNATE
HARD-
NESS
(MG/L) | TUTAL
ACIDITY
AS
H+
(MG/L) | TUTAL
ACIDITY
AS
CACU3
(MG/L) | DIS=
SOLVED
CAL=
CIUM
(CA)
(MG/L) | DIS-
SULVED
MAG-
NE-
SIUM
(MG)
(MG/L) | DIS=
SULVED
SUDIUM
(NA)
(MG/L) | PERCENT
SOUTUM | SUDIUM
AD-
SURP-
TIUN
RATIO | DIS=
SOLVED
PO=
TAS=
SIUM
(K)
(MG/L) | |-----------|--------------------------------|------------------------------|-------------------------------------|---|--|---|--|---|--|-------------------|---|--| | APR , 19 | 976 | | | | | | | | | | | | | 29 | 174 | 4.6 | 1600 | 1500 | .8 | 40 | 430 | 130 | 50 | ц | . 3 | 2.9 | | 29 | 192 | 10 | 1600 | 1600 | 4.6 | 558 | 490 | 82 | 28 | 4 | . 3 | 1.9 | | 29
AUG | 197 | 38 | 1600 | 1600 | 5.9 | 293 | 500 | 86 | 58 | 4 | . 3 | 1.6 | | 26 | 187 | 3.8 | 2000 | 1900 | . 4 | 20 | 520 | 170 | 34 | 4 | . 3 | 4.1 | | 26 | 197 | 11 | 1800 | 1800 | 15 | 745 | 510 | 130 | 36 | 4 | , u | 2.8 | | OCT | | | | | | | | | | | | | | 20 | 165 | 160 | 2100 | 2000 | | | 490 | 210 | 140 | 13 | 1.3 | 4.3 | | 20 | 195 | 75 | 1900 | 1800 | | | 510 | 140 | 36 | 4 | . 4 | 3.1 | | DEC | | | | | | | | | | | | _ | | 06 | 165 | 8.4 | 2100 | 2000 | .8 | 40 | 500 | 200 | 44 | 4 | . 4 | 3.7 | | 06 | 195 | 90 | 1900 | 1900 | 8.2 | 407 | 510 | 140 | 36 | 4 | . 4 | 3,1 | | FEB , 1 | | _ | | | | | | | | _ | | | | 17 | 165 | 8.0 | 2000 | 1900 | 1.7 | 84 | 490 | 180 | 44 | 5 | • 4 | 3.4 | | 17 | 195 | 45 | 1800 | 1800 | 6.0 | 298 | 500 | 140 | 39 | 4 | . 4 | 3.2 | | APR | | | | | _ | | | | | _ | | | | 21 | 165 | 1.3 | 5000 | 1900 | .7 | 35 | 490 | 190 | 45 | 5 | . 4 | 4.0 | | 21
Jun | 195 | .50 | 2100 | 2100 | 5.0 | 248 | 600 | 140 | 39 | 4 | . 4 | 3,2 | | 06 | 160 | .80 | 1700 | 1600 | .2 | 10 | 470 | 130 | 32 | 4 | . 3 | 3.2 | | 08 | 160 | 10 | 1900 | 1900 | 12 | 596 | 530 | 140 | 38 | 4 | . 4 | 3.5 | | 08 | 195 | 39 | 2100 | 2100 | 23 | 1140 | 500 | 500 | 57 | 6 | .5 | 4.0 | | BICAR-
BONATE
(HCO3)
(MG/L) | CAR-
BONATE
(CO3)
(MG/L) | ALKA-
LINITY
AS
CACO3
(MG/L) | DIS-
SOLVED
SULFATE
(SO4)
(MG/L) |
DIS-
SOLVED
CHLO-
RIDE
(CL)
(MG/L) | DIS-
SOLVED
FLUO-
RIDE
(F)
(MG/L) | DIS-
SULVED
SILICA
(SIU2)
(MG/L) | SOLVED
SOLIDS
(RESI-
DUE AT
180 C)
(MG/L) | SUS-
PENDED
SOLIDS
(MG/L) | DIS-
SOLVED
NITRATE
(N)
(MG/L) | DIS-
SOLVED
NITRATE
(NO3)
(MG/L) | DIS-
SOLVED
NITRITE
(N)
(MG/L) | |--------------------------------------|---|---|---|---|--|--|---|--|--
--|--| | 76 | | | | | | | 3450 | ,, | . 12 | .53 | .00 | | 114 | 0 | 94 | | - | | | | | | | .00 | | 9 | 0 | | | | | | | | | | .00 | | 6 | 0 | 5 | 5100 | 4.8 | 5.6 | 12 | 2430 | 10 | .01 | ••• | ••• | | | | | | | | | 2000 | | | | | | 166 | 0 | | | | | | | | | | | | 0 | 0 | 0 | 2300 | 8.1 | 1.2 | 16 | 3010 | 36 | | | | | | | . 70 | 7700 | 7 // | | 12 | 3210 | 173 | .21 | .93 | .00 | | | | | | | | | | | | . 31 | .00 | | 5 | 0 | 4 | 2300 | 5.8 | 5,4 | 14 | 3400 | 70 | •01 | • 31 | ••• | | | | | 2000 | 7.0 | 1 1 | 12 | 3170 | 1 | | | | | | | | | | | | | | | | | | | 0 | 0 | 5600 | 5.6 | 2.9 | 15 | 3410 | 3/ | | | | | | , , | 30 | 3000 | 7 7 | | 1.6 | 3090 | 0 | | | | | | | | | _ | | | | | | | | | 0 | 0 | 0 | 2200 | 14 | 3.9 | 14 | 3330 | 25 | | | | | | • | | 1000 | 7 7 | • 0 | | 7040 | | | | | | | | | | | | | | | | | | | U | U | U | 2500 | 12 | 0.0 | 15 | 3030 | 6 | | •• | | | 180 | 0 | 150 | 1600 | 4.8 | . 9 | 13 | 2690 | 0 | . 18 | .80 | .00 | | | | 0 | | | | | | | | | .01 | | - | 0 | Ó | 3000 | 6.2 | 1.0 | 19 | 4800 | Ž | .01 | .04 | .01 | | | BONATE
(HCO3)
(MG/L)
76
114
9
6 | BONATE (HCO3) (CO3) (CO3) (MG/L) 76 114 0 9 0 166 0 168 5 94 0 0 177 24 0 0 110 0 180 0 0 180 0 0 | BONATE (HCO3) (CO3) (AG/L) 76 114 0 94 9 0 7 6 0 5 166 0 136 0 0 0 168 0 138 5 0 4 94 0 77 0 0 0 0 177 24 0 20 0 110 0 90 0 180 0 0 0 180 0 0 0 | BUNATE (HCO3) (CO3) CACO3 (SO4) (MG/L) 76 114 | BUNATE (HCO3) (CO3) CACU3 (SO4) (HCC) (HCC | BONATE | BIONATE HONATE (HCO3) (HCCO3) | BICKAP BONATE (HCO3) (CO3) (MG/L) (MG | BICAN- BONATE BONATE AS SULFATE RIDE RIDE RIDE (HC03) (C03) (C03) (S04) (CL) (F) (S102) 180 C) SOLIDS (MG/L) (MG/L | BICAN- BONATE AS SULFATE RIDE RIDE (HG/L) (H | BICAN- BONATE BONATE AS SULFATE RIDE RIDE (HCO3) (CO3) | $\begin{array}{c} \text{Table 6.--Water-Quality Data from New Chicago Mine Shaft,} \\ \text{April 1976--June 1977---} Continued \end{array}$ | DATE | DIS-
SULVED
NITRITE
(NO2)
(MG/L) | DIS-
SOLVED
NITRITE
PLUS
NITRATE
(N)
(MG/L) | DIS-
SULVED
AMMONIA
NITRO-
GEN
(N)
(MG/L) | DIS-
SOLVED
AMMONIA
(NH4)
(MG/L) | TOTAL ALUM- INUM (AL) (UG/L) | DIS-
SULVED
ALUM-
INUM
(AL)
(UG/L) | TOTAL
ARSENIC
(AS)
(UG/L) | DIS-
SOLVED
ARSENIC
(AS)
(UG/L) | TUTAL
BARIUM
(BA)
(UG/L) | DIS=
SOLVED
BARIUM
(BA)
(UG/L) | TUTAL
BURUN
(B)
(UG/L) | DIS-
SOLVED
BURON
(B)
(UG/L) | |--|---|--|---|--|-------------------------------------|--|---|---|--|---|--|---| | APR . 1 | 976 | | | | | | | | | | | | | 29 | .00 | .12 | .01 | .01 | 200 | 30 | 0 | 0 | 0 | 0 | 330
190 | 130
160 | | 29 | .00 | .03 | .02 | .03
.12 | 3100
3700 | 110
5400 | 0
1 | 0 | 0
0 | 0 | 190 | 180 | | AUG | | | ••• | | 130 | 80 | | | | | 90 | 70 | | 26 | | | | | 2900 | 0 | | •• | | •• | 210 | 140 | | OCT | .00 | .21 | .00 | .00 | 130 | 20 | 1 | 0 | 0 | 0 | 100 | 70 | | 20 | .00 | .07 | .15 | .19 | 14000 | 13000 | 1 | 1 | 0 | ŏ | 150 | 100 | | DEC
06 | | .20 | | | 340 | 10 | | | | | 120 | 80 | | 06 | | | | | 12000 | 14000 | | | | | 150 | 100 | | FEB , 1 | 1977 | | | | 1400 | 820 | | | | | 110 | 80 | | 17 | | | | | 9000 | 0 | | | | | 140 | 130 | | 4PR
21 | | | | | 140 | 0 | | | | | 110 | 70 | | 21 | | | | | 26000 | 59000 | | | | | 140 | 140 | | JUN
08 | .00 | .18 | .01 | .01 | 20 | 10 | 0 | 0 | 100 | 100 | 100 | 70 | | 08 | .03 | .02 | .27 | . 35 | 23000 | 24000 | 0 | 0 | 100 | 500 | 210 | 150 | | 08 | .03 | .02 | .46 | .62 | 42000 | 42000 | 5 | 1 | 100 | 100 | 560 | 500 | | | | | | | | | | | | | | | | DATE | TUTAL
CAD=
MIUM
(CD)
(UG/L) | DIS-
SOLVED
CAD-
MIUM
(CD)
(UG/L) | TOTAL
CHRU=
MIUM
(CH)
(UG/L) | DIS-
SOLVED
CHRO-
MIUM
(CR)
(UG/L) | TUTAL
COBALT
(CO)
(UG/L) | DIS-
SOLVED
COBALT
(CO)
(UG/L) | TOTAL
COPPER
(CU)
(UG/L) | DIS-
SOLVED
COPPER
(CU)
(UG/L) | TOTAL
IRUN
(FE)
(UG/L) | DIS~
SDL VED
IRUN
(FE)
(UG/L) | TUTAL
LEAD
(PB)
(UG/L) | DIS-
SOLVED
LEAD
(PB)
(UG/L) | | APR . 1 | CAD-
MIUM
(CD)
(UG/L) | SOLVED
CAD-
MIUM
(CD)
(UG/L) | CHR()=
MIUM
(CH)
(UG/L) | SOLVED
CHRO-
MIUM
(CR)
(UG/L) | COBALT
(CO)
(UG/L) | SOLVED
COBALT
(CO)
(UG/L) | CUPPER
(CU)
(UG/L) | SOLVED
COPPER
(CU)
(UG/L) | IRUN
(FE)
(UG/L) | SOL VED
IRUN
(FE)
(UG/L) | LEAD
(PB)
(UG/L) | SOLVED
LEAD
(PB)
(UG/L) | | APR , 1 | CAD=
MIUM
(CD)
(UG/L)
.976 | SOLVED
CAD-
MIUM
(CD)
(UG/L) | CHR()=
MIUM
(CR)
(UG/L) | SOLVED
CHRO-
MIUM
(CR)
(UG/L) | COBALT
(CO)
(UG/L) | SOLVED
COBALT
(CO)
(UG/L) | CUPPER
(CU) | SOLVED
COPPER
(CU)
(UG/L) |
IRUN
(FE) | SOL VED
IRUN
(FE) | LEAD
(PB) | SOLVED
LEAD
(PB) | | APR , 1
29
29 | CAD-
MIUM
(CD)
(UG/L) | SOLVED
CAD-
MIUM
(CD)
(UG/L) | CHR()=
MIUM
(CH)
(UG/L) | SOLVED
CHRO-
MIUM
(CR)
(UG/L) | COBALT
(CO)
(UG/L) | SOLVED
COBALT
(CO)
(UG/L) | COPPER
(CU)
(UG/L) | SOLVED
COPPER
(CU)
(UG/L) | IRUN
(FE)
(UG/L) | SUL VED
IRUN
(FE)
(UG/L) | LEAD
(P8)
(UG/L) | SOLVED
LEAD
(PB)
(UG/L) | | APR , 1
29
29
29 | CAD=
MIUM
(CD)
(UG/L)
976
50
350
360 | SOLVED
CAD-
MIUM
(CD)
(UG/L) | CHRU-
MIUM
(CH)
(UG/L) | SOLVED
CHRO-
MIUM
(CR)
(UG/L) | COBALT
(CO)
(UG/L) | SDLVED
COBALT
(CO)
(UG/L) | C(1PPEN
(CU)
(UG/L)
10
50 | SOLVED
COPPER
(CU)
(UG/L) | IRUN
(FE)
(UG/L)
390
2100 | SDL VED
IRUN
(FE)
(UG/L) | (P8)
(UG/L) | SOLVED
LEAD
(PB)
(UG/L) | | APR , 1
29
29
29
AUG
26 | CAD-
MIUM
(CD)
(UG/L)
976
50
350 | SOLVED
CAD-
MIUM
(CD)
(UG/L) | CHR()=
MIUM
(CR)
(UG/L)
0
10
20 | SOLVED
CHRO-
MIUM
(CR)
(UG/L) | (CO)
(UG/L)
(UG/L) | SOLVED
COBALT
(CO)
(UG/L) | C(IPPER
(CU)
(UG/L)
10
50
50 | SOLVED
COPPER
(CU)
(UG/L) | IRUN
(FE)
(UG/L)
390
2100
18000 | SDL VED
IRUN
(FE)
(UG/L)
40
100
20000 | (PB)
(UG/L)
(UG/L) | SOLVED
LEAD
(PB)
(UG/L) | | APR , 1
29
29
AUG
26
26 | CAD-
MIUM
(CD)
(UG/L)
976
50
350
360 | SOLVED
CAD-
MIUM
(CD)
(UG/L) | CHR()=
MIUM
(CR)
(UG/L)
0
10
20 | SOLVED
CHRO-
MIUM
(CR)
(UG/L) | (CO)
(UG/L)
100
200
250 | SOLVED
COBALT
(CO)
(UG/L) | COPPER
(CU)
(UG/L)
10
50
50 | SOLVED
COPPER
(CU)
(UG/L) | IRUN
(FE)
(UG/L)
390
2100
18000 | SDL VED
IRUN
(FE)
(UG/L)
40
100
20000 | (PB)
(UG/L)
<100
100
100 | SOLVED
LEAD
(PB)
(UG/L)
11
66
120 | | APR , 1
29
29
AUG
26
OCT
20
20 | CAD-
MIUM
(CD)
(UG/L)
976
50
350
360
920 | SOL VED
CAD-
MIUM
(CD)
(UG/L)
11
16
130
10
630 | CHR()-
MIUM
(CR)
(UG/L) | SOLVED
CHRO-
MIUM
(CR)
(UG/L) | 100
200
250 | SOLVED
COBALT
(C(1)
(UG/L) | (CUPPE#
(CU)
(UG/L) | SOLVED
COPPER
(CU)
(UG/L) | IRUN
(FE)
(UG/L)
390
2100
18000
510
83000 | SDL VED
IRUN
(FE)
(UG/L)
40
100
20000 | (PB)
(UG/L)
(100
100
100
100
400 | SOLVED
LEAD
(PB)
(UG/L)
11
66
120 | | APR , 1
29
29
AUG
26
CT
20 | CAD-
MIUM
(CD)
(UG/L)
976
50
350
360
50
920 | SOLVED
CAD-
MIUM
(CD)
(UG/L)
11
16
130
10
630 | CHR()-
MIUM
(CH)
(UG/L)
0
10
20 | SOLVED
CHRO-
MIUM
(CR)
(UG/L) | 100
200
250 | SOLVED
COMALT
(CO)
(UG/L) | COPPER
(CU)
(UG/L)
10
50
50 | SOLVED
COPPER
(CU)
(UG/L)
2
17
36 | 1RUN
(FE)
(UG/L)
390
2100
18000
510
83000 | SDL VED
IRUN
(FE)
(UG/L)
40
100
20000
80
67000 | (PB)
(UG/L)
<100
100
100
400 | SOLVED
LEAD
(PB)
(UG/L)
11
66
120
14
500 | | APR , 1
29
29
AUG
26
CT
20
20
DEC
06 | CAD-
MIUM
(CD)
(UG/L)
976
50
350
360
920
430 | SOLVED
CAO-
MIUM
(CD)
(UG/L)
11
16
130
10
630 | CHR()-
MIUM
(CR)
(UG/L)
0
10
20

10
50 | SOL VED
CHRO-
MIUM
(CR)
(UG/L)
10
20

10
30 | 100
200
250

50
350 | SOLVED
COBALT
(CO)
(UG/L) | COPPER
(CU)
(UG/L)
10
50
50
 | SOLVED
COPPER
(CU)
(UG/L)
2
17
36 | 1RUN
(FE)
(UG/L)
390
2100
18000
510
63000
490
61000 | SDL VED
IRUN
(FE)
(UG/L)
40
100
20000
80
67000
30
55000 | (PB)
(UG/L)
<100
100
100
400
100
300 | SOLVED
LEAD
(P8)
(UG/L)
11
66
120
14
500 | | APR , 1
29
29
AUG
26
CT
20
20
DEC
06 | CAD-
MIUM
(CD)
(UG/L)
976
50
350
360
920
430 | SOLVED
CAD-
MIUM
(CD)
(UG/L)
11
16
130
10
630
16
410 | CHK()-
MIUM
(CK)
(UG/L) | SOL VED
CHRO-
MIUM
(CR)
(UG/L)
10
20 | 100
200
250

50
350 | SOLVED
COBALT
(CO)
(UG/L)
88
0
0 | C(IPPE#
(CU)
(UG/L)
10
50
50
 | SOLVED
COPPER
(CU)
(UG/L)
2
17
36

3
100 | 1RUN
(FE)
(UG/L)
390
2100
18000
510
83000
490
61000 | SDL VED
IRUN
(FE)
(UG/L)
40
100
20000
80
67000
30
55000 | (PB)
(VG/L)
<100
100
100
100
400
100
300 | SOLVED
LEAD
(PB)
(UG/L)
11
66
120
14
500 | | APR , 1
29
29
29
26
70
20
DEC
06
FEB , 1
17 | CAD-
MIUM
(CD)
(UG/L)
976
50
350
360
920
20
430
100
400 | SOLVED
CAD-
MIUM
(CD)
(UG/L)
11
16
130
10
630
16
410 | CHKU-
MIUM
(CH)
(UG/L) | SOL VED
CHRO-
MIUM
(CR)
(UG/L) | 100
200
250

50
350 | SOLVED
COBALT
(CO)
(UG/L) | C(IPPE#
(CU)
(UG/L)
10
50
50

<10
120 | SOL VED
COPPER
(CU)
(UG/L) | 1RUN
(FE)
(UG/L)
390
2100
18000
510
83000
490
61000
1000
60000 | SDE VED
IRUN
(FE)
(UG/L)
40
100
20000
80
67000
30
55000
30
59000 | (PB)
(VG/L)
<100
100
100
100
400
100
300 | SOLVED
LEAD
(PB)
(UG/L)
11
66
120
14
500
1
300 | | APR , 1
29
29
AUG
26
OCT
20
DEC
06
17
APR
21 | CAD-
HIUM
(CD)
(UG/L)
976
350
350
360
50
920
20
430
100
400
977 | SOL VED
CAO-
MIUM
(CD)
(UG/L)
11
16
130
630
10
630
11
11
390 | CHK()-
MIUM
(CK)
(UG/L) | SOL VED
CHRO-
MIUM
(CR)
(UG/L) | 100
200
250
50
350 | SOL VED
COBALT
(CO)
(UG/L)
88
0 | C(IPPE# (CU) (UG/L) 10 50 50 <10 120 | SOLVED
COPPER
(CU)
(UG/L)
2
17
36 | 1RUN
(FE)
(UG/L)
390
2100
18000
510
83000
490
61000
1000
60000 | SDE VED
IRUM
(FE)
(UG/L)
40
100
20000
80
67000
30
55000
30
59000 | (PB)
(VG/L)
<100
100
100
400
100
300
100
300
<100 | SOLVED
LEAD
(PB)
(UG/L)
11
66
120
14
500
1
300 | | 29
29
29
26
26
DEC
06
FEB , 1
17
17
17
21
21 | CAD-
MIUM
(CD)
(UG/L)
976
50
350
360
20
430
100
400
977 | SOL VED
CAD-
MIUM
(CD)
(UG/L)
11
16
130
630
16
410
11
390
8 | CHK()-
MIUM
(CH)
(UG/L) | SOL VED
CHRO-
MIUM
(CR)
(UG/L)
10
20

10
30 | 100
200
250
50
350 | SOL VED
COBALT
(C(1))
(UG/L)
88
0
0
0 | C(IPPER
(CU)
(UG/L)
10
50
50

<10
120 | SOLVED
COPPER
(CU)
(UG/L) | 1RUN
(FE)
(UG/L)
390
2100
18000
510
83000
490
61000
1000
60000
950
42000 | SDE VED
1 RUM
(FE)
(UG/L)
40
100
20000
80
67000
30
55000
30
59000
30
41000 | (PB)
(VG/L)
<100
100
100
400
100
300
100
300
<100
200 | SOLVED
LEAD
(PB)
(UG/L)
11
66
120
14
500
1
250
10
200 | | 29 29 29 29 29 20 26 DEC 06 DEC 17 17 17 21 21 JUN 08 | CAD-
MIUM
(CD)
(UG/L)
976
350
360
50
920
20
430
100
400
977
150
320
570 | SOL VED
CAD-
MIUM
(CD)
(UG/L)
11
16
130
10
630
16
410
11
390
8
340
65
560 | CHK()-
MIUM
(CK)
(UG/L) | SOL VED
CHRO-
MIUM
(CR)
(UG/L) | 100
200
250
350 | 80LVED
COBALT
(C(1))
(UG/L)
88
0
0
0 | C(IPPE# (CU) (UG/L) 10 50 50 <10 120 | SOLVED
COPPER
(CU)
(UG/L)
2
17
36

3
100 | 1RUN
(FE)
(UG/L)
390
2100
18000
510
83000
490
61000
1000
60000
950
42000
350
120000 | SDE VED
1RUM
(FE)
(UG/L)
40
100
20000
80
67000
30
55000
30
59000
41000
60
100000 | (PB)
(PB)
(UG/L)
<100
100
100
400
100
300
<100
200
100
300 | SOLVED
LEAD
(PB)
(UG/L)
11
66
120
14
500
1
250
10
200
100
300 | | APR , 1 29 29 4UG 26 26 DEC 06 DEC 17 17 17 17 17 17 17 17 17 17 21 21 JJUN 08 08 08 | CAD-
MIUM
(CD)
(UG/L)
976
350
350
360
920
20
430
100
400
977
150
320
570
570 | SOLVED
CAD-
MIUM
(CD)
(UG/L)
11
16
130
10
630
16
410
11
390
8
340
65
560 | CHKU-
MIUM
(CH)
(UG/L)
0
10
20

10
50 | SOL VED
CHRO-
MIUM
(CR)
(UG/L) | 100
200
250
350 | 88 0 0 0 0 8 64 | C(IPPER (CU) (UG/L) 10 50 5010 120 20 120 | SOLVED
COPPER
(CU)
(UG/L)
2
17
36

3
100 | 1RUN
(FE)
(UG/L)
390
2100
18000
510
83000
490
61000
1000
60000
950
42000 | SDE VED
IRUM
(FE)
(UG/L)
40
100
20000
67000
30
55000
30
59000
41000 | (PB)
(VG/L)
<100
100
100
400
100
300
100
300
<100
200 | SOLVED
LEAD
(PB)
(UG/L)
11
66
120
14
500
1
250
10 | | 29 29 29 29 29 20 26 DEC 06 DEC 17 17
17 21 21 JUN 08 | CAD-
MIUM
(CD)
(UG/L)
976
350
360
50
920
20
430
100
400
977
150
320
570 | SOL VED
CAD-
MIUM
(CD)
(UG/L)
11
16
130
10
630
16
410
11
390
8
340
65
560 | CHKU-
MIUM
(CK)
(UG/L) | SOL VED
CHRO-
MIUM
(CR)
(UG/L) | 100
200
250
350
350 | SOLVED
COBALT
(C(1))
(UG/L)
88
0
0 | C(IPPE# (CU) (UG/L) 10 50 5010 120 20 | SOLVED
COPPER
(CU)
(UG/L) | 1RUN
(FE)
(UG/L)
390
2100
18000
510
63000
490
61000
1000
60000
950
42000
350
120000 | SDE VED IRUN (FE) (UG/L) (UG/L) 40 100 20000 80 67000 30 59000 30 41000 60 100000 50 | (PB)
(VG/L)
<100
100
100
100
300
100
300
<100
200
100 | SOLVED
LEAD
(PB)
(UG/L)
11
66
120
14
500
1
250
10
200 | | | | \mathbf{T}_{λ} | ABLE 6.— | -Contin | ued | | | | | | |--|----------------------|--------------------------------|---------------------------------|--|--|-----------------------------------|--|---|---|--| | SULVED MAN-
LITHIUM GANESE
(LI) (MN) | GANESE MER
(MN) (| | SULVED
LERCURY
(HG) | MOLYK- !
DENUM
(MU) | DIS-
SULVE()
40LYB-
DENUM
(MO)
(UG/L) | TUTAL
NICKEL
(NI)
(UG/L) | DIS-
SULVED
NICKEL
(NI)
(UG/L) | TIDTAL
SELE-
NIUM
(SE)
(UG/L) | DIS-
SULVEU
SELE-
NIUM
(SE)
(UG/L) | DIS-
SULVED
VANA-
DIUM
(V)
(UG/L) | | APR , 1976 | | | | 1 | 1 | 200 | 150 | 0 | 0 | .5 | | 29 50 310
29 90 1300 | 310
1100 | .8
.3 | .4 | 1 | Ú | 800 | 700 | i | 1 | .7 | | 29 110 1300 | 1400 | .5 | .5 | ō | Ü | 900 | 1000 | 1 | 1 | 2.7 | | AUG
26 60 400 | 380 | | | | | 100 | 91 | | | _ • | | 26 180 3500 | 2800 | | | | | 1800 | 1600 | | | 32 | | OCT 70 200 | 500 | . 1 | .2 | 0 | 1 | 100 | 100 | 1 | 1 | . 1 | | 20 130 2000
DEC | 1500 | . 1 | •5 | 0 | 0 | 1100 | 1100 | 1 | 1 | 24 | | 06 80 440 | 420 | | | | | 900 | 500 | | | .0 | | 06 130 1700
FEB , 1977 | 1900 | | | | | 1200 | 1200 | | | 18 | | 17 110 840 | 820 | | •• | | | 500 | 500 | | | .0 | | 17 130 1800
APR | 1800 | | | | | 1000 | 1100 | | | 5.5 | | 21 90 400 | 420 | | | | | 250 | 250 | | | .0 | | 21 180 2500
JUN | 2500 | | | | | 1700 | 1600 | | | 7.0 | | 08 60 220
08 190 2800 | 550 | . 1 | .2 | 0 | 0 | 50 | 100 | 0 | 0 | .0 | | 08 260 4200 | 3100
4600 | .5 | • 2 | 0 | 0 | 1600
2600 | 1700
2900 | 2 | 5 | .0 | | | UATE | SAMP-
LING
DEPTH
(FT) | TUTAL
ZINC
(ZN)
(UG/L) | DIS-
SOLVED
ZINC
(ZN)
(UG/L) | TI)TAL
URGANIC
CARBIN
(C)
(MG/L) | SUB- | E
E | | | | | | APR , 19 | 76 | | | | 4 | ^ | | | | | | 29 | 174 | 18000 | | 3.6 | | | | | | | | 29
29
AUG | 192
197 | 110000 | | 3.9 | | 0 | | | | | | 26
26 | 187
197 | 17000
260000 | | | | - | | | | | | 20 | 165 | 6300 | 6500 | 3. | 3 .0 | 0 | | | | | | DEC | 195 | 140000 | | • | | | | | | | | 06
06
FEB , 19 | 165
195
977 | 50000
130000 | 130000 | - | | - | | | | | | 17 | 165 | 55000 | | - | | - | | | | | | 17
APR | 195 | 120000 | | - | • • | • | | | | | | 21 | 165 | 55000 | | - | | - | | | | | | 21
Jun | 195 | 170000 | | - | | - | | | | | | | | | | | | | | | | | | 08 | 160
180 | 7000
190000 | | 3. | | | | | | TUR-BID-ITY (NTU) ₽0 72 140 24 160 130 55 80 2.1 33 95 110 400 DATE 18... 18... APR 21... 21... 21... JUN 08... APP , 1976 23... 166 23... 162 AUG 25... 160 (ICT 19... 162 19... 160 DEC 07... 160 07... 180 FEB , 1977 18... 160 180 155 170 180 155 170 180 TABLE 7.—WATER-QUALITY DATA FROM BIRTHDAY MINE SHAFT, APRIL 1976-June 1977 Sampling depths in ft below land surface | | DATE | SAMP-
LING
DEPTH
(FT) | PH
(UNITS) | TEMPER-
ATURE
(DEG C) | SPE-
CIFIC
CON-
DUCT-
ANCE
(MICRO-
MHUS) | | | | | |------------------------------------|---|--|---|--|--|--|-------------------|---|--| | | APR , 19 | 16 | | | | | | | | | | 23 | 168 | 5.2 | 16.0 | 4100 | | | | | | | 23 | 172 | 5.2 | 15.5 | 4200
4200 | | | | | | | 23 | 175 | 5.2 | 15.5 | 4390 | | | | | | | 23 | 182 | 5.3 | 15.0 | 4370 | | | | | | | 25 | 160 | 7.2 | 16.0 | 1060 | | | | | | | 25 | 167 | 3.4 | 17.0 | | | | | | | | 25 | 173 | 3.7 | 16.5 | | | | | | | | 25 | 177 | 4.2 | 16.0 | | | | | | | | 25 | 180 | 5.8 | 16.0 | 3840 | | | | | | | OCT | 162 | 6.0 | 15.0 | 1900 | | | | | | | 19
19 | 180 | 5.6 | 15.0 | 3800 | | | | | | | DEC | • | | | | | | | | | | 07 | 160 | 6.6 | 14.5 | 1550 | | | | | | | 07 | 170 | 3.A | 15.0 | 3300 | | | | | | | 97 | 180 | 5.7 | 16.0 | 4000 | | | | | | | FEB , 19 | 145 | 5.7 | 15.0 | 3000 | | | | | | | 18 | 160 | 5.0 | 15.0 | 3850 | | | | | | | 18 | 170 | 4.5 | 15.0 | 3850 | | | | | | | 18 | 180 | 5.4 | 15.5 | 4050 | | | | | | | APR | | , , | 15.0 | 1550 | | | | | | | 21 | 155
167 | 7.2
5.3 | 15.5 | 3650 | | | | | | | 21 | 170 | 5.0 | 16.0 | 3850 | | | | | | | 51 | 180 | 5.8 | 16.0 | 4400 | | | | | | | 08 | 155 | 6.8 | 16.0 | 830 | | | | | | | 08 | 162 | 6.8 | 15.5 | 830 | | | | | | | 08 | 166 | 5.1 | 16.0 | 3500
3800 | | | | | | | 08 | 170
175 | 5.0
5.3 | 16.0
16.0 | 3800 | | | | | | | 08 | 180 | 5.8 | 16.5 | 4100 | | | | | | HARD-
NESS
(CA,MG)
(MG/L) | NON=
CAR=
BUNATE
HARD=
NESS
(MG/L) | TUTAL
ACIDITY
AS
H+
(MG/L) | TOTAL
ACIDITY
AS
CACOS
(MG/L) | DIS-
SULVED
CAL-
CIUM
(CA)
(MG/L) | DIS-
SOLVED
MAG-
NE-
SIUM
(MG)
(MG/L) | DIS=
SULVED
SUDIUM
(NA)
(MG/L) | PERCENT
SODIUM | SUDIUM
AD-
SURP-
TIUN
HATIO | DIS-
SOLVED
PO-
TAS-
SIUM
(K)
(MG/L) | | | | | | | 210 | 5) | 5 | .5 | 2.7 | | 5500 | 5500 | 17 | 844 | 490 | 230
240 | 52
53 | 5 | .5 | 2.6 | | 5500 | 5500 | 18 | 894 | 490 | 240 | 33 | , | | | | 540 | 460 | .2 | 10 | 160 | 35 | 29 | 10 | .5 | 3.7 | | 1600 | 1600 | 13 | 646 | 420 | 130 | 40 | 5 | . 4 | 3.8 | | | | | | | | | _ | | | | 890
2100 | 850
2100 | | | 250
490 | 64
220 | 40
47 | 9
5 | .6
.4 | 4.9 | | | | | | | _ | _ | | | | | 830 | 740 | . 4 | 20 | 230 | 65 | 63 | 14 | 1.0 | 6.3 | | 2400 | 2400 | 18 | 894 | 540 | 260 | 46 | 4 | . 4 | 3.0 | | 1900 | 1900 | 20 | 993 | 480 | 180 | 54 | 6 | .5 | 4.2 | | 2100 | 2100 | 20 | 993 | 490 | 210 | 51 | 5 | .5 | 3.8 | | 2100 | 2100 | 20 | 773 | • 70 | 210 | 31 | , | • • | 3.0 | | 730 | 660 | .2 | 10 | 200 | 55 | 59 | 15 | 1.0 | 4,6 | | 5000 | 2000 | 9.0 | 447 | 470 | 190 | 61 | 6 | . 6 | 4.6 | | 2500 | 2500 | 10 | 497 | 570 | 270 | 47 | 4 | . 4 | 3.2 | | 410 | 330 | . 2 | 10 | 120 | 27 | 19 | 9 | . 4 | , , | | 5500 | 2200 | 22 | 1090 | 500 | 230 | | | | 3.7 | | 2500 | 2400 | 19 | 943 | 540 | 270 | 63
44 | 6
4 | .6
.4 | 5.0
3.5 | | -500 | L-00 | | , , | 540 | 210 | 44 | 4 | . 4 | 3.3 | | | | | | | Table | : 7.— <i>Ca</i> | ontinue | d | | | | | |---|--|---|---|--|---|---|--|--|------------------------------------|--|---|---| | DATE | BICAR-
BONATE
(HCU3)
(MG/L) | CAR=
BONATE
(CO3)
(MG/L) | ALKA÷
LINITY
AS
CACO3
(MG/L) | SOLVED | | DIS-
SOLVED
FLUO-
RIDE
(F)
(MG/L) | DIS-
SOLVED
SILICA
(SIU2)
(MG/L) | DIS-
SOLVED
SOLIDS
(RESI-
DUE AT
180 C)
(MG/L) | SUS-
PENDED
SOLIOS
(MG/L) | DIS-
SOLVED
NITRATE
(N)
(MG/L) | DIS-
SOLVED
NITRATE '
(NO3)
(MG/L) | DIS+
SOLVED
HITRITE
(N)
(MG/L) | | PR , 197 | | 0 | 7 | 3000 | 6.7 | 8.1 | 11 | 5150 | 138
134 | .01 | .04 | .00 | | 23
23 | 24 | ŏ | 50 | 3000 | 6.8 | 7.2 | 11 | 5200 | | | | | | UG
25 | 107 | 0 | 88
1 | 520
2100 | 3.2
9.1 | .4
2.9 | 6.8
10 | 864 | 0
156 | | | | | 25
CT | 1 | 0 | | | | | 6.4 | 1590 | 29 | .01 | .04 | .00 | | 19 | 5 1
4 5 | 0 | 42
37 | 1000
3100 | 4.7
7.3 | 1.8
2.5 | 12 | 4620 | 165 | .01 | .04 | .01 | | EC | | 0 | 92 | 870 | 5.5 | .5 | 7.8 | 1390 | 3 | | | | | 07 | 112 | ō | 0 | 3500 | 6.9 | 1.1 | 12 | 5000 | 149 | | | •• | | EB , 19 | 0 | 0 | 0 | 2900 | 7.4 | 8.6 | 13
13 | 4570
4860 | 115
216 | | | | | 18 | 0 | 0 | 0 | 3200 | 6.8 | 6.5 | | | | | | | | PR
21 | 84 | 0 | 69 | 760 | 3.4 | 1.1 | 4.9 | 1260
4300 | 9
70 | | | | | 21 | 0 | 0 | 0 | 2700
3100 | 6.4 | 7.6
1.2 | 13
12 | 5100 | 186 | | | | | 21 | 0 | 0 | | | | | 6.8 | 630 | 4 | .36 | 1.6 | .04 | | 08 | 94 | 0 | 77 | 360
3200 | 2.3
6.9 | .6
8.6 | 14 | 4960 | 84 | .06 | .27 | .01 | | 08 | 0
39 | 0 | 0
32 | 3200 | 7.2 | .4 | 9,4 | 5340 | 156 | .05 | .22 | .01 | | | | | | | | | | | | | | | | DATE | OIS-
SOLVED
NITRITE
(NU2)
(MG/L) | DIS-
SULVED
NITRITE
PLUS
NITRATE
(N)
(MG/L) |
DIS- SULVED AMMONIA NITRU- GEN (N) (MG/L) | DIS-
SOLVED
AHMONIA
(NH4)
(MG/L) | TUTAL
ALUM=
Inum
(AL)
(UG/L) | DIS-
SOLVED
ALUM-
INUM
(AL)
(UG/L) | TOTAL
ARSENIC
(AS)
(UG/L) | DIS-
SOLVED
ARSENIC
(AS)
(UG/L) | TUTAL
Barium
(Ba)
(UG/L) | DIS-
SOLVED
BAHIUM
(BA)
(UG/L) | TUTAL
BORUN
(B)
(UG/L) | DIS-
SULVED
HORUN
(B)
(UG/L) | | APR , 1 | 97b | | 74 | .45 | 9100 | 8600 | 2 | i | 0 | | 220 | 200 | | 23 | .00 | .01 | .35 | .43 | 8800 | 8900 | 2 | 5 | 0 | 0 | 240 | 500 | | AUG | | | | | 60 | 40 | | | | | 110 | 90
240 | | 25 | | | | | 4000 | 4000 | | | | - | 130 | | | UCT | | | | .24 | 980 | 600 | 1 | 1 | (| | | 110
160 | | | • • | | | | | | | | | | C C 11 | 11.0 | | 19 | .00 | .02 | .19
.17 | .52 | 4000 | 3200 | 0 | 0 | (| , , | | | | 19
19
DEC | .03 | .02 | :17 | | 4000
60 | 3200 | 0 | 0 | | | • • • | 140 | | 19
19
DEC
07 | .00 | | .17 | .22 | | | | | | | | 140
170 | | 19
19
DEC | .03 | .02 | .17 | | 60
4000 | 2000 | | | | | 230 | - | | 19
19
DEC
07
07
FEB | .03

1977 | | .17 | .22 | 60 | O | | |
 |
 | 230 | 170 | | 19
19
DEC
07
07 | .03

1977 | | .17 | | 60
4000
13000
8900 | 0
2000
13000
7900 |
 |
 |
 | | 230
240
220 | 170
150 | | 19
19
DEC
07
07
FEB ,
18
APR
21 | .03

1977
 | | | .22 | 60
4000
13000
A900 | 2000
13000 | ::
:- |
 | | | 230
240
220
120
230 | 170
150
160
90
150 | | 19
19
DEC
07
07
FEB
18
APR
21 | .03

1977 | | | | 60
4000
13000
8900 | 0
2000
13000
7900 | :- | | | | 230
240
220
120
230 | 170
150
160 | | 19
19
DEC
07
FEB ,
18
APR
21
21
JUN | 1977 | | | | 60
4000
13000
A900
180
11000 | 0
2000
13000
7900
20
11000 | :: | | | | 230
240
220
120
230 | 170
150
160
90
150
160 | | 19
19
DEC
07
07
FEB
18
18
APR
21
21 | .03 | .02 | .17 | | 60
4000
13000
A900
180
11000
1000 | 2000
13000
7900
20
11000
1000 | | | | | 230
240
220
120
230
230
230
110
260 | 170
150
160
90
150
160
70 | Table 7.—Water-Quality Data from Birthday Mine Shaft, April 1976—June 1977—Continued | DATE | TOTAL
CAD-
MIUM
(CD)
(UG/L) | DIS-
SOLVED
CAD-
MIUM
(CD)
(UG/L) | TOTAL
CHRO-
MIUM
(CR)
(UG/L) | DIS-
SOLVED
CHRO-
MIUM
(CR)
(UG/L) | TOTAL
COBALT
(CO)
(UG/L) | DIS-
SULVED
COBALT
(CO)
(UG/L) | TOTAL
COPPER
(CU)
(UG/L) | DIS-
SOLVED
COPPER
(CU)
(UG/L) | TOTAL
IRÚN
(FE)
(UG/L) | DIS-
SOLVED
IRON
(FE)
(UG/L) | TUTAL
LEAD
(PB)
(UG/L) | DIS-
SOLVED
LEAD
(PB)
(UG/L) | |-----------------|---|--|--|---|---|--|---|--|----------------------------------|--|---|--| | APR , 1 | 976 | 900 | 20 | | 500 | | | | | | | | | 23 | 900 | 900 | 10 | 50
50 | 580
600 | 550
580 | 50
50 | 36
60 | 110000
110000 | 110000 | 300
300 | 79
93 | | AUG
25 | 60 | 60 | | | | | | | 240 | 210 | <100 | 12 | | 25
UCT | 270 | 530 | | | | | | | 110000 | 89000 | 300 | 40 | | 19 | 130 | 8 | 10 | 0 | 150 | 74 | <10 | 2 | 15000 | 13000 | 100 | 51 | | DEC | 100 | 60 | 20 | 0 | 600 | 71 | 10 | 5 | 150000 | 110000 | 200 | 13 | | 07 | <10
160 | 1
60 | | | | | | | 2000 | 710
83000 | 100
300 | 2 | | FEB , 1 | | 360 | | | | | • | | | | | 67 | | 18 | 360 | 370 | | | | | | | 190000
210000 | 180000
200000 | 300
300 | 300
300 | | APR
21 | 130 | 140 | | | | | | | 280 | | | | | 21 | 280 | 300 | | | | | | | 190000 | 140
170000 | 100
300 | 50
200 | | 21
JUN | 100 | 80 | | | | | | | 200000 | 200000 | 200 | 200 | | 08 | 260
60 | 55
180 | 0
10 | 10
20 | <50
650 | 9
700 | <10
70 | 8
90 | 710
240000 | 90 | <100 | 7 | | 08 | 80 | 20 | 10 | 50 | 800 | 800 | 10 | 4 | 230000 | 230000
230000 | 200
300 | 40
17 | | DATE | DIS-
SULVED
LITHIUM
(LI)
(UG/L) | TOTAL MAN= GANESE (MN) (UG/L) | DIS-
SULVED
MAN-
GANESE
(MN)
(UG/L) | TOTAL
MERCURY
(HG)
(UG/L) | DIS-
SULVED
MERCURY
(HG)
(UG/L) | TUTAL
MOLYB-
DENUM
(MO)
(UG/L) | DIS=
SULVED
MOLYB=
DENUM
(MO)
(UG/L) | TOTAL
NICKEL
(NI)
(UG/L) | (NI)
(NI)
NICKEL
SOLVED | TOTAL
SELE-
NIUM
(SE)
(UG/L) | DIS-
SOLVED
SELE-
NIUM
(SE)
(UG/L) | DIS-
SOLVED
VANA-
DIUM
(V)
(UG/L) | | APR , 1 | 976 | | | _ | | | | | | | | | | 23
23
AUG | 250
250 | 5500
5500 | 5600
5500 | .9 | .7
1.0 | 0 | 0 | 3700
3900 | 3300
3500 | 1
0 | 0 | 39
36 | | 25 | 20
120 | 70
12000 | 70 | | | | | <50 | 50 | | | . 4 | | LIC T | | | 7400 | •• | | | | 5000 | 1800 | | | | | 19
19
UEC | 50
150 | 1300 | 950
9000 | .0 | .0 | 0
0 | 0 | 500
2500 | 500
2500 | 0
5 | 1 0 | 49.8 | | 07 | 40 | 1800 | 1500 | | | | | 500 | 150 | | | .0 | | 07
FEB , 19 | 160
977 | 11000 | 10000 | | •• | •• | | 8000 | 2900 | | | 45 | | 18 | 160
160 | 5200
7400 | 5000
7000 | | | | | 2900 | 3100 | | | 110 | | APR
21 | 30 | 390 | 300 | | | | •• | 3000 | 3200 | | | 100 | | 21 | 160 | 5000 | 4400 | | | | | 100 | 97 | | | .0 | | 21
JUN | 140 | 15000 | 14000 | | | | | 2900
2800 | 2900
3000 | | | 50
50 | | 08
08 | 20 | 100 | 190 | . 4 | .0 | 0 | υ | 50 | 50 | 0 | 0 | .0 | | 08 | 200
140 | 5000
13000 | 5200
13000 | • 1
• 1 | • 0 | 0 | 0 | 3000 | 3500 | 0 | 0 | 130 | | | | | | | • 0 | | 0 | 2800 | 3000 | 0 | υ | 50 | | | Т | ABLE 7.– | –Conti | nued | | |----------|-------|----------|--------|---------|--------| | | | | | | METHY- | | | | | | | LENE | | | | | DIS- | TUTAL | BLUE | | | SAMP- | TUTAL | SOLVED | ORGANIC | ACTIVE | | | LING | ZINC | ZINC | CARBON | SUB- | | | DEPTH | (ZN) | (ZN) | (C) | STANCE | | DATE | (FT) | (UG/L) | (UG/L) | (MG/L) | (MG/L) | | APR , 1 | 976 | | | | | | 23 | 168 | 470000 | 490000 | .0 | .00 | | 23 | 182 | 490000 | 490000 | .0 | .00 | | AUG | | | | | | | 25 | 160 | 9200 | 9400 | | | | 25 | 180 | 340000 | 260000 | | | | OCT | | | | | | | 19 | 162 | 65000 | 65000 | 4.2 | .00 | | 19 | 180 | 370000 | 360000 | 5.4 | .00 | | DEC | | | | | | | 07 | 160 | 54000 | 4400 | | | | 07 | 180 | 390000 | 390000 | | | | FEB . 19 | | | | | | | 18 | 160 | 340000 | 340000 | | | | 18 | 180 | 390000 | 380000 | | | | APR | | | | | | | 21 | 155 | 8400 | 8300 | | | | 21 | 170 | 310000 | 270000 | | | | 21 | 180 | 410000 | 370000 | | | | JUN | | | | | | | 08 | 155 | 6400 | 6700 | 2.4 | .00 | | 08 | 170 | 340000 | 340000 | 4.6 | .10 | | 08 | 180 | 410000 | 400000 | 5.1 | .10 | | | | | | | | the Boone Formation is derived mainly from the outcrop area to the east. In the study area, direct recharge to the Boone is minimal, owing to the overlying impervious shale. The amount and direction of discharge from the area is unknown. Periodic water-level measurements made in the Blue Goose well from September 1975 to February 1980 (fig. 13) show that the water level rose at an average rate of 2.6 ft/ month. Generally, the water-level rise was greatest after periods of high precipitation and after the mine workings were filled with water (figs. 6, 13). The equilibrium water level probably will approximate the level that existed before mining and accompanying dewatering began. Although no definite information regarding the pre-mining static water level is available, Siebenthal (1908) indicated that Tar Creek (fig. 1) is the likely drainage level for the region. Tar Creek is approximately 790 ft above mean sea level in the southern part of the study area and approximately 840 ft above mean sea level in the northern part. In the vicinity of the Blue Goose well, Tar Creek is approximately 800 ft above mean sea level. Therefore, based on the assumption that the equilibrium water-level altitude is 800 ft above mean sea level and on the fact that the rate of waterlevel rise has apparently declined, the present water level in the Blue Goose well should be near equilibrium. In the future, the water level should fluctuate about the present level. Eventually, the water in the mines will move down gradient toward major drainage basins in the area. Siebenthal (1915) stated that the chemical characteristics of water in mines in the Miami, Oklahoma, mining district were similar to those of the deep wells in the same area. Also, the quantity of water pumped from the mines required to keep the work areas dry remained relatively constant, being essentially free of seasonal variations. Siebenthal concluded that the water in the mines in the Miami mining district was supplied under artesian pressure from deeper formations such as the Roubidoux, the source of water supply to most municipalities in the area. Brockie, Hare, and Dingess (1968) also implied a hydraulic connection between the Roubidoux and Boone Formations by concluding that the origin of the ores mined in the area was from warm, saline, orebearing solutions that migrated through the Cambrian-Ordovician formations and upward into the Mississippian formations Figure 11. Graph showing logarithmic relationship of dissolved aluminum concentration to pH of mine-shaft water. Untransformed values of
dissolved aluminum concentration given in micrograms per liter. where zones of weakness, such as the Miami Trough and windows in the Chattanooga Shale, were present. Siebenthal (1915, p. 274) further stated: So also there must be a constant deep-seated increment to the mine waters of all the mining districts of the Joplin region, though this increment may be almost completely masked by the seasonal variations. If there is hydraulic connection between the mined areas of the Boone Formation and the underlying Roubidoux Formation as Siebenthal contended, then continued heavy pumping and drawdown in the Roubidoux, coupled with increasing water levels in the mines, will cause the difference in head between the two formations to decrease. If the decrease in head differential is such that it is reversed, downward migration of contaminated mine water into the Roubidoux is possible. Reed and others (1955) noted that a considerable volume of water is discharged through many springs from the Boone Formation east of the study area in eastern Ottawa County, Oklahoma. In addition, rural wells withdraw water for domestic and stock use from the Boone outside of the mined areas. A possibility exists, therefore, that after reaching equilibrium level, water in the mined areas will migrate sufficiently to contaminate the rural domestic and stock wells. However, Barks (1977), in a study of the Joplin area, Missouri, noted that contamination of the shallow aquifer by the highly mineralized mine water was limited to the immediate area of mining. In the same report, Barks observed that streams Table 8.—Water-Quality Data from Consolidated No. 2 Mine Shaft, April 1976—June 1977 | Sampling | depths | in | ft | below | land | surface | |----------|--------|----|----|-------|------|---------| |----------|--------|----|----|-------|------|---------| SPF - | | | | | SPE- | |-----------|-------|------------|--------------|---------| | | | | | CIFIC | | | | | | CON- | | | SAMP- | | | DUCT- | | | LING | ьч | TEMPER- | ANCE | | | DEPTH | | ATURE | (MICRU- | | DATE | (FT) | (UNITS) | (DEG C) | MH(IS) | | APR , 1 | | | | | | 20 | 179 | 7.8 | 16.0 | 920 | | 20 | 191 | 7.5 | 16.0 | 940 | | 21 | 210 | 7.2 | 15.5 | 1040 | | 21 | 227 | 6.9 | 16.0 | 1080 | | 21 | 229 | 5.0 | 16.0 | 4420 | | 21 | 234 | 4.8 | 16.0 | 4600 | | AUG | | | | 0.10 | | 25 | 165 | 7.7 | 17.0 | 810 | | 25 | 185 | 7.8 | 16.5 | | | 25 | 215 | 7.7
7.7 | 16.0 | | | 25 | 225 | | 16.0 | 4670 | | 25 | 230 | 5.3
5.0 | 16.0
16.0 | 4670 | | 25 | 235 | 3.0 | 10.0 | | | LICT | 165 | 6.7 | 14.5 | 830 | | 19 | 215 | 6.7 | 15.0 | 840 | | 19 | 230 | 5.3 | 14.5 | 4000 | | 19
DEC | 230 | 3.3 | 14.5 | -000 | | 07 | 165 | 7.4 | 14.5 | 900 | | 07 | 215 | 7.4 | 14.5 | 890 | | 07 | 230 | 5.5 | 15.5 | 4650 | | | 977 | ,,, | .,,,, | | | 17 | 165 | 7.6 | 13.5 | 1030 | | 17 | 215 | 7.5 | 14.0 | 1080 | | 17 | 252 | 5.7 | 14.5 | 4080 | | 17 | 230 | 5.3 | 15.0 | 4280 | | APR | | | | | | 21 | 152 | 5.8 | 14.5 | 1170 | | 21 | 165 | 7.2 | 14.5 | 1080 | | 21 | 215 | 7.3 | 14.5 | 1080 | | 21 | 220 | 7.2 | 14.5 | 1080 | | 21 | 230 | 5.3 | 15.5 | 4150 | | JUN | | - • - | | | | 07 | 165 | 7.4 | 16.0 | 810 | | 07 | 215 | 7.6 | 15.5 | 740 | | 07 | 225 | 7.1 | 16.0 | 810 | | 07 | 230 | 5.6 | 16.0 | 4100 | | | _ | | | | Table 8.—Water-Quality Data from Consolidated No. 2 Mine Shaft, April 1976—June 1977—Continued | Samp | | | | | 2 11 1011 <i>1</i> | 1010 0 | ONE IO | 1-00100 | mucu | | | | | |--|---------|-----------------------|-------|-----------------|---------------------------------|---------------------|-------------------------|--------------------------------|---------------------------------------|--------------------------|------------|----------------------|--------------------------------------| | 20 191 3.0 520 470 .2 10 170 24 10 1 4 2 1.7 2 1.2 2 1.0 22. 22. 10 180 25 11 4 2 2 1.6 2 1.0 22. 1.6 22. 22. 22. 10 180 25 11 4 2 2 1.6 2 1.6 22. | | LING
DEPTH
(FT) | BIO- | NESS
(CA,MG) | CAR-
BONATE
MARD-
NESS | ACIDITY
AS
H+ | ACIDITY
AS
CACIJ3 | SOLVED
CAL=
CIUM
(CA) | SOLVED
MAG-
NE-
SIUM
(MG) | SÜLVED
SÜDŞUM
(NA) | | AD-
SURP-
TIUN | SULVED
PO=
TAS=
SIUM
(K) | | 21 227 5.0 550 510 .2 10 180 250 211 0 40 30 77 7 2.24 22 165 1.0 440 370 .11 5.0 150 16 7.3 31 1 1.6 2.2 23 165 1.0 440 370 .15 5.0 150 16 7.3 31 1 1.6 2.2 24 230 140 1300 1300 1300 130 1300 130 130 130 13 | APR , 1 | | | | | | | | | | | | | | 21 229 88 2200 2200 18 8 89 220 2300 23 1180 520 240 8.0 7 7 7 7 2 2.2 2 8.0 230 230 230 230 180 520 240 8.0 1 1 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 20 | | | | | | | | | 10 | 4 | .2 | 1.7 | | 21 234 72 2300 2300 23 1140 520 240 8,0 1 1.0 2.0 2.0 2.0 2.0 1.1 5.0 16 16 7.1 3 1.1 1.6 2.0 2.0 190 1300 1300 18 80 340 100 43 7 7 .7 5 3.4 11.6 3.0 150 150 150 18 80 340 100 43 7 7 .7 5 3.4 11.6 3.0 150 150 150 150 150 150 150 150 150 15 | 21 | | | | | 2 | | | | | | .2 | 1.8. | | AUG 25 165 1.0 440 370 1.1 5.0 150 1.6 7.1 3 1.1 1.6 25 230 140 1300 1300 1300 18 894 340 100 43 7 7.5 3.4 19 165 3.0 480 420 160 20 8.9 4 2 2.0 19 165 3.0 480 2200 2200 510 220 8.9 4 2 2.0 19 165 1.1 520 480 1.1 5.0 170 23 9.7 7 7 7 .7 3.4 10 230 150 2200 2200 220 99 3 560 240 77 7 7 7 7 7 7 7 3.9 FELS ILVIT 18 165 1.0 570 520 1.1 5.0 180 29 12 4 .2 2.1 19 230 160 2200 2200 2200 21 1080 520 230 81 7 7 .7 3.6 APP 21 250 160 2200 2200 2200 21 1080 520 230 81 7 7 .7 3.6 APP 21 250 10 570 520 1.1 5.0 180 29 12 4 .2 2.1 21 250 10 570 520 1.1 5.0 180 29 12 4 .2 2.1 21 250 70 2200 2200 11 584 510 230 77 7 7 7 .7 3.6 APP 21 250 200 2200 2200 11 584 510 230 77 7 7 7 .7 3.8 APP 21 250 200 200 2200 220 11 584 510 230 77 7 7 7 .7 3.8 21 250 200 200 2200 220 10 554 510 230 77 7 7 7 3.8 21 250 200 200 2200 220 10 554 510 230 77 7 7 7 3.8 21 250 200 200 2200 220 10 554 510 230 77 7 7 7 3.8 21 250 200 200 2200 220 10 554 510 230 77 7 7 7 3.8 22 250 200 200 2200 220 10 554 510 230 77 7 7 7 3.8 22 250 200 200 2200 220 10 554 510 230 77 7 7 7 3.8 22 250 200 200 2200 220 10 554 510 220 80 77 7 7 7 3.8 22
250 200 200 2200 220 10 550 510 20 | 21 | | | | | | | | | | | | | | 25 230 140 1300 1300 18 894 340 100 43 7 15 3.4 OCT 194 165 3.0 480 420 160 20 8.9 4 22 2.0 194 165 3.10 2200 2200 160 20 8.9 7 7 7 7 4.1 DEC 250 155 1.1 520 440 .1 5.0 170 23 9.7 7 7 7 7 7 7 3.9 FEB 1477 17 165 1.0 570 520 21 1040 520 230 81 7 7 7 7 7 3.9 FEB 1477 17 165 1.0 570 520 21 1040 520 230 81 7 7 7 7 3.6 APP 21 165 1.0 570 520 21 1040 520 230 81 7 7 7 7 3.6 APP 21 165 1.0 570 520 11 5.0 180 29 12 4 22 2.1 230 70 2200 2200 2201 15 546 510 230 77 7 7 7 7 3.8 APP 21 230 70 2200 2200 220 1090 150 16 7 1 3 1 1.4 07 230 200 2200 2200 220 220 1090 510 220 80 7 7 7 3.8 APP 1916 410 460 | AUG | | | 2300 | 2300 | 6.3 | 1140 | 520 | 240 | 8.0 | 1 | • 1 | 5.2 | | 25 230 140 1300 1300 18 894 340 100 43 7 , 5 3.4 OCT | | | 1.0 | 440 | 370 | , 1 | 5.0 | 150 | 16 | 7.1 | 3 | . 1 | 1.6 | | 0CT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 230 | 140 | 1300 | 1300 | 18 | | | | | | | | | 19. 230 130 2200 2200 510 230 81 7 7 .7 4 4.7 6.1 000 000 000 000 000 000 000 000 000 0 | | | | | | | | | | | | •• | | | DEC. SO SO SECULD SECULD SO SO SO SO SO SO SO S | 19 | | | | | | | | | | | .2 | 2.0 | | 07 155 | 19 | 230 | 130 | 5500 | 2200 | | | 510 | 230 | 81 | 7 | . 7 | 4.1 | | 07 230 | | 165 | 1 - 1 | 520 | 440 | , | E 0 | . 70 | 27 | | | _ | | | FEB. 1477 17 165 1.0 570 520 1.1 5.0 180 29 12 4 .2 2.1 17 230 160 2200 2200 21 1040 520 230 81 7, 7 3.6 APR 21 165 1.0 570 520 1.1 5.0 180 29 12 4 .2 2.1 21 220 70 2200 2200 11 546 510 230 77 7 7 7 7 3.6 APR 21 165 1.0 570 520 21 1546 510 230 77 7 7 7 7 3.4 OT 185 1.0 440 380 .0 0 1546 71 3 11 1.4 OT 230 200 2200 2200 22 1040 510 220 80 77 7 7 3.8 OT 230 200 200 2200 22 1040 510 220 80 7 17 7 3.8 BICAN- BINATE BINATE BINATE AS SULFATE RILL (HCU3) (CH3) (CH3) (CH3) (CH3) (MG/L) | | | | | | | | | | | | | | | 17 230 160 2200 2200 21 1040 520 230 61 7 .7 3.6 APR 21 165 1.0 570 520 230 11 540 510 230 77 7 7 .7 3.6 21 230 70 2200 2200 11 540 510 230 77 7 7 .7 3.4 07 165 1.0 440 380 .0 510 510 220 80 7 7 7 7 7 .7 3.4 07 230 200 2200 2200 2200 220 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 2200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 200 510 220 80 7 .1 3 .1 1.4 07 230 200 200 2200 2200 22 1000 510 220 80 7 .1 3 .1 1.4 07 230 200 200 200 2200 220 1000 510 220 80 7 .1 1 3 .1 1.4 07 230 200 200 200 200 200 200 200 200 200 | | | | 2400 | 2-00 | 20 | 773 | 360 | 240 | " | , | • / | 3.9 | | 17. 230 | | 165 | 1.0 | 570 | 520 | . 1 | 5.0 | 180 | 29 | 12 | ц | . 2 | 2 1 | | 21 165 1.0 570 520 11 5.0 180 29 12 4 .2 2.1 3.4 3.4 3.1 1.4 3.4 3.8 3.4 1.4 3.4 1.4 3. | 17 | 230 | 160 | 5500 | 5500 | | | - | | | | | | | 21 230 70 2200 2200 11 546 510 220 77 7 7 .7 3.4 27 230 200 200 2200 220 1000 510 220 800 77 7 7 .7 3.4 27 230 200 200 2200 220 1000 510 510 220 80 7 .7 3.8 27 230 200 200 2200 2200 22 1000 510 510 220 80 7 .7 3.8 27 230 200 200 2200 2200 22 1000 510 510 200 80 7 .7 3.8 28. | APR | | | | | | | | | 9. | • | • ' | 3.6 | | Section Sect | 21,,, | | | | | . 1 | 5.0 | 180 | 29 | 12 | и | د | 3 (| | 07 165 1.0 440 380 .0 .0 .0 150 16 7.1 3 .1 1.4 07 230 200 220 220 22 1090 510 220 80 7 .7 3.8 11 1.4 07 230 200 200 2200 22 1090 510 220 80 7 .7 3.8 11 1.4 07 230 200 200 2200 220 1090 510 220 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 .7 3.8 201 20 20 80 7 3.8 201 20 20 80 7 3.8 201 20 20 80 80 7 3 .7 3.8 201 20 20 80 80 7 3 .7 3.8 201 20 20 80 80 7 3 .7 3.8 201 20 20 80 80 7 3 .7 3.8 201 20 20 80 80 7 3 .7 3.8 201 20 20 80 80 7 3 .7 3.8 201 20 20 80 80 80 80 80 80 80 80 80 80 80 80 80 | | 230 | 70 | 2200 | 5500 | 11 | 546 | 510 | 230 | | | | | | 07 230 200 2200 2200 22 1090 510 220 80 7 1.7 3.8 HICAR | | 165 | 1 0 | 4.4.5 | 7.00 | _ | | | | | | • • | 3.4 | | ## BICAR- CAR- LINITY SULVED CHLU- FLUO- SOLVED SULVED SUL | | | | | | 22.0 | .0 | | | | | . 1 | 1.4 | | BICAR | | | 20 | 2500 | 2200 | 22 | 1090 | 510 | 550 | 80 | 7 | . 7 | 3.8 | | DATE (HC(3) (CH3) (CH3) (CH3) (AC) (Sh4) (CL) (F) (Sh2) (BG/L) (MG/L) (M | | | | LINITY | SIJL VED | SOL VED
CHLU= | SULVED
FLUO- | SOLVED | SUL VED
SUL I DS | Sus= | | | | | DATE (MG/L) (MG/ | | | | | | | | | | | | NITRATE | | | APR , 1976 20 6a | DATE | | | | | | | | | | | | | | 20 6a 0 53 460 2.1 .3 10 795 4 .26 1.2 .00 21 57 0 47 520 1.7 .4 9.8 641 3 .24 1.1 .00 21 0 0 0 3100 6.2 1.9 8.4 5160 106 .00 .00 .01 21 0 0 0 3200 6.6 1.6 9.8 5380 36 .01 .04 .00 21 0 0 0 7 3200 6.6 1.6 9.8 5380 36 .01 .04 .00 25 81 0 66 360 .5 .4 11 6.7 11 93 UCT 19 76 0 62 440 1.1 .7 11 722 12 .22 .97 .00 19 7 0 6 3400 7.0 2.4 7.7 5160 186 .42 1.9 .00 DEC 07 71 0 58 490 1.3 .3 12 768 0 UT 17 57 0 47 510 3.1 .5 13 838 0 EER 1977 17 57 0 47 510 3.1 .5 13 838 0 17 57 0 47 510 3.1 .5 13 838 0 21 55 0 45 500 1.8 6 8.8 4970 73 21 57 0 0 47 510 3.1 .5 13 838 0 21 57 0 0 48 500 6.8 3.5 8.0 5180 93 21 57 0 0 47 510 3.1 .5 13 838 0 21 57 0 0 48 500 6.8 3.5 8.0 5180 93 21 57 0 0 47 510 3.1 .5 13 838 0 21 57 0 0 47 510 3.1 .5 13 838 0 21 57 0 0 48 500 6.8 3.5 8.0 5180 93 21 57 0 0 0 3300 6.8 3.5 8.0
5180 93 21 57 0 0 0 0 3300 6.8 3.5 8.0 5180 93 21 57 0 0 0 0 3000 6.3 1.5 8.8 4970 73 | | | _ | | (.0, 2, | (1.07) | (1072) | (40/6) | (MG/L) | (MG/L) | (MG/L) | (MG/L) | (MG/L) | | 21 57 0 47 520 1.7 .4 9.8 841 3 .24 1.1 .00 21 0 0 0 3100 6.2 1.9 8.4 5160 106 .00 .00 .01 21 0 0 0 3200 6.6 1.6 9.8 5360 36 .01 .04 .00 AUG 25 81 0 66 360 .5 .4 11 649 | | | | | | | | | | | | | | | 21 0 0 0 3100 6.2 1.9 8.4 5160 106 .00 .00 .00 .01 .04 .00 .00 .01 .04 .00 .01 .04 .00 .00 .01 .04 .00 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .01 .04 .00 .00 .01 .04 .00 .00 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .01 .01 .04 .00 .00 .00 .01 .01 .01 .04 .00 .00 .00 .00 .00 .00 .00 .00 .00 | | | | | | | | 10 | 795 | 4 | .26 | 1.2 | -00 | | 21 0 0 0 3100 6.6 1.6 9.8 5160 106 .00 .00 .01 AUG AUG 25 81 0 66 360 .5 .4 11 649 | 21 | | | | | | | | 841 | 3 | .24 | | | | AUG | 21 | | | | | | | | | | .00 | | | | 25 1 0 1 1600 9.1 1.7 11 93 17 19 76 0 62 440 1.1 .7 11 722 12 .22 .97 .00 19 7 0 6 3400 7.0 2.4 7.7 5160 186 .42 1.9 .00 00 00 00 3300 6.8 3.5 8.0 5180 93 | AUG | , | ,, | J | 3200 | 0.0 | 1.6 | 9.8 | 5380 | 36 | .01 | .04 | | | UCT 1 0 1 1600 9.1 1.7 11 93 19 19 19 19 19 19 19 19 19 19 19 19 19 | | 81 | | 66 | 360 | .5 | _4 | 11 | AUA | | | | | | 19 76 0 62 440 1.1 .7 11 722 12 .22 .97 .00 19 7 0 6 3400 7.0 2.4 7.7 5160 186 .42 1.9 .00 DEC 07 71 0 58 490 1.3 .3 12 768 0 07 20 0 16 3500 7.0 1.9 9.2 5090 74 17 57 0 47 510 3.1 .5 13 838 0 17 0 0 0 3300 6.8 3.5 8.0 5180 93 21 55 0 45 500 1.8 6 12 845 2 21 55 0 45 500 1.8 6 12 845 2 21 78 0 0 64 370 1.1 4 12 622 0 .21 .93 .00 | | 1 | 0 | | | 9.1 | 1.7 | | | | | | | | 19 7 0 6 3400 7.0 2.4 7.7 5160 186 .42 1.9 .00 DEC | | - | | | | | | | | ,, | - - | | | | DEC | | | | | | 1.1 | | 11 | 722 | 12 | .22 | .97 | .00 | | 07 71 0 58 490 1.3 .3 12 768 0 | | 7 | 0 | 6 | 3400 | 7.0 | 2.4 | 7.7 | 5160 | | | | | | 07 20 0 16 3500 7.0 1.9 9.2 5090 74 | | 7 1 | n | 5A | 490 | 1 7 | 7 | | • | | | | • | | 717 57 0 47 510 3.1 .5 13 838 0 | | | | _ | | | | | | | | | | | 17 57 0 47 510 3.1 .5 13 838 0 17 0 0 0 3300 6.8 3.5 8.0 5180 93 17 21 55 0 45 500 1.8 6 12 845 2 21 0 0 0 3000 6.3 1.5 8.8 4970 73 17 21 78 0 64 370 1.1 .4 12 622 0 .21 .93 .00 07 78 0 0 0 0 3100 5.9 1.8 2.0 1.2 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | FEB , 1 | 977 | · · | 10 | 3300 | 7.0 | 1.9 | 9.2 | 5090 | 74 | | | | | 1/ 0 0 0 3300 6.8 3.5 8.0 5180 93 | 17 | 57 | 0 | 47 | 510 | 3.1 | .5 | 13 | 838 | 0 | | | | | APR 21 55 0 45 500 1.6 .6 12 845 2 21 0 0 0 3000 6.3 1.5 8.8 4970 73 07 78 0 64 370 1.1 .4 12 622 0 .21 .93 .00 | 17 | 0 | 0 | U | | | | | | | | | | | 21 0 0 0 3000 6.3 1.5 8.8 4970 73 | APR | | _ | | | | | | • | | _ | | | | Jun | 21 | | | | | | | | | | | | | | 07 0 0 0 3100 5 9 1 8 9 4 5 6 6 1 .93 .00 | JUN | · · | U | U | 3000 | 6.3 | 1.5 | 8.8 | 4970 | 73 | | | | | 07 0 0 0 3100 5 9 1 8 9 4 5 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 07 | 7 A | 0 | 64 | 370 | 1.1 | 4 | 13 | 4.33 | _ | | | | | | | 0 | | - | | | | | | | | | | | | | | | | | -• | 1.0 | 0.4 | 3100 | 114 | .02 | .09 | .01 | | | | | | ſ | Table 8 | .—Con | tinued | | | | | | |-------------|--|--|---|---|--|---|------------------------------------|---|-----------------------------------|--|---------------------------------|--| | UATE | 01S=
SULVED
NITRITE
(NO2)
(MG/L) | DIS- SUL VED NITHITE PLUS NITHATE (N) (MG/L) | DIS- SULVED AMMUNIA NITRU- GEN (N) (MG/L) | DIS-
SOLVED
AMM()NIA
(NH4)
(MG/L) | TUTAL
ALUM-
INUM
(AL)
(UG/L) | DIS-
SULVED
ALUM-
INUM
(AL)
(UG/L) | TUTAL
ARSENIC
(AS)
(UG/L) | DIS-
SOLVED
AKSENIC
(AS)
(UG/L) | TOTAL
RAFIUM
(BA)
(UG/L) | DIS-
SULVED
BARIUM
(HA)
(UG/L) | TUTAL
BORGN
(B)
(UG/L) | 015-
50LVED
80RUN
(8)
(UG/L) | | APR , 1 | | | | | | | | | *** | 100 | 60 | 30 | | 20 | .00 | .26 | .02 | .03 | 90
90 | 10 | 0 | 0
1 | 100 | 100 | 170 | 100 | | 21 | .00 | .24 | .00
85. | .00 | 7300 | 7700 | 3 | 2 | 100 | 100 | 180
190 | 150
120 | | 21
AUG | .00 | .01 | .28 | . 36 | 12000 | 10000 | 2 | 1 | 0 | | | | | 25 | | | | | 60
15000 | 30
5000 | | | | | 120
90 | 40
100 | | 25
OC T | | | | | | | | | | | | | | 19 | .00 | .22 | .00 | .00 | 150 | 0 | 1 | 0 | 0 | 0 | 70 | 40 | | 19 | .00 | .42 | .27 | . 35 | 10000 | 5000 | 10 | 10 | 0 | 0 | 240 | 170 | | DE.C
07 | | | | | 40 | 0 | | | | | 60 | 60 | | 07 | | | | | 10000 | 5000 | | | | | 240 | 190 | | FEB , 1 | 1977 | | | | 40 | 0 | | | | | 70 | 40 | | 17 | | | | | 4500 | 1400 | | | | | 270 | 170 | | APR
21 | | | | | 40 | 10 | | | | | 50 | 30 | | 21 | | | | | 4500 | 4500 | | | | | 240 | 140 | | JUN
07 | .00 | .21 | .00 | .00 | 60 | 20 | 0 | 0 | 100 | 100 | 60 | 30 | | 07 | .03 | .03 | .27 | . 35 | 200 | 500 | 5 | 6 | 500 | 200 | 280 | 170 | | | Ti•TAL
CAD⇔ | DIS-
SULVED
CAD- | TOTAL
CHRO- | DIS-
SULVED
CHR()- | TUT∆L | DIS-
SOLVED | TOTAL | DIS-
SULVED | TOT≜L | DIS-
SULVED | TUTAL | DIS- | | | ΜIJUM | MIUM | WIUM | MIUM | CUBALT | COBALT
(CO) | CUPPER
(CU) | COPPER
(CU) | IRUN
(FE) | IRON
(FE) | LEAD
(Pb) | LEAD
(PB) | | DATE | (CD)
(UG/L) | (UG/L) | (CR)
(UG/L) | (CR)
(UG/L) | (CII) | (UG/L) | APF , | 1976 | | | | | | | | | | | | | 50 | 80 | | | 0 | <50 | 0 | 10 | 4 | 650
800 | 0
670 | <100
<100 | 2 | | 21 | 100
780 | | | 0
20 | <50
800 | 3
53 | | 70 | 250000 | 130000 | 300 | 200 | | 21 | 950 | | 40 | 30 | 450 | 56 | 100 | 100 | 510000 | 130000 | 500 | 400 | | AUG
25 | 110 | | | | | | | | 120 | 60 | <100 | 10 | | 25 | 620 | 360 | | | | | | | 290000 | 210000 | 400 | 200 | | 19 | 90 | 80 | 10 | 0 | <50 | 4 | | | 140 | 40 | 100 | 3 | | 19
DEC | 570 | 540 | 20 | 10 | 750 | 61 | 30 | 33 | 300000 | 310000 | 300 | 300 | | 07 | | 70 | | | | | | | 70 | 40 | <100 | 3 | | 07
FEB , | 540 | 540 | | | | | | | 300000 | 290000 | 300 | 350 | | 17 | 60 | | | | | | | | 120 | 0 | <100 | 1 | | 17
APR | 580 | 600 | | | | | | | 310000 | 300000 | 400 | 450 | | 21 | | | | | | | | | 480 | 40 | 100 | 50 | | 21
Jun | 580 | 610 | | | •• | | | | 590000 | 270000 | 400 | 400 | | 07 | | | | 10 | <50 | a | | - | 300 | 70 | o | (| | 07 | 530 | 550 | 50 | 30 | 750 | 800 | 30 | 13 | 350000 | 53000 | 400 | 350 | Table 8.—Water-Quality Data from Consolidated No. 2 Mine Shaft, April 1976—June 1977—Continued | DATE | DIS-
SULVED
LITHIUM
(LI)
(UG/L) | TOTAL
MAN=
GANESE
(MN)
(UG/L) | DIS-
SOLVED
MAN-
GANESE
(MN)
(UG/L) | TOTAL
MERCURY
(HG)
(UG/L) | DIS-
SOLVED
MERCURY
(HG)
(UG/L) | TOTAL MOLYB- DENUM (MO) (UG/L) | DIS-
SOLVED
MOLYB-
DENUM
(MO)
(UG/L) | TOTAL
NICKEL
(NI)
(UG/L) | DIS-
SOLVED
NICKEL
(NI)
(UG/L) | TOTAL
SELE-
NIUM
(SE)
(UG/L) | DIS-
SULVED
SELE-
NIUM
(SE)
(UG/L) | DIS-
SOLVED
VANA-
DIUM
(V)
(UG/L) | |-----------|---|---|--|------------------------------------|---|--------------------------------|---|-----------------------------------|--|--|---|--| | APR , 1 | 976 | | | | | | | | | | | | | 20 | 30 | 100 | 80 | .8 | .7 | 3 | 0 | 50 | 3 | 1 | 1 | • 1 | | 21 | 40 | 8.0 | 80 | .2 | .2 | 2 | 0 | 50 | 32 | 1 | 1 | 1 | | 21 | 210 | 5800 | 5700 | . 4 | . 4 | 0 | 0 | 3300 | 3400 | 0 | 0 | 150 | | 21 | 220 | 6600 | 5900 | .5 | •6 | 0 | 0 | 3800 | 47 | 0 | 0 | 150 | | AUG | | | | | | | | 45.0 | | | | .5 | | 25 | 20 | 90 | 100 | | | *- | | <50 | 10 | | | | | 25 | 120 | 6000 | 4200 | | | | | 3500 | 1500 | | | | | OC T | _ | | | _ | | | 0 | 50 | 39 | 1 | 1 | 1.0 | | 19 | 30 | 40 | 30 | .2 | .4 | 0 | - | | | - | : | 130 | | 19 | 200 | 5500 | 5400 | • 5 | . 3 | 0 | 0 | 3500 | 3400 | 1 | 1 | 130 | | DEC | 30 | 50 | 40 | | | | | 900 | 37 | | | .0 | | 07 | | | - | | | | | | | | | 60 | | 07 | 190 | 6000 | 50 | | | | | 6000 | 3300 | | | 60 | | FEB . 1 | | 4.0 | 60 | | | | | 50 | 36 | | | .0 | | 17 | 40 | 60 | | | | _ | | | | | | 200 | | 17
APR | 200 | 5600 | 5500 | | | | | 3400 | 3600 | | ••• | 200 | | 21 | 40 | 100 | 100 | | *- | | | 50 | 55 | •• | | .0 | | 21
JUN | 190 | 5600 | 5100 | | | | | 3200 | 3200 | | | 110 | | 07 | 50 | 160 | 160 | .2 | .0 | 1 | 0 | <50 | 14 | 1 | 0 | .0 | | 07 | 300 | 5400 | 5600 | . 1 | .2 | 0 | 0 | 3500 | 3400 | 0 | 0 | 160 | | | | | | | METHY- | |----------|-------
--------|--------|--------|--------| | | | | | | LENE | | | | | DIS- | TOTAL | BLUE | | | SAMP- | TOTAL | SILVED | | ACTIVE | | | LING | ZINC | ZINÇ | CARBON | SUB- | | | DEPTH | (ZN) | (ZN) | (C) | STANCE | | DATE | (FT) | (UG/L) | (UG/L) | (MG/L) | (MG/L) | | APR , 19 | 976 | | | | | | 20 | 191 | 3000 | 3200 | 5.4 | .10 | | 21 | 227 | 4900 | 4000 | 4.7 | .00 | | 21 | 229 | 280000 | 310000 | 4.7 | .10 | | 21 | 234 | 360000 | 380000 | 4.8 | .10 | | AUG | | | | | | | 25 | 165 | 5200 | 2200 | | | | 25 | 230 | 300000 | 150000 | | | | UCT | | | | | | | 19 | 165 | 3900 | 3900 | 1.7 | .00 | | 19 | 230 | 290000 | 290000 | . 9 | .00 | | DEC | | | | | | | 07 | 165 | 30000 | 3500 | | | | 07 | 230 | 560000 | 280000 | | | | FEB , 1 | 977 | | | | | | 17 | 165 | 3300 | 3300 | | | | 17 | 230 | 300000 | 300000 | | | | APR | | | | | | | 21 | 165 | | 4200 | | | | 21 | 230 | | 592000 | | | | JUN | | | | | | | 07 | 165 | 2100 | 2100 | .7 | .00 | | 07 | 230 | 310000 | 310000 | 1.0 | .00 | $\begin{array}{c} \text{Table 9.} \text{--} \text{Chemical and Physical Properties of Mine-Shaft Water Determined} \\ \text{and Maximum, Minimum, Mean, and 50th Percentile Values} \end{array}$ | Chemical or | Number | | Valu | es | · · · · · · · · · · · · · · · · · · · | |------------------------------------|----------|---------|------------|-------|---------------------------------------| | physical | of | Maximum | Minimum | Mean | 50th Percen- | | property | analyses | | | | tile | | | | | | | | | Acidity (as CaCO3) | | | | | | | (mg/L) | 66 | 1,340 | 0 | 465 | 320 | | Alkalinity (as CaCO ₃) | | | | | | | (mg/L) | 77 | 308 | 0 | 61 | 23 | | Aluminum, dissolved | | | | | | | (ug/L) | 77 | 42,000 | 0 | 4,880 | 460 | | Aluminum, total | | | | | | | (ug/L) | 77 | 280,000 | 10 | 9,040 | 1,700 | | Ammonia, dissolved, | | | | | | | as N (mg/L) | 44 | .65 | .00 | .2 | 1 .18 | | Arsenic, dissolved | | | | | | | (ug/L) | 44 | 11 | 0 | 2.2 | 1.0 | | Arsenic, total | | | | | | | (ug/L) | 44 | 14 | 0 | 2.8 | 1.6 | | Barium, dissolved | | | | | | | (ug/L) | 44 | 600 | 0 | 55 | 0 | | Barium, total | | | | | | | (ug/L) | 44 | 600 | 0 | 50 | 0 | | Bicarbonate | | | | | | | (mg/L) | 77 | 375 | 0 | 75 | 33 | | Boron, dissolved | | | | | | | (ug/L) | 77 | 560 | 30 | 150 | 140 | | Boron, total | | | 5 0 | 200 | 000 | | (ug/L) | 77 | 1,700 | 50 | 280 | 200 | | Cadmium, dissolved | | 1 200 | | 010 | 00 | | (ug/L) | 77 | 1,200 | 1 | 240 | 80 | | Cadmium, total | 77 | 1 100 | 10 | 210 | 100 | | (ug/L) | 77 | 1,100 | 10 | 310 | 180 | | Calcium, dissolved | 77 | 600 | 1.00 | 205 | / 00 | | (mg/L) | 77 | 600 | 120 | 395 | 480 | | Carbon, total organic | , , | 0 0 | 0 | 2.6 | 2 1 | | (mg/L) | 44 | 8.0 | .0 | 2.6 | 2.1 | | Carbonate | 77 | 0 | 0 | 0 | 0 | | (mg/L) | 11 | U | U | U | U | | Chloride, dissolved | 77 | 85 | .5 | 11.8 | 6.3 | | (mg/L)
Chromium, dissolved | , , | رن | ر. | TT.0 | 0.5 | | (ug/L) | 44 | 140 | 0 | 20 | 16 | | Chromium, total | 4-1 | 140 | U | 20 | 10 | | (ug/L) | 44 | 150 | 0 | 22 | 17 | | Cobalt, dissolved | 77 | ¥.50 | v | | ±, | | (ug/L) | 44 | 800 | 0 | 160 | 50 | | Cobalt, total | 77 | 000 | Ü | 100 | 50 | | (ug/L) | 44 | 850 | 50 | 340 | 200 | | \-0; -/ | . , | - 2 3 | - ~ | | | Table 9.—Chemical and Physical Properties of Mine-Shaft Water Determined and Maximum, Minimum, Mean, and 50th Percentile Values—Continued | Chemical or | hemical or Number Values | | | | | | | |------------------------|--------------------------|-------------|---------|---------|--------------|--|--| | physical | of | Maximum | Minimum | Mean | 50th Percen- | | | | property | analyses | | | | tile | | | | | | | | | | | | | Copper, dissolved | | | | | | | | | (ug/L) | 44 | 260 | 1 | 40 | 8 | | | | Copper, total | | | | | | | | | (ug/L) | 44 | 240 | 10 | 45 | 20 | | | | Detergents (MBAS) | | | | | | | | | (mg/L) | 44 | .80 | .00 | | .00 | | | | Dissolved Solids, | | - | | | | | | | residue at 180°C | | | | | | | | | (mg/L) | 74 | 5,920 | 622 | 4,000 | 3,410 | | | | Fluoride, dissolved | | •,,,_, | V | ,,,,,, | 0,120 | | | | (mg/L) | 77 | 15 | .1 | 3. | 3 1.9 | | | | Hardness, noncarbonate | • • | 13 | • - | ٠, | J 1.7 | | | | (mg/L) | 77 | 2,500 | 250 | 1,480 | 1,800 | | | | Hardness, total | ,, | 2,500 | 230 | 1,400 | 1,000 | | | | (mg/L) | 77 | 2,500 | 410 | 1,540 | 1,800 | | | | Iron, dissolved | ,, | 2,500 | 410 | 1,540 | 1,000 | | | | (ug/L) | 77 | 330,000 | 0 | 88,000 | 39,000 | | | | Iron, total | // | 330,000 | U | 00,000 | 39,000 | | | | | 77 | 150,000 | 0 | 110 000 | E2 000 | | | | (ug/L) | // | 130,000 | 0 | 110,000 | 52,000 | | | | Lead, dissolved | 77 | E00 | 0 | 125 | () | | | | (ug/L) | 77 | 500 | 0 | 135 | 63 | | | | Lead, total | 77 | 500 | 0 | 000 | 210 | | | | (ug/L) | 77 | 500 | 0 | 220 | 310 | | | | Lithium, dissolved | | 000 | 20 | | 100 | | | | (ug/L) | 77 | 300 | 20 | 123 | 130 | | | | Magnesium, dissolved | | | | | | | | | (mg/L) | 77 | 290 | 13 | 133 | 134 | | | | Manganese, dissolved | | | | | | | | | (ug/L) | 77 | 14,000 | 10 | 3,000 | 1,870 | | | | Manganese, total | | | | | | | | | (ug/L) | 77 | 15,000 | 10 | 3,370 | 2,400 | | | | Mercury, dissolved | | | | | | | | | (ug/L) | 44 | 1.30 | .0 | • | 31 .22 | | | | Mercury, total | | | | | | | | | (ug/L) | 44 | 1.40 | .0 | • | 33 .20 | | | | Molybdenum, dissolved | | | | | | | | | (ug/L) | 44 | 2 | 0 | 0 | 0 | | | | Molybdenum, total | | | | | | | | | (ug/L) | 44 | 3 | 0 | 0 | 0 | | | | Nickel, dissolved | | | | | | | | | (ug/L) | 77 | 5,000 | 3 | 1,510 | 600 | | | | Nickel, total | | | | - | | | | | (ug/L) | 77 | 8,000 | 50 | 1,800 | 1,000 | | | | - | | -
- | | - | • | | | Table 9.—Continued | Chemical or | Number | Values | | | | | | | |---------------------------------|----------|---------|---------|--------------------------------------|--------------|--|--|--| | physical | of | Maximum | Minimum | Mean | 50th Percen- | | | | | | analyses | | | | tile | | | | | property | dialyses | | | | | | | | | Nitrate, dissolved, as N (mg/L) | 44 | 0.42 | 0.00 | 0.08 | 3 0.04 | | | | | Nitrite, dissolved, as N (mg/L) | 44 | .04 | .00 | .00 | .00 | | | | | pH (field measured)
(units) | 147 | 8.6 | 3.4 | | 6.4 | | | | | Potassium, dissolved (mg/L) | 77 | 9.2 | 1.3 | 4.0 | 3.8 | | | | | Selenium, dissolved (ug/L) | 44 | 3 | 0 | 1 | 1 | | | | | Selenium, total (ug/L) | 44 | 3 | 0 | 1 | 1 | | | | | Silica, dissolved (mg/L) | 77 | 22 | 4.9 | 11.7 | 11.7 | | | | | Sodium adsorption ratio | 77 | 25 | .1 | .6 | .5 | | | | | Sodium, dissolved | | | - 1 | F./ | 44 | | | | | (mg/L) | 77 | 200 | 7.1 | 54
7.4 | | | | | | Sodium, percent | 77 | 26 | 1.0 | 7.4 | 0.0 | | | | | Specific conductance | | | | | | | | | | (field measured) | | 4 050 | 7/0 | 2 690 | 2,800 | | | | | (umhos/cm at 25°C) | 139 | 4,950 | 740 | 2,680 | 2,000 | | | | | Sulfate, dissolved | 7.7 | 2 500 | 320 | 1,950 | 2,070 | | | | | (mg/L) | 77 | 3,500 | 320 | 1,950 | 2,070 | | | | | Suspended solids, | | | | | | | | | | residue at 110°C | 7.6 | 216 | 0 | 61 | 20 | | | | | (mg/L) | 76 | | 0 | 65 | 23 | | | | | Turbidity (NTU) | 77 | 400 | U | 05 | 23 | | | | | Vanadium, dissolved | 74 | 200 | .0 | 34 | 1.0 | | | | | (ug/L) | 74 | 200 | •0 | 34 | 1.0 | | | | | Water temperature | | | | | | | | | | (field measured) | 1.40 | 18,0 | 13.0 | 15.5 | 15.0 | | | | | (degrees Celsius) | 149 | 10,0 | 10.0 | 13.3 | . 13.0 | | | | | Zinc, dissolved | 77 | 490,000 | 640 | 175,000 1 | .03.000 | | | | | (ug/L) | // | 470,000 | 545 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | , | | | | | Zinc, total
(ug/L) | 74 | 490,000 | 730 | 108,000 | 106,000 | | | | Figure 12. Graph showing relationship of dissolved zinc concentration to dissolved sulfate concentration of mine-shaft water. Table 10.—Chemical and Physical Properties of Mine-Shaft Water Analyzed for Linear Relationship with Specific Conductance, and Regression Summary, Including Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate | Chemical or | | | | | Standard | |----------------------|-------|-------------|-----------|-------|----------| | physical | | Correlation | | | error of | | property | Units | coefficient | Intercept | Slope | estimate | | Down dissolved | /7 | 0.25 | (0 | 0.00 | 100 | | Boron, dissolved | ug/L | 0.35 | 69 | 0.03 | 103 | | Calcium, dissolved | mg/L | .88 | 119 | .09 | 69 | | Chloride, dissolved | mg/L | .16 | 5.3 | .002 | 19 | | Dissolved Solids | mg/L | .98 | -633 | 1.31 | 327 | | Fluoride, dissolved | mg/L | .61 | -1.3 | .002 | 2.8 | | Hardness, total | mg/L | .94 | 110 | .49 | 245 | | Lithium, dissolved | ug/L | .86 | -22 | .05 | 39 | | Magnesium, dissolved | mg/L | .92 | -47 | .06 | 36 | | pН | units | .64 | 7.6 | .0005 | .8 | | Potassium, dissolved | mg/L | . 27 | 3.0 | .0004 | 1.7 | | Silica, dissolved | mg/L | .13 | 13 | .0004 | 3.7 | | Sodium, dissolved | mg/L | .39 | 17 | .01 | .39 | | Sulfate, dissolved | mg/L | •95 | -362 | .80 | 336 | Table 11.—Chemical and Physical Properties of Mine-Shaft Water Analyzed for Linear Relationship with pH, and Regression Summary, Including Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate | Chemical or | | | | | Standard | |----------------------|---------|-------------|-----------|---------------------------------------|------------------| | | | Correlation | | | error of | | physical | ** *. | | T | 01 | | | property | Units | coefficient | Intercept | Slope | estimate | | | | | | | | | Aluminum, dissolved | ug/L | -0.69 | 35,300 | -5,060 | 6,099 | | Bicarbonate | mg/L | .60 | -234 | 51 | 78 | | Boron, dissolved | ug/L | 08 | 198 | -7.2 | 28 110 | | Fluoride, dissolved | mg/L | 57 | 13.8 | -1.7 | 75 2 . 85 | | Hardness, total | mg/L | 60 | 3,744 | -367 | 562 | | Iron, dissolved | ug/L | 44 | 337,143 | -41,485 | 95 , 533 | | Lithium, dissolved | ug/L | 64 | 383 | -43 | 59 | | Manganese, dissolved | ug/L | 48 | 11,023 | -1,335 | 2,816 | | Nickel, dissolved | ug/L | 55 | 6,182 | - 776 | 1,326 | |
Specific conductance | umhos/ | | | | | | F | cm | 64 | 7,425 | -770 | 989 | | | at 25°C | | • | | | | Sulfate, dissolved | mg/L | 66 | 5,838 | -647 | 835 | | Zinc, dissolved | ug/L | 64 | 759,476 | -97,270 | | | Zinc, dissolved | ug/ L | • 04 | 755,470 | 57,270 | 132,513 | | | | | | · · · · · · · · · · · · · · · · · · · | | Table 12.—Chemical Constituents of Mine-Shaft Water Analyzed for Logarithmic Relationship with pH, and Regression Summary, Including Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate | Constituent | Correlation coefficient | Intercept | Slope | Standard
error of
estimate | |----------------------|-------------------------|-----------|--------|----------------------------------| | Aluminum, dissolved | -0.86 | 19.66 | -2.199 | 1.396 | | Iron, dissolved | 65 | 21.64 | -2.174 | 2.889 | | Manganese, dissolved | 67 | 14.24 | -1.238 | 1.535 | | Nickel, dissolved | 75 | 14.56 | -1.420 | 1.420 | | Zinc, dissolved | 81 | 19.39 | -1.406 | 1.153 | Table 13.—Chemical Constituents of Mine-Shaft Water Analyzed for Linear Relationship with Dissolved Sulfate Concentration, and Regression Summary, Including Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate | Constituent | Units | Correlation coefficient | Intercept | Slope | Standard
error of
estimate | |---------------------|-------|-------------------------|-----------|--------|----------------------------------| | Aluminum, dissolved | /1 | 0.77 | 1 51/ | 2 070 | 7 554 | | • | ug/L | 0.44 | -1,514 | 3.279 | 7,556 | | Iron, dissolved | ug/L | .79 | -58,787 | 75.13 | 66,020 | | Manganese, | _ | | • | | • | | dissolved | ug/L | .76 | -1,281 | 2.192 | 2,069 | | Zinc, dissolved | ug/L | .88 | -92,278 | 136.89 | 81,846 | | | _ | | • | | , | Table 14.—Chemical Constituents of Mine-Shaft Water Analyzed for Logarithmic Relationship with Dissolved Sulfate Concentration, and Regression Summary, Including Correlation Coefficients, Intercepts, Slopes, and Standard Errors of Estimate | Constituent | Correlation
coefficient | Intercept | S1ope | Standard
error of
estimate | |----------------------|----------------------------|-----------|--------|----------------------------------| | Aluminum, dissolved | 0.76 | 2.367 | 0.0020 | 1.8121 | | Iron, dissolved | .79 | 3.288 | .0027 | 2.3380 | | Manganese, dissolved | .83 | 3.773 | .0016 | 1.1648 | | Zinc, dissolved | .86 | 7.963 | .0015 | 1.0006 | in the mined areas of Joplin were contaminated by mine water. After equilibrium water-level conditions are reached, the same possibility for stream contamination by mine water exists in the study area of this report. At this time the quantity of water and the direction of water movement in the mined area of the Boone Formation in north-eastern Oklahoma and southeastern Kansas can only be speculated. The possible directions of movement of the mine water after equilibrium water-level conditions are reached are not fully understood, although, regionally, the drainage is toward the southeast and southwest. Because of the possibilities of contamination of presently used water supplies by highly mineralized mine water, further study of the movement of water within the Boone Formation throughout the mined areas is warranted. ## **SUMMARY** This study was undertaken to determine the suitability for selected uses of water stored in abandoned zinc mines in north-eastern Oklahoma and southeastern Kansas. Phase I consisted of a reconnaissance sampling survey of the water in selected mine shafts, and has been reported by Playton and Davis (1977). Phase II consisted of bimonthly sampling of the water in selected Table 15.—Chemical and Physical Properties of Mine-Shaft Water with Observed Values Exceeding Recommended Limits for Public Water Supply, and Percentage of Samples with Excessive Values | Chemical or physical property | Recommended
maximum
value | Percent of samples with excessive values | |-------------------------------|--|--| | | 0.5/1 | 11 | | Ammonia, dissolved, as N | 0.5 mg/L ¹
10 ug/L ² | | | Cadmium, dissolved | 10 ug/L_2^- | 77 | | Chromium, total | 50 ug/L ² 3 | 11 | | Detergents (MBAS) | 0.5 mg/L^3 | 2 | | Fluoride, dissolved | 2.0 mg/L for temp=15- | ·18°C_ | | ridoride, dissolved | 2.0 mg/L for temp=15-
2.2 mg/L for temp=13- | ·14°C ² | | Iron, dissolved | 300 ug/L ³ | 62 | | Lead, dissolved | 50 ug/L ₃ | 55 | | Manganese, dissolved | 50 ug/L ³ | 84 | | pH | 5.0-9.0 units ⁴ | 16 | | Sulfate, dissolved | 250 mg/L^5 | 100 | | Zinc, dissolved | 5.0-9.0 units ⁴
250 mg/L ⁵
5,000 ug/L ³ | 83 | | | | | - 1 Limit set because constituent is indicative of pollution. - $2- {\tt Limit}$ set because constituent causes adverse physiological effects. - $3-\mbox{Limit}$ set because constituent causes undesirable aesthetic or taste effects. - 4 Limits set because standard treatment practices become uneconomical outside stated range. - 5 Limit set, where water sources with lower sulfate concentrations are or can be made available, because of taste and laxative effects. mine shafts over a period of 1 year in order to detect short-term variations of water quality. The results indicate that, generally, the mine-shaft water is stratified. Specific conductance, water temperature, dissolved solids, total and dissolved metal concentrations, and dissolved sulfate tend to increase with sampling depths, while pH tends to decrease with increasing sampling depth. No areal trend or significant seasonal variations in water quality were detected. Some chemical constituents and properties of the mine-shaft water—such as dissolved solids, total hardness, and dissolved sulfate, calcium, magnesium, and lithium—are significantly linearly correlated to spe- cific conductance. No chemical constituent or property of mine-shaft water showed significant linear correlation to pH. However, dissolved aluminum, zinc, and nickel values, when transformed to natural or Napierian logarithms, are significantly linearly correlated to pH. Water in the mine shafts is judged unsuitable for domestic supply, irrigation, and industrial cooling without treatment. Because of the presence of metals, such as cadmium and lead, in concentrations exceeding the limits recommended by the National Academy of Sciences and the National Academy of Engineering (1972), the water should not be considered as a source of public supply. Table 16.—Chemical and Physical Properties of Mine-Shaft Water with Observed Values Exceeding Recommended Limits for Fresh, Once-Through, Industrial Cooling Water, and Percentage of Samples with Excessive Values | Chemical or physical property | Recommended
maximum
value | Percent of samples with excessive values | |---|---------------------------------|--| | Acidity, total, as CaCO ₃ | O mg/L | 97 | | Aluminum, dissolved | 3,000 ug/L | 40 | | Calcium, dissolved
Dissolved Solids, residue | 500 mg/L | 23 | | at 180°C
Hardness, total, as | 1,000 mg/L | 78 | | CaCO ₂ | 850 mg/L | 73 | | Iron, dissolved | 14,000 ug/L | 73
56 | | Manganese, dissolved | 2,500 ug/1 | 43 | | рН | 5.0-8.9 units | 16 | | Sulfate, dissolved | 680 mg/L | 75 | TABLE 17.—CHEMICAL CONSTITUENTS AND PROPERTIES OF MINE-SHAFT WATER WITH OBSERVED VALUES EXCEEDING RECOMMENDED LIMITS FOR FRESH, MAKEUP-RECYCLE, INDUSTRIAL COOLING WATER, AND PERCENTAGE OF SAMPLES WITH EXCESSIVE VALUES | Chemical constituent or property | Recommended
maximum
value | Percent of samples with excessive values | |--|--|--| | Acidity, total, as CaCO Aluminum, dissolved Calcium, dissolved Dissolved Solids, residue | 200 mg/L
3,000 ug/L
500 mg/L | 55
40
23 | | at 180°C
Hardness, total, as CaCO ₃
Iron, dissolved
Manganese, dissolved
Sulfate, dissolved | 1,000 mg/L
850 mg/L
80,000 ug/L
10,000 ug/L
680 mg/L | 78
73
39
3
75 | Table 18.—Chemical and Physical Properties of Mine-Shaft Water with Observed Values Exceeding Recommended Limits for Brackish Industrial Cooling Water, and Percentage of Samples with Excessive Values | Constituent or property | Recommended
maximum
value | Percent of samples with excessive values | |---|---------------------------------|--| | Acidity, total, as CaCO ₃ Alkalinity, total, | O mg/L | 97 | | as CaCO ₃ | 150 mg/L | 14 | | Bicarbonate | 180 mg/L | 14 | | Iron, dissolved | 1,000 ug/L | 58 | | Manganese, dissolved | 20 ug/L | 95 | | pH | 5.0-8.4 units | 17 | | Sulfate, dissolved | 2,700 mg/L | 32 | Table 19.—Chemical Constituents and Properties of Mine-Shaft Water with Observed Values Exceeding Recommended Limits for Irrigation Water, and Percentage of Samples with Excessive Values | Constituent or property | Recommended
maximum
value | Percent of samples with excessive values | |---------------------------|--|--| | Aluminum, total | 5 000 49/1 1 | 36 | | Boron, total | 750 ug/L | 6 | | Cadmium, total | 5,000 ug/L ¹
750 ug/L ¹
10 ug/L ¹ | 88 | | Chromium, total | 100 ug/L 1 | 5 | | Cobalt, total | 50 ug/L 1 | 68 | | Copper, total | 200 ug/L ¹ | 2 | | Dissolved Solids, residue | 0. | | | at 180°C | 2,560 mg/L ² | 58 | | Fluoride, dissolved | 2,560 mg/L ²
1.0 mg/L ¹ | 69 | | Iron, total | 5,000 ug/L 1 | 60 | | Manganese, total | 200 ug/L_{1}^{1} | 74 | | Nickel, total | 200 ug/L $_{1}^{\perp}$ | 69
 | Vanadium, dissolved | 100 ug/L ¹ | 18 | | Zinc, total | 2,000 ug/L ¹ | 97 | ¹⁻ For water used continuously on all soils. ^{2 —} Recommended limit for moderately salt-tolerant crops with an average of 3 irrigations between leaching rains. Figure 13. Graph showing measured water-surface altitude at Blue Goose well and monthly precipitation at Quapaw, Oklahoma, September 1976–February 1980. Water levels within the mined areas have risen since cessation of mining and accompanying dewatering in the late 1950's. In the Blue Goose well the water level rose at an average rate of 2.6 ft per month from September 1975 to February 1980, but it rose at a rate greater than average after periods of heavy rainfall and after the major mine workings were filled with water. The water level in the mines and the surrounding Boone Formation should be near the static or equilibrium level—probably the same level as before mining and dewatering. Highly mineralized mine water could possibly migrate into and contaminate the Roubidoux Formation, shallow aquifers, or surface water. Further study of movement of water in the Boone Formation through the mined area is warranted, so that the quantity of mine water, the directions of its flow, and the consequences resulting from its movement can be adequately assessed. ## REFERENCES CITED - Barks, J. H., 1977, Effects of abandoned lead and zinc mines and tailings piles on water quality in the Joplin area, Missouri: U.S. Geological Survey Water-Resources Investigations 77–75, 49 p. - Brockie, D. C., Hare, E. H., Jr., and Dingess, P. R., 1968, The geology and ore deposits of the Tri-State district of Missouri, Kansas and Oklahoma; in Ore deposits of the United States, 1933–1967: American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, p. 401–430. - leum Engineers, New York, p. 401–430. Brown, Eugene, Skougstad, M. W., and Fishman, M. J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gages: U.S. Geological Survey Techniques Water-Resources Investigations, book 5, chap. Al, 160 p. - McKnight, E. T., and Fischer, R. P., 1970, Geology and ore deposits of the Picher field, Oklahoma and - Kansas: U.S. Geological Survey Professional Paper 588, 165 p. - National Academy of Sciences and National Academy of Engineering, 1973, Water quality criteria, 1972: U.S. Environmental Protection Agency, EPA-R3-73-033, 594 p. - Playton, S. J., and Davis, R. E., 1977, Preliminary report on the quality of water in abandoned zinc mines in northeastern Oklahoma and southeastern Kansas: U.S. Geological Survey Open-File Report 77–163, 36 p. - Reed, E. W., Schoff, S. L., and Branson, C. C., 1955, Ground-water resources of Ottawa County, Oklahoma: Oklahoma Geological Survey Bulletin 72, 203 n - Siebenthal, C. E., 1908, Mineral resources of northeastern Oklahoma: U.S. Geological Survey Bulletin 340-C, 43 p. - 1915, Origin of the zinc and lead deposits of the Joplin region, Missouri, Kansas, and Oklahoma: U.S. Geological Survey Bulletin 606, 283 p. ## **INDEX** (Boldface numbers indicate main references; parentheses indicate page numbers of figures; brackets indicate page numbers of tables) | - 1 | | |-----|--------------------------------------| | aba | andoned mines 1, 4 | | aqı | iifers 24, 46 | | | rite 4 | | | rks, J. H., cited 33, 42 | | | | | | ndelari Monocline 4 | | Bei | rkey, Harry A. 4 | | Div | thday mine shaft 5, (10), 12, | | ы | | | | [28–31] | | Βlι | ie Goose well (3), 5, (8), (13), 46, | | | (46) | | ъ | | | Boi | nd, Thomas 4 | | Boo | one Formation 1, 4, (4), 24, 31, | | | 33, 42, 46 | | hav | on 12 | | | | | Bro | ockie, Douglas C. 4, 24 | | Bro | ockie, Douglas C., Hare, E. H., | | | Jr., and Dingess, P. R., cited 31 | | D | Errana Characted M W | | bro | own, Eugene, Skougstad, M. W., | | | and Fishman, M. J., cited 12 | | cad | lmium 1, 12 | | Ca | mbrian-Ordovician formations | | Oa. | | | _ | 31 | | | alcopyrite 4 | | Ch | attanooga Shale 4, 33 | | | ert 4 | | | | | | oride 12 | | Col | llins, C. V. 4 | | Co | nsolidated No. 2 mine shaft 5, | | • | 12, [33–36] | | | | | | version factors 2 | | Co | tter Dolomite 4 | | dis | solved aluminum 1, 12, 19, 43 | | dia | solved calcium 1, 12, 19, 43 | | | | | | solved fluoride 12 | | dis | solved lithium 1, 19, 43 | | dis | solved magnesium 1, 19, 43 | | | solved manganese 19 | | | | | | solved metals 1, 12, 43 | | dis | solved nickel 1, 19, 43 | | dis | solved solids 1, 12, 19 | | 3:- | solved sulfate 1, 12, 19, 43 | | uis | Solved Sultate 1, 12, 13, 40 | | | solved zinc 1, 12, 19, 43 | | dol | omite 4 | | Dο | vonian age 4 | | | | | | argite 4 | | ga] | lena 4 | | ger | ologic setting (3), 4 | | | storical background 2 | | | | | Ho | ppe, Gordon E. 4 | | | | | rackets indicate page numbers of tabl | |---| | hydrology of mined area (3), 24, 31, 33, 42 | | iron 12, 19 | | jasperoid 4 | | Jefferson City Dolomite 4 | | Joplin, Missouri, area 42 | | Lavrion mine shaft 5, [20–21] | | lead 1, 12 | | limestone 4 | | Lucky Bill mine shaft 5, [16–19] | | Lucky Jew mine shaft 5, 12, [14–15] | | luzonite 4 | | McKnight, E. T., and Fischer, R. P., | | cited 4 | | marcasite 4 | | Miami, Oklahoma, mining district | | 31 | | Miami Trough 4, 33 | | mines sampled [13] | | mine-shaft water | | characteristics 4-46 | | chemical and physical properties | | [37–39], [40], [41], [43], [44],
[45] | | chemical constituents and | | properties 1, [41], [42], [44], [45] | | constituent relationships 12, 19, | | 23 | | definition of pH $4-5$ | | definition of specific conductance | | 4-5 | | results of analyses 12 | | sampling frequencies and | | methods 5, 12 | | statistical summary 12, 19, 23 | | suitability 23–24, 42 | | unsuitability 1, 43 | | Mississippian age 1, 4 | | Mississippian formations 31, 33 | | Napierian logarithms 1, 19, 23, 43 | | National Academy of Engineering | | 23, 43 | | National Academy of Sciences 23, 43 | | New Chicago mine shaft 5, [24-27] | | northeastern Oklahoma 1, 4, 5, 42 | | Oklahoma Geological Survey 1 | | Ordovician 4 | | Ottawa County, Oklahoma 1, 24, 33 | | Pennsylvanian age 4 | | | ``` pH values 1, 4, 5, 12, 19, 43 Playton, S. J., and Davis, R. E., cited 2, 42 purpose and scope of study 1-2 pyrite 4 Reed, E. W., and others, cited 24, 33 results of analyses 12 Rialto Basin 4 Roubidoux Formation 1, 4, 24, 31, 33, 46 sampling frequencies and methods 5, 12 sandstone 4 shale 4 Siebenthal, C. E., cited 31; quoted site-numbering system 2 Skelton mine shaft 5, [22-23] sodium 12 southeastern Kansas 1, (3), 4, 5, 42 specific conductance 1, 4, 5, 12, 43 sphalerite 4 statistical summary and constituent relationships 12, 19, 23 subsurface recharge to mines 24, 31 summary 42-43, 46 Tar Creek (3), 31 U.S. Geological Survey 1 U.S. Geological Survey Central Laboratory 12 variables 19, 23 water hardness, mine-shaft 1, 12, 19 water-level changes 1 Water Quality Criteria, 1972 23 water-quality data Birthday mine shaft [28-31] Consolidated No. 2 mine shaft [33-36] Lavrion mine shaft [20-21] Lucky Bill air shaft [16-19] Lucky Jew mine shaft [14-15] New Chicago mine shaft [24-27] Skelton mine shaft [22-23] water temperature, mine-shaft 1, 12 water treatment 1, 23, 24 Yevjevich, V. 19 ``` Type faces: Text in 8- and 10-pt. Century Schoolbook, with 1-pt. leading Heads in 10-pt. Century Schoolbook bold Figure captions in 8-pt. Optima, with 1-pt. leading Table heads in 10-pt. Century Schoolbook, caps and small caps Running heads in 8-pt. Optima bold Presswork: Miehle TP-29 Perfector Binding: Saddle-stitched, with hardbound and softbound Paper: Text on 70-lb. Mountie Matte Cover (hardbound) on Gane 8117LV red cloth on 160-pt. binder's board Cover (softbound) on 65-lb. Hammermill gray, antique finish