OKLAHOMA STATE REGENTS FOR HIGHER EDUCATION

Dr. M. A. Nash, Chancellor .. Oklahoma City
Guy M. Harris .. Ardmore
Wharton Mathies, Secretary .. Clayton
Frank Buttram ... Oklahoma City
John Rogers ... Tulsa
Julius H. Johnston ... Lawton
Clee O. Doggett, Vice-chairman ..Creek
W. D. Little, Chairman ... Cushing
S. A. Bryant .. Cushing
Claude Chambers, M. D. ... Seminole

REGENTS OF THE UNIVERSITY OF OKLAHOMA

Dave Morgan, President ... Blackwell
R. L. Foster, Vice-president Bartlesville
Quentin Little ... Ardmore
Joe W. McBride ... Anadarko
W. D. Grisso .. Oklahoma City
T. R. Benedum .. Norman
Leonard Savage ... Oklahoma City
Emil R. Kraettli, Secretary .. Norman
George Lynn Cross, President of the University of Oklahoma

TABLE OF CONTENTS

ABSTRACT .. 5
ACKNOWLEDGMENTS .. 5
INTRODUCTION ... 6
Location .. 6
Purpose of Present Investigation 6
Methods of Investigation .. 6
History of Previous Investigations 6

STRATIGRAPHY ... 9
General Statement .. 9
Mississippian System ... 9
Mayes “Group” .. 9
Moorefield formation .. 9
Hindsville formation .. 12
Fayetteville formation ... 14
Pennsylvanian System .. 14
Hale formation ... 14
Pleistocene and Recent ... 15
Terrace and Alluvial Deposits 15

DESCRIPTION OF LOCALITIES 16
Rose Area ... 16
Leach Area .. 17
Oaks-Kansas Area .. 17
Southeast Colcord Area ... 18
Northwest Colcord Area ... 19
Center Point Area .. 19
Ward Area .. 21
Beatty Creek Area .. 21
Westville Area ... 22
Baron Area .. 23

DESCRIPTION OF REGIONAL CROSS-SECTIONS 27
SUMMARY AND CONCLUSIONS 29
BIBLIOGRAPHY .. 30
MEASURED SECTIONS ... 31
LIST OF TABLES

Table Page
1. Faunules from the Moorefield formation 11
2. Faunules from the Hindsville formation 12

LIST OF ILLUSTRATIONS

Figure Page
1. Generalized Columnar Section 8
2. Geologic Map of the Rose Area Opposite 10
3. Geologic Map of the Leach Area Opposite 12
4. Geologic Map of the Oaks-Kansas Area Opposite 14
5. Geologic Map of the Colcord Area Opposite 16
6. Geologic Map of the Center Point Area Opposite 18
7. Geologic Map of the Ward-Beatty Creek Area Opposite 20
8. Geologic Map of the Westville Area Opposite 22
9. Geologic Map of the Baron Area Opposite 24
10. South-North Cross Section 26
11. West-East Cross Section 28
12. Map showing localities of Post-Boone Outliers 43

POST-BOONE OUTLIERS OF NORTHEASTERN OKLAHOMA

BY

R. C. SLOCUM

ABSTRACT

The area lies on the southwestern flank of the Ozark Dome, occupying portions of Mayes, Delaware, and Adair Counties, Oklahoma. The immediate purposes of the investigation were to map outliers of post-Boone age; to measure in detail the exposed sections; to collect and identify characteristic faunules; and to prepare regional cross-sections.

Rock units of the area range in age from Mississippian (Mermecian) to Pennsylvanian (Morrowan). The oldest of the post-Boone units is the Moorefield formation. The Hale formation, which forms the cap-rock of the hills and underlies the upland areas in Adair County, is the youngest unit exposed.

The Moorefield formation is unconformably overlain by the Hindsville formation. In the eastern part of the area the Moorefield formation is "cut out" by disconformity and is overlapped by the Hindsville. The Hindsville, which is present at all localities, is conformably overlain by the Fayetteville formation. Basal units of the Hale formation rest unconformably upon the Fayetteville formation.

The Hindsville carries a Chesterian fauna which resembles that of the type Hindsville formation of Arkansas, while the faunal content of the Moorefield formation is similar to that of the Moorefield formation of Arkansas.

ACKNOWLEDGMENTS

The writer wishes to acknowledge his indebtedness to Dr. George G. Huffman, who suggested the problem and gave constructive criticism and assistance throughout the entire period of the work, and to the Amerada Petroleum Corporation for an academic grant to defray daily field expenses. The Oklahoma Geological Survey furnished aerial photographs.
INTRODUCTION

Location: The area lies on the southwestern flank of the Ozark Dome, occupying portions of Mayes, Delaware, and Adair Counties. It includes T. 19 N., through T. 22 N., R. 21 E., of eastern Mayes County; all of Delaware County south of T. 22 N.; and all of Adair County north of T. 17 N. (See map, p. 43)

purposes of Present Investigation: The purposes of this investigation were: (1) to map the outcropping formations of post-Boone age; (2) to measure in detail the exposed sections; (3) to collect and identify fossils from the various formations; (4) to prepare regional cross-sections; and (5) to investigate the “Mayes formation” in an effort to provide useful data in addition to that derived from extensive investigations in adjacent areas by graduate students from the University of Oklahoma.

Methods of Investigation: Airplane photographs, furnished by the Oklahoma Geological Survey, were used in mapping the formational contacts and in the preparation of the base map. The Locke Hand Level and a 6-foot steel tape were used for determining formational thicknesses. The field work was completed during the Spring of 1953.

History of Previous Investigations

Differentiation of the Mississippian and Pennsylvanian was made by N. F. Drake (1898). This was the first attempt to outline the stratigraphy or structure of this region.

J. A. Taff (1905) (1906) mapped the geology of the Tahlequah and Muscogee quadrangles. He divided the Mississippian into two units, the Boone and the Fayetteville, and the Morrow was described as a separate unit of Pennsylvanian age.

L. C. Snider (1915) published a report on the geology of northeastern Oklahoma. He proposed the term “Mayes” for the beds between the Fayetteville shale and the Boone formation and discussed the paleontology of the Chester “Group”.

Cram (1930) and Ireland (1930) completed a special study of the stratigraphy of northeastern Oklahoma with emphasis on oil and gas possibilities.

Brant (1941) divided the Mayes of Snider into four units of formational rank which he assigned to the Meramecian series.

The Morrow series of northeastern Oklahoma was described by Carl A. Moore (1947).
STRATIGRAPHY

General Statement

Rocks studied during the present investigation range from Mississippian (Meramecian) to Pennsylvanian (Morrocan) in age. The oldest of the post-Boone units is the Moorefield formation. The Hale formation forms the cap-rock of the hills and upland areas in Adair County and is the youngest unit exposed. Terrace gravels and alluvium of Pleistocene and Recent age overlie the older formations in several localities. The sequence of beds in this area is shown on page 8.

Mississippian System

Mayes “Group”

Snider (1915) proposed the term Mayes for the rocks between the Boone chert and the Fayetteville formation. The type locality is in northeastern Mayes County. Brant (1941) divided the beds formerly assigned to the Mayes into four lithic units which he called the Moorefield, Hindsville, Batesville, and Grand River. The three lower units were believed equivalent to established units in Arkansas. According to Huffman (oral communication, June 1953) the facies of these units closely resemble those of the type Moorefield of Arkansas and the upper shale unit of the “Batesville” resembles the Ruddell shale.

For the purpose of this report the writer has referred the Mayes of this area to two formations. The lower is the Moorefield formation, which is composed of: (1) the lower argillaceous limestone member (“Moorefield” of Brant); (2) the middle gray cherty limestone member (“Hindsville” of Brant); and (3) the upper siltstone member (“Batesville” of Brant). The upper unit of the Mayes is believed equivalent to the Hindsville formation of Arkansas. The Moorefield is Meramec in age and the Hindsville is of Chester age.

Moorefield Formation

The term Moorefield was proposed by Purdue, Ulrich, and Adams (1904) for the beds between the Boone chert and the Bates-
ville sandstone at Moorefield, Arkansas. Gordon (1944) restricted the term Moorefield to the lower limestone sequence and applied the name Ruddell to the overlying brown shales.

Lower Argillaceous Limestone Member

Distribution: The lower limestone member of the Mayes is exposed along streams in the Rose, Oaks, Colcord, and Baron areas.

Character and Thickness: The thickness is extremely variable, ranging from 0 to 30 feet, with the greatest thickness on the east flank of the Baron graben (measured section 1). The lower phase of the Moorefield consists of gray to black argillaceous limestones and gray, thin-bedded, silty limestones. A strong bituminous odor is characteristic of these limestones when struck with a hammer. At Oaks and Baron these limestones contain large amounts of nodular chert which appear on the weathered surface as lightweight "cotton rock" where the soluble material has been leached out.

Paleontology: Typical forms from the lower member of the Moorefield include *Griffithides pustulosus*, *Spirifer arkamsanus*, "Dictyoclostus" coloradoensis, and *Linoproduction ovatus*. The complete faunal list is given in Table 1.
TABLE I
FAUNULES FROM THE MOOREFIELD FORMATION

<table>
<thead>
<tr>
<th>Genus and Species</th>
<th>Upper Siltstone Member</th>
<th>Localities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camarotechia purduei Girty</td>
<td>x</td>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>Echinoconochus alternatus (Norwood & Pratten)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Marginifera adairensis Drake</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Nudirostra carboniferum (Girty)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Allorisma walkerii Weller</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Arallopecten sp.</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

- **Middle Gray Cherty Limestone Member**

<table>
<thead>
<tr>
<th>Genus and Species</th>
<th>Upper Siltstone Member</th>
<th>Localities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buxtonia arkansana (Girty)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Diaphragmus cestriensis (Worthen)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>"Dictyoclostus coloradoensis* (Girty)</td>
<td>x x x x</td>
<td></td>
</tr>
<tr>
<td>Deliasma arkansanum Weller</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Linoproduxus ovatus (Hall)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Moorefieldella eurekensis Girty</td>
<td>x x</td>
<td></td>
</tr>
<tr>
<td>Nudirostra carboniferum (Girty)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Orthotetes subglobosus Girty</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Spirifer arkansanu Girty</td>
<td>x x</td>
<td></td>
</tr>
<tr>
<td>Spirifer increbescens Hall</td>
<td>x x</td>
<td></td>
</tr>
<tr>
<td>Moulonia sp.</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

- **Lower Argillaceous Limestone Member**

<table>
<thead>
<tr>
<th>Genus and Species</th>
<th>Upper Siltstone Member</th>
<th>Localities</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Dictyoclostus coloradoensis* (Girty)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Linoproduxus oestus (Hall)</td>
<td>x x</td>
<td></td>
</tr>
<tr>
<td>Spirifer arkansanu Girty</td>
<td>x x</td>
<td></td>
</tr>
<tr>
<td>Arallopecten sp.</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Griffithides postulous Snider</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

1. Along Barren Fork Creek, sec. 26, T. 17 N., R. 25 E.
2. Along Spring Creek, sec. 27, T. 20 N., R. 23 E.
3. North of Snake Creek, sec. 13, T. 20 N., R. 21 E.
4. Mayes-Delaware County line, sec. 18, T. 20 N., R. 22 E.
5. Oaks, Oklahoma, sec. 33, T. 20 N., R. 23 E.

Middle Gray Cherty Limestone Member

Distribution: The cherty limestone unit is the most widespread member of the Moorefield formation. It is exposed at Rose, Leach, Oaks, Kansas and Baron.

Character and Thickness: The middle member of the Moorefield varies from 0 to 18 feet in thickness. A complete section shows two gray, crystalline beds containing angular fragments of varicolored chert. These chert fragment-bearing beds are separated by a platy, gray siltstone (measured section 2).

Paleontology: The middle siltstone is fossiliferous, with abundant *Moorefieldella eurekensis*. The cherty limestone units contain *Nudirostra carboniferum*, *Spirifer increbescens*, and "*Dictyoclostus* coloradoensis."
Upper Siltstone Member

Distribution: It is questionable whether or not the upper siltstone member of the Moorefield is present except in the Bar area. It may occur in the Rose area in a covered interval between the cherty limestone member and the base of the Hindsville formation. The only definite exposure is along the north bank of Barr Fork Creek in sec. 26, T. 17 N., R. 25 E.

Character and Thickness: The section is 9 feet thick and consists of alternating silty limestones and siltstone beds.

Paleontology: The faunule collected and identified from the upper siltstone member is listed in Table 1.

Stratigraphic Relations of the Moorefield Formation: The upper member of the Moorefield formation are a gradational sequence and conformable throughout. The Moorefield unconformably overlies the Boone chert and is overlain by the Hindsville formation unconformably.

Age and Correlation of the Moorefield Formation: The Moorefield is classed as Meramecian in age. It is correlated with the Moorefield formation and the Ruddell shale of northwestern Arkansas.

Hindsville Formation

History of Nomenclature: Brant (1941) applied the term "Grand River" to limestones between the Fayetteville shale at the "Batesville" siltstone along Grand River in Mayes County, Oklahoma. Although the term is ideal for the type locality, it is preoccupied. The term Hindsville formation is substituted for the purpose of this report.

Distribution: The Hindsville is the most widespread formation in the area, and is found at every locality.

Character and Thickness: The formation consists of fine, coarsely crystalline, fossiliferous, gray limestones with a few silty beds developed locally. A gray-green shaly development in sec. 18, T. 20 N., R. 22 E., is 0.7 foot thick. The greatest thickness of the Hindsville is to the north of Cherokee Creek sec. 22, T. 21 N., R. 25 E., where it is 41 feet thick. Where it overlies the Boone chert a basal conglomerate is developed.
Paleontology: Certain forms like *Agassizocrinus*, *Diaphragmus cestriensis*, *Composita subquadrata*, and *Linoproductus ovatus* occur in abundance (See Table 2).

Stratigraphic Relations: The Hindsville rests unconformably upon the Moorefield formation or upon the Boone chert and lies conformably beneath the Fayetteville formation.

Age and Correlations: The Hindsville is correlated with the Hindsville-Batesville sequence of Arkansas and is classed as Chester in age.

<table>
<thead>
<tr>
<th>Genus and Species</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentremites godoni (De Franeo)</td>
<td>x x x x</td>
</tr>
<tr>
<td>Pentremites elongatus Shumard</td>
<td>x x x x</td>
</tr>
<tr>
<td>Archimeditora distans (Ulrich)</td>
<td>x x x x</td>
</tr>
<tr>
<td>Archimeditora proutana (Ulrich)</td>
<td>x x x x</td>
</tr>
<tr>
<td>Fenestella sp.</td>
<td>x x x x</td>
</tr>
<tr>
<td>Athyris cestrina Snider</td>
<td>x x x x</td>
</tr>
<tr>
<td>Buxtonia arksana (Girty)</td>
<td>x x x x</td>
</tr>
<tr>
<td>Camarotechia purdai Girty</td>
<td>x x x x</td>
</tr>
<tr>
<td>Composita subquadrata (Hall)</td>
<td>x x x x</td>
</tr>
<tr>
<td>Diaphragmus cestriensis (Worthen)</td>
<td>x x x x</td>
</tr>
<tr>
<td>"Dictyclostus" inflatus* (McChesney)</td>
<td>x x x x</td>
</tr>
<tr>
<td>Dielasma arkansasum Weller</td>
<td>x x x x</td>
</tr>
<tr>
<td>Dielasma formosum var. wülflendi Girty</td>
<td>x x x x</td>
</tr>
<tr>
<td>Eumetria vernaulliana (Hall)</td>
<td>x x x x</td>
</tr>
<tr>
<td>Linoproductus ovatus (Hall)</td>
<td>x x x x</td>
</tr>
<tr>
<td>Marginalia adaevensis (Drake)</td>
<td>x x x x</td>
</tr>
<tr>
<td>Oribiculelia batavillensis Weller</td>
<td>x x x x</td>
</tr>
<tr>
<td>Orthotetes kasaskiensis Weller</td>
<td>x x x x</td>
</tr>
<tr>
<td>Spirifer incertaeensis Hall</td>
<td>x x x x</td>
</tr>
<tr>
<td>Agassizocrinus sp.</td>
<td>x x x x</td>
</tr>
<tr>
<td>Bellorophon sp.</td>
<td>x x x x</td>
</tr>
<tr>
<td>Bemheusia sp.</td>
<td>x x x x</td>
</tr>
<tr>
<td>Platyceps sp.</td>
<td>x x x x</td>
</tr>
<tr>
<td>Palatin macronatus (Girty)</td>
<td>x x x x</td>
</tr>
</tbody>
</table>

1. Along Snake Creek, sec. 13, T. 20 N., R. 21 E.
2. Kansas, Oklahoma, sec. 13, T. 20 N., R. 23 E.
3. Along Spring Creek, sec. 27, T. 20 N., R. 23 E.
4. Southeast 1/4 of sec. 10, T. 21 N., R. 25 E.
5. North of Cherokee Creek, sec. 22, T. 21 N., R. 25 E.
7. North end of Alberry Mountains, sec. 4, T. 17 N., R. 26 E.
8. North end of Alberry Mountains, sec. 8, T. 17 N., R. 26 E.
Fayetteville Formation

History of Nomenclature: The Fayetteville shale was named by Simonds (1891) for exposures near Fayetteville, Arkansas. The Wedington sandstone member is present in the upper portions in western Arkansas and eastern Oklahoma.

Distribution: The Fayetteville formation is found only in the eastern portion of the area, at Center Point, Westville, and Baron.

Character and Thickness: The Fayetteville consists predominantly of black shale but in the upper portion of the formation a fine-grained, thinly laminated sandstone is developed. The formation attains its maximum development on Alberry Mountain, sec. 5, T. 17 N., R. 26 E., where a thickness of 165 feet was measured. North of Westville, Oklahoma, the black shale contains scattered septarian concretions and gray, lithographic limestone lenses.

Paleontology: No fossils were collected from the shaly part of the Fayetteville or from the Wedington sandstone member.

Stratigraphic Relations: The Fayetteville overlies the Hindsville formation conformably and appears to be overlain unconformably by the Pennsylvanian Hale formation.

Age and Correlations: The Fayetteville is Chesterian in age and is correlated with the Fayetteville formation of Arkansas and the upper Caney shale of the Arbuckle section.

Pennsylvanian System

Hale Formation

History of Nomenclature: The Morrow series was described by Simonds (1891) and named by Adams and Ulrich (1904) from exposures near Morrow, Washington County, Arkansas. Taff (1905) considered the Morrow of Oklahoma to be a single formation composed of three lithic units. Moore (1947) divided the Morrow of Oklahoma into two formations which are lateral extensions of the Hale and Bloyd of western Arkansas.

Distribution: The Hale formation is present only in the Westville and Baron areas. In forms prominent bluffs on Walkingstick
Mountain, sec. 33, T. 17 N., R. 25 E., and on the outlier in sec. 13, T. 17 N., R. 25 E. The formation is also found within the Baron graben.

Character and Thickness: The thickest section of the Hale was measured on the north end of Walkingstick Mountain, sec. 33, T. 17 N., R. 25 E., where it is 39 feet thick (measured section 5).

The Hale is characteristically a massive, medium-grained, cross-bedded sandstone. Fluted and pitted weathered surfaces are characteristic. The massive and resistant nature of the Hale has made it a prominent cliff former. A brown, granular limestone marks the base of the Hale in sec. 33, T. 17 N., R. 25 E.

Paleontology: No fossils were collected from the Hale exposures.

Stratigraphic Relations: The Hale appears to lie unconformably upon the Fayetteville formation.

Age and Correlation: The Hale marks the base of the Morrow series in northeastern Oklahoma. It has been correlated with the Hale of Arkansas and with the Union Valley of the Ada area (Roth, 1929).

Pleistocene and Recent

Terrace Gravels

Terrace gravels composed of rounded and subrounded pieces of chert occur in the western and southern parts of the area. In the western sector both low and high-level terraces are present. Stovall and McAnulty (1950) assign most of the high-level gravel deposits in Oklahoma to the Pleistocene.

Alluvium

Alluvial material is deposited along Snake, Salina, Cherokee, Barren Fork, and un-named creeks of the area. These deposits consist predominantly of sand and mixed gravels.
DESCRIPTION OF LOCALITIES

Locality 1

Rose Area

Stratigraphic Sequence: The post-Boone rocks exposed at the surface are assigned to the Mayes "Group" and are Mississippian in age. The oldest of these units is the lower limestone member of the Moorefield formation, which lies unconformably on the eroded surface of the Boone chert. Lying immediately above this gray, thin-bedded to massive, silty to finely crystalline limestone sequence is the middle gray cherty limestone member of the Moorefield. Although gradation is apparent between the two units the middle member is easily recognized. It is characterized by beds of varicolored, angular chert fragments along the lower and upper surfaces which are separated by a platy, calcareous, fossiliferous, brownish-gray siltstone bed. Excellent cross-bedding was observed in the silty phase of the middle Moorefield along the north side of Snake Creek, sec. 13, T. 20 N., R. 21 E.

It is questionable whether the upper siltstone member of the Moorefield formation is present here. It may be represented in the covered interval between the upper surface of the middle member of the Moorefield and the base of the overlying Hindsville. Because of the lack of definite exposures, the covered interval was mapped with the middle member of the Moorefield formation.

The upper surface of the Moorefield is overlain unconformably by the Hindsville formation. The Hindsville consists of gray, crinoidal, fossiliferous, crystalline limestone beds with a gray-green shale zone near the top. A marly limestone bed lies immediately above the Agassizocrinus zone in sec. 13, T. 20 N., R. 21 E., which is extremely fossiliferous.

The units of the Mayes, which were possibly preserved by post-Boone folding, were covered at one time by extensive terrace gravel deposits. These terraces have since been eroded away along Snake
Creek and its tributaries, leaving detrital portions of the post-Boone formations exposed at the surface. Both lowland and upland terrace levels were observed in the area.

The Hindsville formation, which is of Chesterian age, is the youngest Paleozoic formation in the area. The underlying Moorefield is Meramecian in age. The terrace gravels and alluvial deposits are of Pleistocene and Recent age.

Measured Sections: Numerous detailed measured sections were taken in the Rose Area (see measured sections 2, 3, 6, 7).

Locality II

Leach Area

Stratigraphic Sequence: The oldest unit exposed in this area is the middle gray cherty limestone member of the Moorefield formation. It is well exposed along the north bank of Salina Creek in sec. 13, T. 20 N., R. 22 E., where its unconformable relationship with the underlying Boone chert is excellently exposed. The unit is composed of light to dark gray, glauconitic, massively bedded, bituminous limestones which have angular chert fragments scattered throughout the sequence.

The Hindsville rests unconformably upon the middle member of the Moorefield. It has greater distribution than the Moorefield, being found in secs. 13, 14 and 23 of T. 20 N., R. 22 E., and sec. 18 of T. 20 N., R. 23 E. It is a gray, oolitic, thin- to massive-bedded, crystalline limestone formation which is excellently exposed along the north side of Salina Creek.

Extensive terrace deposits cover a large portion of the Leach area.

Measured Sections: Sections measured in the Leach area are shown in measured sections 8 and 9.

Locality III

Oaks-Kansas Area

Stratigraphic Sequence: The Moorefield and Hindsville formations are preserved in a shallow syncline trending N. 50° E. from Oaks to Kansas, Oklahoma, where they crop out along
Spring Creek. The oldest of the post-Boone units is the lower argillaceous limestone member of the Moorefield formation. It is predominantly a gray, thin-bedded, silty limestone which lies unconformably upon the Boone chert. Brown chert nodules are found on the weathered surface at numerous places along Spring Creek. Characteristic of the formation is the bituminous odor given off when struck with a hammer.

A bed containing angular chert fragments marks the contact between the lower and middle members of the Moorefield. The middle gray cherty limestone member is as widely distributed as the lower argillaceous limestone member and many excellent outcrop localities are available. The angular to subrounded chert fragments are characteristic of the middle Moorefield throughout the Oaks-Kansas area, but the greatest development is just west of the Kansas school. The two cherty beds are separated by brownish-gray siltstone, which is highly cross-beded. Overlying the middle Moorefield unconformably is the younger Hindsville formation.

The Hindsville is limited in distribution, cropping out along the northwest side of Spring Creek in sec. 27, T. 20 N., R. 23 E., and to the north of the Kansas school in sec. 13, T. 20 N., R. 23 E. The gray, crinoidal, crystalline limestones of the Hindsville contain the Agassizocrinus zone near the base. This zone was extremely helpful in identifying and mapping the Hindsville.

Terrace deposits cover a large portion of the area. Scattered alluvial deposits occur along Spring Creek.

Measured Sections: Detailed lithologic descriptions and formational thicknesses are given in measured sections. 12, 13, 14, and 15.

Locality IV

Southeast Concord Area

Stratigraphic Sequence: The oldest unit exposed in the area is the lower argillaceous limestone member of the Moorefield formation. It is found to the east of a Boone chert “knob” along Cloud Creek in the southwest corner of sec. 3, T. 20 N., R. 24 E. The gray, finely crystalline, thin-bedded limestones of the lower
Moorefield, which are 2.5 feet thick, are unconformably overlain by the dark gray, crystalline limestones of the Hindsville formation.

The Hindsville has the greater distribution in this locality. It is in a small exposure near the Hughes farmhouse in sec. 4, T. 20 N., R. 24 E., and crops out rather extensively along Cloud Creek in the northern portion of sec. 3, T. 20 N., R. 24 E. (measured section 16). The limestones of the Hindsville are granular in the northern portion of the locality and crumble easily. Benches are formed along Cloud Creek by these fossiliferous, thin-bedded limestones.

Like the units of the Mayes to the southwest, the formations in the Colcord area have been preserved by post-Boone folding.

Locality V

Northwest Colcord Area

Stratigraphic Sequence: Exposures of the Hindsville and lower Moorefield formations occur in sec. 20, T. 21 N., R. 24 E., along the northeastward trending intermittent streams (measured section 17).

The lower limestone member of the Moorefield formation rests unconformably upon the irregular, knobby surface of the eroded Boone chert. It is composed of light gray limestones which are finely crystalline. Compact, thin limestone beds, which weather brownish-gray, floor the stream bed.

Unconformity separates the Moorefield formation from the younger, massive, gray Hindsville limestone. These crystalline limestone beds, which weather dark gray, contain scattered Agassizocrinus sp.

Locality VI

Center Point Area

Stratigraphic Sequence: Rocks exposed at the surface in the Center Point area have been preserved in the downthrown block of a normal fault trending approximately N. 25° E. All of the exposed units are of Chesterian age (measured sections 18 and 19).

The oldest formation, which is the upper member of the Mayes
"group", is the Hindsville formation. It is widely exposed to the north of Cherokee Creek along the northern portion of the fault trace. Characteristically, the Hindsville is a gray, crystalline, fossiliferous limestone unit, but in sec. 22, T. 21 N., R. 25 E., the lower limestones are silty and thin bedded. Locally developed brown to yellow-brown, calcareous siltstone beds occur in the Hindsville section.

In the southeast corner of sec. 10, T. 21 N., R. 25 E., the upper six feet of the Hindsville is composed of a dense, brown to reddish-brown, fine-grained sandstone. The highly leached bed contains scattered crinoid stems and has a pitted, case-hardened surface. This sandstone, which marks the top of the Hindsville in this locality, is thought to be the equivalent of the true Batesville of Arkansas (Huffman, oral communication June, 1953).

The Hindsville is found along the fault to the southwest in three small exposures. As is the case in the larger Hindsville exposure to the northeast, the northwestern flanks of these exposures are covered by deposits of detrital Boone chert. Two small Hindsville exposures are in the creek beds of two intermittent streams in sec. 15, T. 21 N., R. 25 E.

Where the Hindsville is in contact with the Boone chert scattered chert pebbles occur near the base of the formation and at several places a limestone-chert conglomerate is developed. This chert zone marks the unconformable contact between the Hindsville formation and the underlying Boone chert.

A conformable relationship appears to exist between the Hindsville formation and the overlying black shales of the Fayetteville formation.

The Fayetteville occurs along the valleys and gentle slopes of the area. It is composed entirely of black, carbonaceous shale in the lower portion, and of finely laminated, brown sandstones in the upper portion (measured section 19). These sandstones, which belong to the Wedington member of the Fayetteville formation, are the youngest rocks exposed in the area. Only the lower black shale portion of the Fayetteville occurs in the small outliers in secs. 22 and 28.
Considerable drag is apparent along the fault in the southern portion of sec. 15, T. 21 N., R. 25 E., and numerous springs are present along the fault line.

Locality VII

Ward Area

Stratigraphic Sequence: The only post-Boone unit exposed in this area is the Hindsville formation. The upper portion consists of gray, crystalline limestones which are oolitic and crinoidal. The crinoidal content gives a rough appearance to the weathered surface. The massively bedded limestones become thin-bedded and silty in the middle portion of the formation. A brownish-gray, silty limestone, which contains angular chert fragments in the lower one inch, lies above the limestone-chert conglomerate bed in contact with the uneven surface of the Boone chert (measured section 20). This relationship marks the unconformity between the Hindsville and the Boone chert.

Lying above the upper massive, crystalline limestone bed is a brown, platy, unfossiliferous fine-grained sandstone which is believed to be the equivalent of the true Batesville of Arkansas. This sandstone was observed along the road approximately 100 yards south of the Ward farmhouse in sec. 27, T. 22 N., R. 25 E. No other exposures were found in the area.

Locality VIII

Beatty Creek Area

Stratigraphic Sequence: The Hindsville is exposed along the north side of Beatty Creek in sec. 3, T. 22 N., R. 25 E., where it lies unconformably upon the Boone chert. It is composed of gray, crystalline limestones which are crinoidal and slightly oolitic. The beds are massive and weather dark gray.

The small outlier in sec. 4, T. 22 N., R. 25 E., consists of Hindsville beds which are poorly exposed. The beds consist of an upper thin, brown, oolitic limestone, a middle buff shale, and a
lower bluish-gray, silty, thin-bedded, fossiliferous limestone. The base of the formation is not exposed and the outer margins of the outlier are covered by detrital Boone chert.

Measured Sections: See measured sections 22 and 23 for details of the Beatty Creek area.

Localities IX and X

Westville Area

Stratigraphic Sequence: Rocks exposed in this area range from the lower member of the Moorefield formation (Meramecian) to the Hale formation (Morrowan). The Pitkin formation is not present in the area, and the middle and upper members of the Moorefield are not exposed.

Only two exposures of the finely crystalline limestones of the lower Moorefield were found. The outcrops are along the north-south road between secs. 8 and 9, T. 17 N., R. 26 E., where they contain large, brown chert nodules. The formation is covered except at these places.

Lying above the lower Moorefield in the Alberry Mountains is the Hindsville formation. It is a dark gray, thin-bedded, crystalline limestone which forms a bench around the base of each of the post-Boone outliers. The limestones weather brownish-gray and are quite fossiliferous. Among the most useful fossils present is *Agassizocrinus* sp., which marks a persistent zone near the base of the Hindsville throughout the area. The Hindsville is conformably overlain by the black shales of the Fayetteville formation.

Exposures of Fayetteville shale are excellent. The greatest thickness was measured in the Alberry Mountains, sec. 5, T. 17 N., R. 26 E., where the lower black shale attains a thickness of 140 feet. The black fissile, carbonaceous shale, which is highly jointed, contains black, lithographic, septarian limestone concretions and scattered lithographic limestone lenses. Occurring in the upper portion of the Fayetteville formation is the Wedington sandstone member. This sandstone caps all of the post-Boone outliers where the Hale is not present. It is a brown to reddish-brown, finely laminated sandstone which is very hard. Extensive
amounts of Wedington and Hale float present difficulties in mapping the lower and upper limits of the Wedington. A gray shaly zone overlies the Wedington where the Hale is present.

The sandstone member of the Hale formation occurs in secs. 13 and 24, T. 18 N., R. 25 E., of locality 9 and in sec. 27, T. 17 N., R. 26 E., of locality 10. The Hale is characteristically a massive, cross-bedded, medium-grained sandstone which fluted weathering. Its massive and resistant nature makes the Hale a prominent cliff former in the area.

Detrital Boone chert material covers the older formations around the base of the outliers.

Measured Sections: See measured sections 4 and 24 for formational detail and thicknesses.

Locality XI

Baron Area

Stratigraphic Sequence: The post-Boone rocks have been preserved, with the exception of the exposures on Walkingstick Mountain, by the Baron Graben. This graben, which is of post-Hale age, traverses the Baron area and extends southward into T. 16 N., R. 25 E.

The oldest of the post-Boone rocks exposed at the surface is the lower argillaceous limestone member of the Moorefield formation. It crops out at the intersection of the west flank of the Baron Graben and Barren Fork Creek, sec. 26, T. 17 N., R. 25 E., and along the east flank of the Baron Graben in secs. 25 and 35, T. 17 N., R. 25 E. These exposures consist of massive, finely crystalline, gray limestones which are of small areal extent. With the exception of the exposure in sec. 26, the lower limestone member is unconformably overlain by the Hindsville formation (measured section 1). In sec. 26 the middle cherty limestone member, 6.3 feet thick, overlies the lower Moorefield. This member is composed of gray, massive- to thin-bedded, medium crystalline limestone beds
which contain large amounts of angular chert fragments. The middle cherty limestone member is found in sec. 33, T. 17 N., R. 25 E., at the base of Walkingstick Mountain.

Lying above the cherty limestone member of the Moorefield formation in sec. 26, is a 9.0 foot section of the upper siltstone member. This unit contains alternating siltstone and silty limestone beds which are very fossiliferous. The brown siltstone beds weather platy, while the limestones are compact and thin-beded.

Unconformably resting upon the Moorefield formation, depending on which member is present, is the younger Hindsville formation. The brownish-gray, crystalline, Agassizocrinus-bearing limestones of this formation are found in secs. 28, 32 and 33, T. 17 N., R. 25 E., at the base of Walkingstick Mountain (measured section 5); along a stream in the eastern portion of sec. 34, T. 17 N., R. 25 E.; in the center of the Baron Graben, sec. 26, T. 17 N., R. 25 E. (measured section 25); and along the eastern flank of the Baron Graben in secs. 25 and 35 (measured section 1). The Hindsville forms benches around the hillsides of much of the area.

The Fayetteville formation overlies the Hindsville limestone conformably. The lower black shales occur along the valleys and in the gentle slopes of the Baron area. The Fayetteville shale, and the upper brown, finely laminated Wedington sandstone member, have the widest distribution of the post-Boone formations of this area.

The Pitkin formation, which is present on Bigger Mountain, sec. 27, T. 16 N., R. 26 E. (measured section 26), and on the south end of Walkingstick Mountain, was not found in the Baron area.

Lying above the Fayetteville with apparent unconformity is the lower Pennsylvanian Hale formation. The base of the Hale formation in sec. 33, T. 17 N., R. 25 E., is marked by a gray-brown, granular, rubbly limestone which is 5.0 feet thick (measured section 5). This basal limestone was not observed at other exposures in this locality. The massive, fluted, brown sandstones of the Hale formation form a 33.5 foot cliff on Walkingstick Mountain. Other exposures of the Hale are present in the Baron Graben, where the
sandstones form the resistant cap rock above the underlying Mississippian formations. Between the flanks of the graben in the northeastern portion of the Baron area, where a northwestern dip-slope is present, the Hale sandstone forms the surface beds. Along the west flank of the graben the Hale has been down thrown against the Boone chert.

Extensive terrace deposits cover a large portion of the post-Boone in the Baron area. Alluvial deposits of Recent age are along Barren Fork Creek.
DESCRIPTION OF REGIONAL CROSS SECTIONS

South-North Cross Section

In preparing this cross-section an effort was made to extend the post-Boone formations from Bugger Mountain, sec. 27, T. 16 N., R. 25 E., northward to sec. 27, T. 22 N., R. 25 E.

The Hale formation is present in the southern part of the area, where it is a cliff former, but it is not found north of sec. 24, T. 18 N., R. 25 E. The underlying Pitkin formation has been "cut out" by the unconformity at the base of the Hale formation, and is not found north of the southern portion of Walkingstick Mountain.

The Fayetteville formation is widely distributed throughout the eastern portion of the area, extending northward as far as sec. 10, T. 21 N., R. 25 E. The thickness of the lower black shales remains fairly constant. Where the Hale does not overlie the Fayetteville formation, the upper gray shale unit has been eroded away, leaving the Wedington sandstone member forming the caprock for the formation.

The Moorefield units and the Hindsville vary in thickness as a result of the uneven surface of the Boone chert. The Moorefield formation is not exposed north of section 8, T. 17 N., R. 26 E.

West-East Cross Sections

Sections of the west-east cross-section extend from the Lindsey Bridge, sec. 6, T. 20 N., R. 20 E. (measured section 27), northeastward to sec. 27, T. 22 N., R. 25 E.

The Moorefield formation thins eastward and disappears as the section traverses the area to the east. Unconformity separates the formation from the underlying Boone chert and from the overlying Hindsville formation.

The Hindsville formation, which is the datum for the cross-sections, varies in thickness as a result of the uneven surface of the Boone chert.
SUMMARY AND CONCLUSIONS

As a result of this study, the writer has arrived at the following conclusions:

1. The Boone chert surface, upon which the Mayes was laid, was topographically rugged.

2. Based upon lithologic similarities and faunal content of Brant's "Moorefield", "Hindsville", and "Batesville" the Arkansas formational name Moorefield was applied to this sequence for the purpose of this report.

3. The Hindsville (equivalent of the unit with the preoccupied name "Grand River" of Brant) formation carries a Chesterian fauna which resembles that of the Hindsville formation of Arkansas in the type area.

4. The Hindsville formation truncates the Moorefield by disconformity and overlap to the northeast.

5. A fine-grained sandstone at the top of the Hindsville formation in the northeastern part of the area is believed to be equivalent to part of the true Batesville sandstone of Arkansas.

6. The upper siltstone member of the Moorefield formation, which crops out extensively in adjacent areas, is found only at Rose (?) and at Baron.

7. The Hale formation, consisting predominantly of sandstones, is found only in the southern part of the area.

8. The Pitkin formation, if ever present in this area, was essentially removed by erosion at the end of Mississippian time.

9. Extensive high-level terrace deposits are present in the western and southern parts of the area.
BIBLIOGRAPHY

Brant, R. A., 1941, "Stratigraphy of the Meramec and Chester Series of Mayes County, Oklahoma", Univ. of Tulsa, Master's Thesis.

Middle, gray cherty limestone member—("Hindsville" of Brant):
Limestone, gray, silty, hard, thin-bedded, cherty, *Spiroceras* incrassatum zone, weathers gray, bituminous odor.................10.8 10.4
Covered...1.0 9.6
Siltsone, brownish-gray, platy to thin-bedded, smooth surface, calcareous, limonitic, upper 6" extremely fossiliferous with abundant *Moorefieldella eucrenensis*, cross-bedded .. 2.8 8.6
Covered... 4.6 5.8
Limestone, gray, hard, angular, layer 4", at base, dense, limonitic, weathers dark gray................. 1.2 1.2
Lower argillaceous limestone member—("Moorefield" of Brant):
Limestone, gray, weathers platy to thin-bedded, finely crystalline to silty, bituminous, limonitic, *Spiroceras* incrassatum zone.. 8.8 10.3
Covered... 1.5 1.5

Boone:
Chert, brown to gray to white, massive, irregular... 1.0

3. SECTION ALONG SNAKE CREEK AT MAYES-DELAWARE COUNTY LINE

<table>
<thead>
<tr>
<th>Thickness in Feet</th>
<th>Formational Description</th>
<th>Unit</th>
<th>To Base of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covered</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hindsville:</td>
<td>Limestone, gray, finely crystalline, hard, weathers massive to thin-bedded, dolomitic, limonitic, weathers brownish-gray..</td>
<td>4.7 12.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shale, gray-green, platy, brittle, weathers buff color ..</td>
<td>0.7 7.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limestone, gray-green, buff weathering, silty, finely crystalline, thin-bedded</td>
<td>0.3 6.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limestone, gray to dark gray, finely crystalline, abundant Eunotites subquadrate, limonitic, upper zone contains clay or shale particles ..</td>
<td>1.3 6.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limestone, gray, weathers brownish-gray, medium-crystalline, dolomitic, abundant fenestellid bryozaons, thin-bedded 5.0 ..</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Covered, base of formation not exposed ...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. SECTION SOUTHEAST OF WESTVILLE

<table>
<thead>
<tr>
<th>Thickness in Feet</th>
<th>Formational Description</th>
<th>Unit</th>
<th>To Base of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fayetteville:</td>
<td>Sandstone, brown to reddish-brown, thinly laminated, weathers to "slabs", hard, very fine-grained, brown weathered</td>
<td>25.0 165.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shale, black, fissile, carbonaceous, with black, lithographic, septarian limestone concretions, unfossiliferous, jointed, iron stained ...</td>
<td>140.0 140.0</td>
<td></td>
</tr>
<tr>
<td>Hindsville:</td>
<td>Limestone, dark gray, crystalline, hard, dolomitic, weathers brownish-gray, thin-bedded, limonitic, fossiliferous with Diplomastus cestrini, Eunotites subquadrate, and Fenestrella sp., forms beach around hillside</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Covered ...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CIRCULAR 35

5. SECTION AT NORTH END OF WALKINGSTICK MOUNTAINS

<table>
<thead>
<tr>
<th>Thickness in Feet</th>
<th>Formational Description</th>
<th>Unit</th>
<th>To Base of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hale:</td>
<td>Sandstone, brown, medium-grained, fluted surface, massive, unfossiliferous, weathers reddish-brown, alternating dark and light bands, not thought to be laminated, provides large amount of float, noncalcareous ...</td>
<td>33.5 38.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limestone, gray-brown, granular, jasperoid-like particles, fossiliferous with abundant crinoid and small brachiopod fragments, rubbly ..</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Fayetteville:</td>
<td>Covered, mapped as Welington sandstone and Fayetteville shale</td>
<td>123.0</td>
<td>123.0</td>
</tr>
<tr>
<td>Hindsville:</td>
<td>Limestone, gray, weathers brownish-gray crystalline, rather thin-bedded, nodular, limonitic, Agnosticus aberrans, abundant, forms bench around hillside, lies unconformably on Boone surface ..</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Boone:</td>
<td>Chert, buff, pitted, angular surface ...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. SECTION ALONG WEST SIDE OF SNAKE CREEK

Southwest ¼ of Section 13, T. 20 N., R. 21 E.

<table>
<thead>
<tr>
<th>Thickness in Feet</th>
<th>Formational Description</th>
<th>Unit</th>
<th>To Base of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covered</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Moorefield: | Limestone, gray cherty limestone member—
| | Limestone, gray to dark gray, medium crystalline, massive to thin-bedded, dolomitic, glauconitic, upper surface contains angular chert fragments, limonitic ... | 8.0 10.0 | |
| | Limestone, light gray, weathers brownish-gray, crystalline, thin-bedded, cherty, fossiliferous, with *Athyris cestrini*, *Feneresia incrassatum*, *Fenestrella sp.*, bryozaons, limonic, rough weathered surface .. | 2.0 | |
| | Lower argillaceous limestone member
| | Limestone, gray, finely crystalline, hard, thin-bedded ... | 0.5 8.5 | |
| | Covered .. | 1.0 | |
| | Limestone, gray, brownish-gray weathering, silty, massive to thin-bedded, nonfossiliferous, lies unconformably on the Boone surface .. | 8.0 | |
| Boone: | Chert, mottled, pitted, irregular surface, gray weathering in stream bed | 3.0 | |

7. SECTION IN SMALL OUTLIER NORTH OF SNAKE CREEK

Section 14, T. 20 N., R. 21 E.

<table>
<thead>
<tr>
<th>Thickness in Feet</th>
<th>Formational Description</th>
<th>Unit</th>
<th>To Base of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covered</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Moorefield: | Lower argillaceous limestone member—("Moorefield" of Brant):

Post-Boone Outliers of Northeastern Oklahoma
Siltstone, brown to gray, weathers gray, hard, platy in upper portion, lower part is massive with shaly development in lower 2', calcareous.......................... 5.0 11.0
Limestone, brown to gray with black streaks developed locally near top, weathers brown, hard, finely crystalline, thin-bedded to platy, fossiliferous with Spirifer arktogonus.......................... 3.0 6.0
Covered, base not exposed.......................... 3.0 3.0

Boone:
Limestone and chert, massive, weathers to rough angular surface.......................... 6.0 6.0
Covered to creek bed.

8. SECTION NORTHEAST OF LEACH ALONG SALINA CREEK
Center of Section 13, T. 20 N., R. 22 E.

Formational Description

Thickness in Feet
Of To Base of Unit Formation

Hindsville:
Limestone, gray, granular, gray weathering, massively bedded, crumbly, petrolierous.......................... 1.0 7.8
Limestone, brownish-gray, weathers gray, thin to massively bedded, finely crystalline, limonitic, fossiliferous with Agassiziceras, Fenestrulina sp., Spirifer incrassata. 2.0 6.8
Limestone, gray with brown streaks, granular, crumbly, fossiliferous, with scattered small gastropods and abundant crinoid fragments.......................... 0.8 4.8
Covered.......................... 4.0 4.0

Moorefield:
Middle gray cherty limestone member—("Hindsville" of Brant):
Limestone, dark gray, medium crystalline, hard, massively bedded, stains of heavy oil, glauconitic, cherty.......... 2.0 7.0
Limestone, light gray, weathers brownish-gray, dense, massively bedded, glauconitic, hard, angular chert fragments throughout entire sequence, unformable on Boone surface.......................... 5.0 5.0
Boone:
Chert, gray to black, mottled, knobby, rough surface.......................... 2.0 2.0
Covered to stream bed.......................... 4.0 4.0

9. SECTION ONE HALF MILE EAST OF SMITH FARMHOUSE
Section 13, T. 20 N., R. 22 E.

Formational Description

Thickness in Feet
Of To Base of Unit Formation

Hindsville:
Limestone, dark gray, massive to thin-bedded, upper part oolitic, weathering, light gray weathered surface.......................... 1.5 6.5
Limestone, light gray with brown streaks, fine to medium crystalline, limonitic, hard, massive, oolitic near base.. 3.0 5.0
Limestone, gray, finely crystalline, thin-bedded, fossiliferous with Diplagnostus eclectus, Spirifer incrassata, Fenestrulina sp., rough weathered surface results from abundant fossils.......................... 2.0 2.0
Limestone, dark gray, finely crystalline, oolitic, thin-bedded, brownish-gray weathering, found in stream bed.......................... 1.0 1.0

CIRCULAR 35

10. SECTION AT SOUTH END OF HIGHWAY 33 BRIDGE
Section 14, T. 20 N., R. 22 E.

Formational Description

Thickness in Feet
Of To Base of Unit Formation
Covered.......................... 6.0 6.0

Hindsville:
Limestone, gray, weathers brownish-gray, crystalline, oolitic, limonitic, thin-bedded.......................... 1.5 2.5
Siltstone, brown, yellowish-brown weathering, platy.......................... 1.0 1.0
Covered to stream bed; section has since been covered by construction work.

11. SECTION SOUTHWEST OF OAKS ALONG INTERMITTENT STREAM
Southeast 1/4 of Section 33, T. 20 N., R. 23 E.

Formational Description

Thickness in Feet
Of To Base of Unit Formation
Covered.......................... 6.0 6.0

Moorefield:
Lower argillaceous limestone member—("Moorefield" of Brant):
Limestone, blue gray, weathers light gray, lithographic, conchoidal fracture, contains trilobitic chert nodules, thin-bedded, smooth surface.......................... 3.7 7.9
Limestone, brown, slightly fossiliferous.......................... 0.5 4.2
Limestone, brownish-gray, brown weathering, silty, smooth weathered surface.......................... 1.0 3.7
Siltstone, dark gray, brownish-gray weathering, calcareous, weathers to thin layers, fossiliferous.......................... 2.0 2.7
Limestone, gray, dense, thin-bedded, silty, fossiliferous, unformable on Boone chert.......................... 0.7 0.7
Boone:
Chert, light gray, white to gray.......................... 6.0 6.0

12. SECTION ALONG SPRING CREEK 200 YARDS NORTH OF SOUTH SECTION LINE
Section 27, T. 20 N., R. 23 E.

Formational Description

Thickness in Feet
Of To Base of Unit Formation
Covered.......................... 6.0 6.0

Moorefield:
Middle gray cherty limestone member—("Hindsville" of Brant):
Limestone, brownish-gray, weathers gray, medium crystalline, thin-bedded, cherty, knobby weathered appearance.......................... 11.0 17.6
Limestone, gray, weathers light gray, thin-bedded, medium crystalline, fossiliferous, Fenestrulina, Spirifer incrassata, bituminous, lower 1' contains angular chert fragments.......................... 6.6 6.6
Lower argillaceous limestone member—("Moorefield" of Brant):
Limestone, gray, weathers light gray, silty, platy weathering.......................... 2.7 7.7
Limestone, gray, light gray weathering, bituminous, thin-bedded, lower 6" marked by large chert boulders.......................... 2.5 5.0
Limestone, gray, lithographic, thin-bedded, weathers into flat ledges along creek.......................... 1.0 2.5
Limestone, brownish-gray, weathers light gray, silty, platy.......................... 1.5 1.5
Base of exposure at water level.
13. SECTION ALONG WEST SIDE OF SPRING CREEK
Center of Section 27, T. 20 N., R. 23 E.
Formational Description
Thickness in Feet
Of To Base of Formation
Covered
Moorefield:
Middle gray cherty limestone member—("Hindsville") of Brant):
Limestone, gray, crystalline, massive to thin-bedded, cherty, weather gray, *Dicyocostus coloradoensis* varying hardness ... 2.8
Limestone, blue-gray, medium crystalline, hard, contains angular chert fragments with larger pieces at base, massive ... 3.5
Lower argillaceous limestone member—("Moorefield") of Brant):
Limestone, blue-gray, weathers light gray, lithographic, massive, contains large chert nodules, unfossiliferous ... 5.0
14. SECTION 100 YARDS NORTH OF HIGHWAY 33 BRIDGE ALONG SPRING CREEK
Section 13, T. 20 N., R. 23 E.
Formational Description
Thickness in Feet
Of To Base of Formation
Moorefield:
Middle gray cherty limestone member—("Hindsville") of Brant):
Limestone, gray, dark gray weathering, coarsely crystalline, glauconitic, oolitic, slightly fossiliferous, limonite 0.8
Limestone, dark gray, dense, hard, contains angular to sub-rounded chert fragments, rough surface ... 3.0
Lower argillaceous limestone member—("Moorefield") of Brant):
Limestone, gray, brownish-gray weathering, finely crystalline, hard ... 0.03
Limestone, brownish-gray, weathers dark gray, limonitic, sparingly fossiliferous, forms bench along stream ... 2.2
Silstone, brown, platy, slightly fossiliferous, productid zone 2.4
Boone:
Chert, brown, knobby surface, extends beneath water level 1.0
15. SECTION WEST OF KANSAS SCHOOL ALONG SPRING CREEK
Section 13, T. 20 N., R. 23 E.
Formational Description
Thickness in Feet
Of To Base of Formation
Covered
Moorefield:
Middle gray cherty limestone member—("Hindsville") of Brant):
Limestone, gray, granular, oolitic, limonitic, angular chert fragments ... 0.5
Silstone, brownish-gray, platy, limonitic, cross-bedded, slightly fossiliferous ... 2.5
16. SECTION ALONG CLOUD CREEK
Northeast ¼ of Section 3, T. 20 N., R. 24 E.
Formational Description
Thickness in Feet
Of To Base of Formation
Covered
Hindsville:
Limestone, dark gray, granular, crumbles easily, thin-bedded, limonitic crinoidal, fossiliferous with *Spirifer incrassatus*, *Diplograptus cestriensis*, bryozoans, forms bench along stream ... 2.5
Limestone, brownish-gray, crystalline, massively bedded, cherty, overlies Boone unconformably ... 2.5
Boone:
Chert, gray to white, irregular, iron stained, forms stream bed ... 4.0
17. SECTION ALONG INTERMITTENT STREAM
Center of Section 20, T. 21 N., R. 24 E.
Formational Description
Thickness in Feet
Of To Base of Formation
Covered
Hindsville:
Limestone, gray, crystalline, massive, soft, irregular weathering surface, weathers dark gray, *Agassizocrinus* sp. 4.0
Moorefield:
Lower argillaceous limestone member—("Moorefield") of Brant):
Limestone, light gray, finely crystalline, thin-bedded, very hard, weathers brownish-gray, *Nudirostra carboniferum*, lies unconformably on Boone surface ... 0.8
Boone:
Chert, gray, irregular, knobby surface, found in stream bed.
18. SECTION NORTH OF CHEROKEE CREEK
Southwest ¼ of Section 22, T. 21 N., R. 25 E.
Formational Description
Thickness in Feet
Of To Base of Formation
Covered
Hindsville:
Limestone, gray, coarsely crystalline, thin-bedded, crumbly in places, abundant crinoid stems and fenestellid bryo- zoans ... 5.5
Silstone, yellow-brown, soft, crumbly, very irregular surface, calcareous ... 1.0
Limestone, blue-gray, silty, brown weathering, platy to thin-bedded, nonfossiliferous ... 4.0
Limestone, gray, cherty, crystalline, massive to thin-bedded, fossiliferous ... 3.5
Limestone, blue-gray, weathers light gray, lithographic, contains large, tripolitic, nodular chert, floors stream bed ... 2.0
CIRCULAR 25
Limestone, dark gray, weathers gray, hard crystalline, abundant chert fragments scattered throughout, fossiliferous with *Nudirostra carboniferum*, *Moorefieldella cuneata*
Lower argillaceous limestone member—("Moorefield") of Brant):
Limestone, blue-gray, weathers light gray, lithographic, contains large, tripolitic, nodular chert, floors stream bed
Limestone, dark gray, granular, crumbles easily, thin-bedded, limonitic crinoidal, fossiliferous with *Spirifer incrassatus*, *Diplograptus cestriensis*, bryozoans, forms bench along stream
Limestone, brownish-gray, crystalline, massively bedded, cherty, overlies Boone unconformably
Chert, gray to white, irregular, iron stained, forms stream bed
Chert, gray, irregular, knobby surface, found in stream bed.
Limestone, blue gray, silty, brown weathering, platy, non-fossiliferous ...0.3
Siltsone, brown, calcareous, characterized by thin, platy beds, hard ..2.0
Covered ...4.0
Limestone, dark gray, finely crystalline, wavy surface, thin-beded ...1.5
Limestone, brownish-gray, silty, thin-beded, fossiliferous in middle portion with abundant Spirifer incrassatus, and Diaphragmus cestrinius ..10.5
Covered ..4.5
Limestone-chert conglomerate, with angular to sub-rounded varicolored chert fragments0.5
Limestone, gray, weathers gray, medium crystalline, thin-beded, non-fossiliferous, cherty6.7
Limestone, blue-gray, weathers brown, finely crystalline, thin-beded, forms bench along creek4.0
Covered ..1.0
Limestone-chert conglomerate, with angular to sub-rounded varicolored chert fragments, lies unconformably on Boone ..0.7
Boone: ..0.7
Limestone, gray, weathers gray, sub-lithographic, smooth surface, fossiliferous, with Spirifer zone1.0
Interbedded chert and gray limestone ..1.0

19. SECTION ONE MILE NORTH OF CENTER POINT SCHOOL

Section 11, T. 21 N., R. 25 E.

Formational Description

<table>
<thead>
<tr>
<th>Thickness in Feet of</th>
<th>To Base of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covered</td>
<td></td>
</tr>
</tbody>
</table>

Fayetteville:

Sandstone, brown to reddish-orange, fine-grained to quartzitic, poorly exposed, laminated3.5
Covered ...4.0
Shale, dark gray, weathers brownish-gray, crumbly, iron stained ..2.0
Covered ..4.5
Sandstone, brownish-gray, fine-grained thin-beded, finely laminated, contains large amount of micaceous particles, hard, reddish-brown weathering ...3.5
Covered ..4.5
Clay, blue-gray, buff colored streaks, gray weathering ..3.0
Shale, black, fissile, carbonaceous, brittle, nonfossiliferous, iron stained3.0
Covered ..6.0
Shale, black, fissile, brittle, jointed, iron stained, non-fossiliferous ..16.5
Covered ..30.5
Shale, black, fissile, brittle, jointed, iron stained, non-fossiliferous ..14.0
Covered ..14.0

20. SECTION 100 YARDS SOUTH OF WARD FARMHOUSE

Section 27, T. 22 N., R. 25 E.

Formational Description

<table>
<thead>
<tr>
<th>Thickness in Feet of</th>
<th>To Base of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covered</td>
<td></td>
</tr>
</tbody>
</table>

Hindsville:

Sandstone, fine-grained, brown, weathers reddish-brown, platy, unfossiliferous, iron stained2.5
Covered ..4.0

CIRCULAR 35

Limestone, gray, dark gray weathering, crystalline, massively bedded, limonitic, hard, oolitic, glauconite-like particles, rough crinoidal surface ..3.5
Limestone, brownish-gray, weathers brown, silty, platy, lower one inch contains angular chert fragments...3.0
Limestone-chert conglomerate, gray, granular limestone with angular to sub-rounded, varicolored chert fragments, massive, lies unconformably on Boone surface ..1.0
Boone: ..1.0
Chert, white to gray, with blackish-gray weathered surface, highly fractured and jointed, iron stained ..6.0
Covered ..6.0

21. SECTION ONE HALF MILE SOUTH OF WARD FARMHOUSE

Section 34, T. 22 N., R. 25 E.

Formational Description

<table>
<thead>
<tr>
<th>Thickness in Feet of</th>
<th>To Base of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covered</td>
<td></td>
</tr>
</tbody>
</table>

Hindsville:

Limestone, gray, weathers dark gray, finely crystalline, oolitic, crinoidal ..5.5
Limestone, gray, blue-gray, weathered surface, silty, thin-beded ..2.0
Covered ..1.5
Limestone, blue-gray, weathers brown, thin-beded, silty ...2.0
Covered ..1.5
Limestone, gray, dark gray weathering, crystalline, massively bedded, crumby in places, limonitic3.5
Covered ..3.0
Limestone, gray, sub-lithographic, thin-beded, angular fracture ...0.3
Covered ..5.5
Keokuk: ..11.5
Chert, blocky, white to gray ..11.5

22. SECTION NORTH OF BEATY CREEK

Section 3, T. 22 N., R. 25 E.

Formational Description

<table>
<thead>
<tr>
<th>Thickness in Feet of</th>
<th>To Base of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covered</td>
<td></td>
</tr>
</tbody>
</table>

Hindsville:

Limestone, gray, hard, weathers dark gray, slightly oolitic, crinoidal, massive3.0
Boone: ..3.0
Chert, white to gray, irregular, massive ...3.5
Covered ..3.5

23. SECTION 200 YARDS EAST OF ROBINSON FARMHOUSE

Northeast ¼ of Section 4, T. 22 N., R. 25 E.

Formational Description

<table>
<thead>
<tr>
<th>Thickness in Feet of</th>
<th>To Base of Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covered</td>
<td></td>
</tr>
</tbody>
</table>

Hindsville:

Limestone, dark brown, very oolitic, porous along weathered surface ..0.4
Shale, buff, poorly exposed ...2.0
Limestone, blue-gray, weathers brown, silty, thin-beded, fossiliferous, with Diaphragnus cestrinius, Spirifer incrassatus, Linoproductus ovatus, exposed in ditch along north side of road ...5.5
Covered ..5.5
24. SECTION ALONG HIGHWAY 59 NORTH OF WESTVILLE

Section 25, T. 10 N., R. 25 E.

Formational Description

Hale:
Sandstone, brown, medium grained, weathers brown to reddish-brown, friable, un fossiliferous, fluted weathering, non-calcareous, massive, forms cliff around upper portion of outlier; not measured.

Fayetteville:
Float, sandstone, buff to brown, fine grained, smooth surface, hard, finely laminated (Wedington); not measured.

Shale, black, fissile, brittle, contains black, lithographic, hard, non-fossiliferous, brownish-gray weathered limestone lenses and septarian concretions, shale is non-fossiliferous, jointed, carbonaceous, rests conformably on Hindsville ___ 60.0 60.0

Hindsville:
Limestone, dark gray, weathers light gray to brownish-gray, crystalline, hard, Agassizichnus sp., thin-bedded, crinoidal, rough surface __________________________ 5.0 5.0

Covered

25. SECTION ALONG BARREN FORK CREEK

Section 26, T. 17 N., R. 25 E.

Formational Description

Hindsville:
Limestone, dark gray, massive, weathers light gray, crystalline, crinoidal, fossiliferous with Agassizichnus sp., Lineoprodus ovatus, and Spirifer incrassates and ___ 5.5 5.5

Moorefield:
Upper siltstone member:
Siltstone, brown, weathers brown, same fossils as siltstone below, shaly weathering ___ 0.8 9.1
Limestone, dark gray, silty to finely crystalline, brownish-gray weathering, hard, fossiliferous with abundant Nudirostra caribicera and Echinocidaris alternatae __________________________ 1.0 8.3

Covered ___ 1.0 7.3

Limestone, brown, silty, contains same fossils as siltstone below, weathers brown, rubble weathered surface, may be slumped slightly ___ 1.3 6.3

Siltstone, brown, platy weathering, brown weathered surface, calcareous, abundantly fossiliferous with Alphitoma sp., Nudirostra caribicera, Ascophyllum obtusifrons, and Spirifer incrassates and ___ 4.5 5.0

Limestone, black, weathers brown, thin-bedded, lithographic, platy, unfossiliferous ___ 0.5 0.5

Middle gray cherty limestone member:
Limestone, gray medium crystalline, thin-bedded, weathers gray, contains angular reddish-brown chert fragments, fossiliferous with Lineoprodus ovatus, Spirifer incrassates, and ___________________________ 2.2 2.2

Covered ___ 2.0 2.0

CIRCULAR 25

Limestone, gray, brownish-gray weathering, massively bedded, rough crinoidal surface, contains angular chert fragments ___ 2.0 2.0

Lower argillaceous limestone member:
Covered ___ 2.0 2.0

Limestone, gray, massive, hard, thin shaly partings between thicker limestone beds, contains weathers chert nodules and "stringers", finely crystalline, light gray weathering, fossiliferous with Lineoprodus ovatus and Spirifer incrassates ___ 14.0 14.0

Covered (includes base of argillaceous member) ___ 6.0 6.0

Boone:
Chert, white to gray, with large amount of iron staining, highly fractured, unmeasured.

26. SECTION ON SOUTH END OF BUGGER MOUNTAIN

Section 27, T. 16 N., R. 26 E.

Formational Description

Hale:
Sandstone, typical fluted weathering and cross-bedding, coarse grained, weathers reddish-brown, no fossils observed ___ 54.0 77.0

Shale, gray to green blocky shale ___ 19.0 23.0

Limestone, reddish-brown, conglomeratic, weathers to beds, unfossiliferous ___ 0.5 4.0

Limestone, reddish-gray, weathers granular, weathers rubbly, contains jasperoid particles, fossiliferous with crinoid fragments ___ 3.5 3.5

Pitkin:
Limestone, gray to medium gray, finely crystalline to dense, weathers light gray and rubbly, Archimedes ___ 15.2 15.2

Fayetteville:
Covered (includes the base of the Pitkin) ___ 42.0 162.0

Sandstone, massive to thin-bedded, hard, laminated, light brown to buff, forms bench on hillside (Wedington member) ___ 18.0 120.0

Covered ___ 18.0 102.0

Shale, gray-green, limonite concretions, fissile or platy ___ 30.0 84.0

Covered ___ 24.0 54.0

Shale, black, platy, bituminous, jointed, weathers out in small steps ___ 30.0 30.0

Hindsville:
Limestone, largely crystalline, gray, massive, fossiliferous ___ 3.0 22.5

Limestone, dense, lithographic, weathers dark blue-gray to white ___ 1.0 19.5

Limestone, medium to coarsely crystalline, gray, hard, fossiliferous, rough surface, Agassizicnus Spiculatus ___ 18.5 18.5

Moorefield:
Upper siltstone member—("Batesville" of Brant):
Siltstone, calcareous, hard, brownish-yellow, fossiliferous with Nudirostra caribicera, Sphenoton mertensianus, C. maronocius purdich, and Orbiculoidea newberryi var. marshallensis ___ 1.5 6.0

Shale, dark brownish-green, platy, fossiliferous with fossils named in overlying siltstone ___ 3.5 4.5
Siltstone, fine-grained, calcareous, dark brown .. 1.0
Middle gray cherty limestone member—("Hindsville"
of Brant): 1.0
 Limestone, blue-gray, coarsely crystalline, hard, relatively
 unfossiliferous ... 4.2
 Limestone, coarsely crystalline, blue-gray, bituminous odor,
 small angular chert pebbles weathered out on surface 0.8
Lower argillaceous limestone member—("Moorefield"
of Brant):
 Limestone, hard, blue-gray, fine to coarsely crystalline,
 unfossiliferous ... 5.0
 Limestone, silty, gray-green, weathers platy 0.3
 Chert and limestone, hard, light gray, largely crystalline,
 sparingly fossiliferous limestone interbedded with tri-
 politic nodular, cherty limestone which weathers soft
 and brown .. 17.8
 Limestone, dense, medium to light gray unfossiliferous, very
 hard, weathers to a smooth surface ... 9.0
Boone:
 Limestone and chert beds 2 to 4 inches thick, gray,
 crystalline, hard limestone; brown, tripolitc chert, weath-
 hers to "cotton rock" ... 1.5
 Limestone, medium to coarsely crystalline, blue-gray, glau-
 conitic, bituminous odor, hard .. 14.5
Covered

27. SECTION EAST OF LINDSEY BRIDGE
Section 6, T. 20 N., R. 20 E.

<table>
<thead>
<tr>
<th>Formational Description</th>
<th>Thickness in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Of</td>
</tr>
<tr>
<td></td>
<td>To Base of</td>
</tr>
<tr>
<td></td>
<td>Unit</td>
</tr>
<tr>
<td></td>
<td>Formation</td>
</tr>
</tbody>
</table>

Hindsville:
 Limestone, gray, medium gray weathering, massively
 bedded, crystalline, fossiliferous with *Agatizecorina*
 and *Diplagnostus cestrianus* in abundance, top of hill 18.0
 ... 18.0
Moorefield:
 Upper siltstone member:
 Siltstone, yellow-brown, brownish-gray weathering, alter-
 nating massive and platy beds, calcareous, *Nudites*
 carboniferum .. 25.5
 Middle gray cherty limestone member:
 Limestone, gray, weathers gray, massive, medium crystal-
 line, forms cliff along river, bituminous, unfossil-
 ferous, cherty .. 12.3
 Limestone, gray, gray weathering, finely crystalline, cross-
 bedded, thin-bedded near top, unfossiliferous 10.5
 .. 10.5
Lower argillaceous limestone member:
 Limestone, gray, weathers gray, thin-bedded, with cal-
 careous shale partings .. 16.0
 Limestone, gray, argillaceous, thin-bedded, shaly weather-
 ing, platy float covers surface or area, unfossilifer-
 ous .. 30.0
 Limestone, gray-blue, dense, massive, large amount of
 black chert nodules .. 14.8
 .. 14.8
 Limestone, gray, weathers gray, platy in upper zones, mas-
 sive in lower zones, dense, black nodular chert
 "stringers" or bands between beds 16.0
 .. 16.0
 Limestone, gray, weathers light gray, shaly weathering,
 dense, *Griffithides pustulosus* .. 4.5
 .. 4.5
covered to water level; Boone chert knob exposed

30 yards east.
INDEX

<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>abstract</td>
<td>5</td>
</tr>
<tr>
<td>acknowledgments</td>
<td>5</td>
</tr>
<tr>
<td>Agassizocrinus</td>
<td>13, 18, 19, 22, 24</td>
</tr>
<tr>
<td>Alberry Mountain</td>
<td>14, 22</td>
</tr>
<tr>
<td>alluvium</td>
<td>15, 25</td>
</tr>
<tr>
<td>Amerada Petroleum Corporation</td>
<td>5</td>
</tr>
<tr>
<td>Baron area</td>
<td>23</td>
</tr>
<tr>
<td>Barren Fork Creek</td>
<td>23, 49</td>
</tr>
<tr>
<td>Baron graben</td>
<td>10, 23, 24</td>
</tr>
<tr>
<td>Beatty Creek area</td>
<td>21, 22, 33</td>
</tr>
<tr>
<td>bibliography</td>
<td>30</td>
</tr>
<tr>
<td>Boone chert</td>
<td>18, 19</td>
</tr>
<tr>
<td>Brant, R. A.</td>
<td>7, 9, 12</td>
</tr>
<tr>
<td>Bugger Mountain</td>
<td>24, 27, 41</td>
</tr>
<tr>
<td>Center Point area</td>
<td>19, 38</td>
</tr>
<tr>
<td>Cherokee Creek</td>
<td>12, 20, 37</td>
</tr>
<tr>
<td>chert</td>
<td>11, 16, 18, 20, 24</td>
</tr>
<tr>
<td>Cloud Creek</td>
<td>19, 37</td>
</tr>
<tr>
<td>Colcord area</td>
<td>18, 19</td>
</tr>
<tr>
<td>columnar section</td>
<td>8</td>
</tr>
<tr>
<td>Composita subquadra</td>
<td>13</td>
</tr>
<tr>
<td>conclusions</td>
<td>29</td>
</tr>
<tr>
<td>conglomerate</td>
<td>13</td>
</tr>
<tr>
<td>cross-bedding</td>
<td>16</td>
</tr>
<tr>
<td>Diaphragmus oestrinius</td>
<td>13</td>
</tr>
<tr>
<td>"Dicyoclostus" coloradoensis</td>
<td>10, 11</td>
</tr>
<tr>
<td>Drake, N. F.</td>
<td>6</td>
</tr>
<tr>
<td>fault</td>
<td>20, 21</td>
</tr>
<tr>
<td>Fayetteville formation</td>
<td>14, 20, 22, 24</td>
</tr>
<tr>
<td>Grand River limestone</td>
<td>9, 29</td>
</tr>
<tr>
<td>Gordon, M., Jr.</td>
<td>10</td>
</tr>
<tr>
<td>Griffithides pustulosus</td>
<td>10</td>
</tr>
<tr>
<td>Hale formation</td>
<td>14, 15, 22, 24</td>
</tr>
</tbody>
</table>
Hindsville formation ... 12, 20, 21, 22, 24
Huffman, G. G. .. 5, 9, 20
Leach area .. 17
Lindsey Bridge .. 27, 42
Linopacystus ovatus .. 10, 13
"Mayes formation" .. 6
Mayes "Group" ... 9
Moore, Carl A. ... 7
Moorefield formation ... 9, 10, 11, 12, 16, 18, 19, 22, 23, 24
Moorefieldella currensis ... 11
Northwest Colcord area ... 19
Nudirostra carboniferum ... 11
Oaks-Kansas area .. 17, 18
Pitkin formation .. 24
Rose area ... 16, 17
Ruddell shale ... 5, 10
Salina Creek ... 17, 34
septarian concretions ... 14, 22
Snake Creek ... 16, 31, 32, 33
Snider, L. C. .. 9, 15
Southeast Colcord area ... 18, 19
Spirifer arkansanus ... 10
Spirifer incorebecens ... 11
Spring Creek ... 18, 36
summary ... 29
Taft, J. A. ... 6
terrace gravels ... 16, 25
unconformity .. 12, 13, 15, 16, 19, 27
Walkingstick Mountain ... 14, 15, 23, 24, 27, 33
Ward area .. 21, 39
Wedington sandstone ... 14, 22
Westville area ... 22, 22, 40